1
|
Tumova S, Dolezel D, Jindra M. Conserved and Unique Roles of bHLH-PAS Transcription Factors in Insects - From Clock to Hormone Reception. J Mol Biol 2023; 436:168332. [PMID: 39491146 DOI: 10.1016/j.jmb.2023.168332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
A dozen bHLH-PAS transcription factors have evolved since the dawn of the animal kingdom; nine of them have mutual orthologs between arthropods and vertebrates. These proteins are master regulators in a range of developmental processes from organogenesis, nervous system formation and functioning, to cell fate decisions defining identity of limbs or photoreceptors for color vision. Among the functionally best conserved are bHLH-PAS proteins acting in the animal circadian clock. On the other side of the spectrum are fundamental physiological mechanisms such as those underlying xenobiotic detoxification, oxygen homeostasis, and metabolic adaptation to hypoxia, infection or tumor progression. Predictably, malfunctioning of bHLH-PAS regulators leads to pathologies. Performance of the individual bHLH-PAS proteins is modulated at multiple levels including dimerization and other protein-protein interactions, proteasomal degradation, and by binding low-molecular weight ligands. Despite the vast evolutionary gap dividing arthropods and vertebrates, and the differences in their anatomy, many functions of orthologous bHLH-PAS proteins are remarkably similar, including at the molecular level. Our phylogenetic analysis shows that one bHLH-PAS protein type has been lost during vertebrate evolution. This protein has a unique function as a receptor of the sesquiterpenoid juvenile hormones of insects and crustaceans. Although some other bHLH-PAS proteins are regulated by binding small molecules, the juvenile hormone receptor presents an unprecedented case, since all other non-peptide animal hormones activate members of the nuclear receptor family. The purpose of this review is to compare and highlight parallels and differences in functioning of bHLH-PAS proteins between insects and vertebrates.
Collapse
Affiliation(s)
- Sarka Tumova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - David Dolezel
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Marek Jindra
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
2
|
Kolonko-Adamska M, Zawadzka-Kazimierczuk A, Bartosińska-Marzec P, Koźmiński W, Popowicz G, Krężel A, Ożyhar A, Greb-Markiewicz B. Interaction patterns of methoprene-tolerant and germ cell-expressed Drosophila JH receptors suggest significant differences in their functioning. Front Mol Biosci 2023; 10:1215550. [PMID: 37654797 PMCID: PMC10465699 DOI: 10.3389/fmolb.2023.1215550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Methoprene-tolerant (Met) and germ cell-expressed (Gce) proteins were shown to be juvenile hormone (JH) receptors of Drosophila melanogaster with partially redundant functions. We raised the question of where the functional differentiation of paralogs comes from. Therefore, we tested Met and Gce interaction patterns with selected partners. In this study, we showed the ability of Gce and its C-terminus (GceC) to interact with 14-3-3 in the absence of JH. In contrast, Met or Met C-terminus (MetC) interactions with 14-3-3 were not observed. We also performed a detailed structural analysis of Met/Gce interactions with the nuclear receptor fushi tarazu factor-1 (Ftz-F1) ligand-binding domain. We showed that GceC comprising an Ftz-F1-binding site and full-length protein interacts with Ftz-F1. In contrast to Gce, only MetC (not full-length Met) can interact with Ftz-F1 in the absence of JH. We propose that the described differences result from the distinct tertiary structure and accessibility of binding sites in the full-length Met/Gce. Moreover, we hypothesize that each interacting partner can force disordered MetC and GceC to change the structure in a partner-specific manner. The observed interactions seem to determine the subcellular localization of Met/Gce by forcing their translocation between the nucleus and the cytoplasm, which may affect the activity of the proteins. The presented differences between Met and Gce can be crucial for their functional differentiation during D. melanogaster development and indicate Gce as a more universal and more active paralog. It is consistent with the theory indicating gce as an ancestor gene.
Collapse
Affiliation(s)
- M. Kolonko-Adamska
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - A. Zawadzka-Kazimierczuk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - P. Bartosińska-Marzec
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - W. Koźmiński
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - G. Popowicz
- Helmholtz Zentrum München, Neuherberg, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - A. Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - A. Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - B. Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
3
|
Vorontsova JE, Akishina AA, Cherezov RO, Simonova OB. A new insight into the aryl hydrocarbon receptor/cytochrome 450 signaling pathway in MG63, HOS, SAOS2, and U2OS cell lines. Biochimie 2023; 207:102-112. [PMID: 36332717 DOI: 10.1016/j.biochi.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Osteosarcoma is the most common malignant tumor of bone, with rapid progressive growth, early distant metastases, and frequent recurrence after surgical treatment. Osteosarcoma is characterized by changes in the ratio and expression of different cytochrome P450 (CYP) isoforms that can affect the effectiveness of anticancer therapies. The inducible expression of CYP1 genes depends on the ligand-dependent functionality of the aryl hydrocarbon receptor (AHR). In this study, we examined the AHR/CYP1 signaling pathway in four osteosarcoma cell lines (MG63, HOS, SAOS2, and U2OS) induced by the known AHR ligands: indirubin, indole-3-carbinol, and beta-naphthoflavone. Using qPCR and Western blot analysis, we explored the effects of these ligands on the expression of the CYP1 genes and studied the correlation between these responses and the changes in the mRNA and protein levels of AHR and the AHR nuclear translocator (ARNT) in these osteosarcoma cell lines. The results show that the AHR/CYP1 signaling pathway retains its function only in MG63 and HOS cells, and is impaired in SAOS2 and U2OS cells. Our data should be taken into account when recommending new strategies for the treatment of osteosarcoma and when evaluating new drugs against osteosarcoma in vitro.
Collapse
Affiliation(s)
- Julia E Vorontsova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Angelina A Akishina
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Roman O Cherezov
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga B Simonova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Characterization of functionally deficient SIM2 variants found in patients with neurological phenotypes. Biochem J 2022; 479:1441-1454. [PMID: 35730699 PMCID: PMC9342896 DOI: 10.1042/bcj20220209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Single-Minded 2 (SIM2) is a neuron enriched basic Helix-Loop-Helix/PER-ARNT-SIM (bHLH/PAS) transcription factor essential for mammalian survival. SIM2 is located within the Down Syndrome Critical Region (DSCR) of chromosome 21, and manipulation in mouse models suggests Sim2 may play a role in brain development and function. During screening of a clinical exome sequencing database, nine SIM2 non-synonymous mutations were found which were subsequently investigated for impaired function using cell-based reporter gene assays. A number of these human variants attenuated abilities to activate transcription and were further characterized to determine the mechanisms underpinning their deficiencies. These included impaired partner protein dimerization, reduced DNA binding and reduced expression and nuclear localization. This study highlighted several SIM2 variants found in patients with disabilities and validated a candidate set as potentially contributing to pathology.
Collapse
|
5
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
6
|
Wyatt BH, Amin NM, Bagley K, Wcisel DJ, Dush MK, Yoder JA, Nascone-Yoder NM. Single-minded 2 is required for left-right asymmetric stomach morphogenesis. Development 2021; 148:dev199265. [PMID: 34486651 PMCID: PMC8512893 DOI: 10.1242/dev.199265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023]
Abstract
The morphogenesis of left-right (LR) asymmetry is a crucial phase of organogenesis. In the digestive tract, the development of anatomical asymmetry is first evident in the leftward curvature of the stomach. To elucidate the molecular events that shape this archetypal laterality, we performed transcriptome analyses of the left versus right sides of the developing stomach in frog embryos. Besides the known LR gene pitx2, the only gene found to be expressed asymmetrically throughout all stages of curvature was single-minded 2 (sim2), a Down Syndrome-related transcription factor and homolog of a Drosophila gene (sim) required for LR asymmetric looping of the fly gut. We demonstrate that sim2 functions downstream of LR patterning cues to regulate key cellular properties and behaviors in the left stomach epithelium that drive asymmetric curvature. Our results reveal unexpected convergent cooption of single-minded genes during the evolution of LR asymmetric morphogenesis, and have implications for dose-dependent roles of laterality factors in non-laterality-related birth defects.
Collapse
Affiliation(s)
- Brent H. Wyatt
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Nirav M. Amin
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Kristen Bagley
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Dustin J. Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Michael K. Dush
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette M. Nascone-Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
7
|
The Participation of the Intrinsically Disordered Regions of the bHLH-PAS Transcription Factors in Disease Development. Int J Mol Sci 2021; 22:ijms22062868. [PMID: 33799876 PMCID: PMC8001110 DOI: 10.3390/ijms22062868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022] Open
Abstract
The basic helix–loop–helix/Per-ARNT-SIM (bHLH-PAS) proteins are a family of transcription factors regulating expression of a wide range of genes involved in different functions, ranging from differentiation and development control by oxygen and toxins sensing to circadian clock setting. In addition to the well-preserved DNA-binding bHLH and PAS domains, bHLH-PAS proteins contain long intrinsically disordered C-terminal regions, responsible for regulation of their activity. Our aim was to analyze the potential connection between disordered regions of the bHLH-PAS transcription factors, post-transcriptional modifications and liquid-liquid phase separation, in the context of disease-associated missense mutations. Highly flexible disordered regions, enriched in short motives which are more ordered, are responsible for a wide spectrum of interactions with transcriptional co-regulators. Based on our in silico analysis and taking into account the fact that the functions of transcription factors can be modulated by posttranslational modifications and spontaneous phase separation, we assume that the locations of missense mutations inducing disease states are clearly related to sequences directly undergoing these processes or to sequences responsible for their regulation.
Collapse
|
8
|
Gu J, Liang Q, Liu C, Li S. Genomic Analyses Reveal Adaptation to Hot Arid and Harsh Environments in Native Chickens of China. Front Genet 2021; 11:582355. [PMID: 33424922 PMCID: PMC7793703 DOI: 10.3389/fgene.2020.582355] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
The acute thermal response has been extensively studied in commercial chickens because of the adverse effects of heat stress on poultry production worldwide. Here, we performed whole-genome resequencing of autochthonous Niya chicken breed native to the Taklimakan Desert region as well as of 11 native chicken breeds that are widely distributed and reared under native humid and temperate areas. We used combined statistical analysis to search for putative genes that might be related to the adaptation of hot arid and harsh environment in Niya chickens. We obtained a list of intersected candidate genes with log2 θπ ratio, FST and XP-CLR (including 123 regions of 21 chromosomes with the average length of 54.4 kb) involved in different molecular processes and pathways implied complex genetic mechanisms of adaptation of native chickens to hot arid and harsh environments. We identified several selective regions containing genes that were associated with the circulatory system and blood vessel development (BVES, SMYD1, IL18, PDGFRA, NRP1, and CORIN), related to central nervous system development (SIM2 and NALCN), related to apoptosis (CLPTM1L, APP, CRADD, and PARK2) responded to stimuli (AHR, ESRRG FAS, and UBE4B) and involved in fatty acid metabolism (FABP1). Our findings provided the genomic evidence of the complex genetic mechanisms of adaptation to hot arid and harsh environments in chickens. These results may improve our understanding of thermal, drought, and harsh environment acclimation in chickens and may serve as a valuable resource for developing new biotechnological tools to breed stress-tolerant chicken lines and or breeds in the future.
Collapse
Affiliation(s)
- Jingjing Gu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China.,Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing, China
| | - Can Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Sheng Li
- Maxun Biotechnology Institute, Changsha, China
| |
Collapse
|
9
|
Kolonko M, Greb-Markiewicz B. bHLH-PAS Proteins: Their Structure and Intrinsic Disorder. Int J Mol Sci 2019; 20:ijms20153653. [PMID: 31357385 PMCID: PMC6695611 DOI: 10.3390/ijms20153653] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
The basic helix–loop–helix/Per-ARNT-SIM (bHLH–PAS) proteins are a class of transcriptional regulators, commonly occurring in living organisms and highly conserved among vertebrates and invertebrates. These proteins exhibit a relatively well-conserved domain structure: the bHLH domain located at the N-terminus, followed by PAS-A and PAS-B domains. In contrast, their C-terminal fragments present significant variability in their primary structure and are unique for individual proteins. C-termini were shown to be responsible for the specific modulation of protein action. In this review, we present the current state of knowledge, based on NMR and X-ray analysis, concerning the structural properties of bHLH–PAS proteins. It is worth noting that all determined structures comprise only selected domains (bHLH and/or PAS). At the same time, substantial parts of proteins, comprising their long C-termini, have not been structurally characterized to date. Interestingly, these regions appear to be intrinsically disordered (IDRs) and are still a challenge to research. We aim to emphasize the significance of IDRs for the flexibility and function of bHLH–PAS proteins. Finally, we propose modern NMR methods for the structural characterization of the IDRs of bHLH–PAS proteins.
Collapse
Affiliation(s)
- Marta Kolonko
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
10
|
Button EL, Bersten DC, Whitelaw ML. HIF has Biff – Crosstalk between HIF1a and the family of bHLH/PAS proteins. Exp Cell Res 2017; 356:141-145. [DOI: 10.1016/j.yexcr.2017.03.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
|
11
|
Jaeger C, Khazaal AQ, Xu C, Sun M, Krager SL, Tischkau SA. Aryl Hydrocarbon Receptor Deficiency Alters Circadian and Metabolic Rhythmicity. J Biol Rhythms 2017; 32:109-120. [PMID: 28347186 DOI: 10.1177/0748730417696786] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
PAS domain-containing proteins can act as environmental sensors that capture external stimuli to allow coordination of organismal physiology with the outside world. These proteins permit diverse ligand binding and heterodimeric partnership, allowing for varied combinations of PAS-dependent protein-protein interactions and promoting crosstalk among signaling pathways. Previous studies report crosstalk between circadian clock proteins and the aryl hydrocarbon receptor (AhR). Activated AhR forms a heterodimer with the circadian clock protein Bmal1 and thereby functionally inhibits CLOCK/Bmal1 activity. If physiological activation of AhR through naturally occurring, endogenous ligands inhibits clock function, it seems plausible to hypothesize that decreased AhR expression releases AhR-induced inhibition of circadian rhythms. Because both AhR and the clock are important regulators of glucose metabolism, it follows that decreased AhR will also alter metabolic function. To test this hypothesis, rhythms of behavior, metabolic outputs, and circadian and metabolic gene expression were measured in AhR-deficient mice. Genetic depletion of AhR enhanced behavioral responses to changes in the light-dark cycle, increased rhythmic amplitude of circadian clock genes in the liver, and altered rhythms of glucose and insulin. This study provides evidence of AhR-induced inhibition that influences circadian rhythm amplitude.
Collapse
Affiliation(s)
- Cassie Jaeger
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Ali Q Khazaal
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Biotechnology Department, College of Science, Baghdad University, Baghdad, Iraq
| | - Canxin Xu
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Mingwei Sun
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Stacey L Krager
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Shelley A Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
12
|
Martel-Billard C, Cordier C, Tomasetto C, Jégu J, Mathelin C. Cancer du sein et trisomie 21 : une anomalie génétique qui protège contre le cancer du sein ? ACTA ACUST UNITED AC 2016; 44:211-7. [DOI: 10.1016/j.gyobfe.2016.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/29/2016] [Indexed: 01/22/2023]
|
13
|
Michael AK, Harvey SL, Sammons PJ, Anderson AP, Kopalle HM, Banham AH, Partch CL. Cancer/Testis Antigen PASD1 Silences the Circadian Clock. Mol Cell 2015; 58:743-54. [PMID: 25936801 PMCID: PMC4458219 DOI: 10.1016/j.molcel.2015.03.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/13/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
The circadian clock orchestrates global changes in transcriptional regulation on a daily basis via the bHLH-PAS transcription factor CLOCK:BMAL1. Pathways driven by other bHLH-PAS transcription factors have a homologous repressor that modulates activity on a tissue-specific basis, but none have been identified for CLOCK:BMAL1. We show here that the cancer/testis antigen PASD1 fulfills this role to suppress circadian rhythms. PASD1 is evolutionarily related to CLOCK and interacts with the CLOCK:BMAL1 complex to repress transcriptional activation. Expression of PASD1 is restricted to germline tissues in healthy individuals but can be induced in cells of somatic origin upon oncogenic transformation. Reducing PASD1 in human cancer cells significantly increases the amplitude of transcriptional oscillations to generate more robust circadian rhythms. Our results describe a function for a germline-specific protein in regulation of the circadian clock and provide a molecular link from oncogenic transformation to suppression of circadian rhythms.
Collapse
Affiliation(s)
- Alicia K Michael
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Stacy L Harvey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patrick J Sammons
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Amanda P Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Hema M Kopalle
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
14
|
Chen KJ, Lizaso A, Lee YH. SIM2 maintains innate host defense of the small intestine. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1044-56. [PMID: 25277798 DOI: 10.1152/ajpgi.00241.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The single-minded 2 (SIM2) protein is a basic helix-loop-helix transcription factor regulating central nervous system (CNS) development in Drosophila. In humans, SIM2 is located within the Down syndrome critical region on chromosome 21 and may be involved in the development of mental retardation phenotype in Down syndrome. In this study, knockout of SIM2 expression in mice resulted in a gas distention phenotype in the gastrointestinal tract. We found that SIM2 is required for the expression of all cryptdins and numerous other antimicrobial peptides (AMPs) expressed in the small intestine. The mechanism underlying how SIM2 controls AMP expression involves both direct and indirect regulations. For the cryptdin genes, SIM2 regulates their expression by modulating transcription factor 7-like 2, a crucial regulator in the Wnt/β-catenin signaling pathway, while for other AMP genes, such as RegIIIγ, SIM2 directly activates their promoter activity. Our results establish that SIM2 is a crucial regulator in controlling expression of intestinal AMPs to maintain intestinal innate immunity against microbes.
Collapse
Affiliation(s)
- Kuan-Jung Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan; and National Yang-Ming University, Department of Life Sciences and Institute of Genome Sciences, Taipei, Taiwan
| | - Analyn Lizaso
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan; and
| | - Ying-Hue Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan; and
| |
Collapse
|
15
|
Basham KJ, Leonard CJ, Kieffer C, Shelton DN, McDowell ME, Bhonde VR, Looper RE, Welm BE. Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor. Toxicol Sci 2014; 143:36-45. [PMID: 25265996 DOI: 10.1093/toxsci/kfu203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In mammals, lactation is a rich source of nutrients and antibodies for newborn animals. However, millions of mothers each year experience an inability to breastfeed. Exposure to several environmental toxicants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been strongly implicated in impaired mammary differentiation and lactation. TCDD and related polyhalogenated aromatic hydrocarbons are widespread industrial pollutants that activate the aryl hydrocarbon receptor (AHR). Despite many epidemiological and animal studies, the molecular mechanism through which AHR signaling blocks lactation remains unclear. We employed in vitro models of mammary differentiation to recapitulate lactogenesis in the presence of toxicants. We demonstrate AHR agonists directly block milk production in isolated mammary epithelial cells. Moreover, we define a novel role for the aryl hydrocarbon receptor repressor (AHRR) in mediating this response. Our mechanistic studies suggest AHRR is sufficient to block transcription of the milk gene β-casein. As TCDD is a prevalent environmental pollutant that affects women worldwide, our results have important public health implications for newborn nutrition.
Collapse
Affiliation(s)
- Kaitlin J Basham
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| | - Christopher J Leonard
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| | - Collin Kieffer
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| | - Dawne N Shelton
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| | - Maria E McDowell
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| | - Vasudev R Bhonde
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| | - Ryan E Looper
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| | - Bryan E Welm
- *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112 *Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 and Department of Surgery, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
16
|
Characterization of human variants in obesity-related SIM1 protein identifies a hot-spot for dimerization with the partner protein ARNT2. Biochem J 2014; 461:403-12. [DOI: 10.1042/bj20131618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several non-synonymous variants found in obese patients disrupt function of the transcription factor SIM1 (single-minded 1) by impairing binding to an essential partner protein. The clustering of these variants reveals a mutational hot-spot critical for function of SIM1 and the related protein SIM2.
Collapse
|
17
|
Hashimoto K, Otero M, Imagawa K, de Andrés MC, Coico JM, Roach HI, Oreffo ROC, Marcu KB, Goldring MB. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1β (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem 2013; 288:10061-10072. [PMID: 23417678 DOI: 10.1074/jbc.m112.421156] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The role of DNA methylation in the regulation of catabolic genes such as MMP13 and IL1B, which have sparse CpG islands, is poorly understood in the context of musculoskeletal diseases. We report that demethylation of specific CpG sites at -110 bp and -299 bp of the proximal MMP13 and IL1B promoters, respectively, detected by in situ methylation analysis of chondrocytes obtained directly from human cartilage, strongly correlated with higher levels of gene expression. The methylation status of these sites had a significant impact on promoter activities in chondrocytes, as revealed in transfection experiments with site-directed CpG mutants in a CpG-free luciferase reporter. Methylation of the -110 and -299 CpG sites, which reside within a hypoxia-inducible factor (HIF) consensus motif in the respective MMP13 and IL1B promoters, produced the most marked suppression of their transcriptional activities. Methylation of the -110 bp CpG site in the MMP13 promoter inhibited its HIF-2α-driven transactivation and decreased HIF-2α binding to the MMP13 proximal promoter in chromatin immunoprecipitation assays. In contrast to HIF-2α, MMP13 transcriptional regulation by other positive (RUNX2, AP-1, ELF3) and negative (Sp1, GATA1, and USF1) factors was not affected by methylation status. However, unlike the MMP13 promoter, IL1B was not susceptible to HIF-2α transactivation, indicating that the -299 CpG site in the IL1B promoter must interact with other transcription factors to modulate IL1B transcriptional activity. Taken together, our data reveal that the methylation of different CpG sites in the proximal promoters of the human MMP13 and IL1B genes modulates their transcription by distinct mechanisms.
Collapse
Affiliation(s)
- Ko Hashimoto
- Research Division, Hospital for Special Surgery and Weill Cornell Medical College, New York, New York 10021; Department of Orthopedics, Tohoku University, Sendai 980-8574, Japan
| | - Miguel Otero
- Research Division, Hospital for Special Surgery and Weill Cornell Medical College, New York, New York 10021
| | - Kei Imagawa
- Bone and Joint Research Group, Human Development and Health, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - María C de Andrés
- Bone and Joint Research Group, Human Development and Health, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Jonathan M Coico
- Research Division, Hospital for Special Surgery and Weill Cornell Medical College, New York, New York 10021
| | - Helmtrud I Roach
- Bone and Joint Research Group, Human Development and Health, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Richard O C Oreffo
- Bone and Joint Research Group, Human Development and Health, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Kenneth B Marcu
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Centro di Ricerca Codivilla-Putti, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Mary B Goldring
- Research Division, Hospital for Special Surgery and Weill Cornell Medical College, New York, New York 10021.
| |
Collapse
|
18
|
Ayed W, Gouas L, Penault-Llorca F, Amouri A, Tchirkov A, Vago P. [Trisomy 21 and cancers]. Morphologie 2012; 96:57-66. [PMID: 23141635 DOI: 10.1016/j.morpho.2012.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/02/2012] [Indexed: 11/29/2022]
Abstract
Patients with trisomy 21, still called Down's syndrome (DS), present a particular tumoral profile compared to the general population with an increased incidence of leukaemia in the childhood and a low risk of solid cancer in the adulthood. DS children indeed present a 50-fold risk of developing a leukaemia compared to age-matched non-trisomic children and most of them develop a specific myelodysplasic disorder called transient myelodysplasic disorder. In spite of the low incidence of solid tumors, some are very rare as breast cancer, nephroblastoma, neuroblastoma and medulloblastoma, whereas the others remain more frequent as retinoblastoma, lymphoma and gonadal and extragonadal germ cell tumours. In this review, we present possible mechanisms which can favour, or on the contrary repress the formation and progression of tumours in DS patients, which are related to gene effect dosage of oncogenes or tumour repressors on chromosome 21, tumour angiogenesis, apoptosis and epithelial cell-stroma interactions.
Collapse
Affiliation(s)
- W Ayed
- Université Clermont 1, UFR médecine, cytologie histologie embryologie cytogénétique, 63001 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
19
|
Havis E, Coumailleau P, Bonnet A, Bismuth K, Bonnin MA, Johnson R, Fan CM, Relaix F, Shi DL, Duprez D. Sim2 prevents entry into the myogenic program by repressing MyoD transcription during limb embryonic myogenesis. Development 2012; 139:1910-20. [PMID: 22513369 DOI: 10.1242/dev.072561] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The basic helix-loop-helix transcription factor MyoD is a central actor that triggers the skeletal myogenic program. Cell-autonomous and non-cell-autonomous regulatory pathways must tightly control MyoD expression to ensure correct initiation of the muscle program at different places in the embryo and at different developmental times. In the present study, we have addressed the involvement of Sim2 (single-minded 2) in limb embryonic myogenesis. Sim2 is a bHLH-PAS transcription factor that inhibits transcription by active repression and displays enhanced expression in ventral limb muscle masses during chick and mouse embryonic myogenesis. We have demonstrated that Sim2 is expressed in muscle progenitors that have not entered the myogenic program, in different experimental conditions. MyoD expression is transiently upregulated in limb muscle masses of Sim2(-/-) mice. Conversely, Sim2 gain-of-function experiments in chick and Xenopus embryos showed that Sim2 represses MyoD expression. In addition, we show that Sim2 represses the activity of the mouse MyoD promoter in primary myoblasts and is recruited to the MyoD core enhancer in embryonic mouse limbs. Sim2 expression is non-autonomously and negatively regulated by the dorsalising factor Lmx1b. We propose that Sim2 represses MyoD transcription in limb muscle masses, through Sim2 recruitment to the MyoD core enhancer, in order to prevent premature entry into the myogenic program. This MyoD repression is predominant in ventral limb regions and is likely to contribute to the differential increase of the global mass of ventral muscles versus dorsal muscles.
Collapse
|
20
|
Lu B, Asara JM, Sanda MG, Arredouani MS. The role of the transcription factor SIM2 in prostate cancer. PLoS One 2011; 6:e28837. [PMID: 22174909 PMCID: PMC3235151 DOI: 10.1371/journal.pone.0028837] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/16/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recent reports have suggested a possible involvement of Single-minded homolog 2 (SIM2) in human solid cancers, including prostate cancer. However, the exact role of SIM2 in cancer in general, and in prostate cancer in particular, remains largely unknown. This study was designed to elucidate the role of SIM2 in prostate cancer using a shRNA-based approach in the PC3 prostate cancer cell line. METHODS Lentiviral shRNAs were used to inhibit SIM2 gene and protein levels in PC3 cells. Quantitative RT-PCR and branched DNA were performed to evaluate transcript expression. SIM2 protein expression level was measured by western blot. Profiling of gene expression spanning the whole genome, as well as polar metabolomics of several major metabolic pathways was performed to identify major pathway dysregulations. RESULTS SIM2 gene and protein products were significantly downregulated by lenti-shRNA in PC3 cell line. This low expression of SIM2 affected gene expression profile, revealing significant changes in major signaling pathways, networks and functions. In addition, major metabolic pathways were affected. CONCLUSION Taken together, our results suggest an involvement of SIM2 in key traits of prostate tumor cell biology and might underlie a contribution of this transcription factor to prostate cancer onset and progression.
Collapse
Affiliation(s)
- Bin Lu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John M. Asara
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martin G. Sanda
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (MGS); (MSA)
| | - Mohamed S. Arredouani
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (MGS); (MSA)
| |
Collapse
|
21
|
Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 2010; 15:117-34. [PMID: 20490631 PMCID: PMC2886089 DOI: 10.1007/s10911-010-9178-9] [Citation(s) in RCA: 723] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/26/2010] [Indexed: 02/07/2023] Open
Abstract
From the earliest stages of embryonic development, cells of epithelial and mesenchymal origin contribute to the structure and function of developing organs. However, these phenotypes are not always permanent, and instead, under the appropriate conditions, epithelial and mesenchymal cells convert between these two phenotypes. These processes, termed Epithelial-Mesenchymal Transition (EMT), or the reverse Mesenchymal-Epithelial Transition (MET), are required for complex body patterning and morphogenesis. In addition, epithelial plasticity and the acquisition of invasive properties without the full commitment to a mesenchymal phenotype are critical in development, particularly during branching morphogenesis in the mammary gland. Recent work in cancer has identified an analogous plasticity of cellular phenotypes whereby epithelial cancer cells acquire mesenchymal features that permit escape from the primary tumor. Because local invasion is thought to be a necessary first step in metastatic dissemination, EMT and epithelial plasticity are hypothesized to contribute to tumor progression. Similarities between developmental and oncogenic EMT have led to the identification of common contributing pathways, suggesting that the reactivation of developmental pathways in breast and other cancers contributes to tumor progression. For example, developmental EMT regulators including Snail/Slug, Twist, Six1, and Cripto, along with developmental signaling pathways including TGF-beta and Wnt/beta-catenin, are misexpressed in breast cancer and correlate with poor clinical outcomes. This review focuses on the parallels between epithelial plasticity/EMT in the mammary gland and other organs during development, and on a selection of developmental EMT regulators that are misexpressed specifically during breast cancer.
Collapse
Affiliation(s)
- Douglas S. Micalizzi
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045 USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Susan M. Farabaugh
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Heide L. Ford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045 USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045 USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045 USA
- Program in Molecular Biology, University of Colorado School of Medicine, Aurora, CO 80045 USA
- University of Colorado at Denver, Anschutz Medical Campus, RC1 North, Rm. 5102, Aurora, CO 80045 USA
| |
Collapse
|
22
|
Evans MR, Gardner KH. Slow transition between two beta-strand registers is dictated by protein unfolding. J Am Chem Soc 2009; 131:11306-7. [PMID: 19722642 DOI: 10.1021/ja9048338] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is a promiscuous, basic helix-loop-helix Period/ARNT/Single-minded protein that forms dimeric transcriptional regulator complexes with other bHLH-PAS proteins to regulate various biological pathways. Intriguingly, the introduction of a single point mutation into the C-terminal PAS-B domain resulted in a protein that can simultaneously exist in two distinct conformations. The difference between these two structures is a +3 slip and inversion of a central Ibeta-strand and an accompanying N448-P449 peptide bond isomerization in the preceding HI loop. Previous studies have indicated these two forms of Y456T interconvert on the approximate time scale of tens of minutes, allowing these two conformations to be separated by ion exchange chromatography. Here, we use time-resolved solution NMR spectroscopy to quantitatively characterize this rate and its temperature dependence, providing information into the transition state. When compared with fluorescence measurements of protein unfolding rates, we find data that suggest a linkage between interconversion and unfolding based on comparable temperature dependence and corresponding energetics of these processes. Notably, the N448-P449 peptide bond also plays a critical role for the interconversion between states, with a mutant unable to adopt a cis configuration at this bond (P449A/Y456T) being kinetically trapped under nondenaturing conditions. Taken together, these data provide information about a rare equilibrium model system for beta-strand slippage.
Collapse
Affiliation(s)
- Matthew R Evans
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
23
|
Farrall AL, Whitelaw ML. The HIF1alpha-inducible pro-cell death gene BNIP3 is a novel target of SIM2s repression through cross-talk on the hypoxia response element. Oncogene 2009; 28:3671-80. [PMID: 19668230 DOI: 10.1038/onc.2009.228] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The short isoform of single-minded 2 (SIM2s), a basic helix-loop-helix/PAS (bHLH/PAS) transcription factor, is upregulated in pancreatic and prostate tumours; however, a mechanistic role for SIM2s in these cancers is unknown. Microarray studies in prostate DU145 cells identified the pro-cell death gene, BNIP3 (Bcl-2/adenovirus E1B 19 kDa interacting protein 3), as a novel putative target of SIM2s repression. Further validation showed BNIP3 repression in several prostate and pancreatic carcinoma-derived cell lines with ectopic expression of human SIM2s. BNIP3 levels are enhanced in prostate carcinoma cells upon short interfering (si)RNA-mediated knockdown of endogenous SIM2s. Chromatin immunoprecipitation and promoter studies show that SIM2s represses BNIP3 through its activities at the proximal promoter hypoxia response element (HRE), the site through which the bHLH/PAS family member, hypoxia-inducible factor 1alpha (HIF1alpha), induces BNIP3. SIM2s attenuates BNIP3 hypoxic induction via the HRE, and increased hypoxic induction of BNIP3 occurs with siRNA knockdown of endogenous SIM2s in prostate PC3AR+ cells. BNIP3 is implicated in hypoxia-induced cell death processes. Prolonged treatment of PC3AR+ cells with hypoxia mimetics, DP and DMOG, confers hypoxia-induced autophagy, measured by enhanced LC3-II levels and SQSTM1/p62 turnover. We show that PC3AR+ cells expressing ectopic SIM2s have enhanced survival in these conditions. Induction of LC3-II and turnover of SQSTM1/p62 are attenuated in PC3AR+/SIM2s DMOG and hypoxia-treated cells, suggesting that SIM2s may attenuate autophagic cell death processes, perhaps through BNIP3 repression. These data show, for the first time, SIM2s cross-talk on an endogenous HRE. SIM2s' functional interference with HIF1alpha activities on BNIP3 may indicate a novel role for SIM2s in promoting tumourigenesis.
Collapse
Affiliation(s)
- A L Farrall
- Discipline of Biochemistry, School of Molecular & Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.
| | | |
Collapse
|
24
|
The active form of human aryl hydrocarbon receptor (AHR) repressor lacks exon 8, and its Pro 185 and Ala 185 variants repress both AHR and hypoxia-inducible factor. Mol Cell Biol 2009; 29:3465-77. [PMID: 19380484 DOI: 10.1128/mcb.00206-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) repressor (AHRR) inhibits AHR-mediated transcription and has been associated with reproductive dysfunction and tumorigenesis in humans. Previous studies have characterized the repressor function of AHRRs from mice and fish, but the human AHRR ortholog (AHRR(715)) appeared to be nonfunctional in vitro. Here, we report a novel human AHRR cDNA (AHRRDelta8) that lacks exon 8 of AHRR(715). AHRRDelta8 was the predominant AHRR form expressed in human tissues and cell lines. AHRRDelta8 effectively repressed AHR-dependent transactivation, whereas AHRR(715) was much less active. Similarly, AHRRDelta8, but not AHRR(715), formed a complex with AHR nuclear translocator (ARNT). Repression of AHR by AHRRDelta8 was not relieved by overexpression of ARNT or AHR coactivators, suggesting that competition for these cofactors is not the mechanism of repression. AHRRDelta8 interacted weakly with AHR but did not inhibit its nuclear translocation. In a survey of transcription factor specificity, AHRRDelta8 did not repress the nuclear receptor pregnane X receptor or estrogen receptor alpha but did repress hypoxia-inducible factor (HIF)-dependent signaling. AHRRDelta8-Pro(185) and -Ala(185) variants, which have been linked to human reproductive disorders, both were capable of repressing AHR or HIF. Together, these results identify AHRRDelta8 as the active form of human AHRR and reveal novel aspects of its function and specificity as a repressor.
Collapse
|
25
|
ARNT PAS-B has a fragile native state structure with an alternative beta-sheet register nearby in sequence space. Proc Natl Acad Sci U S A 2009; 106:2617-22. [PMID: 19196990 DOI: 10.1073/pnas.0808270106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is a basic helix-loop-helix Period/ARNT/Single-minded (bHLH-PAS) protein that controls various biological pathways as part of dimeric transcriptional regulator complexes with other bHLH-PAS proteins. The two PAS domains within ARNT, PAS-A and PAS-B, are essential for the formation of these complexes because they mediate protein-protein interactions via residues located on their beta-sheet surfaces. While investigating the importance of residues in ARNT PAS-B involved in these interactions, we uncovered a point mutation (Y456T) on the solvent-exposed beta-sheet surface that allowed this domain to interconvert with a second, stable conformation. Although both conformations are present in equivalent quantities in the Y456T mutant, this can be shifted almost completely to either end point by additional mutations. A high-resolution solution structure of a mutant ARNT PAS-B domain stabilized in the new conformation revealed a 3-residue slip in register and accompanying inversion of the central Ibeta-strand. We have demonstrated that the new conformation has >100-fold lower in vitro affinity for its heterodimerization partner, hypoxia-inducible factor 2alpha PAS-B. We speculate that the pliability in beta-strand register is related to the flexibility required of ARNT to bind to several partners and, more broadly, to the abilities of some PAS domains to regulate their activities in response to small-molecule cofactors.
Collapse
|
26
|
Qu X, Metz RP, Porter WW, Cassone VM, Earnest DJ. Disruption of period gene expression alters the inductive effects of dioxin on the AhR signaling pathway in the mouse liver. Toxicol Appl Pharmacol 2008; 234:370-7. [PMID: 19038280 DOI: 10.1016/j.taap.2008.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/27/2008] [Accepted: 10/30/2008] [Indexed: 11/25/2022]
Abstract
The aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) are transcription factors that express Per-Arnt-Sim (PAS) DNA-binding motifs and mediate the metabolism of drugs and environmental toxins in the liver. Because these transcription factors interact with other PAS genes in molecular feedback loops forming the mammalian circadian clockworks, we determined whether targeted disruption or siRNA inhibition of Per1 and Per2 expression alters toxin-mediated regulation of the AhR signaling pathway in the mouse liver and Hepa1c1c7 hepatoma cells in vitro. Treatment with the prototypical Ahr ligand, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), had inductive effects on the primary targets of AhR signaling, Cyp1A1 and Cyp1B1, in the liver of all animals, but genotype-based differences were evident such that the toxin-mediated induction of Cyp1A1 expression was significantly greater (2-fold) in mice with targeted disruption of Per1 (Per1(ldc) and Per1(ldc)/Per2(ldc)). In vitro experiments yielded similar results demonstrating that siRNA inhibition of Per1 significantly increases the TCDD-induced expression of Cyp1A1 and Cyp1B1 in Hepa1c1c7 cells. Per2 inhibition in siRNA-infected Hepa1c1c7 cells had the opposite effect and significantly decreased both the induction of these p450 genes as well as AhR and Arnt expression in response to TCDD treatment. These findings suggest that Per1 may play a distinctive role in modulating AhR-regulated responses to TCDD in the liver.
Collapse
Affiliation(s)
- Xiaoyu Qu
- Department of Biology, College Station, Texas 77843-3258, USA; Center for Research on Biological Clocks, College Station, Texas 77843-3258, USA
| | | | | | | | | |
Collapse
|
27
|
Woods S, Farrall A, Procko C, Whitelaw ML. The bHLH/Per-Arnt-Sim transcription factor SIM2 regulates muscle transcript myomesin2 via a novel, non-canonical E-box sequence. Nucleic Acids Res 2008; 36:3716-27. [PMID: 18480125 PMCID: PMC2441813 DOI: 10.1093/nar/gkn247] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite a growing number of descriptive studies that show Single-minded 2 (Sim2) is not only essential for murine survival, but also upregulated in colon, prostate and pancreatic tumours, there is a lack of direct target genes identified for this basic helix-loop-helix/PAS transcription factor. We have performed a set of microarray experiments aimed at identifying genes that are differentially regulated by SIM2, and successfully verified that the Myomesin2 (Myom2) gene is SIM2-responsive. Although SIM2 has been reported to be a transcription repressor, we find that SIM2 induces transcription of Myom2 and activates the Myom2 promoter sequence when co-expressed with the heterodimeric partner protein, ARNT1, in human embryonic kidney cells. Truncation and mutation of the Myom2 promoter sequence, combined with chromatin immunoprecipitation studies in cells, has lead to the delineation of a non-canonical E-box sequence 5'-AACGTG-3' that is bound by SIM2/ARNT1 heterodimers. Interestingly, in immortalized human myoblasts knock down of Sim2 results in increased levels of Myom2 RNA, suggesting that SIM2 is acting as a repressor in these cells and so its activity is likely to be highly context dependent. This is the first report of a direct SIM2/ARNT1 target gene with accompanying analysis of a functional response element.
Collapse
Affiliation(s)
- Susan Woods
- School of Molecular & Biomedical Science (Biochemistry) and the Centre for the Molecular Genetics of Development, University of Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
28
|
Qu X, Metz RP, Porter WW, Cassone VM, Earnest DJ. Disruption of clock gene expression alters responses of the aryl hydrocarbon receptor signaling pathway in the mouse mammary gland. Mol Pharmacol 2007; 72:1349-58. [PMID: 17715397 DOI: 10.1124/mol.107.039305] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biological effects of many environmental toxins are mediated by genes containing Per-Arnt-Sim (PAS) domains, the aryl hydrocarbon receptor (AhR), and AhR nuclear translocator. Because these transcription factors interact with other PAS genes that form the circadian clockworks in mammals, we determined whether targeted disruption of the clock genes, Per1 and/or Per2, alters toxin-induced expression of known biological markers in the AhR signaling pathway. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a prototypical Ahr agonist, had an inductive effect on mammary gland expression of cytochrome P450, subfamily I, polypeptide 1 (Cyp1A1) mRNA regardless of genotype. However, TCDD-mediated Cyp1A1 induction in the mammary glands of Per1(ldc) and Per1(ldc)/Per2(ldc) mice was significantly (17.9- and 5.9-fold) greater than that in wild-type (WT) animals. In addition, TCDD-induced Cyp1B1 expression in Per1(ldc) and Per1(ldc)/Per2(ldc) mammary glands was significantly increased relative to that in WT mice. Similar to in vivo observations, experiments using primary cultures of mammary gland tissue demonstrated that TCDD-induced Cyp1A1 and Cyp1B1 expression in Per1(ldc) and Per1(ldc)/Per2(ldc) mutant cells was significantly greater than that in WT cultures. AhR mRNA levels were distinctively elevated in cells derived from all mutant genotypes, but they were commonly decreased in WT and mutant cultures after TCDD treatment. In WT mice, an interesting corollary is that the inductive effects of TCDD on mammary gland expression of Cyp1A1 and Cyp1B1 vary over time and are significantly greater during the night. These findings suggest that clock genes, especially Per1, may be involved in TCDD activation of AhR signaling pathways.
Collapse
Affiliation(s)
- Xiaoyu Qu
- Department of Biology and Center for Research on Biological Clocks, College Station, Texas, USA
| | | | | | | | | |
Collapse
|
29
|
Halvorsen OJ, Rostad K, Øyan AM, Puntervoll H, Bø TH, Stordrange L, Olsen S, Haukaas SA, Hood L, Jonassen I, Kalland KH, Akslen LA. Increased Expression of SIM2-s Protein Is a Novel Marker of Aggressive Prostate Cancer. Clin Cancer Res 2007; 13:892-7. [PMID: 17289882 DOI: 10.1158/1078-0432.ccr-06-1207] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The human SIM2 gene is located within the Down's syndrome critical region of chromosome 21 and encodes transcription factors involved in brain development and neuronal differentiation. SIM2 has been assigned a possible role in the pathogenesis of solid tumors, and the SIM2-short isoform (SIM2-s) was recently proposed as a molecular target for cancer therapy. We previously reported SIM2 among the highly up-regulated genes in 29 prostate cancers, and the purpose of our present study was to examine the expression status of SIM2 at the transcriptional and protein level as related to outcome in prostate cancer. EXPERIMENTAL DESIGN By quantitative PCR, mRNA in situ hybridization, and immunohistochemistry, we evaluated the expression and significance of SIM2 isoforms in 39 patients with clinically localized prostate cancer and validated the expression of SIM2-s protein in an independent cohort of 103 radical prostatectomies from patients with long and complete follow-up. RESULTS The SIM2 isoforms (SIM2-s and SIM2-l) were significantly coexpressed and increased in prostate cancer. Tumor cell expression of SIM2-s protein was associated with adverse clinicopathologic factors like increased preoperative serum prostate-specific antigen, high histologic grade, invasive tumor growth with extra-prostatic extension, and increased tumor cell proliferation by Ki-67 expression. SIM2-s protein expression was significantly associated with reduced cancer-specific survival in multivariate analyses. CONCLUSIONS These novel findings indicate for the first time that SIM2 expression might be important for clinical progress of human cancer and support the recent proposal of SIM2-s as a candidate for targeted therapy in prostate cancer.
Collapse
Affiliation(s)
- Ole Johan Halvorsen
- Sections for Pathology and Microbiology and Immunology, The Gade Institute and Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Teh CHL, Lam KKY, Loh CC, Loo JM, Yan T, Lim TM. Neuronal PAS domain protein 1 is a transcriptional repressor and requires arylhydrocarbon nuclear translocator for its nuclear localization. J Biol Chem 2006; 281:34617-29. [PMID: 16954219 DOI: 10.1074/jbc.m604409200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal PAS domain protein 1 (NPAS1), a basic helix-loop-helix-PAS transcription factor expressed in the central nervous system, has been suggested to be involved in neuronal differentiation. However, relatively little is known about the molecular mechanism underlying the role of NPAS1 during development. In this study we set out to characterize the different domains within NPAS1. We showed that the nuclear localization of NPAS1 is dependent on the presence of ARNT. In addition, the transcriptional potential of ARNT is not required for this localization. In the absence of ARNT, NPAS1 is excluded from the nucleus, and this exclusion is due to the presence of a nuclear export signal within the N terminus of NPAS1. The interaction between NPAS1 and ARNT is via their N termini. We found no transactivation domain within NPAS1; instead, we mapped out at least three repression domains within NPAS1, suggesting that NPAS1 acts as a repressor. Furthermore, our experiments showed that NPAS1 is able to repress the transactivation functions of ARNT and ARNT2. We suggest that NPAS1 is guided into the nucleus by ARNT via the ARNT nuclear localization signal, and NPAS1 can override the activation function of adjacent transcription factors, providing a mechanism by which NPAS1 may inhibit transcription.
Collapse
Affiliation(s)
- Christina H L Teh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Kent Ridge, Singapore 117542
| | | | | | | | | | | |
Collapse
|
31
|
Metz RP, Kwak HI, Gustafson T, Laffin B, Porter WW. Differential transcriptional regulation by mouse single-minded 2s. J Biol Chem 2006; 281:10839-48. [PMID: 16484282 DOI: 10.1074/jbc.m508858200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-minded 1 and 2 are unique members of the basic helix-loop-helix Per-Arnt-Sim family as they are transcriptional repressors. Here we report the identification and transcriptional characterization of mouse Sim2s, a splice variant of Sim2, which is missing the carboxyl Pro/Ala-rich repressive domain. Sim2s is expressed at high levels in kidney and skeletal muscle; however, the ratio of Sim2 to Sim2s mRNA differs between these tissues. Similar to full-length Sim2, Sim2s interacts with Arnt and to a lesser extent, Arnt2. The effects of Sim2s on transcriptional regulation through hypoxia, dioxin, and central midline response elements are different than that of full-length Sim2. Specifically, Sim2s exerts a less repressive effect on hypoxia-induced gene expression than full-length Sim2, but is just as effective as Sim2 at repressing TCDD-induced gene expression from a dioxin response element. Interestingly, Sim2s bind to and activates expression from a central midline response element-controlled reporter through an Arnt transactivation domain-dependent mechanism. The differences in expression pattern, protein interactions, and transcriptional activities between Sim2 and Sim2s may reflect differential roles each isoform plays during development or in tissue-specific effects on other protein-mediated pathways.
Collapse
Affiliation(s)
- Richard P Metz
- Department of Integrated Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843-4458, USA
| | | | | | | | | |
Collapse
|
32
|
Okui M, Yamaki A, Takayanagi A, Kudoh J, Shimizu N, Shimizu Y. Transcription factor single-minded 2 (SIM2) is ubiquitinated by the RING-IBR-RING-type E3 ubiquitin ligases. Exp Cell Res 2005; 309:220-8. [PMID: 15963499 DOI: 10.1016/j.yexcr.2005.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 04/11/2005] [Accepted: 05/17/2005] [Indexed: 11/18/2022]
Abstract
Human single-minded 2 (SIM2) is a member of the basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) family of transcription factors and is associated with the etiology of Down syndrome phenotype. Here, we examined a possibility of the post-translational modification of SIM2 protein by transfecting various expression constructs followed by the analysis with immunoprecipitation and Western blotting. In fact, transient expression of SIM2 cDNA in HEK293 cells revealed poly-ubiquitination of SIM2 protein. In the stable transfectants, a proteasome inhibitor MG132 protected the poly-ubiquitinated SIM2 protein from degradation. Furthermore, in the cells co-transfected with SIM2 and each of four different E3 ubiquitin ligases, SIM2 was immunoprecipitated with the RING-IBR-RING-type E3 ubiquitin ligases, Parkin and HHARI, but it was not immunoprecipitated with other E3 ligases, such as one RING-type Siah-1 and the PHD type AIRE. A series of deletion constructs revealed that Parkin actually binds to SIM2 with the IBR (294-377)-RING2 (378-465) domains and that the sites for poly-ubiquitination of SIM2 reside within the PAS1-PAS2 region (aa 141-289). We postulated that transcription factor SIM2 and E3 ubiquitin ligase Parkin may interact each other to play an important physiological role in the brain development which is controlled by ubiquitination.
Collapse
Affiliation(s)
- Michiyo Okui
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Rachidi M, Lopes C, Charron G, Delezoide AL, Paly E, Bloch B, Delabar JM. Spatial and temporal localization during embryonic and fetal human development of the transcription factor SIM2 in brain regions altered in Down syndrome. Int J Dev Neurosci 2005; 23:475-84. [PMID: 15946822 DOI: 10.1016/j.ijdevneu.2005.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 03/14/2005] [Accepted: 05/03/2005] [Indexed: 11/17/2022] Open
Abstract
Human SIM2 is the ortholog of Drosophila single-minded (sim), a master regulator of neurogenesis and transcriptional factor controlling midline cell fate determination. We previously localized SIM2 in a chromosome 21 critical region for Down syndrome (DS). Here, we studied SIM2 gene using a new approach to provide insights in understanding of its potential role in human development. For the first time, we showed SIM2 spatial and temporal expression pattern during human central nervous system (CNS) development, from embryonic to fetal stages. Additional investigations were performed using a new optic microscopy technology to compare signal intensity and cell density [M. Rachidi, C. Lopes, S. Gassanova, P.M. Sinet, M. Vekemans, T. Attie, A.L. Delezoide, J.M. Delabar, Regional and cellular specificity of the expression of TPRD, the tetratricopeptide Down syndrome gene, during human embryonic development, Mech. Dev. 93 (2000) 189--193]. In embryonic stages, SIM2 was identified predominantly in restricted regions of CNS, in ventral part of D1/D2 diencephalic neuroepithelium, along the neural tube and in a few cell subsets of dorsal root ganglia. In fetal stages, SIM2 showed differential expression in pyramidal and granular cell layers of hippocampal formation, in cortical cells and in cerebellar external granular and Purkinje cell layers. SIM2 expression in embryonic and fetal brain could suggest a potential role in human CNS development, in agreement with Drosophila and mouse Sim mutant phenotypes and with the conservation of the Sim function in CNS development from Drosophila to Human. SIM2 expression in human fetal brain regions, which correspond to key structures for cognitive processes, correlates well with the behavioral phenotypes of Drosophila Sim mutants and transgenic mice overexpressing Sim2. In addition, SIM2-expressing brain regions correspond to the altered structures in DS patients. All together, these findings suggest a potential role of SIM2 in CNS development and indicate that SIM2 overexpression could participate to the pathogenesis of mental retardation in Down syndrome patients.
Collapse
Affiliation(s)
- Mohammed Rachidi
- EA 3508, Tour 54, E2-54-53, Case 7104, Université Denis Diderot, 2 Place Jussieu, 75251 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Card PB, Erbel PJA, Gardner KH. Structural basis of ARNT PAS-B dimerization: use of a common beta-sheet interface for hetero- and homodimerization. J Mol Biol 2005; 353:664-77. [PMID: 16181639 DOI: 10.1016/j.jmb.2005.08.043] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/17/2005] [Accepted: 08/19/2005] [Indexed: 11/30/2022]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is a promiscuous bHLH-PAS (Per-ARNT-Sim) protein that forms heterodimeric transcriptional regulator complexes with several other bHLH-PAS subunits to control a variety of biological pathways, some of which are centrally involved in disease initiation and/or progression. One of these is the hypoxia response pathway, which allows eukaryotic cells to respond to low oxygen tension via the formation of a heterodimeric complex between ARNT and another bHLH-PAS protein, the hypoxia-inducible factor alpha (HIF-alpha). We have previously shown that the C-terminal PAS domains of an HIF-alpha isoform (HIF-2alpha) and ARNT interact in vitro, and that mutations in the solvent-exposed beta-sheet surface of the HIF-2alpha domain not only disrupt this interaction, but also greatly attenuate the hypoxia response in living cells. Here, we have solved the solution structure of the corresponding PAS domain of ARNT and show that it utilizes a very similar interface for the interaction with the HIF-2alpha PAS domain. We also show that this domain self-associates in a concentration-dependent manner, and that the interface used in this homodimeric complex is very similar to that used in the formation of heterodimer. In addition, using experimentally derived NMR restraints, we used the program HADDOCK to calculate a low-resolution model of the complex formed in solution by these two PAS domains, and confirm the validity of this model using site-directed spin labeling to obtain long-range distance information in solution. With this information, we propose a model for the mode of multi-PAS domain interaction in bHLH-PAS transcriptional activation complexes.
Collapse
Affiliation(s)
- Paul B Card
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8816, USA
| | | | | |
Collapse
|
35
|
Sonnenfeld MJ, Delvecchio C, Sun X. Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor. Dev Genes Evol 2005; 215:221-9. [PMID: 15818484 DOI: 10.1007/s00427-004-0462-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 12/07/2004] [Indexed: 10/25/2022]
Abstract
Basic-helix-loop-helix-PAS transcription factors play important roles in diverse biological processes including cellular differentiation and specification, oxygen tension regulation and dioxin metabolism. Drosophila tango is orthologous to mammalian Arnt and acts as a common dimerization partner for bHLH-PAS proteins during embryogenesis. A transient transfection assay using Drosophila S2 tissue culture cells and wild-type and mutant Drosophila tango cDNAs was used to localize the activation domain of the Tango protein. An activation domain was identified in the C-terminus of TGO consisting of poly-glutamine and histidine-proline repeats. Transcriptional activation of the fibroblast growth factor receptor (breathless) gene required an intact TGO C-terminus, in vitro. Co-expression assays of trachealess and tgo in the developing eye imaginal disc showed a requirement for the C-terminal transactivation domain of TGO for a cellular response. Genetic analysis of tgo(3) shows that the paired repeat is necessary for tracheal tubule formation in all branches. Lastly, expression of a C-terminal truncated tgo transgene specifically in the CNS midline and trachea resulted in reductions in the number of breathless-expressing cells. These results together identify TGO's transactivation domain and establish its importance for proper target gene regulation and cellular specification.
Collapse
Affiliation(s)
- Margaret J Sonnenfeld
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada K1H 8M5.
| | | | | |
Collapse
|
36
|
|
37
|
Yildiz O, Doi M, Yujnovsky I, Cardone L, Berndt A, Hennig S, Schulze S, Urbanke C, Sassone-Corsi P, Wolf E. Crystal Structure and Interactions of the PAS Repeat Region of the Drosophila Clock Protein PERIOD. Mol Cell 2005; 17:69-82. [PMID: 15629718 DOI: 10.1016/j.molcel.2004.11.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 09/20/2004] [Accepted: 10/29/2004] [Indexed: 10/26/2022]
Abstract
PERIOD proteins are central components of the Drosophila and mammalian circadian clock. Their function is controlled by daily changes in synthesis, cellular localization, phosphorylation, degradation, as well as specific interactions with other clock components. Here we present the crystal structure of a Drosophila PERIOD (dPER) fragment comprising two tandemly organized PAS (PER-ARNT-SIM) domains (PAS-A and PAS-B) and two additional C-terminal alpha helices (alphaE and alphaF). Our analysis reveals a noncrystallographic dPER dimer mediated by intermolecular interactions of PAS-A with PAS-B and helix alphaF. We show that alphaF is essential for dPER homodimerization and that the PAS-A-alphaF interaction plays a crucial role in dPER clock function, as it is affected by the 29 hr long-period perL mutation.
Collapse
Affiliation(s)
- Ozkan Yildiz
- Department of Structural Biology, Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Beischlag TV, Taylor RT, Rose DW, Yoon D, Chen Y, Lee WH, Rosenfeld MG, Hankinson O. Recruitment of Thyroid Hormone Receptor/Retinoblastoma-interacting Protein 230 by the Aryl Hydrocarbon Receptor Nuclear Translocator Is Required for the Transcriptional Response to Both Dioxin and Hypoxia. J Biol Chem 2004; 279:54620-8. [PMID: 15485806 DOI: 10.1074/jbc.m410456200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor nuclear translocator/hypoxia-inducible factor (ARNT/HIF-1 beta) mediates an organism's response to various environmental cues, including those to chemical carcinogens, such as 2,3,7,8-tetrachlorodibenzo-rho-dioxin (TCDD or dioxin), via its formation of a functional transcription factor with the ligand activated aryl hydrocarbon receptor (AHR). Similarly, tissue responses to hypoxia are largely mediated through the HIF-1 heterodimeric transcription factor, comprising hypoxia-inducible factor-1 alpha (HIF-1 alpha) and ARNT. The latter response is essential for a metabolic switch from oxidative phosphorylation to glycolytic anaerobic metabolism as well as for angiogenesis and has been implicated as necessary for growth in many solid tumors. In this report, we demonstrate that the thyroid hormone receptor/retinoblastoma-interacting protein 230 (TRIP230) interacts directly with ARNT and is essential for both hypoxic and TCDD-mediated transcriptional responses. We initially identified TRIP230 as an ARNT-interacting protein in a yeast two-hybrid assay screen. This interaction was confirmed in mammalian cell systems using co-immunoprecipitation and in mammalian two-hybrid assays. Furthermore, TRIP230 could be recorded at sites of activated transcription of either TCDD- or hypoxia-inducible genes in a stimulus-dependent fashion by chromatin immunoprecipitation analysis. Finally, using single-cell microinjection and RNA interference assays, we demonstrate that TRIP230 is indispensable for TCDD- and hypoxia-dependent gene transcription.
Collapse
Affiliation(s)
- Timothy V Beischlag
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kewley RJ, Whitelaw ML, Chapman-Smith A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 2004; 36:189-204. [PMID: 14643885 DOI: 10.1016/s1357-2725(03)00211-5] [Citation(s) in RCA: 433] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Basic helix-loop-helix (bHLH)/PAS proteins are critical regulators of gene expression networks underlying many essential physiological and developmental processes. These include transcriptional responses to environmental pollutants and low oxygen tension, mediated by the aryl hydrocarbon (Dioxin) receptor and hypoxia inducible factors (HIF), respectively, and controlling aspects of neural development, mediated by the single minded (SIM) proteins. bHLH proteins must dimerise to form functional DNA binding complexes and bHLH/PAS proteins are distinguished from other members of the broader bHLH superfamily by the dimerisation specificity conferred by their PAS homology domains. bHLH/PAS proteins tend to be ubiquitous, latent signal-regulated transcription factors that often recognise variant forms of the classic E-box enhancer sequence bound by other bHLH proteins. Two closely related forms of each of the hypoxia inducible factors alpha and single minded proteins and the general partner protein, aryl hydrocarbon receptor nuclear translocator (ARNT), are present in many cell types. Despite high sequence conservation within their DNA binding and dimerisation domains, and having very similar DNA recognition specificities, the homologues are functionally non-redundant and biologically essential. While the mechanisms controlling partner choice and target gene activation that determine this functional specificity are poorly understood, interactions mediated by the PAS domains are essential. Information on structures and protein/protein interactions for members of the steroid hormone/nuclear receptor superfamily has contributed to our understanding of the way these receptors function and assisted the development of highly specific agonists and antagonists. Similarly, it is anticipated that developing a detailed mechanistic and structural understanding of bHLH/PAS proteins will ultimately facilitate drug design.
Collapse
Affiliation(s)
- Robyn J Kewley
- School of Molecular and Biomedical Science (Biochemistry), University of Adelaide, Adelaide, SA 5005, Australia
| | | | | |
Collapse
|
40
|
Erez N, Stambolsky P, Shats I, Milyavsky M, Kachko T, Rotter V. Hypoxia-dependent regulation of PHD1: cloning and characterization of the human PHD1/EGLN2 gene promoter. FEBS Lett 2004; 567:311-5. [PMID: 15178343 DOI: 10.1016/j.febslet.2004.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2004] [Revised: 04/23/2004] [Accepted: 05/03/2004] [Indexed: 11/30/2022]
Abstract
The recent identification of hypoxia-inducible-factor (HIF) prolyl hydroxylases (PHD1, 2, and 3), which modify HIF-1 alpha in an oxygen-dependent manner, provided an important link between oxygen availability and hypoxia-induced gene expression. However, little is known about the regulation of the PHDs. To investigate the transcriptional regulation of PHD1, we cloned the PHD1 gene promoter. Here, we report that the expression of PHD1 is reduced under hypoxic conditions. Furthermore, we identified binding sites for aryl hydrocarbon nuclear translocator (ARNT/HIF-1 beta) within the PHD1 promoter, and showed that ARNT is associated in vivo with the PHD1 promoter following hypoxia, which implies a role for ARNT in the hypoxia-dependent regulation of PHD1. Taken together, our findings suggest a hypoxia-induced regulatory loop of PHD1 expression, mediated by ARNT.
Collapse
Affiliation(s)
- Neta Erez
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
41
|
Ooe N, Saito K, Mikami N, Nakatuka I, Kaneko H. Identification of a novel basic helix-loop-helix-PAS factor, NXF, reveals a Sim2 competitive, positive regulatory role in dendritic-cytoskeleton modulator drebrin gene expression. Mol Cell Biol 2004; 24:608-16. [PMID: 14701734 PMCID: PMC343817 DOI: 10.1128/mcb.24.2.608-616.2004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sim2, a basic helix-loop-helix (bHLH)-PAS transcriptional repressor, is thought to be involved in some symptoms of Down's syndrome. In the course of searching for hypothetical Sim2 relatives, we isolated another bHLH-PAS factor, NXF. NXF was a novel gene and was selectively expressed in neuronal tissues. While no striking homolog of NXF was found in vertebrates, a Caenorhabditis elegans putative transcription factor, C15C8.2, showed similarity in the bHLH-PAS domain. NXF had an activation domain as a transcription activator, and Arnt-type bHLH-PAS subfamily members were identified as the heterodimer partners of NXF. The NXF/Arnt heterodimer was capable of binding and activating a subset of Sim2/Arnt target DNA variants, and Sim2 could compete with the NXF activity on the elements. We showed that Drebrin had several such NXF/Arnt binding elements on the promoter, which could be direct or indirect cross talking points between NXF (activation) and Sim2 (repression) action. Drebrin has been reported to be engaged in dendritic-cytoskeleton modulation at synapses, and such a novel NXF signaling system on neural gene promoter may be a molecular target of the adverse effects of Sim2 in the mental retardation of Down's syndrome.
Collapse
Affiliation(s)
- Norihisa Ooe
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd., Konohana-ku, Osaka 554-8558, Japan.
| | | | | | | | | |
Collapse
|
42
|
Kampa M, Alexaki VI, Notas G, Nifli AP, Nistikaki A, Hatzoglou A, Bakogeorgou E, Kouimtzoglou E, Blekas G, Boskou D, Gravanis A, Castanas E. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res 2003; 6:R63-74. [PMID: 14979919 PMCID: PMC400651 DOI: 10.1186/bcr752] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Revised: 11/18/2003] [Accepted: 11/21/2003] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The oncoprotective role of food-derived polyphenol antioxidants has been described but the implicated mechanisms are not yet clear. In addition to polyphenols, phenolic acids, found at high concentrations in a number of plants, possess antioxidant action. The main phenolic acids found in foods are derivatives of 4-hydroxybenzoic acid and 4-hydroxycinnamic acid. METHODS This work concentrates on the antiproliferative action of caffeic acid, syringic acid, sinapic acid, protocatechuic acid, ferulic acid and 3,4-dihydroxy-phenylacetic acid (PAA) on T47D human breast cancer cells, testing their antioxidant activity and a number of possible mechanisms involved (interaction with membrane and intracellular receptors, nitric oxide production). RESULTS The tested compounds showed a time-dependent and dose-dependent inhibitory effect on cell growth with the following potency: caffeic acid > ferulic acid = protocatechuic acid = PAA > sinapic acid = syringic acid. Caffeic acid and PAA were chosen for further analysis. The antioxidative activity of these phenolic acids in T47D cells does not coincide with their inhibitory effect on tumoral proliferation. No interaction was found with steroid and adrenergic receptors. PAA induced an inhibition of nitric oxide synthase, while caffeic acid competes for binding and results in an inhibition of aryl hydrocarbon receptor-induced CYP1A1 enzyme. Both agents induce apoptosis via the Fas/FasL system. CONCLUSIONS Phenolic acids exert a direct antiproliferative action, evident at low concentrations, comparable with those found in biological fluids after ingestion of foods rich in phenolic acids. Furthermore, the direct interaction with the aryl hydrocarbon receptor, the nitric oxide synthase inhibition and their pro-apoptotic effect provide some insights into their biological mode of action.
Collapse
Affiliation(s)
- Marilena Kampa
- Laboratory of Experimental Endocrinology, University of Crete, Heraklion, Greece
| | | | - George Notas
- Laboratory of Gastroenterology, University of Crete, Heraklion, Greece
| | | | - Anastassia Nistikaki
- Laboratory of Experimental Endocrinology, University of Crete, Heraklion, Greece
| | - Anastassia Hatzoglou
- Laboratory of Experimental Endocrinology, University of Crete, Heraklion, Greece
| | | | | | - George Blekas
- Laboratory of Food Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Greece
| | - Dimitrios Boskou
- Laboratory of Food Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Greece
| | - Achille Gravanis
- Laboratory of Pharmacology, University of Crete, Heraklion, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, University of Crete, Heraklion, Greece
| |
Collapse
|
43
|
Abstract
Hypoxia is known to regulate angiogenesis and tissue growth by the induction of the alpha subunit of the heterodimeric transcription factor, hypoxia-inducible factor 1. The expression pattern of HIF1alpha in both epithelial and mesenchymal structures of the chicken embryo through the first 7 days of development is reported here. HIF1alpha transcript is expressed diffusely throughout the neuroepithelium, limb, mesonephritic and cephalic mesenchyme, progressively becoming restricted to known proliferative zones of the central nervous system. Specific, strong expression is unexpectedly found in the endoderm of Sessel's pouch and in the ectoderm of both Rathke's pouch and the first branchial arch before the disappearance of the buccopharyngeal membrane.
Collapse
Affiliation(s)
- Heather C Etchevers
- Institut d'Embryologie Cellulaire et Moléculaire du CNRS et du Collège de France, 49 bis avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne Cedex, France.
| |
Collapse
|
44
|
Rajendran RR, Nye AC, Frasor J, Balsara RD, Martini PGV, Katzenellenbogen BS. Regulation of nuclear receptor transcriptional activity by a novel DEAD box RNA helicase (DP97). J Biol Chem 2003; 278:4628-38. [PMID: 12466272 DOI: 10.1074/jbc.m210066200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel DEAD box RNA helicase (97 kDa, DP97) from a breast cancer cDNA library that interacts in a hormone-dependent manner with nuclear receptors and represses their transcriptional activity. DP97 has RNA-dependent ATPase activity, and mapping studies localize the interacting regions of DP97 and nuclear receptors to the C-terminal region of DP97 and the hormone binding/activation function-2 region of estrogen receptors (ER), as well as several other nuclear receptors. Repression by DP97 maps to a small region (amino acids 589-631) that has homology to a repression domain in the corepressor protein NCoR2/SMRTe. This region of DP97 is necessary and sufficient for its intrinsic repression activity. The N-terminal helicase region of DP97 is, however, dispensable for its transcriptional repressor activity. The knockdown of endogenous cellular DP97 by antisense DP97 or RNA interference (siRNA for DP97) results in significant enhancement of the expression of estradiol-ER-stimulated genes and attenuation of the repression of genes inhibited by the estradiol-ER. This implies that endogenous DP97 normally dampens stimulation and intensifies repression of estradiol-ER-regulated genes. Our findings add to the growing evidence that RNA helicases can associate with nuclear receptors and function as coregulators to modulate receptor transcriptional activity.
Collapse
Affiliation(s)
- Ramji R Rajendran
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
45
|
Garayoa M, Man YG, Martínez A, Cuttitta F, Mulshine JL. Downregulation of hnRNP A2/B1 expression in tumor cells under prolonged hypoxia. Am J Respir Cell Mol Biol 2003; 28:80-5. [PMID: 12495935 DOI: 10.1165/rcmb.4880] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 has been previously shown to be overexpressed in breast and lung tumors. Because hypoxia is a feature inherent in solid tumors, the regulation of hnRNP A2/B1 expression and subcellular localization under hypoxic conditions was studied on human lung and breast carcinoma cell lines. We found that sustained hypoxic treatment downregulated hnRNP A2/B1 expression in MCF7 and H157 cell lines. Northern blot analysis showed that this decay: (i) was observed as a marked diminution of transcript levels after 24-48 h of exposure to low oxygen tension; (ii) is not mediated by the transcription factor, hypoxia inducible factor-1; and (iii) is partially dependent on a higher hnRNP A2/B1 messenger RNA turnover under hypoxic than normoxic conditions. Immunocytochemical staining also showed a significant diminution of hnRNP A2/B1 staining in these cell lines after 24-48 h of hypoxia, together with a predominant loss of cytoplasmic staining. Further investigations are warranted to evaluate the relevance of modulation of hnRNP A2/B1 in hypoxic environments relative to its previously reported utility as a marker of early lung carcinogenesis.
Collapse
Affiliation(s)
- Mercedes Garayoa
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
46
|
Lee TH, Lwu S, Kim J, Pelletier J. Inhibition of Wilms tumor 1 transactivation by bone marrow zinc finger 2, a novel transcriptional repressor. J Biol Chem 2002; 277:44826-37. [PMID: 12239212 DOI: 10.1074/jbc.m205667200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Wilms tumor suppressor gene, wt1, encodes a zinc finger transcription factor that has been implicated in the regulation of a number of genes. Protein-protein interactions are known to modulate the transcription regulatory functions of Wilms tumor (WT1) and have also implicated WT1 in splicing. In this report, we identify a novel WT1-interacting protein, bone marrow zinc finger 2 (BMZF2), by affinity chromatography utilizing immobilized WT1 protein. BMZF2 is a potential transcription factor with 18 zinc fingers. The BMZF2 mRNA is mainly expressed in fetal tissues, and the protein is predominantly nuclear. Co-immunoprecipitation experiments are consistent with an in vivo association between WT1 and BMZF2. Glutathione S-transferase pulldown assays and far Western blots revealed that zinc fingers VI-X (amino acids 231-370) are required for interaction with the zinc finger region of WT1. Functionally, BMZF2 inhibits transcriptional activation by WT1. Moreover, a chimeric protein generated by fusion of BMZF2 to the GAL4 DNA-binding domain significantly decreases promoter activity of a reporter containing GAL4 DNA-binding sites, suggesting the presence of an active repressor domain within BMZF2. Our results suggest that BMZF2 interferes with the transactivation potential of WT1.
Collapse
Affiliation(s)
- Tae Ho Lee
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
47
|
Pollenz RS. The mechanism of AH receptor protein down-regulation (degradation) and its impact on AH receptor-mediated gene regulation. Chem Biol Interact 2002; 141:41-61. [PMID: 12213384 DOI: 10.1016/s0009-2797(02)00065-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The proteolytic degradation of transcription factors is an established mechanism of regulating signal transduction pathways. Recent reports have suggested that the aryl hydrocarbon receptor (AHR) protein is rapidly downregulated (degraded) following ligand binding. The downregulation of AHR has been observed in nine distinct cells culture lines derived from human and rodent tissues and has also been observed in rodent models following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The downregulation of AHR appears to be ubiquitin mediated and occurs via the 26S proteasome pathway following nuclear export of AHR. The consequence of blocking AHR degradation in cell culture appears to be an increase in both the magnitude and duration of gene regulation by the AHR.ARNT complex. Thus, the physiological role of AHR degradation may be to modulate AHR-mediated gene regulation. This review provides analysis of the studies that have focused on the degradation of AHR in vivo and in vitro and the hypothesis that the downregulation of AHR is critical in the attenuation of AHR-mediated gene regulation.
Collapse
Affiliation(s)
- Richard S Pollenz
- Department of Biology, University of South Florida, 4202 E Fowler Avenue, SCA 110, Tampa 33620-5200, USA.
| |
Collapse
|
48
|
Shamblott MJ, Bugg EM, Lawler AM, Gearhart JD. Craniofacial abnormalities resulting from targeted disruption of the murine Sim2 gene. Dev Dyn 2002; 224:373-80. [PMID: 12203729 DOI: 10.1002/dvdy.10116] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sim2 is a member of the basic helix-loop-helix PAS transcription factor gene family and is evolutionarily related to the Drosophila single-minded gene, a key regulator of central nervous system midline development. In an effort to determine the biological roles of Sim2 in mammalian development, we disrupted the murine Sim2 gene through gene targeting. Mice homozygous for the disrupted allele (Sim2 -/-) exhibit a cleft of the secondary palate and malformations of the tongue and pterygoid processes of the sphenoid bone. These craniofacial malformations are the most probable cause of aerophagia (air swallowing with subsequent accumulation of air in the gastrointestinal tract) and postnatal death exhibited by Sim2 -/- mice. The developing palates of the Sim2 -/- mice are hypocellular, and at embryonic day 14.5 contain excess extracellular matrix component hyaluronan (HA) compared with heterozygotes and homozygous wild-type littermates. HA plays an important role in the regulation and mechanics of palate development. Its premature accumulation in Sim2 -/- animal palates suggests a regulatory role for Sim2 in HA synthesis and in the establishment of craniofacial architecture.
Collapse
Affiliation(s)
- M J Shamblott
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | |
Collapse
|
49
|
Beischlag TV, Wang S, Rose DW, Torchia J, Reisz-Porszasz S, Muhammad K, Nelson WE, Probst MR, Rosenfeld MG, Hankinson O. Recruitment of the NCoA/SRC-1/p160 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex. Mol Cell Biol 2002; 22:4319-33. [PMID: 12024042 PMCID: PMC133867 DOI: 10.1128/mcb.22.12.4319-4333.2002] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2001] [Revised: 12/12/2001] [Accepted: 03/11/2002] [Indexed: 11/20/2022] Open
Abstract
The aryl hydrocarbon receptor complex heterodimeric transcription factor, comprising the basic helix-loop-helix-Per-ARNT-Sim (bHLH-PAS) domain aryl hydrocarbon receptor (AHR) and aryl hydrocarbon receptor nuclear translocator (ARNT) proteins, mediates the toxic effects of TCDD (2,3,7,8 tetrachlorodibenzo-p-dioxin). The molecular events underlying TCDD-inducible gene activation, beyond the activation of the AHRC, are poorly understood. The SRC-1/NCoA-1, NCoA-2/GRIP-1/TIF-2, and p/CIP/AIB/ACTR proteins have been shown to act as mediators of transcriptional activation. In this report, we demonstrate that SRC-1, NCoA-2, and p/CIP are capable of independently enhancing TCDD-dependent induction of a luciferase reporter gene by the AHR/ARNT dimer. Furthermore, injection of anti-SRC-1 or anti-p/CIP immunoglobulin G into mammalian cells abolishes the transcriptional activity of a TCDD-dependent reporter gene. We demonstrate by coimmunoprecipitation and by a reporter gene assay that SRC-1 and NCoA-2 but not p/CIP are capable of interacting with ARNT in vivo after transient transfection into mammalian cells, while AHR is capable of interacting with all three coactivators. We confirm the interactions of ARNT and AHR with SRC-1 with immunocytochemical techniques. Furthermore, SRC-1, NCoA-2, and p/CIP all associate with the CYP1A1 enhancer region in a TCDD-dependent fashion, as demonstrated by chromatin immunoprecipitation assays. We demonstrate by yeast two-hybrid, glutathione S-transferase pulldown, and mammalian reporter gene assays that ARNT requires its helix 2 domain but not its transactivation domain to interact with SRC-1. This indicates a novel mechanism of action for SRC-1. SRC-1 does not require its bHLH-PAS domain to interact with ARNT or AHR, but utilizes distinct domains proximal to its p300/CBP interaction domain. Taken together, these data support a role for the SRC family of transcriptional coactivators in TCDD-dependent gene regulation.
Collapse
Affiliation(s)
- Timothy V Beischlag
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, and Jonsson Comprehensive Cancer Center, School of Medicine, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Goshu E, Jin H, Fasnacht R, Sepenski M, Michaud JL, Fan CM. Sim2 mutants have developmental defects not overlapping with those of Sim1 mutants. Mol Cell Biol 2002; 22:4147-57. [PMID: 12024028 PMCID: PMC133848 DOI: 10.1128/mcb.22.12.4147-4157.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse genome contains two Sim genes, Sim1 and Sim2. They are presumed to be important for central nervous system (CNS) development because they are homologous to the Drosophila single-minded (sim) gene, mutations in which cause a complete loss of CNS midline cells. In the mammalian CNS, Sim2 and Sim1 are coexpressed in the paraventricular nucleus (PVN). While Sim1 is essential for the development of the PVN (J. L. Michaud, T. Rosenquist, N. R. May, and C.-M. Fan, Genes Dev. 12:3264-3275, 1998), we report here that Sim2 mutant has a normal PVN. Analyses of the Sim1 and Sim2 compound mutants did not reveal obvious genetic interaction between them in PVN histogenesis. However, Sim2 mutant mice die within 3 days of birth due to lung atelectasis and breathing failure. We attribute the diminished efficacy of lung inflation to the compromised structural components surrounding the pleural cavity, which include rib protrusions, abnormal intercostal muscle attachments, diaphragm hypoplasia, and pleural mesothelium tearing. Although each of these structures is minimally affected, we propose that their combined effects lead to the mechanical failure of lung inflation and death. Sim2 mutants also develop congenital scoliosis, reflected by the unequal sizes of the left and right vertebrae and ribs. The temporal and spatial expression patterns of Sim2 in these skeletal elements suggest that Sim2 regulates their growth and/or integrity.
Collapse
Affiliation(s)
- Eleni Goshu
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA
| | | | | | | | | | | |
Collapse
|