1
|
Bergstrom K, Urquhart JC, Tafech A, Doyle E, Lee CH. Purification and characterization of a novel mammalian endoribonuclease. J Cell Biochem 2006; 98:519-37. [PMID: 16317762 DOI: 10.1002/jcb.20726] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endonuclease-mediated mRNA decay appears to be a common mode of mRNA degradation in mammalian cells, but yet only a few mRNA endonucleases have been described. Here, we report the existence of a second mammalian endonuclease that is capable of cleaving c-myc mRNA within the coding region in vitro. This study describes the partial purification and biochemical characterization of this enzyme. Five major proteins of approximately 10-35 kDa size co-purified with the endonuclease activity, a finding supported by gel filtration and glycerol gradient centrifugation analysis. The enzyme is an RNA-specific endonuclease that degrades single-stranded RNA, but not double-stranded RNA, DNA or DNA-RNA duplexes. It preferentially cleaves RNA in between the pyrimidine and purine dinucleotides UA, UG, and CA, at the coding region determinant (CRD) of c-myc RNA. The enzyme generates products with a 3'hydroxyl group, and it appears to be a protein-only endonuclease. It does not possess RNase A-like activity. The enzyme is capable of cleaving RNAs other than c-myc CRD RNA in vitro. It is Mg(2+)-independent and is resistant to EDTA. The endonuclease is inactivated at and above 70 degrees C. These properties distinguished the enzyme from other previously described vertebrate endonucleases.
Collapse
Affiliation(s)
- Kirk Bergstrom
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| | | | | | | | | |
Collapse
|
2
|
Benassayag C, Montero L, Colombié N, Gallant P, Cribbs D, Morello D. Human c-Myc isoforms differentially regulate cell growth and apoptosis in Drosophila melanogaster. Mol Cell Biol 2005; 25:9897-909. [PMID: 16260605 PMCID: PMC1280252 DOI: 10.1128/mcb.25.22.9897-9909.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The human c-myc proto-oncogene, implicated in the control of many cellular processes including cell growth and apoptosis, encodes three isoforms which differ in their N-terminal region. The functions of these isoforms have never been addressed in vivo. Here, we used Drosophila melanogaster to examine their functions in a fully integrated system. First, we established that the human c-Myc protein can rescue lethal mutations of the Drosophila myc ortholog, dmyc, demonstrating the biological relevance of this model. Then, we characterized a new lethal dmyc insertion allele, which permits expression of human c-Myc in place of dMyc and used it to compare physiological activities of these isoforms in whole-organism rescue, transcription, cell growth, and apoptosis. These isoforms differ both quantitatively and qualitatively. Most remarkably, while the small c-MycS form truncated for much of its N-terminal trans-activation domain efficiently rescued viability and cell growth, it did not induce detectable programmed cell death. Our data indicate that the main functional difference between c-Myc isoforms resides in their apoptotic properties and that the N-terminal region, containing the conserved MbI motif, is decisive in governing the choice between growth and death.
Collapse
Affiliation(s)
- C Benassayag
- Centre de Biologie du Développement, CNRS UMR 5547, Université Paul Sabatier, 118 Rte. de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
3
|
Davis CA, Monnier JM, Nick HS. A coding region determinant of instability regulates levels of manganese superoxide dismutase mRNA. J Biol Chem 2001; 276:37317-26. [PMID: 11489890 DOI: 10.1074/jbc.m104378200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondria-localized manganese superoxide dismutase (MnSOD), serves a key cytoprotective role against reactive oxygen species arising from a variety of cellular processes and immunological stresses. Previous data from our laboratory suggest that the regulation of the rat MnSOD gene may occur not only at the transcriptional but quite possibly at the post-transcriptional level. To verify this hypothesis, we have attempted to identify regions within the rat MnSOD cDNA that may be functionally involved in regulating the stability of the mRNA. Using a c-fos-based promoter activation system, we have identified an approximately 280-nucleotide fragment within the MnSOD mRNA coding region that, when fused to a rabbit beta-globin gene, destabilizes the normally stable beta-globin mRNA. This cis-directed destabilization phenomenon confers its effects independent of position and stimulus. Most importantly, the MnSOD coding region determinant functions when placed in the 3'-untranslated region of the beta-globin transcript, demonstrating its activity in the absence of ribosome transit. We feel that these data provide a mechanistic basis for both the basal and stimulus-dependent post-transcriptional regulation of MnSOD.
Collapse
Affiliation(s)
- C A Davis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
4
|
Langa F, Lafon I, Vandormael-Pournin S, Vidaud M, Babinet C, Morello D. Healthy mice with an altered c-myc gene: role of the 3' untranslated region revisited. Oncogene 2001; 20:4344-53. [PMID: 11466615 DOI: 10.1038/sj.onc.1204482] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2001] [Revised: 03/07/2001] [Accepted: 03/21/2001] [Indexed: 01/25/2023]
Abstract
c-Myc is a protooncogene involved in the control of cellular proliferation, differentiation and apoptosis. Like many other early response genes, regulation of c-myc expression is mainly controlled at the level of mRNA stability. Multiple cis-acting destabilizing elements have been described that are located both in the protein-coding region and in the 3' untranslated region (3' UTR). However, it is not known when they function during development and whether they act as partly redundant or independent elements to regulate c-myc mRNA level of expression. To begin to address these questions, we created a series of c-myc alleles modified in the 3' UTR, using homologous recombination and the Cre/loxP system, and analysed the consequences of these modifications in ES cells and transgenic animals. We found that deletion of the complete 3' UTR, including runs of Us and AU-rich elements proposed, on the basis of cell-culture assays, to be involved in the control of c-myc mRNA stability, did not alter the steady-state level of c-myc mRNA in any of the various situations analysed in vivo. Moreover, mice homozygous for the 3' UTR-deleted gene were perfectly healthy and fertile. Our results therefore strongly suggest that the 3' UTR of c-myc mRNA does not play a major role in the developmental control of c-myc expression.
Collapse
Affiliation(s)
- F Langa
- Unité de Biologie du Développement, CNRS URA 1960, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
5
|
Lefresne J, Lemaitre JM, Selo M, Goussard J, Mouton C, Andeol Y. Evidence for multiple sequences and factors involved in c-myc RNA stability during amphibian oogenesis. Dev Growth Differ 2001; 43:195-211. [PMID: 11284969 DOI: 10.1046/j.1440-169x.2001.00563.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the molecular mechanisms regulating c-myc RNA stability during late amphibian oogenesis, a heterologous system was used in which synthetic Xenopus laevis c-myc transcripts, progressively deleted from their 3' end, were injected into the cytoplasm of two different host axolotl (Ambystoma mexicanum) cells: stage VI oocytes and progesterone-matured oocytes (unfertilized eggs; UFE). This in vivo strategy allowed the behavior of the exogenous c-myc transcripts to be followed and different regions involved in the stability of each intermediate deleted molecule to be identified. Interestingly, these specific regions differ in the two cellular contexts. In oocytes, two stabilizing regions are located in the 3' untranslated region (UTR) and two in the coding sequence (exons II and III) of the RNA. In UFE, the stabilizing regions correspond to the first part of the 3' UTR and to the first part of exon II. However, in UFE, the majority of synthetic transcripts are degraded. This degradation is a consequence of nuclear factors delivered after germinal vesicle breakdown and specifically acting on targeted regions of the RNA. To test the direct implication of these nuclear factors in c-myc RNA degradation, an in vitro system was set up using axolotl germinal vesicle extracts that mimic the in vivo results and confirm the existence of specific destabilizing factors. In vitro analysis revealed that two populations of nuclear molecules are implicated: one of 4.4-5S (50-65 kDa) and the second of 5.4-6S (90-110 kDa). These degrading nuclear factors act preferentially on the coding region of the c-myc RNA and appear to be conserved between axolotl and Xenopus. Thus, this experimental approach has allowed the identification of specific stabilizing sequences in c-myc RNA and the temporal identification of the different factors (cytoplasmic and/or nuclear) involved in post-transcriptional regulation of this RNA during oogenesis.
Collapse
Affiliation(s)
- J Lefresne
- Laboratoire d'Oncologie Cellulaire et de Toxicologie Génétique, Centre Anti Cancèreux, Université de Caen, 14021 Caen Cedex, France
| | | | | | | | | | | |
Collapse
|
6
|
Cohen-Tannoudji M, Vandormael-Pournin S, Drezen J, Mercier P, Babinet C, Morello D. lacZ sequences prevent regulated expression of housekeeping genes. Mech Dev 2000; 90:29-39. [PMID: 10585560 DOI: 10.1016/s0925-4773(99)00226-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to dissect the MHC class I H-2K gene regulatory sequences, we p reviously generated transgenic mice containing various H-2K/lacZ fusion genes. However contrary to transgenes where H-2K sequences were fused to other coding sequences, none of the lacZ fusion transgenes was widely ex pressed like H-2K gene. We now show that this silencing also occurs when lacZ is inserted into a larger H-2K genomic construct including promoter and other regulatory elements. Because the 5'H-2K region contains a CpG island, we suspected that the presence of lacZ coding sequences was inte rfering with the mechanism by which the H-2K promoter region is normally unmethylated and transcriptionally active. Indeed, we show that in high ( >10) copy number transgenic mice, insertion of lacZ sequences in the v icinity of the H-2K promoter results in partial or complete methylation of the H-2K CpG island. However, in low (1-3) copy number transgenic mic e no methylation was observed but the transgene was still silent, sugges ting that the silencing effect of lacZ does not only rely on abnormal CpG methylation. Intriguingly, when the H -2/lacZ construct was introduced via embryonic stem (ES) cells, regulate d transgene expression was observed in several chimaeric embryos derived from independent ES clones, but never in adult chimeras. Combined with t he fact that, despite much effort, it has been very difficult to generat e 'blue' mice, our results highlight the transcription-silencing effect of lacZ sequences when they are associated with regulatory sequences of ubiquitously expressed genes.
Collapse
Affiliation(s)
- M Cohen-Tannoudji
- Unité de Biologie du Développement, CNRS URA 1960, Institut Pasteur, 25 rue du Dr. Roux, 75724, Paris, France.
| | | | | | | | | | | |
Collapse
|
7
|
Doyle GA, Betz NA, Leeds PF, Fleisig AJ, Prokipcak RD, Ross J. The c-myc coding region determinant-binding protein: a member of a family of KH domain RNA-binding proteins. Nucleic Acids Res 1998; 26:5036-44. [PMID: 9801297 PMCID: PMC147974 DOI: 10.1093/nar/26.22.5036] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The half-life of c- myc mRNA is regulated when cells change their growth rates or differentiate. Two regions within c- myc mRNA determine its short half-life. One is in the 3'-untranslated region, the other is in the coding region. A cytoplasmic protein, the coding region determinant-binding protein (CRD-BP), binds in vitro to the c- myc coding region instability determinant. We have proposed that the CRD-BP, when bound to the mRNA, shields the mRNA from endonucleolytic attack and thereby prolongs the mRNA half-life. Here we report the cloning and further characterization of the mouse CRD-BP, a 577 amino acid protein containing four hnRNP K-homology domains, two RNP domains, an RGG RNA-binding domain and nuclear import and export signals. The CRD-BP is closely related to the chicken beta-actin zipcode-binding protein and is similar to three other proteins, one of which is overexpressed in some human cancers. Recombinant mouse CRD-BP binds specifically to c- myc CRD RNA in vitro and reacts with antibody against human CRD-BP. Most of the CRD-BP in the cell is cytoplasmic and co-sediments with ribosomal subunits.
Collapse
Affiliation(s)
- G A Doyle
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1400 University Avenue, Madison,WI 53706, USA
| | | | | | | | | | | |
Collapse
|
8
|
Flinn EM, Busch CM, Wright AP. myc boxes, which are conserved in myc family proteins, are signals for protein degradation via the proteasome. Mol Cell Biol 1998; 18:5961-9. [PMID: 9742113 PMCID: PMC109182 DOI: 10.1128/mcb.18.10.5961] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular levels of the rapidly degraded c-myc protein play an important role in determining the proliferation status of cells. Increased levels of c-myc are frequently associated with rapidly proliferating tumor cells. We show here that myc boxes I and II, found in the N termini of all members of the myc protein family, function to direct the degradation of the c-myc protein. Both myc boxes I and II contain sufficient information to independently direct the degradation of otherwise stably expressed proteins to which they are fused. At least part of the myc box-directed degradation occurs via the proteasome. The mechanism of myc box-directed degradation appears to be conserved between yeast and mammalian cells. Our results suggest that the myc boxes may play an important role in regulating the level and activity of the c-myc protein.
Collapse
Affiliation(s)
- E M Flinn
- Karolinska Institute, Department of Biosciences, NOVUM, S-14157 Huddinge, Sweden.
| | | | | |
Collapse
|
9
|
Lee CH, Leeds P, Ross J. Purification and characterization of a polysome-associated endoribonuclease that degrades c-myc mRNA in vitro. J Biol Chem 1998; 273:25261-71. [PMID: 9737991 DOI: 10.1074/jbc.273.39.25261] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of mRNA half-lives is determined by multiple factors, including the activity of the messenger RNases (mRNases) responsible for destroying mRNA molecules. Previously, we used cell-free mRNA decay assays to identify a polysome-associated endonuclease that cleaves c-myc mRNA within the coding region. A similar activity has been solubilized and partially purified from a high salt extract of adult rat liver polysomes. Based on a correlation between protein and enzyme activity, the endonuclease is tentatively identified as a approximately 39-kDa protein. It cleaves the coding region stability determinant of c-myc mRNA with considerable specificity. Cleavages occur predominantly in an A-rich segment of the RNA. The endonuclease is resistant to RNase A inhibitors, sensitive to vanadyl ribonucleoside complex, and dependent on magnesium. In these and other respects, the soluble enzyme we have purified resembles the polysome-associated c-myc mRNase.
Collapse
Affiliation(s)
- C H Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
10
|
Yeilding NM, Procopio WN, Rehman MT, Lee WM. c-myc mRNA is down-regulated during myogenic differentiation by accelerated decay that depends on translation of regulatory coding elements. J Biol Chem 1998; 273:15749-57. [PMID: 9624173 DOI: 10.1074/jbc.273.25.15749] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Murine C2C12 myoblasts induced to differentiate into multinucleated myotubes decrease their levels of c-myc mRNA 3-10-fold through posttranscriptional mechanisms that recognize regulatory elements contained in protein-coding sequences in exons 2 and 3 of the mRNA. To determine the mechanism by which these elements mediate c-myc mRNA down-regulation, we examined the regulation of mutant MYC and human beta-globin-MYC fusion mRNAs. Regulation of mRNAs containing MYC exon 2 or 3 is abolished by insertion of an upstream termination codon indicating that regulatory function depends on their translation. Exploiting this translation dependence, we show that pharmacologic inhibition of translation with cycloheximide abolishes the down-regulation of regulated MYC and globin-MYC mRNAs and induces their levels in differentiating C2C12 cells. We exclude the possibility that this induction in mRNA levels results from cycloheximide effects on transcription or processing of parts of the RNA other than the regulatory elements, leading to the conclusion that cycloheximide induction results from mRNA stabilization. We show that the magnitude of cycloheximide induction can be used to estimate turnover rates of mRNAs whose decay is translation-dependent. By using cycloheximide inducibility to examine turnover rates of MYC and globin-MYC mRNAs, we show that the MYC exon 2 and exon 3 regulatory elements, but not MYC 3'-untranslated region or chloramphenicol acetyltransferase coding sequences, mediate accelerated mRNA decay in differentiating, but not undifferentiated, C2C12 cells. We show that these regulatory elements must be translated to confer accelerated mRNA decay and that increased turnover occurs in the cytoplasm and not in the nucleus. Finally, using cycloheximide induction to examine mRNA half-lives, we show that mRNA turnover is increased sufficiently by mechanisms targeting the exon 2 and 3 regulatory elements to account for the magnitude of c-myc mRNA down-regulation during differentiation. We conclude from these results that c-myc mRNA down-regulation during myogenic differentiation is due to translation-dependent mechanisms that target mRNAs containing myc exon 2 and 3 regulatory elements for accelerated decay.
Collapse
Affiliation(s)
- N M Yeilding
- Department of Medicine and the Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
11
|
Andéol Y, Lefresne J, Simard C, Séguin C, Mouton C, Signoret J. Post-transcriptional control of c-myc RNA during early development analyzed in vivo with a Xenopus-axolotl heterologous system. Differentiation 1998; 63:69-79. [PMID: 9674116 DOI: 10.1046/j.1432-0436.1998.6320069.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have set up a heterologous in vivo system to study gene regulation at the post-transcriptional level during early development. This system uses two amphibian species, Xenopus laevis and Ambystoma mexicanum (axolotl), the development of which is three to four times slower than that of X. laevis. The stability of three different synthetic X. laevis c-myc transcripts was followed after injection into fertilized axolotl eggs. One transcript is 2.2 kilobases (kb) long (full-length). The second is 1.5-kb long with most of the 3' untranslated region (3'UTR) removed, and the third corresponds to the 3'UTR (0.7-kb). The behavior of the endogenous axolotl c-myc RNA was compared with the exogenous injected c-myc transcripts. Our results show the existence of several developmental timers controlling degradation of the c-myc molecules. The first is activated at oocyte maturation and affects both the endogenous and exogenous (2.2- and 1.5-kb) transcripts containing the coding regions. A second timer could be linked to the number of cell divisions since fertilization (6th-7th cleavages) and involves the endogenous c-myc RNAs. Another timer could involve the c-myc mRNA molecule itself, because when injected into axolotl eggs, the half-life of the 2.2-kb X. laevis transcript appears to be independent of the axolotl context. After injection into axolotl fertilized eggs, the behavior of this X. laevis full-length c-myc molecule reveals an unexpected increase in the intensity of its autoradiographic signals. This increase occurs independently of events linked to mid-blastula transition and preliminary investigations are discussed.
Collapse
Affiliation(s)
- Y Andéol
- Laboratoire d'Oncologie Cellulaire et Toxicologie Génétique, Centre Anti-Cancéreux François Baclesse, Université de Caen, France
| | | | | | | | | | | |
Collapse
|
12
|
Yeilding NM, Lee WM. Coding elements in exons 2 and 3 target c-myc mRNA downregulation during myogenic differentiation. Mol Cell Biol 1997; 17:2698-707. [PMID: 9111340 PMCID: PMC232120 DOI: 10.1128/mcb.17.5.2698] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Downregulation in expression of the c-myc proto-oncogene is an early molecular event in differentiation of murine C2C12 myoblasts into multinucleated myotubes. During differentiation, levels of c-myc mRNA decrease 3- to 10-fold despite a lack of change in its transcription rate. To identify cis-acting elements that target c-myc mRNA for downregulation during myogenesis, we stably transfected C2C12 cells with mutant myc genes or chimeric genes in which various myc sequences were fused to the human beta-globin gene or to the bacterial chloramphenicol acetyltransferase (CAT) gene. Deletion of coding sequences from myc exon 2 or exon 3 abolished downregulation of myc mRNA during myogenic differentiation, while deletion of introns or sequences in the 5' or 3' untranslated regions (UTRs) did not, demonstrating that coding elements in both exons 2 and 3 are necessary for myc mRNA downregulation. Fusion of coding sequences from either myc exon 2 or 3 to beta-globin mRNA conferred downregulation onto the chimeric mRNA, while fusion of myc 3' UTR sequences or coding sequences from CAT or ribosomal protein L32 did not, demonstrating that coding elements in myc exons 2 and 3 specifically confer downregulation. These results present the apparent paradox that coding elements in either myc exon 2 or myc exon 3 are sufficient to confer downregulation onto beta-globin mRNA, but neither element alone was sufficient for myc mRNA downregulation, suggesting that some feature of beta-globin mRNA may potentiate the regulatory properties of myc exons 2 and 3. A similar regulatory function is not shared by all mRNAs because fusion of either myc exon 2 or myc exon 3 to CAT mRNA did not confer downregulation onto the chimeric mRNA, but fusion of the two elements together did. We conclude from these results that two myc regulatory elements, one exon 2 and one in exon 3, are required for myc mRNA downregulation. Finally, using a highly sensitive and specific PCR-based assay for comparing mRNA levels, we demonstrated that the downregulation mediated by myc exons 2 and 3 results in a decrease in cytoplasmic mRNA levels, but not nuclear mRNA levels, indicating that regulation is a postnuclear event.
Collapse
Affiliation(s)
- N M Yeilding
- Department of Medicine and Cancer Center, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|