1
|
Meeussen JVW, Pomp W, Brouwer I, de Jonge WJ, Patel HP, Lenstra TL. Transcription factor clusters enable target search but do not contribute to target gene activation. Nucleic Acids Res 2023; 51:5449-5468. [PMID: 36987884 PMCID: PMC10287935 DOI: 10.1093/nar/gkad227] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Many transcription factors (TFs) localize in nuclear clusters of locally increased concentrations, but how TF clustering is regulated and how it influences gene expression is not well understood. Here, we use quantitative microscopy in living cells to study the regulation and function of clustering of the budding yeast TF Gal4 in its endogenous context. Our results show that Gal4 forms clusters that overlap with the GAL loci. Cluster number, density and size are regulated in different growth conditions by the Gal4-inhibitor Gal80 and Gal4 concentration. Gal4 truncation mutants reveal that Gal4 clustering is facilitated by, but does not completely depend on DNA binding and intrinsically disordered regions. Moreover, we discover that clustering acts as a double-edged sword: self-interactions aid TF recruitment to target genes, but recruited Gal4 molecules that are not DNA-bound do not contribute to, and may even inhibit, transcription activation. We propose that cells need to balance the different effects of TF clustering on target search and transcription activation to facilitate proper gene expression.
Collapse
Affiliation(s)
- Joseph V W Meeussen
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Wim Pomp
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Ineke Brouwer
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Wim J de Jonge
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Heta P Patel
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
2
|
Gao S, Khan MI, Kalsoom F, Liu Z, Chen Y, Chen Z. Role of gene regulation and inter species interaction as a key factor in gut microbiota adaptation. Arch Microbiol 2022; 204:342. [PMID: 35595857 DOI: 10.1007/s00203-022-02935-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Gut microbiota is a class of microbial flora present in various eukaryotic multicellular complex animals such as human beings. Their community's growth and survival are greatly influenced by various factors such as host-pathogen, pathogen-environment and genetic regulation. Modern technologies like metagenomics have particularly extended our capacity to uncover the microbial treasures in challenging conditions like communities surviving at high altitude. Molecular characterizations by newly developed sequencing tools have shown that this complex interaction greatly influences microbial adaptation to the environment. Literature shows that gut microbiota alters the genetic expression and switches to an alternative pathway under the influence of unfavorable conditions. The remarkable adaptability of microbial genetic regulatory networks enables them to survive and expand in tough and energy-limited conditions. Variable prevalence of species in various regions has strengthened this initial evidence. In view of the interconnection of the world in the form of a global village, this phenomenon must be explored more clearly. In this regard, recently there has been significant addition of knowledge to the field of microbial adaptation. This review summarizes and shed some light on mechanisms of microbial adaptation via gene regulation and species interaction in gut microbiota.
Collapse
Affiliation(s)
- Shuang Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 260027, Anhui, People's Republic of China
| | - Muhammad Imran Khan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 260027, Anhui, People's Republic of China. .,Department of Pathology, District Headquarters Hospital, Jhang, 35200, Punjab, Islamic Republic of Pakistan.
| | - Fadia Kalsoom
- Department of Microbiology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yanxin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China. .,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
3
|
Knight A, Piskacek M. Cryptic inhibitory regions nearby activation domains. Biochimie 2022; 200:19-26. [PMID: 35561946 DOI: 10.1016/j.biochi.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
Previously, the Nine amino acid TransActivation Domain (9aaTAD) was identified in the Gal4 region 862-870 (DDVYNYLFD). Here, we identified 9aaTADs in the distal Gal4 orthologs by our prediction algorithm and found their conservation in the family. The 9aaTAD function as strong activators was demonstrated. We identified adjacent Gal4 region 871-811 (DEDTPPNPKKE) as a natural 9aaTAD inhibitory domain located at the extreme Gal4 terminus. Moreover, we identified conserved Gal4 region 172-185 (FDWSEEDDMSDGLP), which was capable to reverse the 9aaTAD inhibition. In conclusion, our results uncover the existence of the cryptic inhibitory domains, which need to be carefully implemented in all functional studies with transcription factors to avoid incorrect conclusions.
Collapse
Affiliation(s)
- Andrea Knight
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00, Brno, Czech Republic
| | - Martin Piskacek
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
4
|
Kanca O, Zirin J, Garcia-Marques J, Knight SM, Yang-Zhou D, Amador G, Chung H, Zuo Z, Ma L, He Y, Lin WW, Fang Y, Ge M, Yamamoto S, Schulze KL, Hu Y, Spradling AC, Mohr SE, Perrimon N, Bellen HJ. An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. eLife 2019; 8:e51539. [PMID: 31674908 PMCID: PMC6855806 DOI: 10.7554/elife.51539] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
We previously reported a CRISPR-mediated knock-in strategy into introns of Drosophila genes, generating an attP-FRT-SA-T2A-GAL4-polyA-3XP3-EGFP-FRT-attP transgenic library for multiple uses (Lee et al., 2018a). The method relied on double stranded DNA (dsDNA) homology donors with ~1 kb homology arms. Here, we describe three new simpler ways to edit genes in flies. We create single stranded DNA (ssDNA) donors using PCR and add 100 nt of homology on each side of an integration cassette, followed by enzymatic removal of one strand. Using this method, we generated GFP-tagged proteins that mark organelles in S2 cells. We then describe two dsDNA methods using cheap synthesized donors flanked by 100 nt homology arms and gRNA target sites cloned into a plasmid. Upon injection, donor DNA (1 to 5 kb) is released from the plasmid by Cas9. The cassette integrates efficiently and precisely in vivo. The approach is fast, cheap, and scalable.
Collapse
Affiliation(s)
- Oguz Kanca
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Jonathan Zirin
- Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | | | - Shannon Marie Knight
- Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Donghui Yang-Zhou
- Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Gabriel Amador
- Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Hyunglok Chung
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Zhongyuan Zuo
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Liwen Ma
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Yuchun He
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| | - Wen-Wen Lin
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Ying Fang
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Ming Ge
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Shinya Yamamoto
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| | - Karen L Schulze
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| | - Yanhui Hu
- Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Allan C Spradling
- Department of EmbryologyHoward Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Stephanie E Mohr
- Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Norbert Perrimon
- Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Hugo J Bellen
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| |
Collapse
|
5
|
Beaudoin J, Ioannoni R, Normant V, Labbé S. A role for the transcription factor Mca1 in activating the meiosis-specific copper transporter Mfc1. PLoS One 2018; 13:e0201861. [PMID: 30086160 PMCID: PMC6080790 DOI: 10.1371/journal.pone.0201861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
When reproduction in fungi takes place by sexual means, meiosis enables the formation of haploid spores from diploid precursor cells. Copper is required for completion of meiosis in Schizosaccharomyces pombe. During the meiotic program, genes encoding copper transporters exhibit distinct temporal expression profiles. In the case of the major facilitator copper transporter 1 (Mfc1), its maximal expression is induced during middle-phase meiosis and requires the presence of the Zn6Cys2 binuclear cluster-type transcription factor Mca1. In this study, we further characterize the mechanism by which Mca1 affects the copper-starvation-induced expression of mfc1+. Using a chromatin immunoprecipitation (ChIP) approach, results showed that a functional Mca1-TAP occupies the mfc1+ promoter irrespective of whether this gene is transcriptionally active. Under conditions of copper starvation, results showed that the presence of Mca1 promotes RNA polymerase II (Pol II) occupancy along the mfc1+ transcribed region. In contrast, Pol II did not significantly occupy the mfc1+ locus in meiotic cells that were incubated in the presence of copper. Further analysis by ChIP assays revealed that binding of Pol II to chromatin at the chromosomal locus of mfc1+ is exclusively detected during meiosis and absent in cells proliferating in mitosis. Protein function analysis of a series of internal mutants compared to the full-length Mca1 identified a minimal form of Mca1 consisting of its DNA-binding domain (residues 1 to 150) fused to the amino acids 299 to 600. This shorter form is sufficient to enhance Pol II occupancy at the mfc1+ locus under low copper conditions. Taken together, these results revealed novel characteristics of Mca1 and identified an internal region of Mca1 that is required to promote Pol II-dependent mfc1+ transcription during meiosis.
Collapse
Affiliation(s)
- Jude Beaudoin
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Raphaël Ioannoni
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Normant
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- * E-mail:
| |
Collapse
|
6
|
A modified yeast three-hybrid system enabling both positive and negative selections. Biotechnol Lett 2018; 40:1127-1134. [DOI: 10.1007/s10529-018-2567-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/15/2018] [Indexed: 10/16/2022]
|
7
|
Abstract
The Gal4 protein is a well-known prototypic acidic activator that has multiple activation domains. We have previously identified a new activation domain called the nine amino acid transactivation domain (9aaTAD) in Gal4 protein. The family of the 9aaTAD activators currently comprises over 40 members including p53, MLL, E2A and other members of the Gal4 family; Oaf1, Pip2, Pdr1 and Pdr3. In this study, we revised function of all reported Gal4 activation domains. Surprisingly, we found that beside of the activation domain 9aaTAD none of the previously reported activation domains had considerable transactivation potential and were not involved in the activation of transcription. Our results demonstrated that the 9aaTAD domain is the only decisive activation domain in the Gal4 protein. We found that the artificial peptides included in the original Gal4 constructs were results of an unintended consequence of cloning that were responsible for the artificial transcriptional activity. Importantly, the activation domain 9aaTAD, which is the exclusive activation domain in Gal4, is also the central part of a conserved sequence recognized by the inhibitory protein Gal80. We propose a revision of the Gal4 regulation, in which the activation domain 9aaTAD is directly linked to both activation function and Gal80 mediated inhibition.
Collapse
|
8
|
Jeličić B, Nemet J, Traven A, Sopta M. Solvent-exposed serines in the Gal4 DNA-binding domain are required for promoter occupancy and transcriptional activation in vivo. FEMS Yeast Res 2013; 14:302-9. [PMID: 24119159 DOI: 10.1111/1567-1364.12106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/27/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022] Open
Abstract
The yeast transcriptional activator Gal4 has long been the prototype for studies of eukaryotic transcription. Gal4 is phosphorylated in the DNA-binding domain (DBD); however, the molecular details and functional significance of this remain unknown. We mutagenized seven potential phosphoserines that lie on the solvent-exposed face of the DBD structure and assessed them for transcriptional activity and DNA binding in vivo. Serine to alanine mutants at positions 22, 47, and 85 show the greatest reduction in promoter occupancy and transcriptional activity at the MEL1 promoter containing a single UASGAL . Substitutions with the phosphomimetic aspartate restored DNA-binding and transcriptional activity at serines 22 and 85, suggesting that they are potential sites of Gal4 phosphorylation in vivo. In contrast, the serine to alanine mutants, except serine 22, were fully proficient for binding to the GAL1-10 promoter, containing multiple UASGAL sites, although they had a reduced ability to activate transcription. Collectively, these data show that at the GAL1-10 promoter, functions of the DBD in transcriptional activation can be uncoupled from roles in promoter binding. We suggest that the serines in the DBD mediate protein-protein contacts with the transcription machinery, leading to stabilization of Gal4 at promoters.
Collapse
Affiliation(s)
- Branka Jeličić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | | | | |
Collapse
|
9
|
Frey AG, Eide DJ. Roles of two activation domains in Zap1 in the response to zinc deficiency in Saccharomyces cerevisiae. J Biol Chem 2010; 286:6844-54. [PMID: 21177862 DOI: 10.1074/jbc.m110.203927] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies suggested that the zinc-responsive Zap1 transcriptional activator directly regulates the expression of over 80 genes in Saccharomyces cerevisiae. Many of these genes play key roles to enhance the ability of yeast cells to grow under zinc-limiting conditions. Zap1 is unusual among transcriptional activators in that it contains two activation domains, designated AD1 and AD2, which are regulated independently by zinc. These two domains are evolutionarily conserved among Zap1 orthologs suggesting that they are both important for Zap1 function. In this study, we have examined the roles of AD1 and AD2 in low zinc growth and the regulation of Zap1 target gene expression. Using alleles that are specifically disrupted for either AD1 or AD2 function, we found that these domains are not redundant, and both are important for normal growth in low zinc. AD1 plays the primary role in zinc-responsive gene regulation, whereas AD2 is required for maximal expression of only a few target promoters. AD1 alone is capable of driving full expression of most Zap1 target genes and dictates the kinetics of Zap1 gene induction in response to zinc withdrawal. Surprisingly, we found that AD1 is less active in zinc-limited cells under heat stress and AD2 plays a more important role under those conditions. These results suggest that AD2 may contribute more to Zap1 function when zinc deficiency is combined with other environmental stresses. In the course of these studies, we also found that the heat shock response is induced under conditions of severe zinc deficiency.
Collapse
Affiliation(s)
- Avery G Frey
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
10
|
Archer CT, Kodadek T. The hydrophobic patch of ubiquitin is required to protect transactivator-promoter complexes from destabilization by the proteasomal ATPases. Nucleic Acids Res 2009; 38:789-96. [PMID: 19939937 PMCID: PMC2817475 DOI: 10.1093/nar/gkp1066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mono-ubiquitylation of a transactivator is known to promote transcriptional activation of certain transactivator proteins. For the Sacchromyces cerevisiae transactivator, GAL4, attachment of mono-ubiquitin prevents destabilization of the DNA-transactivator complex by the ATPases of the 26S proteasome. This inhibition of destabilization depends on the arrangement of ubiquitin; a chain of ubiquitin tetramers linked through lysine 48 did not display the same protective effect as mono-ubiquitin. This led to an investigation into the properties of ubiquitin that may be responsible for this difference in activity between the different forms. We demonstrate the ubiquitin tetramers linked through lysine 63 do protect from proteasomal-mediated destabilization. In addition, we show that the mutating the isoleucine residue at position 44 interferes with proteasomal interaction in vitro and will abolish the protective activity in vivo. Together, these data implicate the hydrophobic patch of ubiquitin as required to protect transactivators from destabilization by the proteasomal ATPases.
Collapse
Affiliation(s)
- Chase T Archer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9185, USA
| | | |
Collapse
|
11
|
Archer CT, Delahodde A, Gonzalez F, Johnston SA, Kodadek T. Activation domain-dependent monoubiquitylation of Gal4 protein is essential for promoter binding in vivo. J Biol Chem 2008; 283:12614-23. [PMID: 18326036 PMCID: PMC2335349 DOI: 10.1074/jbc.m801050200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/06/2008] [Indexed: 01/12/2023] Open
Abstract
The Saccharomyces cerevisiae Gal4 protein is a paradigmatic transcriptional activator containing a C-terminal acidic activation domain (AD) of 34 amino acids. A mutation that results in the truncation of about two-thirds of the Gal4AD (gal4D) results in a crippled protein with only 3% the activity of the wild-type activator. We show here that although the Gal4D protein is not intrinsically deficient in DNA binding, it is nonetheless unable to stably occupy GAL promoters in vivo. This is because of the activity of the proteasomal ATPases, including Sug1/Rpt6, which bind to Gal4D via the remainder of the AD and strip it off of DNA. A mutation that suppressed the Gal4D "no growth on galactose" phenotype repressed the stripping activity of the ATPase complex but not other activities. We further demonstrate that Gal4D is hypersensitive to this stripping activity because of its failure to be monoubiquitylated efficiently in vivo and in vitro. Evidence is presented that the piece of the AD that is deleted in Gal4D protein is likely a recognition element for the E3 ubiquitin-protein ligase that modifies Gal4. These data argue that acidic ADs comprise at least two small peptide subdomains, one of which is responsible for activator monoubiquitylation and another that interacts with the proteasomal ATPases, coactivators and other transcription factors. This study validates the physiological importance of Gal4 monoubiquitylation and clarifies its major role as that of protecting the activator from being destabilized by the proteasomal ATPases.
Collapse
Affiliation(s)
- Chase T Archer
- Division of Translational Research, Department of Internal Medicine, University of Texas-Southwestern Medical Center, Dallas, Texas 75390-9185, USA
| | | | | | | | | |
Collapse
|
12
|
Weider M, Machnik A, Klebl F, Sauer N. Vhr1p, a New Transcription Factor from Budding Yeast, Regulates Biotin-dependent Expression of VHT1 and BIO5. J Biol Chem 2006; 281:13513-13524. [PMID: 16533810 DOI: 10.1074/jbc.m512158200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the Saccharomyces cerevisiae vitamin H transporter gene VHT1 is enhanced by low extracellular biotin. Here we present the identification and characterization of Vhr1p as a transcriptional regulator of VHT1 (VHR1 (YIL056w); VHT1 regulator 1) and the identification of the cis-regulatory target sequences for Vhr1p in two yeast promoters. VHR1 was identified in a complementation screening of mutagenized yeast cells that had lost the capacity to express the gene of the green fluorescent protein (GFP) from the VHT1 promoter. Deltavhr1 deletion mutants fail to induce VHT1 on low biotin concentrations. In yeast one-hybrid analyses performed with fusions of Vhr1p N-terminal and C-terminal fragments to the Gal4p activation domain or to the Gal4p DNA-binding domain, the Vhr1p N terminus mediated biotin-dependent DNA binding, and the Vhr1p C terminus triggered biotin-dependent transcriptional activation. The analyzed Vhr1p N-terminal fragment has previously been described as a domain of unknown function (DUF352). Deletion and linker scanning analyses of the VHT1 promoter revealed the palindromic 18-nucleotide sequence AATCA-N8-TGAYT as the vitamin H-responsive element. This sequence was identified also in the BIO5 promoter that is also transcriptionally activated on low biotin concentrations. Bio5p mediates the transport of 7-keto-8-aminopelargonic acid across the yeast plasma membrane, a compound that is used as a precursor in biotin biosynthesis. Deltavhr1 deletion mutants fail to induce BIO5 on low biotin concentrations. The presented data characterize Vhr1p as an essential component of the biotin-dependent signal transduction cascade in yeast.
Collapse
Affiliation(s)
- Matthias Weider
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Agnes Machnik
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Franz Klebl
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Norbert Sauer
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany.
| |
Collapse
|
13
|
Jelicić B, Traven A, Filić V, Sopta M. Mitochondrial dysfunction enhances Gal4-dependent transcription. FEMS Microbiol Lett 2005; 253:207-13. [PMID: 16239078 DOI: 10.1016/j.femsle.2005.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 09/20/2005] [Accepted: 09/23/2005] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial dysfunction has been shown to elicit broad effects on nuclear gene expression. We show here that transcription dependent on the prototypical acidic activator Gal4 is responsive to mitochondrial dysfunction. In cells with no mitochondrial DNA, Gal4-dependent gene expression is elevated. A minimal Gal4 activator containing the DNA binding and activation domain is sufficient for this response. Transcription dependent on a fusion of Gal4 to a heterologous DNA binding domain is similarly elevated in a mitochondrial mutant. Analysis of different Gal4-dependent promoters and gel mobility shift assays suggest that the effect of mitochondrial dysfunction on Gal4 activity is related to increased DNA binding to the cognate Gal4 element. Given that fermentation is the only means to obtain energy in respiratory deficient cells, it is possible that higher Gal4 activity in cells with dysfunctional mitochondria works to promote more efficient fermentation of galactose.
Collapse
Affiliation(s)
- Branka Jelicić
- Department of Molecular Biology, Ruder Bosković Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
14
|
Melcher K. Mutational hypersensitivity of a gene regulatory protein: Saccharomyces cerevisiae Gal80p. Genetics 2005; 171:469-76. [PMID: 15998719 PMCID: PMC1456764 DOI: 10.1534/genetics.105.045237] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inhibitor of galactose catabolic (GAL) gene expression in Saccharomyces cerevisiae, Gal80p, interacts with the activator Gal4p and the signal transducer Gal3p and self-associates. Selection for loss of Gal80p inhibitor function yielded gal80 mutants at an extremely high rate. Out of these, 21 nonoverlapping point mutants were identified; each were due to a single-amino-acid exchange in conserved residues. Semiquantitative biochemical analysis of the corresponding mutant proteins revealed that each of the 21 amino acid alterations caused simultaneous defects in every single protein-protein interaction and in Gal80's structural integrity. Thus, Gal80 provides an unprecedented example for a protein's structural sensitivity to minimal sequence alterations.
Collapse
Affiliation(s)
- Karsten Melcher
- Institute of Microbiology, Biocenter Niederursel, Goethe University, Frankfurt, Germany.
| |
Collapse
|
15
|
Amini F, Denison C, Lin HJ, Kuo L, Kodadek T. Using oxidative crosslinking and proximity labeling to quantitatively characterize protein-protein and protein-Peptide complexes. ACTA ACUST UNITED AC 2004; 10:1115-27. [PMID: 14652079 DOI: 10.1016/j.chembiol.2003.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The quantitative analysis of protein-protein and protein-peptide complexes is of fundamental importance in biochemistry. We report here that nickel-catalyzed proximity biotinylation and Ru(II)(bpy)(3)(2+)-mediated oxidative crosslinking can be used to measure the equilibrium dissociation constant and stoichiometry of protein complexes. Only small amounts of protein are required, neither of the binding partners must be immobilized on a surface, and no special instrumentation is necessary. This chemistry should provide a useful complement to existing methods for the analysis of protein-protein and protein-peptide interactions.
Collapse
Affiliation(s)
- Frank Amini
- Center for Biomedical Inventions, Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
16
|
Devaux F, Marc P, Bouchoux C, Delaveau T, Hikkel I, Potier MC, Jacq C. An artificial transcription activator mimics the genome-wide properties of the yeast Pdr1 transcription factor. EMBO Rep 2001; 2:493-8. [PMID: 11415981 PMCID: PMC1083908 DOI: 10.1093/embo-reports/kve114] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We analysed the genome-wide regulatory properties of an artificial transcription activator in which the DNA-binding domain of the yeast transcription factor, Pdr1, was fused to the activation domain of Gal4 (Pdr1*GAD). This Pdr1*GAD chimera was put under the control of the inducible GAL1 promoter. DNA microarray analyses showed that all the target genes upregulated by the well-studied native gain-of-function Pdr1-3 mutant were similarly activated by the chimerical factor Pdr1*GAD upon galactose induction. Additionally, this kinetic approach led us not only to confirm previously published targets, but also to define a hierarchy among members of the Pdr1 regulon. Our observations prove, for the first time at the complete genome level, that the DNA-binding domain of Pdr1 is sufficient to guide its specificity. We propose that this approach could be useful for the study of new transcription factors identified in silico from sequenced organisms. Complete data are available at www.biologie.ens.fr/yeast-publi.html.
Collapse
Affiliation(s)
- F Devaux
- Laboratoire de Génétique Moléculaire, CNRS UMR 8541, Ecole Normale Supérieure, 46 rue d'Ulm, Paris, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Des Etages SA, Saxena D, Huang HL, Falvey DA, Barber D, Brandriss MC. Conformational changes play a role in regulating the activity of the proline utilization pathway-specific regulator in Saccharomyces cerevisiae. Mol Microbiol 2001; 40:890-9. [PMID: 11401696 DOI: 10.1046/j.1365-2958.2001.02432.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the ability to use proline as a nitrogen source requires the Put3p transcriptional regulator, which turns on the expression of the proline utilization genes, PUT1 and PUT2, in the presence of the inducer proline and in the absence of preferred nitrogen sources. Changes in target gene expression occur through an alteration in activity of the DNA-bound Put3p, a member of the Zn(II)2Cys6 binuclear cluster family of proteins. Here, we report that the 'on' conformation can be mimicked in the absence of proline by the insertion of an epitope tag in several different places in the protein, as well as by specific amino acid changes that suppress a put3 mutation leading to non-inducibility of the pathway. In addition, the presence of proline causes a conformational change in the Put3 protein detected by increased sensitivity to thrombin or V8 protease. These findings suggest that Put3p shifts from an inactive to an activate state via conformational changes.
Collapse
Affiliation(s)
- S A Des Etages
- Department of Microbiology and Molecular Genetics, Room MSB F-607, UMDNJ - New Jersey Medical School, 185 S. Orange Ave., Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
18
|
Li Q, Johnston SA. Are all DNA binding and transcription regulation by an activator physiologically relevant? Mol Cell Biol 2001; 21:2467-74. [PMID: 11259595 PMCID: PMC86879 DOI: 10.1128/mcb.21.7.2467-2474.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding how a regulatory protein occupies its sites in vivo is central to understanding gene regulation. Using the yeast Gal4 protein as a model for such studies, we have found 239 potential Gal4 binding sites in the yeast genome, 186 of which are in open reading frames (ORFs). This raises the questions of whether these sites are occupied by Gal4 and, if so, to what effect. We have analyzed the Saccharomyces cerevisiae ACC1 gene (encoding acetyl-coenzyme A carboxylase), which has three Gal4 binding sites in its ORF. The plasmid titration assay has demonstrated that Gal4 occupies these sites in the context of an active ACC1 gene. We also find that the expression of the ACC1 is reduced fourfold in galactose medium and that this reduction is dependent on the Gal4 binding sites, suggesting that Gal4 bound to the ORF sites affects transcription of ACC1. Interestingly, removal of the Gal4 binding sites has no obvious effect on the growth in galactose under laboratory conditions. In addition, though the sequence of the ACC1 gene is highly conserved among yeast species, these Gal4 binding sites are not present in the Kluyveromyces lactis ACC1 gene. We suggest that the occurrence of these sites may not be related to galactose regulation and a manifestation of the "noise" in the occurrence of Gal4 binding sites.
Collapse
Affiliation(s)
- Q Li
- Department of Internal Medicine and Biochemistry, University of Texas-Southwestern Medical Center, Dallas, Texas 75390-8573, USA
| | | |
Collapse
|
19
|
Melcher K, Xu H. Gal80-Gal80 interaction on adjacent Gal4p binding sites is required for complete GAL gene repression. EMBO J 2001; 20:841-51. [PMID: 11179228 PMCID: PMC145427 DOI: 10.1093/emboj/20.4.841] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Regulation of the GAL genes of Saccharomyces cerevisiae is determined by the interplay of the transcriptional activator Gal4p and the repressor Gal80p, which binds and masks the activation domain of Gal4p under non-inducing conditions. Here we demonstrate that Gal80p dimerizes with high affinity and that this dimerization appears to stabilize the Gal4p-Gal80p interaction and also, indirectly, the Gal4p-DNA interaction in a (Gal4p)2(Gal80p)2DNA complex. In addition, Gal80 dimers transiently interact with each other to form higher order multimers. We provide evidence that adjacent Gal4p binding sites, when correctly spaced, greatly stabilize Gal80p dimer-dimer interactions and that this stabilization results in the complete repression of GAL genes with multiple Gal4p binding sites. In contrast, GAL genes under the control of a single Gal4p binding site do not stabilize Gal80p multimers, resulting in significant and biologically important transcriptional leakage. Cooperative binding experiments indicate that Gal80p dimer-dimer interaction probably does not lead to a stronger Gal4p-Gal80p interaction, but most likely to a more complete shielding of the Gal4p activation domain.
Collapse
Affiliation(s)
- Karsten Melcher
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-8573, USA Present address: Institute of Mikrobiology, J.W.Goethe-Universität Frankfurt, Marie-Curie Straße 9, N250, D-60439 Frankfurt, Germany Present address: GlaxoWellcome Inc., V213, 5 Moore Drive, Research Triangle Park, NC 27709, USA Corresponding author e-mail:
| | - H.Eric Xu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-8573, USA Present address: Institute of Mikrobiology, J.W.Goethe-Universität Frankfurt, Marie-Curie Straße 9, N250, D-60439 Frankfurt, Germany Present address: GlaxoWellcome Inc., V213, 5 Moore Drive, Research Triangle Park, NC 27709, USA Corresponding author e-mail:
| |
Collapse
|
20
|
Bash R, Lohr D. Yeast chromatin structure and regulation of GAL gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:197-259. [PMID: 11008489 DOI: 10.1016/s0079-6603(00)65006-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Yeast genomic DNA is covered by nucleosome cores spaced by short, discrete length linkers. The short linkers, reinforced by novel histone properties, create a number of unique and dynamic nucleosome structural features in vivo: permanent unpeeling of DNA from the ends of the core, an inability to bind even full 147 bp core DNA lengths, and facility to undergo a conformational transition that resembles the changes found in active chromatin. These features probably explain how yeast can maintain most of its genome in a transcribable state and avoid large-scale packaging away of inactive genes. The GAL genes provide a closely regulated system in which to study gene-specific chromatin structure. GAL structural genes are inactive without galactose but are highly transcribed in its presence; the expression patterns of the regulatory genes can account for many of the features of GAL structural gene control. In the inactive state, GAL genes demonstrate a characteristic promoter chromosomal organization; the major upstream activation sequence (UASG) elements lie in open, hypersensitive regions, whereas the TATA and transcription start sites are in nucleosomes. This organization helps implement gene regulation in this state and may benefit the organism. Induction of GAL expression triggers Gal4p-dependent upstream nucleosome disruption. Disruption is transient and can readily be reversed by a Gal80p-dependent nucleosome deposition process. Both are sensitive to the metabolic state of the cell. Induction triggers different kinds of nucleosome changes on the coding sequences, perhaps reflecting the differing roles of nucleosomes on coding versus promoter regions. GAL gene activation is a complex process involving multiple Gal4p activities, numerous positive and negative cofactors, and the histone tails. DNA bending and chromosomal architecture of the promoter regions may also play a role in GAL regulation. Regulator-mediated competition between nucleosomes and the TATA binding protein complex for the TATA region is probably a central aspect of GAL regulation and a focal point for the numerous factors and processes that contribute to it.
Collapse
Affiliation(s)
- R Bash
- Department of Chemistry and Biochemistry, Arizona State University, Tempe 85287, USA
| | | |
Collapse
|
21
|
Abstract
Gal4p activates transcription of the Saccharomyces GAL genes in response to galactose and is phosphorylated during interaction with the RNA polymerase II (Pol II) holoenzyme. One phosphorylation at S699 is necessary for full GAL induction and is mediated by Srb10p/CDK8 of the RNA Pol II holoenzyme mediator subcomplex. Gal4p S699 phosphorylation is necessary for sensitive response to inducer, and its requirement for GAL induction can be abrogated by high concentrations of galactose in strains expressing wild-type GAL2 and GAL3. Gal4p S699 phosphorylation occurs independently of Gal3p and is responsible for the long-term adaptation response observed in gal3 yeast. SRB10 and GAL3 are shown to represent parallel mechanisms for GAL gene induction. These results demonstrate that Gal4p activity is controlled by two independent signals: one that acts through Gal3p-galactose and a second that is mediated by the holoenzyme-associated cyclin-dependent kinase Srb10p. Since Srb10p is regulated independently of galactose, our results suggest a function for CDK8 in coordinating responses to specific inducers with the environment through the phosphorylation of gene-specific activators.
Collapse
Affiliation(s)
- J R Rohde
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
22
|
Sil AK, Alam S, Xin P, Ma L, Morgan M, Lebo CM, Woods MP, Hopper JE. The Gal3p-Gal80p-Gal4p transcription switch of yeast: Gal3p destabilizes the Gal80p-Gal4p complex in response to galactose and ATP. Mol Cell Biol 1999; 19:7828-40. [PMID: 10523671 PMCID: PMC84853 DOI: 10.1128/mcb.19.11.7828] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gal3, Gal80, and Gal4 proteins of Saccharomyces cerevisiae comprise a signal transducer that governs the galactose-inducible Gal4p-mediated transcription activation of GAL regulon genes. In the absence of galactose, Gal80p binds to Gal4p and prohibits Gal4p from activating transcription, whereas in the presence of galactose, Gal3p binds to Gal80p and relieves its inhibition of Gal4p. We have found that immunoprecipitation of full-length Gal4p from yeast extracts coprecipitates less Gal80p in the presence than in the absence of Gal3p, galactose, and ATP. We have also found that retention of Gal80p by GSTG4AD (amino acids [aa] 768 to 881) is markedly reduced in the presence compared to the absence of Gal3p, galactose, and ATP. Consistent with these in vitro results, an in vivo two-hybrid genetic interaction between Gal80p and Gal4p (aa 768 to 881) was shown to be weaker in the presence than in the absence of Gal3p and galactose. These compiled results indicate that the binding of Gal3p to Gal80p results in destabilization of a Gal80p-Gal4p complex. The destabilization was markedly higher for complexes consisting of G4AD (aa 768 to 881) than for full-length Gal4p, suggesting that Gal80p relocated to a second site on full-length Gal4p. Congruent with the idea of a second site, we discovered a two-hybrid genetic interaction involving Gal80p and the region of Gal4p encompassing aa 225 to 797, a region of Gal4p linearly remote from the previously recognized Gal80p binding peptide within Gal4p aa 768 to 881.
Collapse
Affiliation(s)
- A K Sil
- Department of Biochemistry, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang D, Zheng F, Holmberg S, Kohlhaw GB. Yeast transcriptional regulator Leu3p. Self-masking, specificity of masking, and evidence for regulation by the intracellular level of Leu3p. J Biol Chem 1999; 274:19017-24. [PMID: 10383402 DOI: 10.1074/jbc.274.27.19017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent work suggests that the masking of the activation domain (AD) of yeast transactivator Leu3p, observed in the absence of the metabolic signal alpha-isopropylmalate, is an intramolecular event. Much of the evidence came from the construction and analysis of a mutant form of Leu3p (Leu3-dd) whose AD is permanently masked (Wang, D., Hu, Y., Zheng, F., Zhou, K., and Kohlhaw, G. B. (1997) J. Biol. Chem. 272, 19383-19392). In a modified two-hybrid experiment, the ADs of both wild type Leu3p and Leu3-dd were shown to interact with the remainder of the Leu3 protein, in an alpha-isopropylmalate-dependent manner. The finding that masking and unmasking proceed apparently normally when full-length Leu3p is expressed in mammalian cells is also consistent with the notion of intramolecular masking. Here we report on the identification of nine missense mutations (all of them suppressors of the Leu3-dd phenotype) that cause permanent unmasking of Leu3p. The nine mutations map to three short segments located within a 140-residue-long region of the C-terminal part of the middle region of Leu3p. These segments may be part of a spatial trap for the AD. We also performed "domain swaps" between Leu3p and Cha4p, a serine/threonine-responsive activator that, like Leu3p, belongs to the family of Zn(II)2Cys6 proteins. We show that AD masking and response to the appropriate metabolic signal only occur when a given AD remains attached to its own middle region; middle region swapping results in constitutively active proteins. Finally, we show that the extent to which Leu3p regulates reporter gene expression depends on the intracellular concentration of Leu3p. The possible physiological significance of this observation is discussed in light of the known regulation of Leu3p by Gcn4p.
Collapse
Affiliation(s)
- D Wang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
24
|
Young ET, Saario J, Kacherovsky N, Chao A, Sloan JS, Dombek KM. Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression. J Biol Chem 1998; 273:32080-7. [PMID: 9822683 DOI: 10.1074/jbc.273.48.32080] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast transcriptional activator Adr1p controls expression of the glucose-repressible alcohol dehydrogenase gene (ADH2), genes involved in glycerol metabolism, and genes required for peroxisome biogenesis and function. Previous data suggested that promoter-specific activation domains might contribute to expression of the different types of ADR1-dependent genes. By using gene fusions encoding the Gal4p DNA binding domain and portions of Adr1p, we identified a single, strong acidic activation domain spanning amino acids 420-462 of Adr1p. Both acidic and hydrophobic amino acids within this activation domain were important for its function. The critical hydrophobic residues are in a motif previously identified in p53 and related acidic activators. A mini-Adr1 protein consisting of the DNA binding domain of Adr1p fused to this 42-residue activation domain carried out all of the known functions of wild-type ADR1. It conferred stringent glucose repression on the ADH2 locus and on UAS1-containing reporter genes. The putative inhibitory region of Adr1p encompassing the protein kinase A phosphorylation site at Ser-230 is thus not essential for glucose repression mediated by ADR1. Mini-ADR1 allowed efficient derepression of gene expression. In addition it complemented an ADR1-null allele for growth on glycerol and oleate media, indicating efficient activation of genes required for glycerol metabolism and peroxisome biogenesis. Thus, a single activation domain can activate all ADR1-dependent promoters.
Collapse
Affiliation(s)
- E T Young
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Corton JC, Moreno E, Johnston SA. Alterations in the GAL4 DNA-binding domain can affect transcriptional activation independent of DNA binding. J Biol Chem 1998; 273:13776-80. [PMID: 9593720 DOI: 10.1074/jbc.273.22.13776] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GAL4 protein belongs to a large class of fungal transcriptional activator proteins encoding within their DNA-binding domains (DBD) six cysteines that coordinate two atoms of zinc (the Zn2Cys6 domain). In an effort to characterize the interactions between the Zn2Cys6 class transcriptional activator proteins and their DNA-binding sites, we have replaced in the full-length GAL4 protein small regions of the Zn2Cys6 domain with the analogous regions of another Zn2Cys6 protein called PPR1 an activator of pyrimidine biosynthetic genes. Alterations between the first and third cysteines abolished binding to GAL4 (upstream activation sequence of GAL (UASG)) or PPR1 (upstream acitvation sequence of UAS) DNA-binding sites and severely reduced transcriptional activation in yeast. In contrast, alterations between the third and fourth cysteines had only minor effects on binding to UASG but led to substantial decreases in activation in both yeast and a mammalian cell line. In the crystal structure of the GAL4 DBD-UASG complex (Marmorstein, R., Carey, M., Ptashne, M., and Harrison, S. C. (1992) Nature 356, 408-414), this region is facing away from the DNA, making it likely that there exists within the GAL4 DBD an accessible domain important in activation.
Collapse
Affiliation(s)
- J C Corton
- Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709-2137, USA.
| | | | | |
Collapse
|