1
|
Shanabag A, Armand J, Son E, Yang HW. Targeting CDK4/6 in breast cancer. Exp Mol Med 2025; 57:312-322. [PMID: 39930131 PMCID: PMC11873051 DOI: 10.1038/s12276-025-01395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Dysregulation of the cell cycle machinery, particularly the overactivation of cyclin-dependent kinases 4 and 6 (CDK4/6), is a hallmark of breast cancer pathogenesis. The introduction of CDK4/6 inhibitors has transformed the treatment landscape for hormone receptor-positive breast cancer by effectively targeting abnormal cell cycle progression. However, despite their initial clinical success, drug resistance remains a significant challenge, with no reliable biomarkers available to predict treatment response or guide strategies for managing resistant populations. Consequently, numerous studies have sought to investigate the mechanisms driving resistance to optimize the therapeutic use of CDK4/6 inhibitors and improve patient outcomes. Here we examine the molecular mechanisms regulating the cell cycle, current clinical applications of CDK4/6 inhibitors in breast cancer, and key mechanisms contributing to drug resistance. Furthermore, we discuss emerging predictive biomarkers and highlight potential directions for overcoming resistance and enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Anusha Shanabag
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jessica Armand
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Eugene Son
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Möckl F, Kovacevic D, Werner R, Diercks BP, Weiß M. Visualization and Quantification of NFAT1 Translocation in T Cells. Methods Mol Biol 2025; 2904:11-19. [PMID: 40220223 DOI: 10.1007/978-1-0716-4414-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
NFAT1 translocation to the nucleus and consequent IL-2 production in T cells can be used as a downstream read-out for initial T cell activation via the T cell receptor complex. Here, we describe a protocol for the detection of NFAT1 translocation using anti-CD3/anti-CD28 coated beads as a stimulus of primary murine CD4+ T cells by immunohistochemistry. Further, an open-source Python code is described to determine NFAT1 translocation.
Collapse
Affiliation(s)
- Franziska Möckl
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dejan Kovacevic
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - René Werner
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn-Philip Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Mariella Weiß
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Jain A, Jung HJ, Aubee J, O’Neil JN, Muhammad LA, Khan S, Thompson K, Fluitt MB, Lee DL, Klinge CM, Khundmiri SJ. Role of NHERF1 in MicroRNA Landscape Changes in Aging Mouse Kidneys. Biomolecules 2024; 14:1048. [PMID: 39334814 PMCID: PMC11430241 DOI: 10.3390/biom14091048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
MicroRNAs (miRNAs) play important roles in the regulation of cellular function and fate via post-transcriptional regulation of gene expression. Although several miRNAs are associated with physiological processes and kidney diseases, not much is known about changes in miRNAs in aging kidneys. We previously demonstrated that sodium hydrogen exchanger 1 (NHERF1) expression regulates cellular responses to cisplatin, age-dependent salt-sensitive hypertension, and sodium-phosphate cotransporter trafficking. However, the mechanisms driving these regulatory effects of NHERF1 on cellular processes are unknown. Here, we hypothesize that dysregulation of miRNA-mediated gene regulatory networks that induce fibrosis and cytokines may depend on NHERF1 expression. To address this hypothesis, we compared miRNA expression in kidneys from both male and female old (12-18-month-old) and young (4-7-month-old) wild-type (WT) and NHERF1 knockout (NHERF1-/-) mice. Our results identified that miRNAs significantly decreased in NHERF1-/- mice included miR-669m, miR-590-3p, miR-153, miR-673-3p, and miR-127. Only miR-702 significantly decreased in aged WT mice, while miR-678 decreased in both WT and NHERF1-/- old versus young mice. miR-153 was shown to downregulate transcription factors NFATc2 and NFATc3 which regulate the transcription of several cytokines. Immunohistochemistry and western blotting revealed a significant increase in nuclear NFATc2 and NFATc3 in old NHERF1-/- mice compared to old WT mice. Our data further show that expression of the cytokines IL-1β, IL-6, IL-17A, MCP1, and TNF-α significantly increased in the old NHERF1-/- mice compared to the WT mice. We conclude that loss of NHERF1 expression induces cytokine expression in the kidney through interactive regulation between miR-153 and NFATc2/NFATc3 expression.
Collapse
Affiliation(s)
- Anish Jain
- Department of Physiology, Howard University College of Medicine, Washington, DC 20059, USA; (A.J.); (J.N.O.); (L.A.M.); (S.K.); (D.L.L.)
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Joseph Aubee
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (J.A.); (K.T.)
| | - Jahn N. O’Neil
- Department of Physiology, Howard University College of Medicine, Washington, DC 20059, USA; (A.J.); (J.N.O.); (L.A.M.); (S.K.); (D.L.L.)
| | - Laila A. Muhammad
- Department of Physiology, Howard University College of Medicine, Washington, DC 20059, USA; (A.J.); (J.N.O.); (L.A.M.); (S.K.); (D.L.L.)
| | - Shaza Khan
- Department of Physiology, Howard University College of Medicine, Washington, DC 20059, USA; (A.J.); (J.N.O.); (L.A.M.); (S.K.); (D.L.L.)
| | - Karl Thompson
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (J.A.); (K.T.)
| | - Maurice B. Fluitt
- Department of Medicine, Howard University College of Medicine, Washington, DC 20059, USA;
| | - Dexter L. Lee
- Department of Physiology, Howard University College of Medicine, Washington, DC 20059, USA; (A.J.); (J.N.O.); (L.A.M.); (S.K.); (D.L.L.)
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Syed J. Khundmiri
- Department of Physiology, Howard University College of Medicine, Washington, DC 20059, USA; (A.J.); (J.N.O.); (L.A.M.); (S.K.); (D.L.L.)
| |
Collapse
|
4
|
Lin Y, Song Y, Zhang Y, Shi M, Hou A, Han S. NFAT signaling dysregulation in cancer: Emerging roles in cancer stem cells. Biomed Pharmacother 2023; 165:115167. [PMID: 37454598 DOI: 10.1016/j.biopha.2023.115167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
The nuclear factor of activated T cells (NFAT) was first identified as a transcriptional regulator of activated T cells. The NFAT family is involved in the development of tumors. Furthermore, recent evidence reveals that NFAT proteins regulate the development of inflammatory and immune responses. New discoveries have also been made about the mechanisms by which NFAT regulates cancer progression through cancer stem cells (CSC). Here, we discuss the role of the NFAT family in the immune system and various cancer types.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yaochuan Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mengwu Shi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China.
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
5
|
Corre B, El Janati Elidrissi Y, Duval J, Quilhot M, Lefebvre G, Ecomard S, Lemaître F, Garcia Z, Bohineust A, Russo E, Bousso P. Integration of intermittent calcium signals in T cells revealed by temporally patterned optogenetics. iScience 2023; 26:106068. [PMID: 36824271 PMCID: PMC9942117 DOI: 10.1016/j.isci.2023.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/28/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
T cells become activated following one or multiple contacts with antigen-presenting cells. Calcium influx is a key signaling event elicited during these cellular interactions; however, it is unclear whether T cells recall and integrate calcium signals elicited during temporally separated contacts. To study the integration of calcium signals, we designed a programmable, multiplex illumination strategy for temporally patterned optogenetics (TEMPO). We found that a single round of calcium elevation was insufficient to promote nuclear factor of activated T cells (NFAT) activity and cytokine production in a T cell line. However, robust responses were detected after a second identical stimulation even when signals were separated by several hours. Our results suggest the existence of a biochemical memory of calcium signals in T cells that favors signal integration during temporally separated contacts and promote cytokine production. As illustrated here, TEMPO is a versatile approach for dissecting temporal integration in defined signaling pathways.
Collapse
Affiliation(s)
- Béatrice Corre
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Yassine El Janati Elidrissi
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Justine Duval
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Mailys Quilhot
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Gaëtan Lefebvre
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Solène Ecomard
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Fabrice Lemaître
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Zacarias Garcia
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Armelle Bohineust
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Erica Russo
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, 75015 Paris, France,Corresponding author
| |
Collapse
|
6
|
Human complete NFAT1 deficiency causes a triad of joint contractures, osteochondromas, and B-cell malignancy. Blood 2022; 140:1858-1874. [PMID: 35789258 DOI: 10.1182/blood.2022015674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
The discovery of humans with monogenic disorders has a rich history of generating new insights into biology. Here we report the first human identified with complete deficiency of nuclear factor of activated T cells 1 (NFAT1). NFAT1, encoded by NFATC2, mediates calcium-calcineurin signals that drive cell activation, proliferation, and survival. The patient is homozygous for a damaging germline NFATC2 variant (c.2023_2026delTACC; p.Tyr675Thrfs∗18) and presented with joint contractures, osteochondromas, and recurrent B-cell lymphoma. Absence of NFAT1 protein in chondrocytes caused enrichment in prosurvival and inflammatory genes. Systematic single-cell-omic analyses in PBMCs revealed an environment that promotes lymphomagenesis with accumulation of naïve B cells (enriched for oncogenic signatures MYC and JAK1), exhausted CD4+ T cells, impaired T follicular helper cells, and aberrant CD8+ T cells. This work highlights the pleiotropic role of human NFAT1, will empower the diagnosis of additional patients with NFAT1 deficiency, and further defines the detrimental effects associated with long-term use of calcineurin inhibitors.
Collapse
|
7
|
Juchem KW, Gounder AP, Gao JP, Seccareccia E, Yeddula N, Huffmaster NJ, Côté-Martin A, Fogal SE, Souza D, Wang SS, Glynn ERA, Yung I, Ritchie J, Li L, Zheng J, Mbow ML, Li J, Chanda SK. NFAM1 Promotes Pro-Inflammatory Cytokine Production in Mouse and Human Monocytes. Front Immunol 2022; 12:773445. [PMID: 35095847 PMCID: PMC8793151 DOI: 10.3389/fimmu.2021.773445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
NFAT activating protein with ITAM motif 1 (NFAM1) is an ITAM bearing-transmembrane receptor that has been reported to play a role in B cell signaling and development. We performed expression analysis of NFAM1 using publicly available gene expression data sets and found that NFAM1 expression is significantly induced in intestinal biopsies from Crohn’s disease (CD) and ulcerative colitis (UC) patients. At the cellular level, we further observed high expression of NFAM1 in monocytes and neutrophils, and low expression in B and T cells. To explore the role of NFAM1 in multiple immune cells and its potential role in IBD, we generated NFAM1-/- mice. In contrast with previous reports using NFAM1-transgenic mice, NFAM1-/- mice have no obvious defects in immune cell development, or B cell responses. Interestingly, NFAM1-/- monocytes produce reduced levels of TNF-α in response to activation by multiple IBD-relevant stimuli, including CD40L, TLR ligands and MDP. Additional cytokines and chemokines such as IL-6, IL-12, CCL3 and CCL4 are also reduced in CD40L stimulated NFAM1-/- monocytes. Collectively, these findings indicate that NFAM1 promotes monocyte activation, thereby amplifying the response to diverse stimuli. Similarly, we observed that deletion of NFAM1 in human monocytes reduces expression of CD40L-induced CCL4. Lastly, to assess the role of NFAM1 in IBD, we compared development of anti-CD40 induced colitis in NFAM1+/+ and NFAM1-/- mice. We found that although NFAM1 deletion had no impact on development of gut pathology, we did observe a decrease in serum TNF-α, confirming that NFAM1 promotes pro-inflammatory cytokine production in vivo. Taken together, we conclude that NFAM1 functions to amplify cytokine production and should be further evaluated as a therapeutic target for treatment of autoimmune disease.
Collapse
Affiliation(s)
- Kathryn W Juchem
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Anshu P Gounder
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Jian Ping Gao
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Elise Seccareccia
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Narayana Yeddula
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Nicholas J Huffmaster
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Alexandra Côté-Martin
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Steven E Fogal
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Donald Souza
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Sarah Sirui Wang
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Elizabeth R A Glynn
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Ivy Yung
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Julie Ritchie
- Department of Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Li Li
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Jie Zheng
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - M Lamine Mbow
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Jun Li
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
8
|
Sallinger M, Tiffner A, Schmidt T, Bonhenry D, Waldherr L, Frischauf I, Lunz V, Derler I, Schober R, Schindl R. Luminal STIM1 Mutants that Cause Tubular Aggregate Myopathy Promote Autophagic Processes. Int J Mol Sci 2020; 21:E4410. [PMID: 32575830 PMCID: PMC7352373 DOI: 10.3390/ijms21124410] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) is a ubiquitously expressed Ca2+ sensor protein that induces permeation of Orai Ca2+ channels upon endoplasmic reticulum Ca2+-store depletion. A drop in luminal Ca2+ causes partial unfolding of the N-terminal STIM1 domains and thus initial STIM1 activation. We compared the STIM1 structure upon Ca2+ depletion from our molecular dynamics (MD) simulations with a recent 2D NMR structure. Simulation- and structure-based results showed unfolding of two α-helices in the canonical and in the non-canonical EF-hand. Further, we structurally and functionally evaluated mutations in the non-canonical EF-hand that have been shown to cause tubular aggregate myopathy. We found these mutations to cause full constitutive activation of Ca2+-release-activated Ca2+ currents (ICRAC) and to promote autophagic processes. Specifically, heterologously expressed STIM1 mutations in the non-canonical EF-hand promoted translocation of the autophagy transcription factors microphthalmia-associated transcription factor (MITF) and transcription factor EB (TFEB) into the nucleus. These STIM1 mutations additionally stimulated an enhanced production of autophagosomes. In summary, mutations in STIM1 that cause structural unfolding promoted Ca2+ down-stream activation of autophagic processes.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (M.S.); (A.T.); (I.F.); (V.L.); (I.D.)
| | - Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (M.S.); (A.T.); (I.F.); (V.L.); (I.D.)
| | - Tony Schmidt
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria; (T.S.); (L.W.)
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, CZ-373 33 Nove Hrady, Czech Republic;
| | - Linda Waldherr
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria; (T.S.); (L.W.)
| | - Irene Frischauf
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (M.S.); (A.T.); (I.F.); (V.L.); (I.D.)
| | - Victoria Lunz
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (M.S.); (A.T.); (I.F.); (V.L.); (I.D.)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (M.S.); (A.T.); (I.F.); (V.L.); (I.D.)
| | - Romana Schober
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (M.S.); (A.T.); (I.F.); (V.L.); (I.D.)
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria; (T.S.); (L.W.)
| | - Rainer Schindl
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria; (T.S.); (L.W.)
- BioTechMed-Graz, A-8010 Graz, Austria
| |
Collapse
|
9
|
Wang X, Zhao C, Zhang C, Mei X, Song J, Sun Y, Wu Z, Shi W. Increased HERV-E clone 4-1 expression contributes to DNA hypomethylation and IL-17 release from CD4 + T cells via miR-302d/MBD2 in systemic lupus erythematosus. Cell Commun Signal 2019; 17:94. [PMID: 31412880 PMCID: PMC6694475 DOI: 10.1186/s12964-019-0416-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Increased human endogenous retroviruses E clone 4–1 (HERV-E clone 4–1) mRNA expression is observed in systemic lupus erythematosus (SLE) patients and associates with the disease activity. In this study, we want to further investigate the mechanism of HERV-E clone 4–1 mRNA upregulation and its roles in SLE progression. Methods CD4+ T cells were isolated from venous blood of SLE patients or healthy controls and qRT-PCR was used to detect HERV-E clone 4–1 mRNA expression. We then investigated the regulation of Nuclear factor of activated T cells 1 (NFAT1) and Estrogen receptor-α (ER-α) on HERV-E clone 4–1 transcription and the functions of HERV-E clone 4–1 3′ long terminal repeat (LTR) on DNA hypomethylation and IL-17 release. Results We found HERV-E clone 4–1 mRNA expression was upregulated in CD4+ T cells from SLE patients and positively correlated with SLE disease activity. This is associated with the activation of Ca2+/calcineurin (CaN)/NFAT1 and E2/ER-α signaling pathway and DNA hypomethylation of HERV-E clone 4–1 5’LTR. HERV-E clone 4–1 also takes part in disease pathogenesis of SLE through miR-302d/Methyl-CpG binding domain protein 2 (MBD2)/DNA hypomethylation and IL-17 signaling via its 3’LTR. Conclusions HERV-E clone 4–1 mRNA upregulation is due to the abnormal inflammation/immune/methylation status of SLE and it could act as a potential biomarker for diagnosis of SLE. HERV-E clone 4–1 also takes part in disease pathogenesis of SLE via its 3’LTR and the signaling pathways it involved in may be potential therapeutic targets of SLE. Electronic supplementary material The online version of this article (10.1186/s12964-019-0416-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Wang
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Chaoshuai Zhao
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Chengzhong Zhang
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Jun Song
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Yue Sun
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| | - Weimin Shi
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
10
|
Oxysterol-binding protein-related protein 4L promotes cell proliferation by sustaining intracellular Ca2+ homeostasis in cervical carcinoma cell lines. Oncotarget 2018; 7:65849-65861. [PMID: 27588468 PMCID: PMC5323197 DOI: 10.18632/oncotarget.11671] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/09/2016] [Indexed: 12/30/2022] Open
Abstract
Oxsterol binding protein-related protein 4 (ORP4) is essential for cell proliferation, but the underlying mechanism is unclear. ORP4 is expressed as three variants, ORP4L, ORP4M and ORP4S. Here, we reported that silencing of ORP4L with specific small interfering RNA (siRNA) inhibited the proliferation of human cervical cancer cell lines C33A, HeLa and CaSki, the reverse effect being observed in ORP4L overexpressing cells. For molecular insight, we found that ORP4L maintained intracellular Ca2+ homeostasis. Through this mechanism, ORP4L activated nuclear factor of activated T cells (NFAT) activity and thus promoted expression of a gene cluster which supported cell proliferation. Of note, ORP4L sustained inositol-1,4,5-trisphosphate receptor 1 (IP3R1) expression at both mRNA and protein levels via Ca2+-dependent NFAT3 activation, which offered a mechanic explanation for the role of ORP4L intracellular Ca2+ homeostasis. Furthermore, ORP4L knockdown markedly inhibited tumor growth in a C33A cell xenograft mouse model. To conclude, our results reveal that ORP4L promotes cell proliferation through maintaining intracellular Ca2+ homeostasis.
Collapse
|
11
|
Qu Y, Lin Q, Yuan Y, Sun Z, Li P, Wang F, Jiang H, Chen T. Cyclosporin A inhibits adipogenic differentiation and regulates immunomodulatory functions of murine mesenchymal stem cells. Biochem Biophys Res Commun 2018; 498:516-522. [PMID: 29510137 DOI: 10.1016/j.bbrc.2018.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
Aplastic anemia (AA) is generally considered as an immune-mediated bone marrow failure syndrome. Several studies show that bone marrow mesenchymal stem cells (BM-MSCs), as key cellular components of the bone marrow microenvironment, are also involved in the pathogenic mechanism of AA. Cyclosporin A (CsA) is a classic immunosuppressive drug for AA, and it specifically inhibits mammalian T cells by preventing activation of transcription factors involved in cytokine gene expression. However, little is known about the effect of CsA on the BM-MSCs. In this study, murine BM-MSCs were stimulated in the presence of CsA. Further, we found that CsA could inhibit murine BM-MSC proliferation and promote BM-MSC apoptosis, what's more CsA could inhibit adipogenic differentiation. Our study also showed that CsA could inhibit interleukin-6 expression in BM-MSCs, while promoting programmed death-ligand 2 expression. In conclusion, our results proposed that CsA may exert an effect on regulating the bone marrow environment by influencing BM-MSCs, which have a beneficial effect on treating AA.
Collapse
Affiliation(s)
- Ying Qu
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiwang Lin
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Yan Yuan
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhengxu Sun
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Pengfei Li
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fen Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua Jiang
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China.
| | - Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Abstract
Nuclear factor of activated T cells (NFAT) was first described almost three decades ago as a Ca
2+/calcineurin-regulated transcription factor in T cells. Since then, a large body of research uncovered the regulation and physiological function of different NFAT homologues in the immune system and many other tissues. In this review, we will discuss novel roles of NFAT in T cells, focusing mainly on its function in humoral immune responses, immunological tolerance, and the regulation of immune metabolism.
Collapse
Affiliation(s)
- Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
13
|
Cho HJ, Yun HJ, Yang HC, Kim SJ, Kang SK, Che C, Lee SD, Kang MW. Prognostic significance of nuclear factor of activated T-cells 5 expression in non-small cell lung cancer patients who underwent surgical resection. J Surg Res 2018; 226:40-47. [PMID: 29661287 DOI: 10.1016/j.jss.2017.12.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/30/2017] [Accepted: 12/28/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Nuclear factor of activated T-cells 5 (NFAT5) is known to be correlated with migration or invasion of tumor cells based on previous in vitro studies. The aim of this study was to analyze the relationship between NFAT5 expression and clinical prognosis in non-small cell lung cancer (NSCLC) patients who underwent surgical resection. MATERIALS AND METHODS A total of 92 NSCLC patients who underwent surgical resection were enrolled. The tissue microarray core was obtained from surgically resected tumor specimens. NFAT5 expression was evaluated by immunohistochemistry. Relationships of NFAT5 expression with disease recurrence, overall survival, and disease-free survival (DFS) were analyzed. RESULTS The mean age of 92 patients was 63.7 y. The median follow-up duration was 63.3 mo. Fifty-one (55%) patients exhibited positive expression of NFAT5. Disease recurrence in the NFAT5-positive group was significantly (P = 0.022) higher than that in the NFAT5-negative group. NFAT5-positive expression (odds ratio: 2.632, 95% confidence interval: 1.071-6.465, P = 0.035) and pathologic N stage (N1-2 versus N0; odds ratio: 3.174, 95% confidence interval: 1.241-8.123, P = 0.016) were independent and significant risk factors for disease recurrence. DFS of the NFAT5-positive group was significantly worse than that of the NFAT5-negative group (89.7 versus 48.7 mo, P = 0.011). A multivariate analysis identified NFAT5 expression (P < 0.029) as a significant independent risk factor for DFS of patients with postoperative pathologic T and N stages (P < 0.001 and P = 0.017, respectively). CONCLUSIONS NFAT5 expression is a useful prognostic biomarker for NSCLC patients who underwent surgical resection.
Collapse
Affiliation(s)
- Hyun Jin Cho
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hwan-Jung Yun
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hee Chul Yang
- Department of Thoracic and Cardiovascular Surgery, Center for Lung Cancer, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Soo Jin Kim
- Department of Physiology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Shin Kwang Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Chengri Che
- Department of Thoracic Surgery, Yanbian University Hospital, Yanji, China
| | - Sang Do Lee
- Department of Physiology, Chungnam National University School of Medicine, Daejeon, South Korea.
| | - Min-Woong Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea.
| |
Collapse
|
14
|
Yoshimatsu G, Kunnathodi F, Saravanan PB, Shahbazov R, Chang C, Darden CM, Zurawski S, Boyuk G, Kanak MA, Levy MF, Naziruddin B, Lawrence MC. Pancreatic β-Cell-Derived IP-10/CXCL10 Isletokine Mediates Early Loss of Graft Function in Islet Cell Transplantation. Diabetes 2017; 66:2857-2867. [PMID: 28855240 PMCID: PMC5652609 DOI: 10.2337/db17-0578] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Pancreatic islets produce and secrete cytokines and chemokines in response to inflammatory and metabolic stress. The physiological role of these "isletokines" in health and disease is largely unknown. We observed that islets release multiple inflammatory mediators in patients undergoing islet transplants within hours of infusion. The proinflammatory cytokine interferon-γ-induced protein 10 (IP-10/CXCL10) was among the highest released, and high levels correlated with poor islet transplant outcomes. Transgenic mouse studies confirmed that donor islet-specific expression of IP-10 contributed to islet inflammation and loss of β-cell function in islet grafts. The effects of islet-derived IP-10 could be blocked by treatment of donor islets and recipient mice with anti-IP-10 neutralizing monoclonal antibody. In vitro studies showed induction of the IP-10 gene was mediated by calcineurin-dependent NFAT signaling in pancreatic β-cells in response to oxidative or inflammatory stress. Sustained association of NFAT and p300 histone acetyltransferase with the IP-10 gene required p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) activity, which differentially regulated IP-10 expression and subsequent protein release. Overall, these findings elucidate an NFAT-MAPK signaling paradigm for induction of isletokine expression in β-cells and reveal IP-10 as a primary therapeutic target to prevent β-cell-induced inflammatory loss of graft function after islet cell transplantation.
Collapse
Affiliation(s)
| | | | | | - Rauf Shahbazov
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX
| | - Charles Chang
- Institute of Biomedical Studies, Baylor University, Waco, TX
| | - Carly M Darden
- Institute of Biomedical Studies, Baylor University, Waco, TX
| | | | - Gulbahar Boyuk
- Adacell Medical Research Center, Department of Endocrinology and Metabolism, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Mazhar A Kanak
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Marlon F Levy
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Bashoo Naziruddin
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX
| | | |
Collapse
|
15
|
Systems-level identification of PKA-dependent signaling in epithelial cells. Proc Natl Acad Sci U S A 2017; 114:E8875-E8884. [PMID: 28973931 DOI: 10.1073/pnas.1709123114] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G protein stimulatory α-subunit (Gαs)-coupled heptahelical receptors regulate cell processes largely through activation of protein kinase A (PKA). To identify signaling processes downstream of PKA, we deleted both PKA catalytic subunits using CRISPR-Cas9, followed by a "multiomic" analysis in mouse kidney epithelial cells expressing the Gαs-coupled V2 vasopressin receptor. RNA-seq (sequencing)-based transcriptomics and SILAC (stable isotope labeling of amino acids in cell culture)-based quantitative proteomics revealed a complete loss of expression of the water-channel gene Aqp2 in PKA knockout cells. SILAC-based quantitative phosphoproteomics identified 229 PKA phosphorylation sites. Most of these PKA targets are thus far unannotated in public databases. Surprisingly, 1,915 phosphorylation sites with the motif x-(S/T)-P showed increased phosphooccupancy, pointing to increased activity of one or more MAP kinases in PKA knockout cells. Indeed, phosphorylation changes associated with activation of ERK2 were seen in PKA knockout cells. The ERK2 site is downstream of a direct PKA site in the Rap1GAP, Sipa1l1, that indirectly inhibits Raf1. In addition, a direct PKA site that inhibits the MAP kinase kinase kinase Map3k5 (ASK1) is upstream of JNK1 activation. The datasets were integrated to identify a causal network describing PKA signaling that explains vasopressin-mediated regulation of membrane trafficking and gene transcription. The model predicts that, through PKA activation, vasopressin stimulates AQP2 exocytosis by inhibiting MAP kinase signaling. The model also predicts that, through PKA activation, vasopressin stimulates Aqp2 transcription through induction of nuclear translocation of the acetyltransferase EP300, which increases histone H3K27 acetylation of vasopressin-responsive genes (confirmed by ChIP-seq).
Collapse
|
16
|
Xu Q, Qiu X, Jiao Z, Zhang M, Chen J, Zhong M. NFATC1 genotypes affect acute rejection and long-term graft function in cyclosporine-treated renal transplant recipients. Pharmacogenomics 2017; 18:381-392. [PMID: 28244807 DOI: 10.2217/pgs-2016-0171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM To investigate the effects of SNPs in the cyclophilin A/calcineurin/nuclear factor of activated T-cells (NFATs) pathway genes (PPIA, PPP3CB, PPP3R1, NFATC1 and NFATC2) on cyclosporine (CsA) efficacy in renal transplant recipients. MATERIALS & METHODS Seventy-six tag SNPs were detected in 155 CsA-treated renal recipients with at least a 5-year follow-up. The associations of SNPs with acute rejection, nephrotoxicity, pneumonia and estimated glomerular filtration rate post transplant were explored. RESULTS NFATC1 rs3894049 GC was a risk factor for acute rejection compared with CC carriers (p = 0.0005). NFATC1 rs2280055 TT carriers had a more stable estimated glomerular filtration rate level than CC (p = 0.0004). CONCLUSION Detecting NFATC1 polymorphisms could help predict CsA efficacy in renal transplant patients.
Collapse
Affiliation(s)
- Qinxia Xu
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Zheng Jiao
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Ming Zhang
- Department of Nephrology, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| | - Jianping Chen
- Key Lab of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, 779 Lao Hu Min Road, Shanghai, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, China
| |
Collapse
|
17
|
Manocha GD, Ghatak A, Puig KL, Kraner SD, Norris CM, Combs CK. NFATc2 Modulates Microglial Activation in the AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2017; 58:775-787. [PMID: 28505967 PMCID: PMC6265241 DOI: 10.3233/jad-151203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) brains are characterized by fibrillar amyloid-β (Aβ) peptide containing plaques and associated reactive microglia. The proinflammatory phenotype of the microglia suggests that they may negatively affect disease course and contribute to behavioral decline. This hypothesis predicts that attenuating microglial activation may provide benefit against disease. Prior work from our laboratory and others has characterized a role for the transcription factor, nuclear factor of activated T cells (NFAT), in regulating microglial phenotype in response to different stimuli, including Aβ peptide. We observed that the NFATc2 isoform was the most highly expressed in murine microglia cultures, and inhibition or deletion of NFATc2 was sufficient to attenuate the ability of the microglia to secrete cytokines. In order to determine whether the NFATc2 isoform, in particular, was a valid immunomodulatory target in vivo, we crossed an NFATc2-/- line to a well-known AD mouse model, an AβPP/PS1 mouse line. As expected, the AβPP/PS1 x NFATc2-/- mice had attenuated cytokine levels compared to AβPP/PS1 mice as well as reduced microgliosis and astrogliosis with no effect on plaque load. Although some species differences in relative isoform expression may exist between murine and human microglia, it appears that microglial NFAT activity is a viable target for modulating the proinflammatory changes that occur during AD.
Collapse
Affiliation(s)
- Gunjan D. Manocha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Atreyi Ghatak
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Kendra L. Puig
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Susan D. Kraner
- Department of Pharmacology and Nutritional Sciences and the Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Christopher M. Norris
- Department of Pharmacology and Nutritional Sciences and the Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Colin K. Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
18
|
Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player. Cell Death Dis 2016; 7:e2199. [PMID: 27100893 PMCID: PMC4855676 DOI: 10.1038/cddis.2016.97] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 12/11/2022]
Abstract
The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca2+-regulated members (NFAT1–NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis.
Collapse
|
19
|
Kumar SKM, Bhat BV. Distinct mechanisms of the newborn innate immunity. Immunol Lett 2016; 173:42-54. [PMID: 26994839 DOI: 10.1016/j.imlet.2016.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/23/2022]
Abstract
The ontogeny of immunity during early life is of high importance as it shapes the immune system for the entire course of life. The microbiome and the environment contribute to the development of immunity in newborns. As immune responses in newborns are predominantly less experienced they are increasingly susceptible to infections. Though the immune cells in newborns are in 'naïve' state, they have been shown to mount adult-like responses in several circumstances. The innate immunity plays a vital role in providing protection during the neonatal period. Various stimulants have been shown to enhance the potential and functioning of the innate immune cells in newborns. They are biased against the production of pro-inflammatory cytokines and this makes them susceptible to wide variety of intracellular pathogens. The adaptive immunity requires prior antigenic experience which is very limited in newborns. This review discusses in detail the characteristics of innate immunity in newborns and the underlying developmental and functional mechanisms involved in the immune response. A better understanding of the immunological milieu in newborns could help the medical fraternity to find novel methods for prevention and treatment of infection in newborns.
Collapse
Affiliation(s)
- S Kingsley Manoj Kumar
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry 605006, India.
| | - B Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry 605006, India.
| |
Collapse
|
20
|
Vihma H, Luhakooder M, Pruunsild P, Timmusk T. Regulation of different human NFAT isoforms by neuronal activity. J Neurochem 2016; 137:394-408. [PMID: 26851544 DOI: 10.1111/jnc.13568] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/04/2016] [Accepted: 01/29/2016] [Indexed: 12/30/2022]
Abstract
Nuclear factor of activated T-cells (NFAT) is a family of transcription factors comprising four calcium-regulated members: NFATc1, NFATc2, NFATc3, and NFATc4. Upon activation by the calcium-dependent phosphatase calcineurin (CaN), NFATs translocate from cytosol to the nucleus and regulate their target genes, which in the nervous system are involved in axon growth, synaptic plasticity, and neuronal survival. We have shown previously that there are a number of different splice variants of NFAT genes expressed in the brain. Here, we studied the subcellular localizations and transactivation capacities of alternative human NFAT isoforms in rat primary cortical or hippocampal neurons in response to membrane depolarization and compared the induced transactivation levels in neurons to those obtained from HEK293 cells in response to calcium signaling. We confirm that in neurons the translocation to the nucleus of all NFAT isoforms is reliant on the activity of CaN. However, our results suggest that both the regulation of subcellular localization and transcriptional activity of NFAT proteins in neurons is isoform specific. We show that in primary hippocampal neurons NFATc2 isoforms have very fast translocation kinetics, whereas NFATc4 isoforms translocate relatively slowly to the nucleus. Moreover, we demonstrate that the strongest transcriptional activators in HEK293 cells are NFATc1 and NFATc3, but in neurons NFATc3 and NFATc4 lead to the highest induction, and NFATc2 and NFATc1 display isoform-specific transcription activation capacities. Altogether, our results indicate that the effects of calcium signaling on the action of NFAT proteins are isoform-specific and can differ between cell types. We show that the effects of calcium signaling on the action of NFAT proteins are isoform-specific and differ between cell types. Although nuclear localization of all NFAT isoforms in neurons requires calcineurin, the subcellular distributions, neuronal activity-induced nuclear translocation extent and kinetics, and transcription activation capacities of alternative NFAT proteins vary.
Collapse
Affiliation(s)
- Hanna Vihma
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Mirjam Luhakooder
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Priit Pruunsild
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Tõnis Timmusk
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
21
|
NFAT2 Isoforms Differentially Regulate Gene Expression, Cell Death, and Transformation through Alternative N-Terminal Domains. Mol Cell Biol 2015; 36:119-31. [PMID: 26483414 DOI: 10.1128/mcb.00501-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
The NFAT (nuclear factor of activated T cells) family of transcription factors is composed of four calcium-responsive proteins (NFAT1 to -4). The NFAT2 (also called NFATc1) gene encodes the isoforms NFAT2α and NFAT2β that result mainly from alternative initiation exons that provide two different N-terminal transactivation domains. However, the specific roles of the NFAT2 isoforms in cell physiology remain unclear. Because previous studies have shown oncogenic potential for NFAT2, this study emphasized the role of the NFAT2 isoforms in cell transformation. Here, we show that a constitutively active form of NFAT2α (CA-NFAT2α) and CA-NFAT2β distinctly control death and transformation in NIH 3T3 cells. While CA-NFAT2α strongly induces cell transformation, CA-NFAT2β leads to reduced cell proliferation and intense cell death through the upregulation of tumor necrosis factor alpha (TNF-α). CA-NFAT2β also increases cell death and upregulates Fas ligand (FasL) and TNF-α in CD4(+) T cells. Furthermore, we demonstrate that differential roles of NFAT2 isoforms in NIH 3T3 cells depend on the N-terminal domain, where the NFAT2β-specific N-terminal acidic motif is necessary to induce cell death. Interestingly, the NFAT2α isoform is upregulated in Burkitt lymphomas, suggesting an isoform-specific involvement of NFAT2 in cancer development. Finally, our data suggest that alternative N-terminal domains of NFAT2 could provide differential mechanisms for the control of cellular functions.
Collapse
|
22
|
Dominguez-Villar M, Gautron AS, de Marcken M, Keller MJ, Hafler DA. TLR7 induces anergy in human CD4(+) T cells. Nat Immunol 2015; 16:118-28. [PMID: 25401424 PMCID: PMC4413902 DOI: 10.1038/ni.3036] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/20/2014] [Indexed: 02/06/2023]
Abstract
The recognition of microbial patterns by Toll-like receptors (TLRs) is critical for activation of the innate immune system. Although TLRs are expressed by human CD4(+) T cells, their function is not well understood. Here we found that engagement of TLR7 in CD4(+) T cells induced intracellular calcium flux with activation of an anergic gene-expression program dependent on the transcription factor NFATc2, as well as unresponsiveness of T cells. As chronic infection with RNA viruses such as human immunodeficiency virus type 1 (HIV-1) induces profound dysfunction of CD4(+) T cells, we investigated the role of TLR7-induced anergy in HIV-1 infection. Silencing of TLR7 markedly decreased the frequency of HIV-1-infected CD4(+) T cells and restored the responsiveness of those HIV-1(+) CD4(+) T cells. Our results elucidate a previously unknown function for microbial pattern-recognition receptors in the downregulation of immune responses.
Collapse
Affiliation(s)
| | - Anne-Sophie Gautron
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Marine de Marcken
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Marla J. Keller
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
23
|
Huang K, Kiefer C, Kamal A. Novel role for NFAT3 in ERK-mediated regulation of CXCR4. PLoS One 2014; 9:e115249. [PMID: 25514788 PMCID: PMC4267837 DOI: 10.1371/journal.pone.0115249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/20/2014] [Indexed: 01/09/2023] Open
Abstract
The G-protein coupled chemokine (C-X-C motif) receptor CXCR4 is linked to cancer, HIV, and WHIM (Warts, Hypogammaglobulinemia, Infections, and Myelokathexis) syndrome. While CXCR4 is reported to be overexpressed in multiple human cancer types and many hematological cancer cell lines, we have observed poor in vitro cell surface expression of CXCR4 in many solid tumor cell lines. We explore further the possible factors and pathways involved in regulating CXCR4 expression. Here, we showed that MEK-ERK signaling pathway and NFAT3 transcriptional factor plays a novel role in regulating CXCR4 expression. When cultured as 3D spheroids, HeyA8 ovarian tumor cells showed a dramatic increase in surface CXCR4 protein levels as well as mRNA transcripts. Furthermore, HeyA8 3D spheroids showed a decrease in phospho-ERK levels when compared to adherent cells. The treatment of adherent HeyA8 cells with an inhibitor of the MEK-ERK pathway, U0126, resulted in a significant increase in surface CXCR4 expression. Additional investigation using the PCR array assay comparing adherent to 3D spheroid showed a wide range of transcription factors being up-regulated, most notably a > 20 fold increase in NFAT3 transcription factor mRNA. Finally, chromatin immunoprecipitation (ChIP) analysis showed that direct binding of NFAT3 on the CXCR4 promoter corresponds to increased CXCR4 expression in HeyA8 ovarian cell line. Taken together, our results suggest that high phospho-ERK levels and NFAT3 expression plays a novel role in regulating CXCR4 expression.
Collapse
Affiliation(s)
- Keven Huang
- Department of Oncology Research, MedImmune, Gaithersburg, Maryland, United States of America
- * E-mail:
| | - Christine Kiefer
- Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, United States of America
| | - Adeela Kamal
- Department of Oncology Research, MedImmune, Gaithersburg, Maryland, United States of America
| |
Collapse
|
24
|
Caballero FJ, Soler-Torronteras R, Lara-Chica M, García V, Fiebich BL, Muñoz E, Calzado MA. AM404 inhibits NFAT and NF-κB signaling pathways and impairs migration and invasiveness of neuroblastoma cells. Eur J Pharmacol 2014; 746:221-32. [PMID: 25460026 DOI: 10.1016/j.ejphar.2014.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 01/03/2023]
Abstract
N-Arachidonoylphenolamine (AM404), a paracetamol lipid metabolite, is a modulator of the endocannabinoid system endowed with pleiotropic activities. AM404 is a dual agonist of the Transient Receptor Potential Vanilloid type 1 (TRPV1) and the Cannabinoid Receptor type 1 (CB₁) and inhibits anandamide (AEA) transport and degradation. In addition, it has been shown that AM404 also exerts biological activities through TRPV1- and CB₁ -independent pathways. In the present study we have investigated the effect of AM404 in the NFAT and NF-κB signaling pathways in SK-N-SH neuroblastoma cells. AM404 inhibited NFAT transcriptional activity through a CB₁- and TRPV1-independent mechanism. Moreover, AM404 inhibited both the expression of COX-2 at transcriptional and post-transcriptional levels and the synthesis of PGE₂. AM404 also inhibited NF-κB activation induced by PMA/Ionomycin in SK-N-SH cells by targeting IKKβ phosphorylation and activation. We found that Cot/Tlp-2 induced NFAT and COX-2 transcriptional activities were inhibited by AM404. NFAT inhibition paralleled with the ability of AM404 to inhibit MMP-1, -3 and -7 expression, cell migration and invasion in a cell-type specific dependent manner. Taken together, these data reveal that paracetamol, the precursor of AM404, can be explored not only as an antipyretic and painkiller drug but also as a co-adjuvant therapy in inflammatory and cancer diseases.
Collapse
Affiliation(s)
- Francisco J Caballero
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía/ Universidad de Córdoba, Córdoba, Spain
| | - Rafael Soler-Torronteras
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía/ Universidad de Córdoba, Córdoba, Spain
| | - Maribel Lara-Chica
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía/ Universidad de Córdoba, Córdoba, Spain
| | - Victor García
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía/ Universidad de Córdoba, Córdoba, Spain
| | - Bernd L Fiebich
- Department of Psychiatry, University of Freiburg Medical School, Freiburg, Germany
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía/ Universidad de Córdoba, Córdoba, Spain.
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía/ Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
25
|
Shaw PJ, Weidinger C, Vaeth M, Luethy K, Kaech SM, Feske S. CD4⁺ and CD8⁺ T cell-dependent antiviral immunity requires STIM1 and STIM2. J Clin Invest 2014; 124:4549-63. [PMID: 25157823 DOI: 10.1172/jci76602] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/10/2014] [Indexed: 02/03/2023] Open
Abstract
Calcium signaling is critical for lymphocyte function, and intracellular Ca2+ concentrations are regulated by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels. In patients, loss-of-function mutations in CRAC channel components ORAI1 and STIM1 abolish SOCE and are associated with recurrent and chronic viral infections. Here, using mice with conditional deletion of Stim1 and its homolog Stim2 in T cells, we determined that both components are required for the maintenance of virus-specific memory CD8+ T cells and recall responses following secondary infection. In the absence of STIM1 and STIM2, acute viral infections became chronic. Early during infection, STIM1 and STIM2 were required for the differentiation of naive CD8+ T cells into fully functional cytolytic effector cells and mediated the production of cytokines and prevented cellular exhaustion in viral-specific CD8+ effector T cells. Importantly, memory and recall responses by CD8+ T cells required expression of STIM1 and STIM2 in CD4+ T cells. CD4+ T cells lacking STIM1 and STIM2 were unable to provide "help" to CD8+ T cells due to aberrant regulation of CD40L expression. Together, our data indicate that STIM1, STIM2, and CRAC channel function play distinct but synergistic roles in CD4+ and CD8+ T cells during antiviral immunity.
Collapse
|
26
|
Neonatal immunology: responses to pathogenic microorganisms and epigenetics reveal an "immunodiverse" developmental state. Immunol Res 2014; 57:246-57. [PMID: 24214026 DOI: 10.1007/s12026-013-8439-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neonatal animals have heightened susceptibility to infectious agents and are at increased risk for the development of allergic diseases, such as asthma. Experimental studies using animal models have been quite useful for beginning to identify the cellular and molecular mechanisms underlying these sensitivities. In particular, results from murine neonatal models indicate that developmental regulation of multiple immune cell types contributes to the typically poor responses of neonates to pathogenic microorganisms. Surprisingly, however, animal studies have also revealed that responses at mucosal surfaces in early life may be protective against primary or secondary disease. Our understanding of the molecular events underlying these processes is less well developed. Emerging evidence indicates that the functional properties of neonatal immune cells and the subsequent maturation of the immune system in ontogeny may be regulated by epigenetic phenomena. Here, we review recent findings from our group and others describing cellular responses to infection and developmentally regulated epigenetic processes in the newborn.
Collapse
|
27
|
Qin JJ, Nag S, Wang W, Zhou J, Zhang WD, Wang H, Zhang R. NFAT as cancer target: mission possible? Biochim Biophys Acta Rev Cancer 2014; 1846:297-311. [PMID: 25072963 DOI: 10.1016/j.bbcan.2014.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/30/2022]
Abstract
The NFAT signaling pathway regulates various aspects of cellular functions; NFAT acts as a calcium sensor, integrating calcium signaling with other pathways involved in development and growth, immune response, and inflammatory response. The NFAT family of transcription factors regulates diverse cellular functions such as cell survival, proliferation, migration, invasion, and angiogenesis. The NFAT isoforms are constitutively activated and overexpressed in several cancer types wherein they transactivate downstream targets that play important roles in cancer development and progression. Though the NFAT family has been conclusively proved to be pivotal in cancer progression, the different isoforms play distinct roles in different cellular contexts. In this review, our discussion is focused on the mechanisms that drive the activation of various NFAT isoforms in cancer. Additionally, we analyze the potential of NFAT as a valid target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
28
|
Kwon SJ, Crespo-Barreto J, Zhang W, Wang T, Kim DS, Krensky A, Clayberger C. KLF13 cooperates with c-Maf to regulate IL-4 expression in CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:5703-9. [PMID: 24821970 DOI: 10.4049/jimmunol.1302830] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Kruppel-like factor (KLF) 13 is a transcription factor that positively regulates expression of the chemokine RANTES 3-5 d after activation of T cells. In this study, we document a key role for KLF13 in the expression of IL-4 in CD4(+) T cells. Gene expression analysis in activated T cells from Klf13(-/-) mice showed that IL-4, along with other Th2 cytokine genes, was downregulated when compared with cells from wild-type mice. The decreased levels of IL-4 were not associated with changes in expression of the Th2-inducing transcription factors GATA3 or c-Maf. Additional analysis revealed that KLF13 directly binds to IL-4 promoter regions and synergizes with c-Maf to positively regulate IL-4 expression. These results indicate that KLF13 is a positive regulator for differentiation of Th2 cells, as part of the transcriptional machinery that regulates IL-4 production in Th2 cells.
Collapse
Affiliation(s)
- Seok Joo Kwon
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Juan Crespo-Barreto
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Wei Zhang
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tianhong Wang
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Dong Seok Kim
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alan Krensky
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Carol Clayberger
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| |
Collapse
|
29
|
Dirkx E, Gladka MM, Philippen LE, Armand AS, Kinet V, Leptidis S, el Azzouzi H, Salic K, Bourajjaj M, da Silva GJJ, Olieslagers S, van der Nagel R, de Weger R, Bitsch N, Kisters N, Seyen S, Morikawa Y, Chanoine C, Heymans S, Volders PGA, Thum T, Dimmeler S, Cserjesi P, Eschenhagen T, da Costa Martins PA, De Windt LJ. Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat Cell Biol 2013; 15:1282-93. [DOI: 10.1038/ncb2866] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/24/2013] [Indexed: 01/05/2023]
|
30
|
Lee HK, Chung SY, Na Choi SJ. MicroRNA profiling of tacrolimus-stimulated Jurkat human T lympocytes. JOURNAL OF THE KOREAN SURGICAL SOCIETY 2013; 85:161-8. [PMID: 24106682 PMCID: PMC3791358 DOI: 10.4174/jkss.2013.85.4.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 11/30/2022]
Abstract
Purpose This study investigated the Jurkat T cell line expresses cytotoxicity when treated with different concentrations of FK506, and analyzed the expression pattern of microRNA when stimulated by FK506 using the microRNAs microarray, as well as the expression pattern of a gene that is related to the differentiation, activation and proliferation of T cells after being affected by the change of microRNAs. Methods To investigate the effects of FK506 on microRNA expression, we purified total RNA of Jurkat cells treated with 20 µM FK506 for 72 hours and used to analyze microRNA profiling by using Agilent's chip. Results These results demonstrated that treatment with FK506 markedly induced the down-regulation of 20 microRNAs as well as the up-regulation of 20 microRNAs in a time-dependent manner. The genes that down-regulated by FK506 include let-7a*, miR-20a*, and miR-487a. Otherwise miR-202, miR-485-5p, and miR-518c* are gradually up-regulated in expression. Sanger Institute and DAVIDs bioinformatics indicated that microRNAs regulated the several transcriptomes including nuclear factor of activated T cell-related, T cell receptor/interleukin-2 signaling, and Ca2+-calmodulin-dependent phosphatase calcineurin pathways. Conclusion As a result of treating FK506 to a Jurkat cell line and running the microRNA microarray, it was found that FK506 not only took part in the suppression of T cell proliferation/activation by inhibiting calcineurin in Jurkat apoptosis, but also affected the microRNAs that are involved in the regulation of various signal transduction pathways.
Collapse
Affiliation(s)
- Ho Kyun Lee
- Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | | | | |
Collapse
|
31
|
Vieira L, Vaz A, Matos P, Ambrósio AP, Nogueira M, Marques B, Pereira AM, Jordan P, da Silva MG. Three-way translocation (X;20;16)(p11;q13;q23) in essential thrombocythemia implicates NFATC2 in dysregulation of CSF2 expression and megakaryocyte proliferation. Genes Chromosomes Cancer 2012; 51:1093-108. [PMID: 22911897 DOI: 10.1002/gcc.21994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 07/17/2012] [Indexed: 12/19/2022] Open
Abstract
Essential thrombocythemia (ET) is a myeloproliferative neoplasm essentially characterized by excessive production of platelets. Molecular pathogenesis of ET is linked in approximately half of the patients to intracellular cytokine signaling dysregulation as a result of thrombopoietin receptor or Janus kinase 2 (JAK2) mutations. However, genetic defects underlying cytokine transcription have not been associated with ET. Using molecular cytogenetics and whole-genome array analyses, we uncovered a submicroscopic deletion at 20q13.2 in a JAK2V617F-positive ET patient with an acquired complex chromosome translocation. The deletion encompassed the nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 (NFATC2) gene that encodes a transcription factor involved in the regulation of hematopoietic cytokines. RNA interference-mediated suppression of NFATC2 mRNA or pharmacological inhibition of NFATC2 protein with 11R-VIVIT in cultured JAK2V617F-positive SET-2 megakaryocytes increased colony stimulating factor 2 (granulocyte-macrophage) (CSF2) mRNA and promoted cell proliferation. Moreover, impairment of NFATC2-calcineurin interaction with 11R-VIVIT further reduced the transcription of the NFATC2 gene. Antibody-mediated neutralization of CSF2 cytokine in inhibitor-treated cells prevented 11R-VIVIT-induced cell proliferation, indicating that impairment of NFATC2-calcineurin interaction promotes megakaryocyte proliferation through up-regulation of CSF2 transcription. Our results suggest a model in which haplo-insufficiency of NFATC2 cooperates with activation of the JAK-STAT signaling pathway in the pathogenesis of JAK2V617F-positive ET with del(20q). These results further indicate that pathogenesis of ET may be linked to genetic defects of other transcription factor genes involved in the regulation of cytokine expression.
Collapse
Affiliation(s)
- Luís Vieira
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Organ transplantation is the state of the art for treating end-stage organ failure. Over 25000 organ transplants are performed in the USA each year. Survival rates following transplantation are now approaching 90% for 1 year and 75% for 5 years. Central to this success was the introduction of drugs that suppress the immune system and prevent rejection. The most commonly used class of immunosuppressing drugs are calcineurin inhibitors (CNIs). Calcineurin is a ubiquitous enzyme that is important for T-cell function. With more people taking CNIs for longer and longer periods of time the consequences of calcineurin inhibition on other organ systems - particularly the kidney - have become a growing concern. Virtually all people who take a CNI will develop some degree of kidney toxicity and up to 10% will progress to kidney failure. In the past 15 years, research into calcineurin action has identified distinct actions of the two main isoforms of the catalytic subunit of the enzyme. The α-isoform is required for kidney function whereas the β-isoform has a predominant role in the immune system. This review will discuss the current state of knowledge about calcineurin isoforms and how these new insights may reshape post-transplant immunosuppression.
Collapse
|
33
|
Perotti V, Baldassari P, Bersani I, Molla A, Vegetti C, Tassi E, Dal Col J, Dolcetti R, Anichini A, Mortarini R. NFATc2 is a potential therapeutic target in human melanoma. J Invest Dermatol 2012; 132:2652-60. [PMID: 22718120 DOI: 10.1038/jid.2012.179] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The identification of intracellular signaling pathways that promote cell proliferation and resistance to cell death may lead to the development of improved treatment for advanced melanoma. Here we show that the calcineurin/nuclear factor of activated T cells c2 (NFATc2) pathway has an antiapoptotic role in melanoma cells. Expression of NFATc2 was constitutive in vitro and in vivo in human melanoma, and cyclosporin A (CsA) treatment of melanoma cells led to downmodulation of NFATc2. Inhibition of the calcineurin/NFAT pathway by CsA, or by NFATc2 silencing, led to modulation of cell cycle inhibitors and apoptosis-related proteins such as Apollon, and promoted caspase-dependent apoptosis of neoplastic cells. Calcineurin/NFATc2 targeting significantly enhanced melanoma cell death induced by antitumor agents, such as MEK- or BRAF(V600E)-specific inhibitors, and tumor necrosis factor-related apoptosis-inducing ligand, which trigger the intrinsic or extrinsic pathway of apoptosis, respectively. These findings identify NFATc2 as a potential therapeutic target in melanoma.
Collapse
Affiliation(s)
- Valentina Perotti
- Human Tumors Immunobiology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Osborne JK, Zaganjor E, Cobb MH. Signal control through Raf: in sickness and in health. Cell Res 2011; 22:14-22. [PMID: 22143568 DOI: 10.1038/cr.2011.193] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade is the prototype mammalian mitogen-activated protein kinase (MAPK) signaling cascade that regulates a number of processes, including proliferation, differentiation, survival, migration, stress responses and apoptosis. How this seemingly linear cascade is modulated to achieve a specific cellular function has been a main focus of the field. In this review, we describe new as well as old findings in the regulation of the ERK1/2 pathway in normal and disease states via MAP3Ks.
Collapse
Affiliation(s)
- Jihan K Osborne
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9041, USA
| | | | | |
Collapse
|
35
|
Abstract
Cyclosporin A and tacrolimus have been used as immunosuppressive agents initially in organ transplantation after their discovery, and are also used for treatment of the autoimmune disease, providing an excellent therapeutic effect. These agents act targeting on intracellular phosphatase calcineurin (CN), and subsequently inhibit activation of nuclear factor of activated T cells (NFAT), a key regulator of stimulation-dependent gene activation. The CN-NFAT system is involved not only in the immunoregulation including activation and development of helper T cells, regulatory T cells and NKT cells, but in a variety of cellular and developmental events other than immune system. CN inhibitors also affect organs outside of immune system leading to adverse effects, including nephrotoxicity and glucose intolerance. We review recent findings in CN-NFAT system, as well as development of potential CN inhibitors.
Collapse
Affiliation(s)
- Yoshiharu Amasaki
- The Center for Rheumatic Diseases/Tonan Hospital, KKR Sapporo Medical Center, Japan
| |
Collapse
|
36
|
Szeto GL, Pomerantz JL, Graham DRM, Clements JE. Minocycline suppresses activation of nuclear factor of activated T cells 1 (NFAT1) in human CD4+ T cells. J Biol Chem 2011; 286:11275-82. [PMID: 21282105 DOI: 10.1074/jbc.m110.210518] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Minocycline is a tetracycline family antibiotic that has anti-inflammatory and immunomodulatory properties. These properties have shown promise in the treatment of conditions such as rheumatoid arthritis, Huntington disease, and multiple sclerosis. As lymphocyte activation is involved in the pathogenesis of many of these diseases, T cells are postulated to be a primary target in minocycline therapy. Previous studies have demonstrated attenuation of CD4(+) T cell activation by minocycline, but a specific mechanism has not been elucidated. In this study, we investigated the effect of minocycline on the activity of three key transcription factors regulating CD4(+) T cell activation: NF-κB, AP-1 (activator protein 1), and NFAT (nuclear factor of activated T) cells. Our data demonstrate that minocycline selectively impairs NFAT-mediated transcriptional activation, a result of increased phosphorylation and reduced nuclear translocation of the isoform NFAT1. Minocycline increased the activity of the NFAT kinase GSK3 and decreased intracellular Ca(2+) flux, both of which facilitate NFAT1 phosphorylation. These findings provide a novel mechanism for minocycline induced suppression of CD4(+) T cell activation and may better inform the application of minocycline as an immunomodulatory agent.
Collapse
Affiliation(s)
- Gregory L Szeto
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
37
|
Park HJ, Byeon HE, Choi KW, Rhee DK, Lee KR, Pyo SN. Inhibitory Effects of Ginsenoside Rb1on Atopic Dermatitis-Like Skin Lesions in Mice. J Ginseng Res 2010. [DOI: 10.5142/jgr.2010.34.4.363] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Abstract
Nuclear factor of activated T cell (NFAT) transcription factors are key regulators of gene transcription within immune cells. The NFAT-interacting protein, (NIP45), augments NFAT-driven IL-4 expression by a mechanism that relies on arginine methylation. To establish the function of NIP45 in vivo, we generated mice with a targeted deletion of the gene encoding this cofactor. NIP45-deficient T helper cells displayed profound defects in the expression of NFAT-regulated cytokine genes, including IL-4. Whereas NIP45 deficiency does not interfere with T helper cell NFAT activation or lineage-specific transcription-factor expression, NIP45 acts as an enhancer for the assembly of protein arginine methyltransferase 1 and the protein arginine methyltransferase 1-linked histone 4 arginine 3 methylation with the IL-4 promoter. Our study reveals an essential role for NIP45 in promoting robust cytokine expression in vivo, which is required for the efficient handling of parasites. We propose that NIP45 acts as a molecular rheostat serving to amplify the type-2 immune response.
Collapse
|
39
|
Velupillai P, Sung CK, Tian Y, Dahl J, Carroll J, Bronson R, Benjamin T. Polyoma virus-induced osteosarcomas in inbred strains of mice: host determinants of metastasis. PLoS Pathog 2010; 6:e1000733. [PMID: 20107604 PMCID: PMC2809769 DOI: 10.1371/journal.ppat.1000733] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 12/18/2009] [Indexed: 11/18/2022] Open
Abstract
The mouse polyoma virus induces a broad array of solid tumors in mice of many inbred strains. In most strains tumors grow rapidly but fail to metastasize. An exception has been found in the Czech-II/Ei mouse in which bone tumors metastasize regularly to the lung. These tumors resemble human osteosarcoma in their propensity for pulmonary metastasis. Cell lines established from these metastatic tumors have been compared with ones from non-metastatic osteosarcomas arising in C3H/BiDa mice. Osteopontin, a chemokine implicated in migration and metastasis, is known to be transcriptionally induced by the viral middle T antigen. Czech-II/Ei and C3H/BiDa tumor cells expressed middle T and secreted osteopontin at comparable levels as the major chemoattractant. The tumor cell lines migrated equally well in response to recombinant osteopontin as the sole attractant. An important difference emerged in assays for invasion in which tumor cells from Czech-II/Ei mice were able to invade across an extracellular matrix barrier while those from C3H/BiDa mice were unable to invade. Invasive behavior was linked to elevated levels of the metalloproteinase MMP-2 and of the transcription factor NFAT. Inhibition of either MMP-2 or NFAT inhibited invasion by Czech-II/Ei osteosarcoma cells. The metastatic phenotype is dominant in F1 mice. Osteosarcoma cell lines from F1 mice expressed intermediate levels of MMP-2 and NFAT and were invasive. Osteosarcomas in Czech-II/Ei mice retain functional p53. This virus-host model of metastasis differs from engineered models targeting p53 or pRb and provides a system for investigating the genetic and molecular basis of bone tumor metastasis in the absence of p53 loss. The oncogenic mouse polyoma virus and its mutants have previously been used to investigate viral determinants of tumor induction using a standard inbred mouse strain as a common host. Here we use wild type virus to investigate the role of the host genetic background, focusing on two host strains that differ with respect to bone tumor metastasis. Comparing osteosarcoma cell lines from these mice, we have identified a molecular pathway that underlies invasive behavior in vitro and correlates with metastasis in vivo. The pathway involves secretion of the metalloproteinase MMP-2 under partial control of NFAT as a transcriptional regulator. This virus-host system reflects an important feature of human osteosarcoma with respect to pulmonary metastasis. Based on naturally occurring differences among inbred mice, the model differs from genetically engineered models targeting p53 or pRb as known risk factors in the human disease. Here, metastatic osteosarcomas retain functional p53. As noted by others, the frequency of p53 loss in patients with localized versus metastatic disease is the same, suggesting that events beyond p53 loss are important in metastasis. While the downstream effectors of metastasis in the genetically engineered models remain unknown, evidence presented here implicates upregulation of an NFAT → MMP-2 pathway in the development of metastatic osteosarcoma.
Collapse
Affiliation(s)
- Palanivel Velupillai
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chang Kyoo Sung
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yu Tian
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jean Dahl
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John Carroll
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roderick Bronson
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas Benjamin
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Lohoff M, Giaisi M, Köhler R, Casper B, Krammer PH, Li-Weber M. Early growth response protein-1 (Egr-1) is preferentially expressed in T helper type 2 (Th2) cells and is involved in acute transcription of the Th2 cytokine interleukin-4. J Biol Chem 2009; 285:1643-52. [PMID: 19915002 DOI: 10.1074/jbc.m109.011585] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The early growth response gene product Egr-1 has been shown to have great impact on growth, proliferation, and differentiation in a wide variety of cells, including T cells. In this study, we show that Egr-1 is rapidly induced upon T cell stimulation and is expressed predominantly in T helper type 2 (Th2) compared with type 1 (Th1) cells. We further investigate the role of Egr-1 in regulation of the Th2 cytokine interleukin-4 (IL-4) expression. IL-4 is a key Th2 cytokine that regulates humoral immunity and also causes allergic inflammation. Regulation of IL-4 gene transcription in Th2 cells has been shown to be controlled by multiple T cell receptor (TCR)-induced transcription factors. However, only a few transcription factors were shown to be selectively induced in differentiated Th2 cells in response to TCR stimulation. Chromatin immunoprecipitation analysis demonstrates that Egr-1 binds to the IL-4 promoter in vivo upon T cell stimulation. Ectopic expression of Egr-1 enhances endogenous IL-4 mRNA expression and elevates IL-4 promoter activity. We also show that Egr-1, nuclear factor of activated T cell, and NF-kappaB cooperatively bind to an NFAT/NF-kappaB-overlapping IL-4 enhancer element and activate the IL-4 promoter synergistically. Furthermore, we show that antisense oligonucleotides that knock down Egr-1 expression attenuate IL-4 transcription. Our study provides the first evidence that Egr-1 protein is differentially expressed in Th1 and Th2 cells and is involved in the acute phase of the IL-4 transcription in response to TCR stimulation.
Collapse
Affiliation(s)
- Michael Lohoff
- Tumor Immunology Program D030, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The reduced expression of nuclear factor of activated T cells-1 (NFAT1) protein in umbilical cord blood (UCB)-derived CD4+ T cells and the corresponding reduction in inflammatory cytokine secretion after stimulation in part underlies their phenotypic differences from adult blood (AB) CD4+ T cells. This muted response may contribute to the lower incidence and severity of high-grade acute graft-versus-host disease (aGVHD) exhibited by UCB grafts. Here we provide evidence that a specific microRNA, miR-184, inhibits NFAT1 protein expression elicited by UCB CD4+ T cells. Endogenous expression of miR-184 in UCB is 58.4-fold higher compared with AB CD4+ T cells, and miR-184 blocks production of NFAT1 protein through its complementary target sequence on the NFATc2 mRNA without transcript degradation. Furthermore, its negative effects on NFAT1 protein and downstream interleukin-2 (IL-2) transcription are reversed through antisense blocking in UCB and can be replicated via exogenous transfection of precursor miR-184 into AB CD4+ T cells. Our findings reveal a previously uncharacterized role for miR-184 in UCB CD4+ T cells and a novel function for microRNA in the early adaptive immune response.
Collapse
|
42
|
Lee CG, Kang KH, So JS, Kwon HK, Son JS, Song MK, Sahoo A, Yi HJ, Hwang KC, Matsuyama T, Yui K, Im SH. A distal cis-regulatory element, CNS-9, controls NFAT1 and IRF4-mediated IL-10 gene activation in T helper cells. Mol Immunol 2009; 46:613-21. [DOI: 10.1016/j.molimm.2008.07.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 07/24/2008] [Accepted: 07/27/2008] [Indexed: 11/30/2022]
|
43
|
Abstract
The transcription factor NFATp integrates multiple signal transduction pathways through coordinate binding with basic-region leucine zipper (bZIP) proteins and other transcription factors. The NFATp monomer, even in the absence of its activation domains, recruits bZIP proteins to canonical NFAT-bZIP composite DNA elements. By contrast, the NFATp dimer and its bZIP partner bind noncooperatively to the NFAT-bZIP element of the tumor necrosis factor (TNF) gene promoter. This observation raises the possibility that the function of the activation domains of NFATp is dimer-specific. Here, we determine the consensus DNA binding site of the NFATp dimer, describe monomer- and dimer-specific NFATp-DNA contact patterns, and demonstrate that NFATp dimerization and dimer-specific activation subdomains are required for transcriptional activation from the TNF NFAT-bZIP element. We also show that these NFATp subdomains interact with the coactivator CBP (CREB-binding protein), which is required for NFATp-dependent TNF gene transcription. Thus, the context-specific function of the activation domains of NFAT can be potentiated by DNA-directed dimerization.
Collapse
|
44
|
Kyttälä S, Habermann I, Minami T, Ehninger G, Kiani A. Regulation of Down Syndrome Critical Region 1 expression by Nuclear Factor of Activated T cells in megakaryocytes. Br J Haematol 2008; 144:395-408. [PMID: 19036088 DOI: 10.1111/j.1365-2141.2008.07490.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As precursors of platelets, megakaryocytes must fulfil the complex tasks of protein synthesis and platelet assembly. Megakaryocytic dysfunction can lead to neoplastic disorders, such as acute megakaryoblastic leukaemia, an entity with a 500-fold increased incidence in children with Down syndrome (DS). Down Syndrome Critical Region 1 (DSCR1), a member of the calcipressin family of calcineurin inhibitors, is overexpressed in DS, and destabilization of the calcineurin/Nuclear Factor of Activated T cells (NFAT) pathway by overexpression of DSCR1 has been implicated in some of the pathophysiological features of the disease. The roles of NFAT and DSCR1 in megakaryocyte signalling and gene expression, however, are unknown. In this study, we show that calcineurin and NFAT are components of a calcium-induced signalling cascade in megakaryocytes. NFAT activation in megakaryocytes was induced by fibrillar collagen type I and was completely sensitive to the calcineurin inhibitor cyclosporin A. We established DSCR1 as a calcium-induced NFAT target gene in these cells and show that overexpression of DSCR1 in megakaryocytes strongly inhibits NFAT activation as well as NFAT-dependent expression of the Fas ligand gene (FASLG). These results suggest that DSCR1 acts as an endogenous feedback inhibitor of NFAT signalling in megakaryocytes, and may have implications for megakaryocytic gene expression in DS.
Collapse
Affiliation(s)
- Satu Kyttälä
- Department of Medicine I, Dresden University of Technology, Dresden, Germany
| | | | | | | | | |
Collapse
|
45
|
Vihma H, Pruunsild P, Timmusk T. Alternative splicing and expression of human and mouse NFAT genes. Genomics 2008; 92:279-91. [PMID: 18675896 PMCID: PMC2577130 DOI: 10.1016/j.ygeno.2008.06.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/20/2008] [Accepted: 06/24/2008] [Indexed: 12/30/2022]
Abstract
Four members of the nuclear factor of activated T cells (NFAT) family (NFATC1, NFATC2, NFATC3, and NFATC4) are Ca(2+)-regulated transcription factors that regulate several processes in vertebrates, including the development and function of the immune, cardiovascular, musculoskeletal, and nervous systems. Here we describe the structures and alternative splicing of the human and mouse NFAT genes, including novel splice variants for NFATC1, NFATC2, NFATC3, and NFATC4, and show the expression of different NFAT mRNAs in various mouse and human tissues and brain regions by RT-PCR. Our results show that alternatively spliced NFAT mRNAs are expressed differentially and could contribute to the diversity of functions of the NFAT proteins. Since NFAT family members are Ca(2+)-regulated and have critical roles in neuronal gene transcription in response to electrical activity, we describe the expression of NFATC1, NFATC2, NFATC3, and NFATC4 mRNAs in the adult mouse brain and in the adult human hippocampus using in situ hybridization and show that all NFAT mRNAs are expressed in the neurons of the mouse brain with specific patterns for each NFAT.
Collapse
Affiliation(s)
| | | | - Tõnis Timmusk
- Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn 19086, Estonia
| |
Collapse
|
46
|
Iyer AS, August A. The Tec family kinase, IL-2-inducible T cell kinase, differentially controls mast cell responses. THE JOURNAL OF IMMUNOLOGY 2008; 180:7869-77. [PMID: 18523250 DOI: 10.4049/jimmunol.180.12.7869] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Tec family tyrosine kinase, IL-2-inducible T cell kinase (Itk), is expressed in T cells and mast cells. Mice lacking Itk exhibit impaired Th2 cytokine secretion; however, they have increased circulating serum IgE, but exhibit few immunological symptoms of allergic airway responses. We have examined the role of Itk in mast cell function and FcepsilonRI signaling. We report in this study that Itk null mice have reduced allergen/IgE-induced histamine release, as well as early airway hyperresponsiveness in vivo. This is due to the increased levels of IgE in the serum of these mice, because the transfer of Itk null bone marrow-derived cultured mast cells into mast cell-deficient W/W(v) animals is able to fully rescue histamine release in the W/W(v) mice. Further analysis of Itk null bone marrow-derived cultured mast cells in vitro revealed that whereas they have normal degranulation responses, they secrete elevated levels of cytokines, including IL-13 and TNF-alpha, particularly in response to unliganded IgE. Analysis of biochemical events downstream of the FcepsilonRI revealed little difference in overall tyrosine phosphorylation of specific substrates or calcium responses; however, these cells express elevated levels of NFAT, which was largely nuclear. Our results suggest that the reduced mast cell response in vivo in Itk null mice is due to elevated levels of IgE in these mice. Our results also suggest that Itk differentially modulates mast cell degranulation and cytokine production in part by regulating expression and activation of NFAT proteins in these cells.
Collapse
Affiliation(s)
- Archana S Iyer
- Center for Molecular Immunology & Infectious Disease and Department of Veterinary & Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
47
|
Sama MA, Mathis DM, Furman JL, Abdul HM, Artiushin IA, Kraner SD, Norris CM. Interleukin-1beta-dependent signaling between astrocytes and neurons depends critically on astrocytic calcineurin/NFAT activity. J Biol Chem 2008; 283:21953-64. [PMID: 18541537 PMCID: PMC2494911 DOI: 10.1074/jbc.m800148200] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 06/04/2008] [Indexed: 01/13/2023] Open
Abstract
Interleukin-1beta (IL-1beta) and the Ca(2+)/calmodulin-dependent protein phosphatase, calcineurin, have each been shown to play an important role in neuroinflammation. However, whether these signaling molecules interact to coordinate immune/inflammatory processes and neurodegeneration has not been investigated. Here, we show that exogenous application of IL-1beta (10 ng/ml) recruited calcineurin/NFAT (nuclear factor of activated T cells) activation in primary astrocyte-enriched cultures within minutes, through a pathway involving IL-1 receptors and L-type Ca(2+) channels. Adenovirus-mediated delivery of the NFAT inhibitor, VIVIT, suppressed the IL-1beta-dependent induction of several inflammatory mediators and/or markers of astrocyte activation, including tumor necrosis factor alpha, granulocyte/macrophage colony-stimulating factor, and vimentin. Expression of an activated form of calcineurin in one set of astrocyte cultures also triggered the release of factors that, in turn, stimulated NFAT activity in a second set of "naive" astrocytes. This effect was prevented when calcineurin-expressing cultures co-expressed VIVIT, suggesting that the calcineurin/NFAT pathway coordinates positive feedback signaling between astrocytes. In the presence of astrocytes and neurons, 48-h delivery of IL-1beta was associated with several excitotoxic effects, including NMDA receptor-dependent neuronal death, elevated extracellular glutamate, and hyperexcitable synaptic activity. Each of these effects were reversed or ameliorated by targeted delivery of VIVIT to astrocytes. IL-1beta also caused an NFAT-dependent reduction in excitatory amino acid transporter levels, indicating a possible mechanism for IL-1beta-mediated excitotoxicity. Taken together, the results have potentially important implications for the propagation and maintenance of neuroinflammatory signaling processes associated with many neurodegenerative conditions and diseases.
Collapse
Affiliation(s)
- Michelle A Sama
- Department of Molecular and Biomedical Pharmacology, Graduate Center for Gerontology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Deafferentation-induced activation of NFAT (nuclear factor of activated T-cells) in cochlear nucleus neurons during a developmental critical period: a role for NFATc4-dependent apoptosis in the CNS. J Neurosci 2008; 28:3159-69. [PMID: 18354019 DOI: 10.1523/jneurosci.5227-07.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During the development and maturation of sensory neurons, afferent activity is required for normal maintenance. There exists a developmental window of time when auditory neurons, including neurons of the anteroventral cochlear nucleus (AVCN), depend on afferent input for survival. This period of time is often referred to as a critical period. The cellular and molecular mechanisms that underlie AVCN neuron susceptibility to deafferentation-induced death remain unknown. Here, we show that only during this critical period deafferentation of mouse AVCN neurons by in vivo cochlea removal results in rapid nuclear translocation and activation of the transcription factor NFATc4 (nuclear factor of activated T-cells isoform 4). NFAT activation is abolished by in vivo treatment with the calcineurin inhibitor FK506 and the specific NFAT-inhibitor 11R-VIVIT. Inhibition of NFAT significantly attenuates deafferentation-induced apoptosis of AVCN neurons and abolishes NFAT-mediated expression of FasL, an initiator of apoptotic pathways, in the cochlear nucleus. These data suggest that NFAT-mediated gene expression plays a role in deafferentation-induced apoptosis of cochlear nucleus neurons during a developmental critical period.
Collapse
|
49
|
Yagi R, Tanaka S, Motomura Y, Kubo M. Regulation of the Il4 gene is independently controlled by proximal and distal 3' enhancers in mast cells and basophils. Mol Cell Biol 2007; 27:8087-97. [PMID: 17908791 PMCID: PMC2169195 DOI: 10.1128/mcb.00631-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mast cells and basophils are known to be a critical interleukin 4 (IL-4) source for establishing Th2 protective responses to parasitic infections. Chromatin structure and histone modification patterns in the Il13/Il4 locus of mast cells were similar to those of IL-4-producing type 2 helper T cells. However, using a transgenic approach, we found that Il4 gene expression was distinctly regulated by individual cis regulatory elements in cell types of different lineages. The distal 3' element contained conserved noncoding sequence 2 (CNS-2), which was a common enhancer for memory phenotype T cells, NKT cells, mast cells, and basophils. Targeted deletion of CNS-2 compromised production of IL-4 and several Th2 cytokines in connective-tissue-type and immature-type mast cells but not in basophils. Interestingly, the proximal 3' element containing DNase I-hypersensitive site 4 (HS4), which controls Il4 gene silencing in T-lineage cells, exhibited selective enhancer activity in basophils. These results indicate that CNS-2 is an essential enhancer for Il4 gene transcription in mast cell but not in basophils. The transcription of the Il4 gene in mast cells and basophils is independently regulated by CNS-2 and HS4 elements that may be critical for lineage-specific Il4 gene regulation in these cell types.
Collapse
Affiliation(s)
- Ryouji Yagi
- Laboratory for Signal Network, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Suehiro-cho 1-7-22, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | |
Collapse
|
50
|
Chow DKL, Leong RWL. The use of tacrolimus in the treatment of inflammatory bowel disease. Expert Opin Drug Saf 2007; 6:479-85. [PMID: 17877436 DOI: 10.1517/14740338.6.5.479] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tacrolimus is a calcineurin inhibitor that suppresses pro-inflammatory cytokine production and T-cell activation. These immunosuppressant effects have been used to treat inflammatory bowel disease, especially fistulising Crohn's disease and refractory ulcerative colitis. The more predictable oral bioavailability and better side-effect profile makes tacrolimus a more favourable choice as compared with ciclosporin. Dose-dependent side effects, such as nephrotoxicity, are reported but are mostly reversible with dose reduction or cessation of therapy. Topical tacrolimus has also been used to treat pyoderma gangrenosum, an extra-intestinal manifestation of inflammatory bowel disease. Tacrolimus is well-tolerated and should be considered as an alternative agent in the treatment of inflammatory bowel disease, especially those intolerant or refractory to the more conventional immunomodulators.
Collapse
|