1
|
Lints R, Walker CA, Delfi O, Prouse M, PohLui De Silva M, Bohlander SK, Wood AC. Mutational cooperativity of RUNX1::RUNX1T1 isoform 9a and oncogenic NRAS in zebrafish myeloid leukaemia. Biol Open 2024; 13:bio060523. [PMID: 39177514 PMCID: PMC11381922 DOI: 10.1242/bio.060523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
RUNX1::RUNX1T1 (R::RT1) acute myeloid leukaemia (AML) remains a clinical challenge, and further research is required to model and understand leukaemogenesis. Previous zebrafish R::RT1 models were hampered by embryonic lethality and low penetrance of the malignant phenotype. Here, we overcome this by developing an adult zebrafish model in which the human R::RT1 isoform 9a is co-expressed with the frequently co-occurring oncogenic NRASG12D mutation in haematopoietic stem and progenitor cells (HSPCs), using the Runx1+23 enhancer. Approximately 50% of F0 9a+NRASG12D transgenic zebrafish developed signs of haematological disease between 5 and 14 months, with 27% exhibiting AML-like pathology: myeloid precursor expansion, erythrocyte reduction, kidney marrow hypercellularity and the presence of blasts. Moreover, only 9a+NRASG12D transplant recipients developed leukaemia with high rates of mortality within 40 days, inferring the presence of leukaemia stem cells. These leukaemic features were rare or not observed in animals expressing either the NRAS or 9a oncogenes alone, suggesting 9a and NRAS cooperation drives leukaemogenesis. This novel adult AML zebrafish model provides a powerful new tool for investigating the basis of R::RT1 - NRAS cooperativity with the potential to uncover new therapeutic targets.
Collapse
Affiliation(s)
- Robyn Lints
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Christina A Walker
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Omid Delfi
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Matthew Prouse
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | | | - Stefan K Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Andrew C Wood
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
- Starship Child Health, Starship Blood and Cancer Centre, Auckland 1023, New Zealand
| |
Collapse
|
2
|
Adamo A, Chin P, Keane P, Assi SA, Potluri S, Kellaway SG, Coleman D, Ames L, Ptasinska A, Delwel HR, Cockerill PN, Bonifer C. Identification and interrogation of the gene regulatory network of CEBPA-double mutant acute myeloid leukemia. Leukemia 2023; 37:102-112. [PMID: 36333583 PMCID: PMC9883165 DOI: 10.1038/s41375-022-01744-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy caused by mutations in genes encoding transcriptional and epigenetic regulators together with signaling genes. It is characterized by a disturbance of differentiation and abnormal proliferation of hematopoietic progenitors. We have previously shown that each AML subtype establishes its own core gene regulatory network (GRN), consisting of transcription factors binding to their target genes and imposing a specific gene expression pattern that is required for AML maintenance. In this study, we integrate gene expression, open chromatin and ChIP data with promoter-capture Hi-C data to define a refined core GRN common to all patients with CEBPA-double mutant (CEBPAN/C) AML. These mutations disrupt the structure of a major regulator of myelopoiesis. We identify the binding sites of mutated C/EBPα proteins in primary cells, we show that C/EBPα, AP-1 factors and RUNX1 colocalize and are required for AML maintenance, and we employ single cell experiments to link important network nodes to the specific differentiation trajectory from leukemic stem to blast cells. Taken together, our study provides an important resource which predicts the specific therapeutic vulnerabilities of this AML subtype in human cells.
Collapse
Affiliation(s)
- Assunta Adamo
- Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Paulynn Chin
- Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Sandeep Potluri
- Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Daniel Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Luke Ames
- Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - H Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK.
| |
Collapse
|
3
|
Zhang YF, Wang XL, Xu CH, Liu N, Zhang L, Zhang YM, Xie YY, Zhang YL, Huang QH, Wang L, Chen Z, Chen SJ, Roeder RG, Shen S, Xue K, Sun XJ. A direct comparison between AML1-ETO and ETO2-GLIS2 leukemia fusion proteins reveals context-dependent binding and regulation of target genes and opposite functions in cell differentiation. Front Cell Dev Biol 2022; 10:992714. [PMID: 36158200 PMCID: PMC9490184 DOI: 10.3389/fcell.2022.992714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The ETO-family transcriptional corepressors, including ETO, ETO2, and MTGR1, are all involved in leukemia-causing chromosomal translocations. In every case, an ETO-family corepressor acquires a DNA-binding domain (DBD) to form a typical transcription factor—the DBD binds to DNA, while the ETO moiety manifests transcriptional activity. A directly comparative study of these “homologous” fusion transcription factors may clarify their similarities and differences in regulating transcription and leukemogenesis. Here, we performed a side-by-side comparison between AML1-ETO and ETO2-GLIS2, the most common fusion proteins in M2-and M7-subtypes of acute myeloid leukemia, respectively, by inducible expression of them in U937 leukemia cells. We found that, although AML1-ETO and ETO2-GLIS2 can use their own DBDs to bind DNA, they share a large proportion of genome-wide binding regions dependent on other cooperative transcription factors, including the ETS-, bZIP- and bHLH-family proteins. AML1-ETO acts as either transcriptional repressor or activator, whereas ETO2-GLIS2 mainly acts as activator. The repressor-versus-activator functions of AML1-ETO might be determined by the abundance of cooperative transcription factors/cofactors on the target genes. Importantly, AML1-ETO and ETO2-GLIS2 differentially regulate key transcription factors in myeloid differentiation including PU.1 and C/EBPβ. Consequently, AML1-ETO inhibits, but ETO2-GLIS2 facilitates, myeloid differentiation of U937 cells. This function of ETO2-GLIS2 is reminiscent of a similar effect of MLL-AF9 as previously reported. Taken together, this directly comparative study between AML1-ETO and ETO2-GLIS2 in the same cellular context provides insights into context-dependent transcription regulatory mechanisms that may underlie how these seemingly “homologous” fusion transcription factors exert distinct functions to drive different subtypes of leukemia.
Collapse
|
4
|
Guo C, Li J, Steinauer N, Wong M, Wu B, Dickson A, Kalkum M, Zhang J. Histone deacetylase 3 preferentially binds and collaborates with the transcription factor RUNX1 to repress AML1-ETO-dependent transcription in t(8;21) AML. J Biol Chem 2020; 295:4212-4223. [PMID: 32071087 PMCID: PMC7105303 DOI: 10.1074/jbc.ra119.010707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 02/11/2020] [Indexed: 01/26/2023] Open
Abstract
In up to 15% of acute myeloid leukemias (AMLs), a recurring chromosomal translocation, termed t(8;21), generates the AML1-eight-twenty-one (ETO) leukemia fusion protein, which contains the DNA-binding domain of Runt-related transcription factor 1 (RUNX1) and almost all of ETO. RUNX1 and the AML1-ETO fusion protein are coexpressed in t(8;21) AML cells and antagonize each other's gene-regulatory functions. AML1-ETO represses transcription of RUNX1 target genes by competitively displacing RUNX1 and recruiting corepressors such as histone deacetylase 3 (HDAC3). Recent studies have shown that AML1-ETO and RUNX1 co-occupy the binding sites of AML1-ETO-activated genes. How this joined binding allows RUNX1 to antagonize AML1-ETO-mediated transcriptional activation is unclear. Here we show that RUNX1 functions as a bona fide repressor of transcription activated by AML1-ETO. Mechanistically, we show that RUNX1 is a component of the HDAC3 corepressor complex and that HDAC3 preferentially binds to RUNX1 rather than to AML1-ETO in t(8;21) AML cells. Studying the regulation of interleukin-8 (IL8), a newly identified AML1-ETO-activated gene, we demonstrate that RUNX1 and HDAC3 collaboratively repress AML1-ETO-dependent transcription, a finding further supported by results of genome-wide analyses of AML1-ETO-activated genes. These and other results from the genome-wide studies also have important implications for the mechanistic understanding of gene-specific coactivator and corepressor functions across the AML1-ETO/RUNX1 cistrome.
Collapse
MESH Headings
- Cell Line, Tumor
- Core Binding Factor Alpha 2 Subunit/genetics
- Gene Expression Regulation, Neoplastic
- Genome, Human/genetics
- Histone Deacetylases/genetics
- Humans
- Interleukin-8/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Oncogene Proteins, Fusion/genetics
- Promoter Regions, Genetic
- RUNX1 Translocation Partner 1 Protein/genetics
- Transcriptional Activation/genetics
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Chun Guo
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Jian Li
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Nickolas Steinauer
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Madeline Wong
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Brent Wu
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Alexandria Dickson
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, Missouri 63104.
| |
Collapse
|
5
|
Redondo Monte E, Wilding A, Leubolt G, Kerbs P, Bagnoli JW, Hartmann L, Hiddemann W, Chen-Wichmann L, Krebs S, Blum H, Cusan M, Vick B, Jeremias I, Enard W, Theurich S, Wichmann C, Greif PA. ZBTB7A prevents RUNX1-RUNX1T1-dependent clonal expansion of human hematopoietic stem and progenitor cells. Oncogene 2020; 39:3195-3205. [PMID: 32115572 PMCID: PMC7142018 DOI: 10.1038/s41388-020-1209-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
ZBTB7A is frequently mutated in acute myeloid leukemia (AML) with t(8;21) translocation. However, the oncogenic collaboration between mutated ZBTB7A and the RUNX1–RUNX1T1 fusion gene in AML t(8;21) remains unclear. Here, we investigate the role of ZBTB7A and its mutations in the context of normal and malignant hematopoiesis. We demonstrate that clinically relevant ZBTB7A mutations in AML t(8;21) lead to loss of function and result in perturbed myeloid differentiation with block of the granulocytic lineage in favor of monocytic commitment. In addition, loss of ZBTB7A increases glycolysis and hence sensitizes leukemic blasts to metabolic inhibition with 2-deoxy-d-glucose. We observed that ectopic expression of wild-type ZBTB7A prevents RUNX1-RUNX1T1-mediated clonal expansion of human CD34+ cells, whereas the outgrowth of progenitors is enabled by ZBTB7A mutation. Finally, ZBTB7A expression in t(8;21) cells lead to a cell cycle arrest that could be mimicked by inhibition of glycolysis. Our findings suggest that loss of ZBTB7A may facilitate the onset of AML t(8;21), and that RUNX1-RUNX1T1-rearranged leukemia might be treated with glycolytic inhibitors.
Collapse
Affiliation(s)
- Enric Redondo Monte
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Anja Wilding
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Georg Leubolt
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Paul Kerbs
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Johannes W Bagnoli
- Anthropology & Human Genomics, Department of Biology II, LMU Munich, 82152, Martinsried, Germany
| | - Luise Hartmann
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Wolfgang Hiddemann
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany
| | - Linping Chen-Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Stefan Krebs
- Gene Center-Laboratory for Functional Genome Analysis, LMU Munich, 81377, Munich, Germany
| | - Helmut Blum
- Gene Center-Laboratory for Functional Genome Analysis, LMU Munich, 81377, Munich, Germany
| | - Monica Cusan
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, 81377, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, 81377, Munich, Germany
| | - Wolfgang Enard
- Anthropology & Human Genomics, Department of Biology II, LMU Munich, 82152, Martinsried, Germany
| | - Sebastian Theurich
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany.,Cancer & Immunometabolism Research Group, Gene Center, LMU Munich, 81377, Munich, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Philipp A Greif
- Department of Medicine III, University Hospital, LMU Munich, 81377, Munich, Germany. .,German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany. .,German Cancer Research Center (DKFZ), 69121, Heidelberg, Germany.
| |
Collapse
|
6
|
Xu Y, Man N, Karl D, Martinez C, Liu F, Sun J, Martinez CJ, Martin GM, Beckedorff F, Lai F, Yue J, Roisman A, Greenblatt S, Duffort S, Wang L, Sun X, Figueroa M, Shiekhattar R, Nimer S. TAF1 plays a critical role in AML1-ETO driven leukemogenesis. Nat Commun 2019. [PMID: 31664040 DOI: 10.1038/s41467-019-12735-z.pmid:31664040;pmcid:pmc6820555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
AML1-ETO (AE) is a fusion transcription factor, generated by the t(8;21) translocation, that functions as a leukemia promoting oncogene. Here, we demonstrate that TATA-Box Binding Protein Associated Factor 1 (TAF1) associates with K43 acetylated AE and this association plays a pivotal role in the proliferation of AE-expressing acute myeloid leukemia (AML) cells. ChIP-sequencing indicates significant overlap of the TAF1 and AE binding sites. Knockdown of TAF1 alters the association of AE with chromatin, affecting of the expression of genes that are activated or repressed by AE. Furthermore, TAF1 is required for leukemic cell self-renewal and its reduction promotes the differentiation and apoptosis of AE+ AML cells, thereby impairing AE driven leukemogenesis. Together, our findings reveal a role of TAF1 in leukemogenesis and identify TAF1 as a potential therapeutic target for AE-expressing leukemia.
Collapse
Affiliation(s)
- Ye Xu
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Daniel Karl
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Concepcion Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Jun Sun
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Camilo Jose Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Gloria Mas Martin
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Fan Lai
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Jingyin Yue
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Alejandro Roisman
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Sarah Greenblatt
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Stephanie Duffort
- Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Lan Wang
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojian Sun
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maria Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Stephen Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA. .,Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA. .,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
7
|
Xu Y, Man N, Karl D, Martinez C, Liu F, Sun J, Martinez CJ, Martin GM, Beckedorff F, Lai F, Yue J, Roisman A, Greenblatt S, Duffort S, Wang L, Sun X, Figueroa M, Shiekhattar R, Nimer S. TAF1 plays a critical role in AML1-ETO driven leukemogenesis. Nat Commun 2019; 10:4925. [PMID: 31664040 PMCID: PMC6820555 DOI: 10.1038/s41467-019-12735-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
AML1-ETO (AE) is a fusion transcription factor, generated by the t(8;21) translocation, that functions as a leukemia promoting oncogene. Here, we demonstrate that TATA-Box Binding Protein Associated Factor 1 (TAF1) associates with K43 acetylated AE and this association plays a pivotal role in the proliferation of AE-expressing acute myeloid leukemia (AML) cells. ChIP-sequencing indicates significant overlap of the TAF1 and AE binding sites. Knockdown of TAF1 alters the association of AE with chromatin, affecting of the expression of genes that are activated or repressed by AE. Furthermore, TAF1 is required for leukemic cell self-renewal and its reduction promotes the differentiation and apoptosis of AE+ AML cells, thereby impairing AE driven leukemogenesis. Together, our findings reveal a role of TAF1 in leukemogenesis and identify TAF1 as a potential therapeutic target for AE-expressing leukemia. AML1-ETO is a fusion protein in which acetylation of lysine-43 is critical to leukemogenesis. Here, they show that TAF1 is required for AML1-ETO mediated gene expression such that it binds to acetylated AML1-ETO to facilitate the association of AML1-ETO with chromatin, and consequently, promotes leukemic self-renewal.
Collapse
Affiliation(s)
- Ye Xu
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Daniel Karl
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Concepcion Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Jun Sun
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Camilo Jose Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Gloria Mas Martin
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Fan Lai
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Jingyin Yue
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Alejandro Roisman
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Sarah Greenblatt
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Stephanie Duffort
- Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Lan Wang
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojian Sun
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maria Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA.,Department of Human Genetics, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Stephen Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA. .,Department of Medicine, Miller School of Medicine, University of Miami, 1120 NW 14th St, Miami, FL, 33136, USA. .,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
8
|
Destabilization of AETFC through C/EBPα-mediated repression of LYL1 contributes to t(8;21) leukemic cell differentiation. Leukemia 2019; 33:1822-1827. [PMID: 30755707 DOI: 10.1038/s41375-019-0398-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/25/2018] [Accepted: 01/21/2019] [Indexed: 11/08/2022]
|
9
|
Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. Proc Natl Acad Sci U S A 2018; 116:890-899. [PMID: 30593567 DOI: 10.1073/pnas.1809327116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO-containing transcription factor complex (AETFC), that contains multiple transcription (co)factors. Among these AETFC components, HEB and E2A, two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA-binding capacity to AETFC, and are essential for leukemogenesis. However, the third E protein, E2-2, is specifically silenced in AML1-ETO-expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO-expressing leukemic cells, and this inhibition requires the bHLH DNA-binding domain. RNA-seq and ChIP-seq analyses reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with dendritic cell differentiation and represses MYC target genes. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO, is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates leukemogenesis. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO-mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a heterogeneity of AETFC, which improves our understanding of the precise mechanism of leukemogenesis and assists development of diagnostic/therapeutic strategies.
Collapse
|
10
|
C/EBPα deregulation as a paradigm for leukemogenesis. Leukemia 2017; 31:2279-2285. [PMID: 28720765 DOI: 10.1038/leu.2017.229] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
Myeloid master regulator CCAAT enhancer-binding protein alpha (C/EBPα) is deregulated by multiple mechanisms in leukemia. Inhibition of C/EBPα function plays pivotal roles in leukemogenesis. While much is known about how C/EBPα orchestrates granulopoiesis, our understanding of molecular transformation events, the role(s) of cooperating mutations and clonal evolution during C/EBPα deregulation in leukemia remains elusive. In this review, we will summarize the latest research addressing these topics with special emphasis on CEBPA mutations. We conclude by describing emerging therapeutic strategies to restore C/EBPα function.
Collapse
|
11
|
Adamaki M, Vlahopoulos S, Lambrou GI, Papavassiliou AG, Moschovi M. Aberrant AML1 gene expression in the diagnosis of childhood leukemias not characterized by AML1-involved cytogenetic abnormalities. Tumour Biol 2017; 39:1010428317694308. [PMID: 28349830 DOI: 10.1177/1010428317694308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The AML1 ( acute myeloid leukemia 1) gene, a necessary prerequisite of embryonic hematopoiesis and a critical regulator of normal hematopoietic development, is one of the most frequently mutated genes in human leukemia, involving over 50 chromosome translocations and over 20 partner genes. In the few existing studies investigating AML1 gene expression in childhood leukemias, aberrant upregulation seems to specifically associate with AML1 translocations and amplifications. The aim of this study was to determine whether overexpression also extends to other leukemic subtypes than the ones karyotypically involving AML1. We use quantitative real-time polymerase chain reaction methodology to investigate gene expression in 100 children with acute leukemias and compare them to those of healthy controls. We show that in childhood acute lymphoblastic leukemia, AML1 gene overexpression is associated with a variety of leukemic subtypes, both immunophenotypically and cytogenetically. Statistically significantly higher transcripts of the gene were detected in the acute lymphoblastic leukemia group as compared to the acute myeloid leukemia group, where AML1 overexpression appeared to associate with cytogenetic abnormalities additional to those that engage the AML1 gene, or that are reported as showing a "normal" karyotype. Collectively, our study shows that AML1 gene overexpression characterizes a broader range of leukemic subtypes than previously thought, including various maturation stages of B-cell acute lymphoblastic leukemia and cytogenetic types additional to those involving the AML1 gene.
Collapse
Affiliation(s)
- Maria Adamaki
- 1 Pediatric Hematology/Oncology Unit, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens and "Aghia Sofia" Children's Hospital, Athens, Greece
| | - Spiros Vlahopoulos
- 1 Pediatric Hematology/Oncology Unit, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens and "Aghia Sofia" Children's Hospital, Athens, Greece
| | - George I Lambrou
- 1 Pediatric Hematology/Oncology Unit, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens and "Aghia Sofia" Children's Hospital, Athens, Greece
| | - Athanasios G Papavassiliou
- 2 Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Moschovi
- 1 Pediatric Hematology/Oncology Unit, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens and "Aghia Sofia" Children's Hospital, Athens, Greece
| |
Collapse
|
12
|
Amano R, Takada K, Tanaka Y, Nakamura Y, Kawai G, Kozu T, Sakamoto T. Kinetic and Thermodynamic Analyses of Interaction between a High-Affinity RNA Aptamer and Its Target Protein. Biochemistry 2016; 55:6221-6229. [PMID: 27766833 DOI: 10.1021/acs.biochem.6b00748] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AML1 (RUNX1) protein is an essential transcription factor involved in the development of hematopoietic cells. Several genetic aberrations that disrupt the function of AML1 have been frequently observed in human leukemia. AML1 contains a DNA-binding domain known as the Runt domain (RD), which recognizes the RD-binding double-stranded DNA element of target genes. In this study, we identified high-affinity RNA aptamers that bind to RD by systematic evolution of ligands by exponential enrichment. The binding assay using surface plasmon resonance indicated that a shortened aptamer retained the ability to bind to RD when 1 M potassium acetate was used. A thermodynamic study using isothermal titration calorimetry (ITC) showed that the aptamer-RD interaction is driven by a large enthalpy change, and its unfavorable entropy change is compensated by a favorable enthalpy change. Furthermore, the binding heat capacity change was identified from the ITC data at various temperatures. The aptamer binding showed a large negative heat capacity change, which suggests that a large apolar surface is buried upon such binding. Thus, we proposed that the aptamer binds to RD with long-range electrostatic force in the early stage of the association and then changes its conformation and recognizes a large surface area of RD. These findings about the biophysics of aptamer binding should be useful for understanding the mechanism of RNA-protein interaction and optimizing and modifying RNA aptamers.
Collapse
Affiliation(s)
- Ryo Amano
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology , 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Kenta Takada
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology , 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Yoichiro Tanaka
- Facility for RI Research and Education, Instrumental Analysis Center, Yokohama National University , 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yoshikazu Nakamura
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo , Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Ribomic Inc. , 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Gota Kawai
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology , 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Tomoko Kozu
- Research Institute for Clinical Oncology , Saitama Cancer Center, Ina, Saitama 362-0806, Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology , 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
13
|
Zhou L, Wang Q, Chen X, Fu L, Zhang X, Wang L, Deng A, Li D, Liu J, Lv N, Wang L, Li Y, Liu D, Yu L, Dou L. AML1-ETO promotes SIRT1 expression to enhance leukemogenesis of t(8;21) acute myeloid leukemia. Exp Hematol 2016; 46:62-69. [PMID: 27725192 DOI: 10.1016/j.exphem.2016.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/21/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Recently, SIRT1 was found to play an important role in a variety of solid and hematologic malignancies. The expression and function of SIRT1 may differ completely depending on cell type and gene subtype, and it can act as a tumor suppressor or oncogene. We describe how SIRT1 mRNA and protein levels are overexpressed in t(8;21) AML cells. AML1-ETO triggers the activation of SIRT1 by binding at AML1 binding sites on the SIRT1 promoter. Pharmacologic targeting or RNAi-mediated inhibition of SIRT1 induces G1 arrest, apoptosis, and proliferation inhibition that is more sensitive in AML1-ETO-positive than AML1-ETO-negative cell lines. Our data suggest that targeting SIRT1 may be an attractive therapeutic strategy in t(8;21) AML.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology, No. 202 Hospital of PLA, Shenyang, China
| | - Qian Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaosu Chen
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; School of Medicine, Nankai University, Tianjin, China
| | - Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Xiaodong Zhang
- Department of Hematology, No. 202 Hospital of PLA, Shenyang, China
| | - Lijun Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Ailing Deng
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Dandan Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; Beijing Shijitan Hospital, Beijing, China
| | - Jing Liu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Na Lv
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Yonghui Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Daihong Liu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.
| | - Liping Dou
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
14
|
New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins. ACTA ACUST UNITED AC 2016; 11:285-304. [PMID: 28261265 DOI: 10.1007/s11515-016-1415-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nearly 15% of acute myeloid leukemia (AML) cases are caused by aberrant expression of AML1-ETO, a fusion protein generated by the t(8;21) chromosomal translocation. Since its discovery, AML1-ETO has served as a prototype to understand how leukemia fusion proteins deregulate transcription to promote leukemogenesis. Another leukemia fusion protein, E2A-Pbx1, generated by the t(1;19) translocation, is involved in acute lymphoblastic leukemias (ALLs). While AML1-ETO and E2A-Pbx1 are structurally unrelated fusion proteins, we have recently shown that a common axis, the ETO/E-protein interaction, is involved in the regulation of both fusion proteins, underscoring the importance of studying protein-protein interactions in elucidating the mechanisms of leukemia fusion proteins. OBJECTIVE In this review, we aim to summarize these new developments while also providing a historic overview of the related early studies. METHODS A total of 218 publications were reviewed in this article, a majority of which were published after 2004.We also downloaded 3D structures of AML1-ETO domains from Protein Data Bank and provided a systematic summary of their structures. RESULTS By reviewing the literature, we summarized early and recent findings on AML1-ETO, including its protein-protein interactions, transcriptional and leukemogenic mechanisms, as well as the recently reported involvement of ETO family corepressors in regulating the function of E2A-Pbx1. CONCLUSION While the recent development in genomic and structural studies has clearly demonstrated that the fusion proteins function by directly regulating transcription, a further understanding of the underlying mechanisms, including crosstalk with other transcription factors and cofactors, and the protein-protein interactions in the context of native proteins, may be necessary for the development of highly targeted drugs for leukemia therapy.
Collapse
|
15
|
Krauter J, Heil G, Ganser A. The AML1/MTG8 Fusion Transcript in t(8;21) Positive AML and its Implication for the Detection of Minimal Residual Disease. Hematology 2016; 5:369-81. [DOI: 10.1080/10245332.2000.11746532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jürgen Krauter
- Department of Hematology/Oncology, Hannover Medical School
| | - Gerhard Heil
- Department of Hematology/Oncology, Hannover Medical School
| | - Arnold Ganser
- Department of Hematology/Oncology, Hannover Medical School
| |
Collapse
|
16
|
Hui H, Zhang X, Li H, Liu X, Shen L, Zhu Y, Xu J, Guo Q, Lu N. Oroxylin A, a natural anticancer flavonoid compound, induces differentiation of t(8;21)-positive Kasumi-1 and primary acute myeloid leukemia cells. J Cancer Res Clin Oncol 2016; 142:1449-59. [PMID: 27085528 DOI: 10.1007/s00432-016-2160-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/05/2016] [Indexed: 01/28/2023]
Abstract
PURPOSE AML1/ETO fusion gene is one of disease-causing genes of t(8;21)-positive acute myeloid leukemia (AML). Oroxylin A (OA) has showed anticancer effects on other cancer cells. Here, studies were conducted to determine the antileukemia effect of OA on t(8;21)-positive AML cells in vitro and in vivo. MATERIALS AND METHODS The effects of OA on cell viability of t(8;21)-positive Kasumi-1 and primary AML cells were analyzed by MTT assay. Cell differentiation was examined by NBT reduction assay, flow cytometry analysis for CD11b/CD14, and Giemsa stain. Protein expressions were determined by Western blots. Immunofluorescence assay was used to verify the effect of OA on HDAC-1 expression in vivo. Immunohistochemical staining was applied to evaluate leukemic infiltration of AML-bearing NOD/SCID mice. RESULTS OA enhanced NBT reduction activity and CD11b/CD14 expression of AML1/ETO-positive AML cells markedly. Results of Giemsa staining also demonstrated that OA could induce the morphologic changes with reduction of nuclear/cytoplasmic ratios, suggesting the cell differentiation induced by OA. Further study showed that OA decreased the expression of fusion protein AML1/ETO and down-regulated HDAC-1 protein levels in vitro and in vivo. Moreover, OA increased the expression of differentiation-related proteins C/EBPα and P21. Acetylation levels of histones were also advanced obviously after treatment of OA. In vivo study indicated that OA could prolong the survival of AML-bearing NOD/SCID mice and reduce leukocytic infiltration of the spleen. CONCLUSIONS All these results suggested that OA might be a novel candidate agent for differentiation therapy for AML1/ETO-positive AML and the mechanism required further investigation.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Cell Differentiation/drug effects
- Chromosomes, Human, Pair 12
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit/metabolism
- Flavonoids/pharmacology
- Histone Deacetylase 1/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Proto-Oncogene Proteins/metabolism
- RUNX1 Translocation Partner 1 Protein
- Transcription Factors/metabolism
- Translocation, Genetic
Collapse
Affiliation(s)
- Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiaoxiao Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiao Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Le Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Jingyan Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
17
|
Vegi NM, Klappacher J, Oswald F, Mulaw MA, Mandoli A, Thiel VN, Bamezai S, Feder K, Martens JHA, Rawat VPS, Mandal T, Quintanilla-Martinez L, Spiekermann K, Hiddemann W, Döhner K, Döhner H, Stunnenberg HG, Feuring-Buske M, Buske C. MEIS2 Is an Oncogenic Partner in AML1-ETO-Positive AML. Cell Rep 2016; 16:498-507. [PMID: 27346355 DOI: 10.1016/j.celrep.2016.05.094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/20/2016] [Accepted: 05/27/2016] [Indexed: 11/28/2022] Open
Abstract
Homeobox genes are known to be key factors in leukemogenesis. Although the TALE family homeodomain factor Meis1 has been linked to malignancy, a role for MEIS2 is less clear. Here, we demonstrate that MEIS2 is expressed at high levels in patients with AML1-ETO-positive acute myeloid leukemia and that growth of AML1-ETO-positive leukemia depends on MEIS2 expression. In mice, MEIS2 collaborates with AML1-ETO to induce acute myeloid leukemia. MEIS2 binds strongly to the Runt domain of AML1-ETO, indicating a direct interaction between these transcription factors. High expression of MEIS2 impairs repressive DNA binding of AML1-ETO, inducing increased expression of genes such as the druggable proto-oncogene YES1. Collectively, these data describe a pivotal role for MEIS2 in AML1-ETO-induced leukemia.
Collapse
Affiliation(s)
- Naidu M Vegi
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Josef Klappacher
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Franz Oswald
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Medhanie A Mulaw
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Amit Mandoli
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, the Netherlands
| | - Verena N Thiel
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Shiva Bamezai
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Kristin Feder
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, the Netherlands
| | - Vijay P S Rawat
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Tamoghna Mandal
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Liebermeisterstrasse 8, 72076 Tübingen, Germany
| | - Karsten Spiekermann
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Wolfgang Hiddemann
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500HB Nijmegen, the Netherlands
| | | | - Christian Buske
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany; Core Facility Genomics, Medical Faculty Ulm, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
18
|
Weng S, Matsuura S, Mowery CT, Stoner SA, Lam K, Ran D, Davis AG, Lo MC, Zhang DE. Restoration of MYC-repressed targets mediates the negative effects of GM-CSF on RUNX1-ETO leukemogenicity. Leukemia 2016; 31:159-169. [PMID: 27389055 PMCID: PMC5214981 DOI: 10.1038/leu.2016.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
Abstract
GM-CSF signaling regulates hematopoiesis and immune responses. CSF2RA, the gene encoding the α subunit for GM-CSF, is significantly downregulated in t(8;21) (RUNX1-ETO or RE) leukemia patients, suggesting that it may serve as a tumor suppressor. We previously reported that GM-CSF signaling is inhibitory to RE leukemogenesis. Here we conducted gene expression profiling of primary RE hematopoietic stem/progenitor cells (HSPCs) treated with GM-CSF to elucidate the mechanisms mediating the negative effects of GM on RE leukemogenicity. We observed that GM treatment of RE HSPCs resulted in a unique gene expression profile that resembles primary human cells undergoing myelopoiesis, which was not observed in control HSPCs. Additionally we discovered that GM-CSF signaling attenuates MYC-associated gene signatures in RE HSPCs. In agreement with this, a functional screen of a subset of GM-CSF-responsive genes demonstrated that a MYC inhibitor, MXI1, reduced the leukemic potential of RE HSPCs and t(8;21) AML cells. Furthermore, MYC knockdown and treatment with the BET inhibitor JQ1 reduced the leukemic potential of t(8;21) cell lines. Altogether, we discovered a novel molecular mechanism mediating the GM-CSF-induced reduction in leukemic potential of RE cells, and our findings support MYC inhibition as an effective strategy for reducing the leukemogenicity of t(8;21) AML.
Collapse
Affiliation(s)
- S Weng
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - S Matsuura
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - C T Mowery
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - S A Stoner
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - K Lam
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - D Ran
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - A G Davis
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - M-C Lo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - D-E Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,Department of Pathology and Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
McGrath JP, Williamson KE, Balasubramanian S, Odate S, Arora S, Hatton C, Edwards TM, O'Brien T, Magnuson S, Stokoe D, Daniels DL, Bryant BM, Trojer P. Pharmacological Inhibition of the Histone Lysine Demethylase KDM1A Suppresses the Growth of Multiple Acute Myeloid Leukemia Subtypes. Cancer Res 2016; 76:1975-88. [DOI: 10.1158/0008-5472.can-15-2333] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/22/2015] [Indexed: 11/16/2022]
|
20
|
Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21) acute myeloid leukemia. Blood 2015; 127:233-42. [PMID: 26546158 DOI: 10.1182/blood-2015-03-626671] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
The AML1/ETO fusion protein is essential to the development of t(8;21) acute myeloid leukemia (AML) and is well recognized for its dominant-negative effect on the coexisting wild-type protein AML1. However, the genome-wide interplay between AML1/ETO and wild-type AML1 remains elusive in the leukemogenesis of t(8;21) AML. Through chromatin immunoprecipitation sequencing and computational analysis, followed by a series of experimental validations, we report here that wild-type AML1 is able to orchestrate the expression of AML1/ETO targets regardless of being activated or repressed; this is achieved via forming a complex with AML1/ETO and via recruiting the cofactor AP-1 on chromatin. On chromatin occupancy, AML1/ETO and wild-type AML1 largely overlap and preferentially bind to adjacent and distinct short and long AML1 motifs on the colocalized regions, respectively. On physical interaction, AML1/ETO can form a complex with wild-type AML1 on chromatin, and the runt homology domain of both proteins are responsible for their interactions. More importantly, the relative binding signals of AML1 and AML1/ETO on chromatin determine which genes are repressed or activated by AML1/ETO. Further analysis of coregulators indicates that AML1/ETO transactivates gene expression through recruiting AP-1 to the AML1/ETO-AML1 complex. These findings enrich our knowledge of understanding the significance of the interplay between the wild-type protein and the oncogenic fusion protein in the development of leukemia.
Collapse
|
21
|
Wang L, Xiao H, Zhang X, Liao W, Fu S, Huang H. Restoration of CCAAT enhancer binding protein α P42 induces myeloid differentiation and overcomes all-trans retinoic acid resistance in human acute promyelocytic leukemia NB4-R1 cells. Int J Oncol 2015; 47:1685-95. [PMID: 26397153 PMCID: PMC4599186 DOI: 10.3892/ijo.2015.3163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/12/2015] [Indexed: 11/13/2022] Open
Abstract
All-trans retinoic acid (ATRA) is one of the first line agents in differentiation therapy for acute promyelocytic leukemia (APL). However, drug resistance is a major problem influencing the efficacy of ATRA. Identification of mechanisms of ATRA resistance are urgenly needed. In the present study, we found that expression of C/EBPα, an important transcription factor for myeloid differentiation, was significantly suppressed in ATRA resistant APL cell line NB4-R1 compared with ATRA sensitive NB4 cells. Moreover, two forms of C/EBPα were unequally suppressed in NB4-R1 cells. Suppression of the full-length form P42 was more pronounced than the truncated form P30. Inhibition of PI3K/Akt/mTOR pathway was also observed in NB4-R1 cells. Moreover, C/EBPα expression was reduced by PI3K inhibitor LY294002 and mTOR inhibitor RAD001 in NB4 cells, suggesting that inactivation of the PI3K/Akt/mTOR pathway was responsible for C/EBPα suppression in APL cells. We restored C/EBPα P42 and P30 by lentivirus vectors in NB4-R1 cells, respectively, and found C/EBPα P42, but not P30, could increase CD11b, CD14, G-CSFR and GM-CSFR expression, which indicated the occurrence of myeloid differentiation. Further upregulating of CD11b expression and differential morphological changes were found in NB4-R1 cells with restored C/EBPα P42 after ATRA treatment. However, CD11b expression and differential morphological changes could not be induced by ATRA in NB4-R1 cells infected with P30 expressing or control vector. Thus, we inferred that ATRA sensitivity of NB4-R1 cells was enhanced by restoration of C/EBPα P42. In addition, we used histone deacetylase inhibitor trichostatin (TSA) to restore C/EBPα expression in NB4-R1 cells. Similar enhancement of myeloid differentiation and cell growth arrest were detected. Together, the present study demonstrated that suppression of C/EBPα P42 induced by PI3K/Akt/mTOR inhibition impaired the differentiation and ATRA sensitivity of APL cells. Restoring C/EBPα P42 is an attractive approach for differentiation therapy in ATRA resistant APL.
Collapse
Affiliation(s)
- Limengmeng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Haowen Xiao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xing Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Weichao Liao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Shan Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
22
|
Yigit N, Covey S, Barouk-Fox S, Turker T, Geyer JT, Orazi A. Nuclear factor-erythroid 2, nerve growth factor receptor, and CD34-microvessel density are differentially expressed in primary myelofibrosis, polycythemia vera, and essential thrombocythemia. Hum Pathol 2015; 46:1217-25. [PMID: 26093937 DOI: 10.1016/j.humpath.2015.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/13/2022]
Abstract
Because of the presence of various overlapping findings, the discrimination of polycythemia vera (PV) from prefibrotic/fibrotic primary myelofibrosis (PF/F-PMF) and essential thrombocythemia (ET) may be challenging, particularly in suboptimal bone marrow biopsy specimens. In this study, we assessed whether differences in the expression of nuclear factor-erythroid 2 (NF-E2), nerve growth factor receptor (NGFR; CD271), CD34, CD68, p53, CD3, CD20, and CD138 by immunohistochemistry could be useful in separating among them. Higher frequencies of nuclear positive erythroblasts with NF-E2 were observed in ET and PV cases (50% ± 13.3% and 41.5% ± 9.4%, respectively) when compared with both PF-PMF (21% ± 11.7%) and F-PMF (28.5% ± 10.8%). We found that with a cutoff level of at least 30% nuclear staining for NF-E2 in erythroblasts, we could reliably exclude the possibility of PMF. Conversely, NGFR+ stromal cells per high-power field (HPF) was significantly increased in F-PMF (53.5 ± 19.1/HPF) and PF-PMF (13.5 ± 3.8/HPF) compared with ET (4.4 ± 2.2/HPF) and PV (6.6 ± 3.3/HPF). Similarly, differences in CD34-microvessel density was remarkable in F-PMF and PF-PMF cases in comparison with PV and ET (49.9 ± 12.1/HPF, 29.3 ± 12.4/HPF, 13.7 ± 4.6/HPF, and 11.9 ± 5.1/HPF, respectively). Thus, the assessment of NF-E2 and NGFR expression and the evaluation of CD34-microvessel density may provide additional support in reaching a correct diagnosis in these cases of myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Nuri Yigit
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/New York-Presbyterian Hospital, New York, NY 10065; Department of Pathology, Gulhane Military Medical Academy and School of Medicine, Ankara 06010, Turkey.
| | - Shannon Covey
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/New York-Presbyterian Hospital, New York, NY 10065.
| | - Sharon Barouk-Fox
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/New York-Presbyterian Hospital, New York, NY 10065.
| | - Turker Turker
- Department of Pathology, Gulhane Military Medical Academy and School of Medicine, Ankara 06010, Turkey.
| | - Julia Turbiner Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/New York-Presbyterian Hospital, New York, NY 10065.
| | - Attilio Orazi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/New York-Presbyterian Hospital, New York, NY 10065.
| |
Collapse
|
23
|
Collin JF, Wells JW, Czepulkowski B, Lyne L, Duriez PJ, Banham AH, Mufti GJ, Guinn BA. A novel zinc finger gene, ZNF465, is inappropriately expressed in acute myeloid leukaemia cells. Genes Chromosomes Cancer 2015; 54:288-302. [PMID: 25706801 DOI: 10.1002/gcc.22242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/12/2015] [Indexed: 11/08/2022] Open
Abstract
To increase our knowledge of leukaemia-associated antigens, especially in acute myeloid leukaemia (AML) M4, we prepared a phage display cDNA library using mRNA from the bone marrow cells of a patient with AML M4 at diagnosis. We immunoscreened 10(6) pfu with autologous sera and identified an antigen which we named GKT-AML8. The cDNA showed more than 99% similarity to a sequence on 2q21.2 and 95% sequence similarity to a sequence on 19q13.3. These genes were named ZNF465 and ZNF466, respectively, following HUGO Gene Nomenclature Committee (HGNC) guidelines. Expressed sequence tag data suggests that both genes are transcriptionally active. ZNF465 and ZNF466 encode a 5' krüppel associated box domain typical of negative regulators of gene transcription. We have confirmed the translational start site in the +1 frame in a near-Kozak sequence that produces a 102 amino acid polypeptide from ZNF465. The high level of sequence similarity between ZNF465 and ZNF466 makes their transcripts almost indistinguishable by real-time polymerase chain reaction (RT-PCR). However, GKT-AML8 showed most sequence similarity to ZNF465 and no transcript matching the 3' ZNF466 sequence could be detected in patient samples or healthy volunteers. ZNF465/466 expression was detectable in 12/13 AML and 10/14 chronic myeloid leukaemia patients' samples but not in normal donor peripheral blood (0/8) or 0/3 bone marrow samples which had been separated into CD34(+) and CD34(-) samples. The altered expression of ZNF465/466 in patients' samples and its absence in healthy donor haematopoietic samples indicate that ZNF465 is overexpressed in early myeloid disease and as such may represent a promising target for immunotherapy.
Collapse
Affiliation(s)
- Joseph F Collin
- Department of Haematological Medicine, Guy's, King's and St. Thomas' School of Medicine, King's College London, The Rayne Institute, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Myrna Candelaria
- 1Instituto Nacional de Cancerología Mexico, Ave. San Fernando 22, Seccion XVI, Tlalpan, Mexico City, Mexico
| | - Alfonso Dueñas-Gonzalez
- 2Instituto de Investigaciones Biomédicas UNAM/Instituto Nacional de Cancerología Mexico, Unit of Biomedical Research on Cancer, Ave. San Fernando 22, Seccion XVI, Tlalpan, Mexico City, Mexico
| |
Collapse
|
25
|
Bledsoe KL, McGee-Lawrence ME, Camilleri ET, Wang X, Riester SM, van Wijnen AJ, Oliveira AM, Westendorf JJ. RUNX3 facilitates growth of Ewing sarcoma cells. J Cell Physiol 2014; 229:2049-56. [PMID: 24812032 DOI: 10.1002/jcp.24663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/06/2014] [Indexed: 01/01/2023]
Abstract
Ewing sarcoma is an aggressive pediatric small round cell tumor that predominantly occurs in bone. Approximately 85% of Ewing sarcomas harbor the EWS/FLI fusion protein, which arises from a chromosomal translocation, t(11:22)(q24:q12). EWS/FLI interacts with numerous lineage-essential transcription factors to maintain mesenchymal progenitors in an undifferentiated state. We previously showed that EWS/FLI binds the osteogenic transcription factor RUNX2 and prevents osteoblast differentiation. In this study, we investigated the role of another Runt-domain protein, RUNX3, in Ewing sarcoma. RUNX3 participates in mesenchymal-derived bone formation and is a context dependent tumor suppressor and oncogene. RUNX3 was detected in all Ewing sarcoma cells examined, whereas RUNX2 was detected in only 73% of specimens. Like RUNX2, RUNX3 binds to EWS/FLI via its Runt domain. EWS/FLI prevented RUNX3 from activating the transcription of a RUNX-responsive reporter, p6OSE2. Stable suppression of RUNX3 expression in the Ewing sarcoma cell line A673 delayed colony growth in anchorage independent soft agar assays and reversed expression of EWS/FLI-responsive genes. These results demonstrate an important role for RUNX3 in Ewing sarcoma.
Collapse
|
26
|
Recurrent PAX3-MAML3 fusion in biphenotypic sinonasal sarcoma. Nat Genet 2014; 46:666-8. [PMID: 24859338 DOI: 10.1038/ng.2989] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/30/2014] [Indexed: 12/27/2022]
Abstract
Biphenotypic sinonasal sarcoma (SNS) is a newly described tumor of the nasal and paranasal areas. Here we report a recurrent chromosomal translocation in SNS, t(2;4)(q35;q31.1), resulting in a PAX3-MAML3 fusion protein that is a potent transcriptional activator of PAX3 response elements. The SNS phenotype is characterized by aberrant expression of genes involved in neuroectodermal and myogenic differentiation, closely simulating the developmental roles of PAX3.
Collapse
|
27
|
Montagner S, Dehó L, Monticelli S. MicroRNAs in hematopoietic development. BMC Immunol 2014; 15:14. [PMID: 24678908 PMCID: PMC4000146 DOI: 10.1186/1471-2172-15-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/26/2014] [Indexed: 02/08/2023] Open
Abstract
Background MicroRNAs (miRNAs) are short non-coding RNAs involved in the posttranscriptional regulation of a wide range of biological processes. By binding to complementary sequences on target messenger RNAs, they trigger translational repression and degradation of the target, eventually resulting in reduced protein output. MiRNA-dependent regulation of protein translation is a very widespread and evolutionarily conserved mechanism of posttranscriptional control of gene expression. Accordingly, a high proportion of mammalian genes are likely to be regulated by miRNAs. In the hematopoietic system, both transcriptional and posttranscriptional regulation of gene expression ensure proper differentiation and function of stem cells, committed progenitors as well as mature cells. Results In recent years, miRNA expression profiling of various cell types in the hematopoietic system, as well as gene-targeting approaches to assess the function of individual miRNAs, revealed the importance of this type of regulation in the development of both innate and acquired immunity. Conclusions We discuss the general role of miRNA biogenesis in the development of hematopoietic cells, as well as specific functions of individual miRNAs in stem cells as well as in mature immune cells.
Collapse
Affiliation(s)
| | | | - Silvia Monticelli
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, Bellinzona CH-6500, Switzerland.
| |
Collapse
|
28
|
Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood 2014; 123:1341-52. [PMID: 24415537 DOI: 10.1182/blood-2013-03-488114] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modifying enzymes such as histone deacetylases (HDACs), p300, and PRMT1 are recruited by AML1/ETO, the pathogenic protein for t(8;21) acute myeloid leukemia (AML), providing a strong molecular rationale for targeting these enzymes to treat this disease. Although early phase clinical assessment indicated that treatment with HDAC inhibitors (HDACis) may be effective in t(8;21) AML patients, rigorous preclinical studies to identify the molecular and biological events that may determine therapeutic responses have not been performed. Using an AML mouse model driven by expression of AML1/ETO9a (A/E9a), we demonstrated that treatment of mice bearing t(8;21) AML with the HDACi panobinostat caused a robust antileukemic response that did not require functional p53 nor activation of conventional apoptotic pathways. Panobinostat triggered terminal myeloid differentiation via proteasomal degradation of A/E9a. Importantly, conditional A/E9a deletion phenocopied the effects of panobinostat and other HDACis, indicating that destabilization of A/E9a is critical for the antileukemic activity of these agents.
Collapse
|
29
|
Kassem N, Fahmy AEG, Desoky M, Medhat N, Zawam HM. CCAAT/enhancer binding protein α gene expression in Egyptian patients with acute myeloid leukemia. J Egypt Natl Canc Inst 2013; 25:115-20. [DOI: 10.1016/j.jnci.2013.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 02/04/2013] [Accepted: 02/08/2013] [Indexed: 11/17/2022] Open
|
30
|
Sun XJ, Wang Z, Wang L, Jiang Y, Kost N, Soong TD, Chen WY, Tang Z, Nakadai T, Elemento O, Fischle W, Melnick A, Patel DJ, Nimer SD, Roeder RG. A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature 2013; 500:93-7. [PMID: 23812588 PMCID: PMC3732535 DOI: 10.1038/nature12287] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/13/2013] [Indexed: 12/03/2022]
Abstract
Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression1. AML1-ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia (AML), is a transcription factor implicated in both gene repression and activation2. AML1-ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis3–6, making it important to identify coregulatory factors that “read” the NHR2 oligomerization and contribute to leukaemogenesis4. We now show that, in leukaemic cells, AML1-ETO resides in and functions through a stable protein complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, colocalize genome-wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1-ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2-N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1-ETO–induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1-ETO and a potential therapeutic target in t(8;21)+ AML.
Collapse
Affiliation(s)
- Xiao-Jian Sun
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wertheim GBW, Hexner E, Bagg A. Molecular-based classification of acute myeloid leukemia and its role in directing rational therapy: personalized medicine for profoundly promiscuous proliferations. Mol Diagn Ther 2013. [PMID: 23184342 DOI: 10.1007/s40291-012-0009-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acute myeloid leukemia (AML) is not a single pathologic entity but represents a heterogeneous group of malignancies. This heterogeneity is exemplified by the variable clinical outcomes that are observed in patients with AML, and it is largely the result of diverse mutations within the leukemic cells. These mutations range from relatively large genetic alterations, such as gains, losses, and translocations of chromosomes, to single nucleotide changes. Detection of many of these mutations is required for accurate diagnosis, prognosis, and treatment of patients with AML. As such, many testing modalities have been developed and are currently employed in clinical laboratories to ascertain mutational status at prognostically and therapeutically critical loci. The assays include those that specifically identify large chromosomal alterations, such as conventional metaphase analysis and fluorescence in situ hybridization, and methods that are geared more toward analysis of small mutations, such as PCR with allele-specific oligonucleotide primers. Furthermore, newer tests, including array analysis and next-generation sequencing, which can simultaneously probe numerous molecular aberrancies within tumor cells, are likely to become commonplace in AML diagnostics. Each testing method clearly has advantages and disadvantages, an understanding of which should influence the choice of test in various clinical circumstances. To aid such understanding, this review discusses both genetic mutations in AML and the clinical tests-including their pros and cons-that may be used to probe these abnormalities. Additionally, we highlight the significance of genetic testing by describing cases in which results of genetic testing significantly influence clinical management of patients with AML.
Collapse
Affiliation(s)
- Gerald B W Wertheim
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
32
|
E6AP, an E3 ubiquitin ligase negatively regulates granulopoiesis by targeting transcription factor C/EBPα for ubiquitin-mediated proteasome degradation. Cell Death Dis 2013; 4:e590. [PMID: 23598402 PMCID: PMC3641343 DOI: 10.1038/cddis.2013.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CCAAT/enhancer-binding protein alpha (C/EBPα) is an important transcription factor involved in granulocytic differentiation. Here, for the first time we demonstrate that E6-associated protein (E6AP), an E3 ubiquitin ligase targets C/EBPα for ubiquitin-mediated proteasome degradation and thereby negatively modulates its functions. Wild-type E6AP promotes ubiquitin dependent proteasome degradation of C/EBPα, while catalytically inactive E6-associated protein having cysteine replaced with alanine at amino-acid position 843 (E6AP-C843A) rather stabilizes it. Further, these two proteins physically associate both in non-myeloid (overexpressed human embryonic kidney epithelium) and myeloid cells. We show that E6AP-mediated degradation of C/EBPα protein expression curtails its transactivation potential on its target genes. Noticeably, E6AP degrades both wild-type 42 kDa CCAAT-enhancer-binding protein alpha (p42C/EBPα) and mutant isoform 30 kDa CCAAT-enhancer-binding protein alpha (p30C/EBPα), this may explain perturbed p42C/EBPα/p30C/EBPα ratio often observed in acute myeloid leukemia (AML). We show that overexpression of catalytically inactive E6AP-C843A in C/EBPα inducible K562- p42C/EBPα-estrogen receptor (ER) cells inhibits β-estradiol (E2)-induced C/EBPα degradation leading to enhanced granulocytic differentiation. This enhanced granulocytic differentiation upon E2-induced activation of C/EBPα in C/EBPα stably transfected cells (β-estradiol inducible K562 cells stably expressing p42C/EBPα-ER (K562-C/EBPα-p42-ER)) was further substantiated by siE6AP-mediated knockdown of E6AP in both K562-C/EBPα-p42-ER and 32dcl3 (32D clone 3, a cell line widely used model for in vitro study of hematopoietic cell proliferation, differentiation, and apoptosis) cells. Taken together, our data suggest that E6AP targeted C/EBPα protein degradation may provide a possible explanation for both loss of expression and/or functional inactivation of C/EBPα often experienced in myeloid leukemia.
Collapse
|
33
|
|
34
|
Fragliasso V, Chiodo Y, Ferrari-Amorotti G, Soliera AR, Manzotti G, Cattelani S, Candini O, Grisendi G, Vergalli J, Mariani SA, Guerzoni C, Calabretta B. Phosphorylation of serine 21 modulates the proliferation inhibitory more than the differentiation inducing effects of C/EBPα in K562 cells. J Cell Biochem 2012; 113:1704-13. [PMID: 22212957 DOI: 10.1002/jcb.24040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The CCAAT/enhancer binding protein α (C/EBPα) is a transcription factor required for differentiation of myeloid progenitors. In acute myeloid leukemia (AML) cells expressing the constitutively active FLT3-ITD receptor tyrosine kinase, MAP kinase-dependent phosphorylation of serine 21 (S21) inhibits the ability of C/EBPα to induce granulocytic differentiation. To assess whether this post-translational modification also modulates the activity of C/EBPα in BCR/ABL-expressing cells, we tested the biological effects of wild-type and mutant C/EBPα mimicking phosphorylated or non-phosphorylatable serine 21 (S21D and S21A, respectively) in K562 cells ectopically expressing tamoxifen-regulated C/EBPα-ER chimeric proteins. We show here that S21D C/EBPα-ER induced terminal granulocytic differentiation of K562 cells almost as well as wild-type C/EBPα-ER, while S21A C/EBPα-ER was less efficient. Furthermore, wild-type C/EBPα suppressed the proliferation and colony formation of K562 cells vigorously, while S21D and S21A C/EBPα mutants had more modest anti-proliferative effects. Both mutants were less effective than wild-type C/EBPα in suppressing endogenous E2F-dependent transactivation and bound less E2F-2 and/or E2F-3 proteins in anti-C/EBPα immunoprecipitates. Together, these findings suggest that mutation of S21 more than its phosphorylation inhibits the anti-proliferative effects of C/EBPα due to reduced interaction with or impaired regulation of the activity of E2F proteins. By contrast, phosphorylation of serine 21 appears to have a modest role in modulating the differentiation-inducing effects of C/EBPα in K562 cells.
Collapse
Affiliation(s)
- Valentina Fragliasso
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
AML1-ETO targets and suppresses cathepsin G, a serine protease, which is able to degrade AML1-ETO in t(8;21) acute myeloid leukemia. Oncogene 2012; 32:1978-87. [PMID: 22641217 DOI: 10.1038/onc.2012.204] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although the significance of cathepsin G (CTSG) in host defense has been intensively investigated, little is known about its potential roles in granulopoiesis or leukemogenesis. We report here that CTSG is directly targeted and suppressed by AML1-ETO in t(8;21) acute myeloid leukemia (AML). Luciferase assays demonstrate that the CTSG promoter is strongly transactivated by AML1 and the AML1-dependent transactivation is suppressed by AML1-ETO. We also define a novel regulatory mechanism by which AML1-ETO-mediated transrepression requires both AML1-ETO and AML1 binding at adjacent sites, instead of the replacement of AML1 by AML1-ETO, and wild-type AML1 binding is a prerequisite for the repressive effect caused by AML1-ETO. Further evidence shows that CTSG, as a hematopoietic serine protease, can degrade AML1-ETO both in vitro and in vivo. Restoration of CTSG induces partial differentiation, growth inhibition and apoptosis in AML1-ETO-positive cells. In addition to t(8;21) AML, CTSG downregulation is observed in AML patients with other cytogenetic/genetic abnormalities that potentially interrupt normal AML1 function, that is, inv(16) and EVI1 overexpression. Thus, the targeting and suppression of CTSG by AML1-ETO in t(8;21) AML may provide a mechanism for leukemia cells to escape from the intracellular surveillance system by preventing degradation of foreign proteins.
Collapse
|
37
|
Sill H, Olipitz W, Zebisch A, Schulz E, Wölfler A. Therapy-related myeloid neoplasms: pathobiology and clinical characteristics. Br J Pharmacol 2011; 162:792-805. [PMID: 21039422 DOI: 10.1111/j.1476-5381.2010.01100.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Therapy-related myeloid neoplasms (t-MNs) are serious long-term consequences of cytotoxic treatments for an antecedent disorder. t-MNs are observed after ionizing radiation as well as conventional chemotherapy including alkylating agents, topoisomerase-II-inhibitors and antimetabolites. In addition, adjuvant use of recombinant human granulocyte-colony stimulating factor may also increase the risk of t-MNs. There is clinical and biological overlap between t-MNs and high-risk de novo myelodysplastic syndromes and acute myeloid leukaemia suggesting similar mechanisms of leukaemogenesis. Human studies and animal models point to a prominent role of genetic susceptibilty in the pathogenesis of t-MNs. Common genetic variants have been identified that modulate t-MN risk, and t-MNs have been observed in some cancer predisposition syndromes. In either case, establishing a leukaemic phenotype requires acquisition of somatic mutations - most likely induced by the cytotoxic treatment. Knowledge of the specific nature of the initiating exposure has allowed the identification of crucial pathogenetic mechanisms and for these to be modelled in vitro and in vivo. Prognosis of patients with t-MNs is dismal and at present, the only curative approach for the majority of these individuals is haematopoietic stem cell transplantation, which is characterized by high transplant-related mortality rates. Novel transplantation strategies using reduced intensity conditioning regimens as well as novel drugs - demethylating agents and targeted therapies - await clinical testing and may improve outcome. Ultimately, individual assessment of genetic risk factors may translate into tailored therapies and establish a strategy for reducing t-MN incidences without jeopardizing therapeutic success rates for the primary disorders.
Collapse
Affiliation(s)
- H Sill
- Department of Internal Medicine, Division of Haematology, Medical University of Graz, Graz, Austria.
| | | | | | | | | |
Collapse
|
38
|
Acute myeloid leukemia with the t(8;21) translocation: clinical consequences and biological implications. J Biomed Biotechnol 2011; 2011:104631. [PMID: 21629739 PMCID: PMC3100545 DOI: 10.1155/2011/104631] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/31/2011] [Accepted: 02/22/2011] [Indexed: 12/20/2022] Open
Abstract
The t(8;21) abnormality occurs in a minority of acute myeloid leukemia (AML) patients. The translocation results in an in-frame fusion of two genes, resulting in a fusion protein of one N-terminal domain from the AML1 gene and four C-terminal domains from the ETO gene. This protein has multiple effects on the regulation of the proliferation, the differentiation, and the viability of leukemic cells. The translocation can be detected as the only genetic abnormality or as part of more complex abnormalities. If t(8;21) is detected in a patient with bone marrow pathology, the diagnosis AML can be made based on this abnormality alone. t(8;21) is usually associated with a good prognosis. Whether the detection of the fusion gene can be used for evaluation of minimal residual disease and risk of leukemia relapse remains to be clarified. To conclude, detection of t(8;21) is essential for optimal handling of these patients as it has both diagnostic, prognostic, and therapeutic implications.
Collapse
|
39
|
Down-regulation of microRNAs 222/221 in acute myelogenous leukemia with deranged core-binding factor subunits. Neoplasia 2011; 12:866-76. [PMID: 21076613 DOI: 10.1593/neo.10482] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/12/2010] [Accepted: 07/15/2010] [Indexed: 11/18/2022]
Abstract
Core-binding factor leukemia (CBFL) is a subgroup of acute myeloid leukemia (AML) characterized by genetic mutations involving the subunits of the core-binding factor (CBF). The leukemogenesis model for CBFL posits that one, or more, gene mutations inducing increased cell proliferation and/or inhibition of apoptosis cooperate with CBF mutations for leukemia development. One of the most common mutations associated with CBF mutations involves the KIT receptor. A high expression of KIT is a hallmark of a high proportion of CBFL. Previous studies indicate that microRNA (MIR) 222/221 targets the 3' untranslated region of the KIT messenger RNA and our observation that AML1 can bind the MIR-222/221 promoter, we hypothesized that MIR-222/221 represents the link between CBF and KIT. Here, we show that MIR-222/221 expression is upregulated after myeloid differentiation of normal bone marrow AC133(+) stem progenitor cells. CBFL blasts with either t(8;21) or inv(16) CBF rearrangements with high expression levels of KIT (CD117) display a significantly lower level of MIR-222/221 expression than non-CBFL blasts. Consistently, we found that the t(8;21) AML1-MTG8 fusion protein binds the MIR-222/221 promoter and induces transcriptional repression of a MIR-222/221-LUC reporter. Because of the highly conserved sequence homology, we demonstrated concomitant MIR-222/221 down-regulation and KIT up-regulation in the 32D/WT1 mouse cell model carrying the AML1-MTG16 fusion protein. This study provides the first hint that CBFL-associated fusion proteins may lead to up-regulation of the KIT receptor by down-regulating MIR-222/221, thus explaining the concomitant occurrence of CBF genetic rearrangements and overexpression of wild type or mutant KIT in AML.
Collapse
|
40
|
Lidonnici MR, Audia A, Soliera AR, Prisco M, Ferrari-Amorotti G, Waldron T, Donato N, Zhang Y, Martinez RV, Holyoake TL, Calabretta B. Expression of the transcriptional repressor Gfi-1 is regulated by C/EBP{alpha} and is involved in its proliferation and colony formation-inhibitory effects in p210BCR/ABL-expressing cells. Cancer Res 2010; 70:7949-59. [PMID: 20924107 DOI: 10.1158/0008-5472.can-10-1667] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ectopic expression of CAAT/enhancer binding protein α (C/EBPα) in p210BCR/ABL-expressing cells induces granulocytic differentiation, inhibits proliferation, and suppresses leukemogenesis. To dissect the molecular mechanisms underlying these biological effects, C/EBPα-regulated genes were identified by microarray analysis in 32D-p210BCR/ABL cells. One of the genes whose expression was activated by C/EBPα in a DNA binding-dependent manner in BCR/ABL-expressing cells is the transcriptional repressor Gfi-1. We show here that C/EBPα interacts with a functional C/EBP binding site in the Gfi-1 5'-flanking region and enhances the promoter activity of Gfi-1. Moreover, in K562 cells, RNA interference-mediated downregulation of Gfi-1 expression partially rescued the proliferation-inhibitory but not the differentiation-inducing effect of C/EBPα. Ectopic expression of wild-type Gfi-1, but not of a transcriptional repressor mutant (Gfi-1P2A), inhibited proliferation and markedly suppressed colony formation but did not induce granulocytic differentiation of BCR/ABL-expressing cells. By contrast, Gfi-1 short hairpin RNA-tranduced CD34(+) chronic myeloid leukemia cells were markedly more clonogenic than the scramble-transduced counterpart. Together, these studies indicate that Gfi-1 is a direct target of C/EBPα required for its proliferation and survival-inhibitory effects in BCR/ABL-expressing cells.
Collapse
Affiliation(s)
- Maria Rosa Lidonnici
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Abstract
Introduction
The rational design of targeted therapies for acute myeloid leukemia (AML) requires the discovery of novel protein pathways in the systems biology of a specific AML subtype. We have shown that in the AML subtype with translocation t(8;21), the leukemic fusion protein AML1–ETO inhibits the function of transcription factors PU.1 and C/EBPα via direct protein–protein interaction. In addition, recently using proteomics, we have also shown that the AML subtypes differ in their proteome, interactome, and post-translational modifications.
Methods
We, therefore, hypothesized that the systematic identification of target proteins of AML1–ETO on a global proteome-wide level will lead to novel insights into the systems biology of t(8;21) AML on a post-genomic functional level. Thus, 6 h after inducible expression of AML1–ETO, protein expression changes were identified by two-dimensional gel electrophoresis and subsequent mass spectrometry analysis.
Results
Twenty-eight target proteins of AML1–ETO including prohibitin, NM23, HSP27, and Annexin1 were identified by MALDI-TOF mass spectrometry. AML1–ETO upregulated the differentiation inhibitory factor NM23 protein expression after 6 h, and the NM23 mRNA expression was also elevated in t(8;21) AML patient samples in comparison with normal bone marrow. AML1–ETO inhibited the ability of C/EBP transcription factors to downregulate the NM23 promoter. These data suggest a model in which AML1–ETO inhibits the C/EBP-induced downregulation of the NM23 promoter and thereby increases the protein level of differentiation inhibitory factor NM23.
Conclusions
Proteomic pathway discovery can identify novel functional pathways in AML, such as the AML1–ETO–C/EBP–NM23 pathway, as the main step towards a systems biology and therapy of AML.
Collapse
|
42
|
Ferrari-Amorotti G, Mariani SA, Novi C, Cattelani S, Pecorari L, Corradini F, Soliera AR, Manzotti G, Fragliasso V, Zhang Y, Martinez RV, Lam EWF, Guerzoni C, Calabretta B. The biological effects of C/EBPalpha in K562 cells depend on the potency of the N-terminal regulatory region, not on specificity of the DNA binding domain. J Biol Chem 2010; 285:30837-50. [PMID: 20659895 DOI: 10.1074/jbc.m110.128272] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor C/EBPα is more potent than C/EBPβ in inducing granulocitic differentiation and inhibiting BCR/ABL-expressing cells. We took a "domain swapping" approach to assess biological effects, modulation of gene expression, and binding to C/EBPα-regulated promoters by wild-type and chimeric C/EBPα/C/EBPβ proteins. Wild-type and N-C/EBPα+ C/EBPβ-DBD induced transcription of the granulocyte-colony stimulating factor receptor (G-CSFR) gene, promoted differentiation, and suppressed proliferation of K562 cells vigorously; instead, wild-type C/EBPβ and N-C/EBPβ+C/EBPα-DBD had modest effects, although they bound the G-CSFR promoter like wild-type C/EBPα and N-C/EBPα+C/EBPβ-DBD. Chimeric proteins consisting of the TAD of VP16 and the DBD of C/EBPα or C/EBPβ inhibited proliferation and induced differentiation of K562 cells as effectively as wild-type C/EBPα. Gene expression profiles induced by C/EBPα resembled those modulated by N-C/EBPα+C/EBPβ-DBD, whereas C/EBPβ induced a pattern similar to that of N-C/EBPβ+C/EBPα-DBD. C/EBPα activation induced changes in the expression of more cell cycle- and apoptosis-related genes than the other proteins and enhanced Imatinib-induced apoptosis of K562 cells. Expression of FOXO3a, a novel C/EBPα-regulated gene, was required for apoptosis but not for differentiation induction or proliferation inhibition of K562 cells.
Collapse
|
43
|
AML1 is overexpressed in patients with myeloproliferative neoplasms and mediates JAK2V617F-independent overexpression of NF-E2. Blood 2010; 116:254-66. [PMID: 20339092 DOI: 10.1182/blood-2009-11-254664] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The transcription factor NF-E2 is overexpressed in the majority of patients with polycythemia vera (PV). Concomitantly, 95% of these patients carry the JAK2(V617F) mutation. Although NF-E2 levels correlate with JAK2(V671F) allele burden in some PV cohorts, the molecular mechanism causing aberrant NF-E2 expression has not been described. Here we show that NF-E2 expression is also increased in patients with essential thrombocythemia and primary myelofibrosis independent of the presence of the JAK2(V617F) mutation. Characterization of the NF-E2 promoter revealed multiple functional binding sites for AML1/RUNX-1. Chromatin immunoprecipitation demonstrated AML1 binding to the NF-E2 promoter in vivo. Moreover, AML1 binding to the NF-E2 promoter was significantly increased in granulocytes from PV patients compared with healthy controls. AML1 mRNA expression was elevated in patients with PV, essential thrombocythemia, and primary myelofibrosis both in the presence and absence of JAK2(V617F). In addition, AML1 and NF-E2 expression were highly correlated. RNAi-mediated suppression of either AML1 or of its binding partner CBF-beta significantly decreased NF-E2 expression. Moreover, expression of the leukemic fusion protein AML/ETO drastically decreased NF-E2 protein levels. Our data identify NF-E2 as a novel AML1 target gene and delineate a role for aberrant AML1 expression in mediating elevated NF-E2 expression in MPN patients.
Collapse
|
44
|
|
45
|
Zhao M, Duan XF, Zhao XY, Zhang B, Lu Y, Liu W, Cheng JK, Chen GQ. Protein kinase Cdelta stimulates proteasome-dependent degradation of C/EBPalpha during apoptosis induction of leukemic cells. PLoS One 2009; 4:e6552. [PMID: 19662097 PMCID: PMC2719015 DOI: 10.1371/journal.pone.0006552] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 07/02/2009] [Indexed: 11/18/2022] Open
Abstract
Background The precise regulation and maintenance of balance between cell proliferation, differentiation and death in metazoan are critical for tissue homeostasis. CCAAT/enhancer-binding protein alpha (C/EBPα) has been implicated as a key regulator of differentiation and proliferation in various cell types. Here we investigated the potential dynamic change and role of C/EBPα protein during apoptosis induction. Methodology/Principal Findings Upon onset of apoptosis induced by various kinds of inducers such as NSC606985, etoposide and others, C/EBPα expression presented a profound down-regulation in leukemic cell lines and primary cells via induction of protein degradation and inhibition of transcription, as assessed respectively by cycloheximide inhibition test, real-time quantitative RT-PCR and luciferase reporter assay. Applying chemical inhibition, forced expression of dominant negative mutant and catalytic fragment (CF) of protein kinase Cdelta (PKCδ), which was proteolytically activated during apoptosis induction tested, we showed that the active PKCδ protein contributed to the increased degradation of C/EBPα protein. Three specific proteasome inhibitors antagonized C/EBPα degradation during apoptosis induction. More importantly, ectopic expression of PKCδ-CF stimulated the ubiquitination of C/EBPα protein, while the chemical inhibition of PKCδ action significantly inhibited the enhanced ubiquitination of C/EBPα protein under NSC606985 treatment. Additionally, silencing of C/EBPα expression by small interfering RNAs enhanced, while inducible expression of C/EBPα inhibited NSC606985/etoposide-induced apoptosis in leukemic cells. Conclusions/Significance These observations indicate that the activation of PKCδ upon apoptosis results in the increased proteasome-dependent degradation of C/EBPα, which partially contributes to PKCδ-mediated apoptosis.
Collapse
Affiliation(s)
- Meng Zhao
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS) of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xu-Fang Duan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai , China
| | - Xu-Yun Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai , China
| | - Bo Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai , China
| | - Ying Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai , China
| | - Wei Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai , China
| | - Jin-Ke Cheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai , China
- The National Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Guo-Qiang Chen
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS) of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai , China
- The National Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
- * E-mail:
| |
Collapse
|
46
|
The human CD6 gene is transcriptionally regulated by RUNX and Ets transcription factors in T cells. Mol Immunol 2009; 46:2226-35. [DOI: 10.1016/j.molimm.2009.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 04/16/2009] [Indexed: 11/23/2022]
|
47
|
Gupta P, Gurudutta GU, Saluja D, Tripathi RP. PU.1 and partners: regulation of haematopoietic stem cell fate in normal and malignant haematopoiesis. J Cell Mol Med 2009; 13:4349-63. [PMID: 19382896 PMCID: PMC4515051 DOI: 10.1111/j.1582-4934.2009.00757.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
During normal haematopoiesis, cell development and differentiation programs are accomplished by switching ‘on’ and ‘off’ specific set of genes. Specificity of gene expression is primarily achieved by combinatorial control, i.e. through physical and functional interactions among several transcription factors that form sequence-specific multiprotein complexes on regulatory regions (gene promoters and enhancers). Such combinatorial gene switches permit flexibility of regulation and allow numerous developmental decisions to be taken with a limited number of regulators. The haematopoietic-specific Ets family transcription factor PU.1 regulates many lymphoid- and myeloid-specific gene promoters and enhancers by interacting with multiple proteins during haematopoietic development. Such protein–protein interactions regulate DNA binding, subcellular localization, target gene selection and transcriptional activity of PU.1 itself in response to diverse signals including cytokines, growth factors, antigen and cellular stresses. Specific domains of PU.1 interact with many protein motifs such as bHLH, bZipper, zinc fingers and paired domain for regulating its activity. This review focuses on important protein–protein interactions of PU.1 that play a crucial role in regulation of normal as well as malignant haematopoiesis. Precise delineation of PU.1 protein-partner interacting interface may provide an improved insight of the molecular mechanisms underlying haematopoietic stem cell fate regulation. Its interactions with some proteins could be targeted to modulate the aberrant signalling pathways for reversing the malignant phenotype and to control the generation of specific haematopoietic progeny for treatment of haematopoietic disorders.
Collapse
Affiliation(s)
- Pallavi Gupta
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, DRDO, Delhi, India
| | | | | | | |
Collapse
|
48
|
Hanington PC, Tam J, Katzenback BA, Hitchen SJ, Barreda DR, Belosevic M. Development of macrophages of cyprinid fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:411-429. [PMID: 19063916 DOI: 10.1016/j.dci.2008.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/11/2008] [Accepted: 11/14/2008] [Indexed: 05/27/2023]
Abstract
The innate immune responses of early vertebrates, such as bony fishes, play a central role in host defence against infectious diseases and one of the most important effector cells of innate immunity are macrophages. In order for macrophages to be effective in host defence they must be present at all times in the tissues of their host and importantly, the host must be capable of rapidly increasing macrophage numbers during times of need. Hematopoiesis is a process of formation and development of mature blood cells, including macrophages. Hematopoiesis is controlled by soluble factors known as cytokines, that influence changes in transcription factors within the target cells, resulting in cell fate changes and the final development of specific effector cells. The processes involved in macrophage development have been largely derived from mammalian model organisms. However, recent advancements have been made in the understanding of macrophage development in bony fish, a group of organisms that rely heavily on their innate immune defences. Our understanding of the growth factors involved in teleost macrophage development, as well as the receptors and regulatory mechanisms in place to control them has increased substantially. Furthermore, model organisms such as the zebrafish have emerged as important instruments in furthering our understanding of the transcriptional control of cell development in fish as well as in mammals. This review highlights the recent advancements in our understanding of teleost macrophage development. We focused on the growth factors identified to be important in the regulation of macrophage development from a progenitor cell into a functional macrophage and discuss the important transcription factors that have been identified to function in teleost hematopoiesis. We also describe the findings of in vivo studies that have reinforced observations made in vitro and have greatly improved the relevance and importance of using teleost fish as model organisms for studying developmental processes.
Collapse
|
49
|
Engel ME, Hiebert SW. Proleukemic RUNX1 and CBFbeta mutations in the pathogenesis of acute leukemia. Cancer Treat Res 2009; 145:127-47. [PMID: 20306249 DOI: 10.1007/978-0-387-69259-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The existence of non-random mutations in critical regulators of cell growth and differentiation is a recurring theme in cancer pathogenesis and provides the basis for our modern, molecular approach to the study and treatment of malignant diseases. Nowhere is this more true than in the study of leukemogenesis, where research has converged upon a critical group of genes involved in hematopoietic stem and progenitor cell self-renewal and fate specification. Prominent among these is the heterodimeric transcriptional regulator, RUNX1/CBFbeta. RUNX1 is a site-specific DNA-binding protein whose consensus response element is found in the promoters of many hematopoietically relevant genes. CBFbeta interacts with RUNX1, stabilizing its interaction with DNA to promote the actions of RUNX1/CBFbeta in transcriptional control. Both the RUNX1 and the CBFbeta genes participate in proleukemic chromosomal alterations. Together they contribute to approximately one-third of acute myelogenous leukemia (AML) and one-quarter of acute lymphoblastic leukemia (ALL) cases, making RUNX1 and CBFbeta the most frequently affected genes known in the pathogenesis of acute leukemia. Investigating the mechanisms by which RUNX1, CBFbeta, and their proleukemic fusion proteins influence leukemogenesis has contributed greatly to our understanding of both normal and malignant hematopoiesis. Here we present an overview of the structural features of RUNX1/CBFbeta and their derivatives, their roles in transcriptional control, and their contributions to normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Michael E Engel
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Nashville, TN, USA.
| | | |
Collapse
|
50
|
Trivedi AK, Pal P, Behre G, Singh SM. Multiple ways of C/EBPalpha inhibition in myeloid leukaemia. Eur J Cancer 2008; 44:1516-23. [PMID: 18515086 DOI: 10.1016/j.ejca.2008.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 11/29/2022]
Abstract
Transcription factors play a crucial role in myeloid differentiation and lineage determination. Tumour suppressor protein C/EBPalpha is a key regulator of granulocytic differentiation whose functional inactivation has become a pathophysiological signature of myeloid leukaemia. In this review we describe various mechanisms such as antagonistic protein-protein interaction, mutation and posttranslational modifications of C/EBPalpha which lead to its transcriptional inhibition and render C/EBPalpha inactive in its functions.
Collapse
Affiliation(s)
- A K Trivedi
- Drug Target Discovery and Development Division, Central Drug Research Institute (CDRI), Lucknow 226001, India.
| | | | | | | |
Collapse
|