1
|
Esposito M, Amory JK, Kang Y. The pathogenic role of retinoid nuclear receptor signaling in cancer and metabolic syndromes. J Exp Med 2024; 221:e20240519. [PMID: 39133222 PMCID: PMC11318670 DOI: 10.1084/jem.20240519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
The retinoid nuclear receptor pathway, activated by the vitamin A metabolite retinoic acid, has been extensively investigated for over a century. This study has resulted in conflicting hypotheses about how the pathway regulates health and how it should be pharmaceutically manipulated. These disagreements arise from a fundamental contradiction: retinoid agonists offer clear benefits to select patients with rare bone growth disorders, acute promyelocytic leukemia, and some dermatologic diseases, yet therapeutic retinoid pathway activation frequently causes more harm than good, both through acute metabolic dysregulation and a delayed cancer-promoting effect. In this review, we discuss controlled clinical, mechanistic, and genetic data to suggest several disease settings where inhibition of the retinoid pathway may be a compelling therapeutic strategy, such as solid cancers or metabolic syndromes, and also caution against continued testing of retinoid agonists in cancer patients. Considerable evidence suggests a central role for retinoid regulation of immunity and metabolism, with therapeutic opportunities to antagonize retinoid signaling proposed in cancer, diabetes, and obesity.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Kayothera, Inc , Seattle, WA, USA
| | | | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch , Princeton, NJ, USA
| |
Collapse
|
2
|
Parriott G, Kee BL. E Protein Transcription Factors as Suppressors of T Lymphocyte Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:885144. [PMID: 35514954 PMCID: PMC9065262 DOI: 10.3389/fimmu.2022.885144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
T Lymphocyte Acute Lymphoblastic Leukemia (ALL) is an aggressive disease arising from transformation of T lymphocytes during their development. The mutation spectrum of T-ALL has revealed critical regulators of the growth and differentiation of normal and leukemic T lymphocytes. Approximately, 60% of T-ALLs show aberrant expression of the hematopoietic stem cell-associated helix-loop-helix transcription factors TAL1 and LYL1. TAL1 and LYL1 function in multiprotein complexes that regulate gene expression in T-ALL but they also antagonize the function of the E protein homodimers that are critical regulators of T cell development. Mice lacking E2A, or ectopically expressing TAL1, LYL1, or other inhibitors of E protein function in T cell progenitors, also succumb to an aggressive T-ALL-like disease highlighting that E proteins promote T cell development and suppress leukemogenesis. In this review, we discuss the role of E2A in T cell development and how alterations in E protein function underlie leukemogenesis. We focus on the role of TAL1 and LYL1 and the genes that are dysregulated in E2a-/- T cell progenitors that contribute to human T-ALL. These studies reveal novel mechanisms of transformation and provide insights into potential therapeutic targets for intervention in this disease.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, United States
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, United States.,Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.,Department of Pathology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Mechanisms of Binding Specificity among bHLH Transcription Factors. Int J Mol Sci 2021; 22:ijms22179150. [PMID: 34502060 PMCID: PMC8431614 DOI: 10.3390/ijms22179150] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA’s shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.
Collapse
|
4
|
Zhang C, Amanda S, Wang C, King Tan T, Zulfaqar Ali M, Zhong Leong W, Moy Ng L, Kitajima S, Li Z, Eng Juh Yeoh A, Hao Tan S, Sanda T. Oncorequisite role of an aldehyde dehydrogenase in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica 2021; 106:1545-1558. [PMID: 32414855 PMCID: PMC8168519 DOI: 10.3324/haematol.2019.245639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Aldehyde dehydrogenases (ALDH) are overexpressed in various types of cancers. One of the ALDH family genes, ALDH1A2, is aberrantly expressed in more than 50% of cases of T-cell acute lymphoblastic leukemia (T-ALL). However, its molecular function and role in the pathogenesis of T-ALL are largely unknown. Chromatin immunoprecipitation-sequencing and RNA-sequencing analyses showed that the oncogenic transcription factor TAL1 and its regulatory partners bind to the intronic regulatory element of the ALDH1A2 gene, directly inducing a T-ALL-specific isoform with enzymatic activity. ALDH1A2 was preferentially expressed in the TAL1-positive T-ALL subgroup. In TALL cell lines, depletion of ALDH1A2 inhibited cell viability and induced apoptosis. Interestingly, gene expression and metabolomic profiling revealed that ALDH1A2 supported glycolysis and the tricarboxylic acid cycle, accompanied by NADH production, by affecting multiple metabolic enzymes to promote ATP production. Depletion of ALDH1A2 increased the levels of reactive oxygen species, while the levels were reduced by ALDH1A2 overexpression both in vitro and in vivo. Overexpression of ALDH1A2 accelerated tumor onset and increased tumor penetrance in a zebrafish model of T-ALL. Taken together, our results indicate that ALDH1A2 protects against intracellular stress and promotes T-ALL cell metabolism and survival. ALDH1A2 overexpression enables leukemic clones to sustain a hyper-proliferative state driven by oncogenes.
Collapse
Affiliation(s)
- Chujing Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Stella Amanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Cheng Wang
- Department of Anatomy, National University of Singapore, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Wei Zhong Leong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ley Moy Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Shojiro Kitajima
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Zhenhua Li
- Department of Paediatrics, National University of Singapore, Singapore
| | - Allen Eng Juh Yeoh
- Dept of Paediatrics, National University of Singapore and Cancer Science Institute of Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
5
|
Chhabra R, Rockfield S, Guergues J, Nadeau OW, Hill R, Stevens SM, Nanjundan M. Global miRNA/proteomic analyses identify miRNAs at 14q32 and 3p21, which contribute to features of chronic iron-exposed fallopian tube epithelial cells. Sci Rep 2021; 11:6270. [PMID: 33737539 PMCID: PMC7973504 DOI: 10.1038/s41598-021-85342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant transformation of fallopian tube secretory epithelial cells (FTSECs) is a key contributing event to the development of high-grade serous ovarian carcinoma (HGSOC). Our recent findings implicate oncogenic transformative events in chronic iron-exposed FTSECs, including increased expression of oncogenic mediators, increased telomerase transcripts, and increased growth/migratory potential. Herein, we extend these studies by implementing an integrated transcriptomic and mass spectrometry-based proteomics approach to identify global miRNA and protein alterations, for which we also investigate a subset of these targets to iron-induced functional alterations. Proteomic analysis identified > 4500 proteins, of which 243 targets were differentially expressed. Sixty-five differentially expressed miRNAs were identified, of which 35 were associated with the “top” proteomic molecules (> fourfold change) identified by Ingenuity Pathway Analysis. Twenty of these 35 miRNAs are at the 14q32 locus (encoding a cluster of 54 miRNAs) with potential to be regulated by DNA methylation and histone deacetylation. At 14q32, miR-432-5p and miR-127-3p were ~ 100-fold downregulated whereas miR-138-5p was 16-fold downregulated at 3p21 in chronic iron-exposed FTSECs. Combinatorial treatment with methyltransferase and deacetylation inhibitors reversed expression of these miRNAs, suggesting chronic iron exposure alters miRNA expression via epigenetic alterations. In addition, PAX8, an important target in HGSOC and a potential miRNA target (from IPA) was epigenetically deregulated in iron-exposed FTSECs. However, both PAX8 and ALDH1A2 (another IPA-predicted target) were experimentally identified to be independently regulated by these miRNAs although TERT RNA was partially regulated by miR-138-5p. Interestingly, overexpression of miR-432-5p diminished cell numbers induced by long-term iron exposure in FTSECs. Collectively, our global profiling approaches uncovered patterns of miRNA and proteomic alterations that may be regulated by genome-wide epigenetic alterations and contribute to functional alterations induced by chronic iron exposure in FTSECs. This study may provide a platform to identify future biomarkers for early ovarian cancer detection and new targets for therapy.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stephanie Rockfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Owen W Nadeau
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Robert Hill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
6
|
Ldb1 is required for Lmo2 oncogene-induced thymocyte self-renewal and T-cell acute lymphoblastic leukemia. Blood 2021; 135:2252-2265. [PMID: 32181817 DOI: 10.1182/blood.2019000794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Prolonged or enhanced expression of the proto-oncogene Lmo2 is associated with a severe form of T-cell acute lymphoblastic leukemia (T-ALL), designated early T-cell precursor ALL, which is characterized by the aberrant self-renewal and subsequent oncogenic transformation of immature thymocytes. It has been suggested that Lmo2 exerts these effects by functioning as component of a multi-subunit transcription complex that includes the ubiquitous adapter Ldb1 along with b-HLH and/or GATA family transcription factors; however, direct experimental evidence for this mechanism is lacking. In this study, we investigated the importance of Ldb1 for Lmo2-induced T-ALL by conditional deletion of Ldb1 in thymocytes in an Lmo2 transgenic mouse model of T-ALL. Our results identify a critical requirement for Ldb1 in Lmo2-induced thymocyte self-renewal and thymocyte radiation resistance and for the transition of preleukemic thymocytes to overt T-ALL. Moreover, Ldb1 was also required for acquisition of the aberrant preleukemic ETP gene expression signature in immature Lmo2 transgenic thymocytes. Co-binding of Ldb1 and Lmo2 was detected at the promoters of key upregulated T-ALL driver genes (Hhex, Lyl1, and Nfe2) in preleukemic Lmo2 transgenic thymocytes, and binding of both Ldb1 and Lmo2 at these sites was reduced following Cre-mediated deletion of Ldb1. Together, these results identify a key role for Ldb1, a nonproto-oncogene, in T-ALL and support a model in which Lmo2-induced T-ALL results from failure to downregulate Ldb1/Lmo2-nucleated transcription complexes which normally function to enforce self-renewal in bone marrow hematopoietic progenitors.
Collapse
|
7
|
LDB1 Enforces Stability on Direct and Indirect Oncoprotein Partners in Leukemia. Mol Cell Biol 2020; 40:MCB.00652-19. [PMID: 32229578 DOI: 10.1128/mcb.00652-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/14/2020] [Indexed: 12/22/2022] Open
Abstract
The LMO2/LDB1 macromolecular complex is critical in hematopoietic stem and progenitor cell specification and in the development of acute leukemia. This complex is comprised of core subunits of LMO2 and LDB1 as well as single-stranded DNA-binding protein (SSBP) cofactors and DNA-binding basic helix-loop-helix (bHLH) and GATA transcription factors. We analyzed the steady-state abundance and kinetic stability of LMO2 and its partners via Halo protein tagging in conjunction with variant proteins deficient in binding their respective direct protein partners. We discovered a hierarchy of protein stabilities (with half-lives in descending order) as follows: LDB1 > SSBP > LMO2 > TAL1. Importantly, LDB1 is a remarkably stable protein that confers enhanced stability upon direct and indirect partners, thereby nucleating the formation of the multisubunit protein complex. The data imply that free subunits are more rapidly degraded than those incorporated within the LMO2/LDB1 complex. Our studies provided significant insights into LMO2/LDB1 macromolecular protein complex assembly and stability, which has implications for understanding its role in blood cell formation and for therapeutically targeting this complex in human leukemias.
Collapse
|
8
|
Li Y, Liu Y, Juedes D, Drews F, Bunescu R, Welch L. Set cover-based methods for motif selection. Bioinformatics 2020; 36:1044-1051. [PMID: 31665223 PMCID: PMC7703758 DOI: 10.1093/bioinformatics/btz697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 08/13/2019] [Accepted: 09/13/2019] [Indexed: 11/14/2022] Open
Abstract
Motivation De novo motif discovery algorithms find statistically over-represented sequence motifs that may function as transcription factor binding sites. Current methods often report large numbers of motifs, making it difficult to perform further analyses and experimental validation. The motif selection problem seeks to identify a minimal set of putative regulatory motifs that characterize sequences of interest (e.g. ChIP-Seq binding regions). Results In this study, the motif selection problem is mapped to variants of the set cover problem that are solved via tabu search and by relaxed integer linear programing (RILP). The algorithms are employed to analyze 349 ChIP-Seq experiments from the ENCODE project, yielding a small number of high-quality motifs that represent putative binding sites of primary factors and cofactors. Specifically, when compared with the motifs reported by Kheradpour and Kellis, the set cover-based algorithms produced motif sets covering 35% more peaks for 11 TFs and identified 4 more putative cofactors for 6 TFs. Moreover, a systematic evaluation using nested cross-validation revealed that the RILP algorithm selected fewer motifs and was able to cover 6% more peaks and 3% fewer background regions, which reduced the error rate by 7%. Availability and implementation The source code of the algorithms and all the datasets are available at https://github.com/YichaoOU/Set_cover_tools. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yichao Li
- Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
| | - Yating Liu
- Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
| | - David Juedes
- Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
| | - Frank Drews
- Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
| | - Razvan Bunescu
- Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
| | - Lonnie Welch
- Department of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
9
|
Hua C, Chen X, Yuan W, Li Y, Yu J, Li H, Ming L. Gene expression profiling by mRNA sequencing reveals dysregulation of core genes in Rictor deficient T-ALL mouse model. Leuk Res 2019; 87:106229. [PMID: 31698306 DOI: 10.1016/j.leukres.2019.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a neoplastic disorder with peak incidence in children and young adults. The mTOR complex is an important component of the PI3K/Akt/mTOR signaling cascade and holds great promise for the treatment of hematopoietic malignancies. Previous studies have shown that the depression of Rictor, one of the components of the mTOR complex, prevents myeloproliferative disorders and leukemia However, knowledge of the progression of mTOR has not greatly improved the prognosis of T-ALL. To identify potential prognostic biomarkers for T-ALL, a whole-genome expression profile of Rictior deficient T-ALL mice was performed. As a result, 1475 differentially expressed genes (DEGs) were identified. Network analysis revealed 46 genes with a high network degree and fold-change value. Kaplan-Meier analysis identified ten crucial genes which significantly associated with survival in Rictor deficient T-ALL mice. These findings provide potential therapeutic targets in leukemia and bear immediate relevance to patients with leukemia.
Collapse
Affiliation(s)
- Chunlan Hua
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiangyu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jing Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Haijun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
10
|
Identification of metabolism-associated pathways and genes involved in male and female liver cancer patients. J Theor Biol 2019; 480:218-228. [DOI: 10.1016/j.jtbi.2019.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
|
11
|
Minato Y, Kuwahara-Otani S, Maeda S, Yagi H. Platelet-derived growth factor receptor α gene is regulated by multiple first exons. Biochem Biophys Res Commun 2019; 510:489-494. [PMID: 30654933 DOI: 10.1016/j.bbrc.2019.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
Transcription of the platelet-derived growth factor receptor α (PDGFRA/Pdgfra) gene is considered to be precisely regulated. We have previously reported that the PDGFRA/Pdgfra gene is regulated by a dual promoter system in human and mouse, in which a novel PDGFRA/Pdgfra transcript has a first exon (exon 1β) different from that of the canonical PDGFRA/Pdgfra transcript (exon 1α). To elucidate the function of each transcript, we first investigated the contribution of different PDGFRA transcripts to final protein levels. Notably, knockdown experiments suggested the existence of other PDGFRA transcripts, and we identified five additional first exons (exons 1γ, 1δ, 1ε, 1ζ, and 1η) in intron 1 in both the human and mouse genes. The first exons of the mouse Pdgfra gene showed unique expression patterns: exon 1α was broadly expressed; exon 1β was highly expressed in embryos; exon 1γ was observed at relatively high levels in the adult central nervous system (CNS); and exon 1δ was expressed at relatively high levels in the developing CNS. Furthermore, in silico analysis of common putative transcription factor binding sites in the upstream regions of the first exons of both human and mouse PDGFRA/Pdgfra genes predicted common (such as Sry, Mzf1, and Cdx) and unique (such as Sox5, Lmo2, and GATA) transcription factors. Our findings show the diversity of the transcriptional regulation of the PDGFRA/Pdgfra gene.
Collapse
Affiliation(s)
- Yusuke Minato
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Sachi Kuwahara-Otani
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Seishi Maeda
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hideshi Yagi
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
12
|
Tan TK, Zhang C, Sanda T. Oncogenic transcriptional program driven by TAL1 in T-cell acute lymphoblastic leukemia. Int J Hematol 2018; 109:5-17. [PMID: 30145780 DOI: 10.1007/s12185-018-2518-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/21/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
TAL1/SCL is a prime example of an oncogenic transcription factor that is abnormally expressed in acute leukemia due to the replacement of regulator elements. This gene has also been recognized as an essential regulator of hematopoiesis. TAL1 expression is strictly regulated in a lineage- and stage-specific manner. Such precise control is crucial for the switching of the transcriptional program. The misexpression of TAL1 in immature thymocytes leads to a widespread series of orchestrated downstream events that affect several different cellular machineries, resulting in a lethal consequence, namely T-cell acute lymphoblastic leukemia (T-ALL). In this article, we will discuss the transcriptional regulatory network and downstream target genes, including protein-coding genes and non-coding RNAs, controlled by TAL1 in normal hematopoiesis and T-cell leukemogenesis.
Collapse
Affiliation(s)
- Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Chujing Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
13
|
Leong WZ, Tan SH, Ngoc PCT, Amanda S, Yam AWY, Liau WS, Gong Z, Lawton LN, Tenen DG, Sanda T. ARID5B as a critical downstream target of the TAL1 complex that activates the oncogenic transcriptional program and promotes T-cell leukemogenesis. Genes Dev 2018; 31:2343-2360. [PMID: 29326336 PMCID: PMC5795782 DOI: 10.1101/gad.302646.117] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022]
Abstract
Leong et al. identified ARID5B as a collaborating oncogenic factor involved in the transcriptional program in T-ALL. ARID5B positively regulates the expression of TAL1 and its regulatory partners and also activates the expression of the oncogene MYC. The oncogenic transcription factor TAL1/SCL induces an aberrant transcriptional program in T-cell acute lymphoblastic leukemia (T-ALL) cells. However, the critical factors that are directly activated by TAL1 and contribute to T-ALL pathogenesis are largely unknown. Here, we identified AT-rich interactive domain 5B (ARID5B) as a collaborating oncogenic factor involved in the transcriptional program in T-ALL. ARID5B expression is down-regulated at the double-negative 2–4 stages in normal thymocytes, while it is induced by the TAL1 complex in human T-ALL cells. The enhancer located 135 kb upstream of the ARID5B gene locus is activated under a superenhancer in T-ALL cells but not in normal T cells. Notably, ARID5B-bound regions are associated predominantly with active transcription. ARID5B and TAL1 frequently co-occupy target genes and coordinately control their expression. ARID5B positively regulates the expression of TAL1 and its regulatory partners. ARID5B also activates the expression of the oncogene MYC. Importantly, ARID5B is required for the survival and growth of T-ALL cells, and forced expression of ARID5B in immature thymocytes results in thymus retention, differentiation arrest, radioresistance, and tumor formation in zebrafish. Our results indicate that ARID5B reinforces the oncogenic transcriptional program by positively regulating the TAL1-induced regulatory circuit and MYC in T-ALL, thereby contributing to T-cell leukemogenesis.
Collapse
Affiliation(s)
- Wei Zhong Leong
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Phuong Cao Thi Ngoc
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Stella Amanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Alice Wei Yee Yam
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Wei-Siang Liau
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Lee N Lawton
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore.,Harvard Medical School, Boston, Massachusetts 02215, USA.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| |
Collapse
|
14
|
Tan SH, Bertulfo FC, Sanda T. Leukemia-Initiating Cells in T-Cell Acute Lymphoblastic Leukemia. Front Oncol 2017; 7:218. [PMID: 29034206 PMCID: PMC5627022 DOI: 10.3389/fonc.2017.00218] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy characterized by the clonal proliferation of immature T-cell precursors. T-ALL has many similar pathophysiological features to acute myeloid leukemia, which has been extensively studied in the establishment of the cancer stem cell (CSC) theory, but the CSC concept in T-ALL is still debatable. Although leukemia-initiating cells (LICs), which can generate leukemia in a xenograft setting, have been found in both human T-ALL patients and animal models, the nature and origin of LICs are largely unknown. In this review, we discuss recent studies on LICs in T-ALL and the potential mechanisms of LIC emergence in this disease. We focus on the oncogenic transcription factors TAL1, LMO2, and NOTCH1 and highlight the significance of the transcriptional regulatory programs in normal hematopoietic stem cells and T-ALL.
Collapse
Affiliation(s)
- Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Fatima Carla Bertulfo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Han Q, Xu X, Li J, Wang J, Bai L, Wang A, Wang W, Zhang B. GATA4 is highly expressed in childhood acute lymphoblastic leukemia, promotes cell proliferation and inhibits apoptosis by activating BCL2 and MDM2. Mol Med Rep 2017; 16:6290-6298. [PMID: 28849107 DOI: 10.3892/mmr.2017.7369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 06/16/2017] [Indexed: 11/05/2022] Open
Abstract
Members of the GATA‑binding factor protein family, including GATA1, GATA2 and GATA3, serve an inhibiting role in leukemia. The present study demonstrated that GATA4 was upregulated in children with acute lymphoblastic leukemia (ALL). Results from a number of functional experiments, including cell proliferation analysis, cell cycle analysis, cell apoptosis assay and Transwell migration and invasion analyses, have suggested that high expression of GATA4 may facilitate proliferation and metastasis, and suppress apoptosis in ALL cells. Chromatin immunoprecipitation assay and luciferase reporter assay revealed that GATA4 was a transcription factor that activated mouse double minute 2 homolog (MDM2) and B cell lymphoma 2 (BCL2) expression in ALL cells. BCL2 is a key anti‑apoptosis protein that was demonstrated to suppress cell apoptosis. In addition, GATA4 was revealed to regulate p53 through the transcriptional activation of MDM2, subsequently influencing cell cycle and apoptosis. Results from the present study suggested that GATA4 may be a key marker in ALL diagnosis and a potential target of molecular therapy.
Collapse
Affiliation(s)
- Qiuguo Han
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Xin Xu
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Jing Li
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Jinggang Wang
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Li Bai
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Aihong Wang
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Wei Wang
- Department of Pediatrics, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Bo Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
16
|
Liang H, Wu C, Deng Y, Zhu L, Zhang J, Gan W, Tang C, Xu R. Aldehyde Dehydrogenases 1A2 Expression and Distribution are Potentially Associated with Neuron Death in Spinal Cord of Tg(SOD1*G93A)1Gur Mice. Int J Biol Sci 2017; 13:574-587. [PMID: 28539831 PMCID: PMC5441175 DOI: 10.7150/ijbs.19150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of amyotrophic lateral sclerosis (ALS) has not been unclear yet, it might be associated with the abnormal expression and distribution of certain proteins. Aldehyde dehydrogenases 1A2 (ALDH1A2) was thought to be one of potential candidates. Therefore, in this study we observed and analyzed the alteration of the expression and distribution of ALDH1A2 in the spinal cord of wild-type (WT) and Tg(SOD1*G93A)1Gur mice. We compared the expression and distribution of ALDH1A2 in the different segments, anatomic regions and neural cells of spinal cord at the different stages of WT and Tg(SOD1*G93A)1Gur mice applied the methods of fluorescent immunohistochemistry and western blot. Results revealed that ALDH1A2 extensively expressed and distributed in the spinal cord of adult WT and Tg(SOD1*G93A)1Gur mice. The expression and distribution of ALDH1A2 in the white matter including the anterior, posterior and lateral funiculus were more than that in the gray matter including the central canal, the anterior and dorsal horn. ALDH1A2 majorly expressed and distributed in the astrocyte, microglial, oligodendrocyte and neuron cells. The ALDH1A2 expression significantly decreased and redistributed in some anatomic regions of spinal cord at the onset and progression stages of Tg(SOD1*G93A)1Gur mice. The expression decrease of ALDH1A2 followed with the increase of neuron cells death. This study suggested that the alteration of expression and distribution of ALDH1A2 was potentially associated with the pathogenesis of ALS.
Collapse
Affiliation(s)
- Huiting Liang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chengsi Wu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Youqing Deng
- Department of Neurology, Third Affiliated Hospital of Nanchang University, Nanchang 330008, Jiangxi, China
| | - Lei Zhu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jie Zhang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Weiming Gan
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chunyan Tang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
17
|
MiR-146b negatively regulates migration and delays progression of T-cell acute lymphoblastic leukemia. Sci Rep 2016; 6:31894. [PMID: 27550837 PMCID: PMC4994040 DOI: 10.1038/srep31894] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022] Open
Abstract
Previous results indicated that miR-146b-5p is downregulated by TAL1, a transcription factor critical for early hematopoiesis that is frequently overexpressed in T-cell acute lymphoblastic leukemia (T-ALL) where it has an oncogenic role. Here, we confirmed that miR-146b-5p expression is lower in TAL1-positive patient samples than in other T-ALL cases. Furthermore, leukemia T-cells display decreased levels of miR-146b-5p as compared to normal T-cells, thymocytes and other hematopoietic progenitors. MiR-146b-5p silencing enhances the in vitro migration and invasion of T-ALL cells, associated with increased levels of filamentous actin and chemokinesis. In vivo, miR-146b overexpression in a TAL1-positive cell line extends mouse survival in a xenotransplant model of human T-ALL. In contrast, knockdown of miR-146b-5p results in leukemia acceleration and decreased mouse overall survival, paralleled by faster tumor infiltration of the central nervous system. Our results suggest that miR-146b-5p is a functionally relevant microRNA gene in the context of T-ALL, whose negative regulation by TAL1 and possibly other oncogenes contributes to disease progression by modulating leukemia cell motility and disease aggressiveness.
Collapse
|
18
|
Stem Cell Leukemia: how a TALented actor can go awry on the hematopoietic stage. Leukemia 2016; 30:1968-1978. [DOI: 10.1038/leu.2016.169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
|
19
|
Abstract
LMO2 was first discovered through proximity to frequently occurring chromosomal translocations in T cell acute lymphoblastic leukaemia (T-ALL). Subsequent studies on its role in tumours and in normal settings have highlighted LMO2 as an archetypical chromosomal translocation oncogene, activated by association with antigen receptor gene loci and a paradigm for translocation gene activation in T-ALL. The normal function of LMO2 in haematopoietic cell fate and angiogenesis suggests it is a master gene regulator exerting a dysfunctional control on differentiation following chromosomal translocations. Its importance in T cell neoplasia has been further emphasized by the recurrent findings of interstitial deletions of chromosome 11 near LMO2 and of LMO2 as a target of retroviral insertion gene activation during gene therapy trials for X chromosome-linked severe combined immuno-deficiency syndrome, both types of event leading to similar T cell leukaemia. The discovery of LMO2 in some B cell neoplasias and in some epithelial cancers suggests a more ubiquitous function as an oncogenic protein, and that the current development of novel inhibitors will be of great value in future cancer treatment. Further, the role of LMO2 in angiogenesis and in haematopoietic stem cells (HSCs) bodes well for targeting LMO2 in angiogenic disorders and in generating autologous induced HSCs for application in various clinical indications.
Collapse
Affiliation(s)
- Jennifer Chambers
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Terence H Rabbitts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
20
|
LMO2 Oncoprotein Stability in T-Cell Leukemia Requires Direct LDB1 Binding. Mol Cell Biol 2015; 36:488-506. [PMID: 26598604 DOI: 10.1128/mcb.00901-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
LMO2 is a component of multisubunit DNA-binding transcription factor complexes that regulate gene expression in hematopoietic stem and progenitor cell development. Enforced expression of LMO2 causes leukemia by inducing hematopoietic stem cell-like features in T-cell progenitor cells, but the biochemical mechanisms of LMO2 function have not been fully elucidated. In this study, we systematically dissected the LMO2/LDB1-binding interface to investigate the role of this interaction in T-cell leukemia. Alanine scanning mutagenesis of the LIM interaction domain of LDB1 revealed a discrete motif, R(320)LITR, required for LMO2 binding. Most strikingly, coexpression of full-length, wild-type LDB1 increased LMO2 steady-state abundance, whereas coexpression of mutant proteins deficient in LMO2 binding compromised LMO2 stability. These mutant LDB1 proteins also exerted dominant negative effects on growth and transcription in diverse leukemic cell lines. Mass spectrometric analysis of LDB1 binding partners in leukemic lines supports the notion that LMO2/LDB1 function in leukemia occurs in the context of multisubunit complexes, which also protect the LMO2 oncoprotein from degradation. Collectively, these data suggest that the assembly of LMO2 into complexes, via direct LDB1 interaction, is a potential molecular target that could be exploited in LMO2-driven leukemias resistant to existing chemotherapy regimens.
Collapse
|
21
|
Tan SH, Yam AWY, Lawton LN, Wong RWJ, Young RA, Look AT, Sanda T. TRIB2 reinforces the oncogenic transcriptional program controlled by the TAL1 complex in T-cell acute lymphoblastic leukemia. Leukemia 2015. [PMID: 26202930 DOI: 10.1038/leu.2015.195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S H Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - A W Y Yam
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - L N Lawton
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - R W J Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - R A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A T Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Division of Hematology/Oncology, Children's Hospital, Boston, MA, USA
| | - T Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
22
|
SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells. PLoS Genet 2014; 10:e1004768. [PMID: 25522233 PMCID: PMC4270438 DOI: 10.1371/journal.pgen.1004768] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022] Open
Abstract
The molecular determinants that render specific populations of normal cells susceptible to oncogenic reprogramming into self-renewing cancer stem cells are poorly understood. Here, we exploit T-cell acute lymphoblastic leukemia (T-ALL) as a model to define the critical initiating events in this disease. First, thymocytes that are reprogrammed by the SCL and LMO1 oncogenic transcription factors into self-renewing pre-leukemic stem cells (pre-LSCs) remain non-malignant, as evidenced by their capacities to generate functional T cells. Second, we provide strong genetic evidence that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1. Moreover, LYL1 can substitute for SCL to reprogram thymocytes in concert with LMO1. In contrast, inhibition of E2A was not sufficient to substitute for SCL, indicating that thymocyte reprogramming requires transcription activation by SCL-LMO1. Third, only a specific subset of normal thymic cells, known as DN3 thymocytes, is susceptible to reprogramming. This is because physiological NOTCH1 signals are highest in DN3 cells compared to other thymocyte subsets. Consistent with this, overexpression of a ligand-independent hyperactive NOTCH1 allele in all immature thymocytes is sufficient to sensitize them to SCL-LMO1, thereby increasing the pool of self-renewing cells. Surprisingly, hyperactive NOTCH1 cannot reprogram thymocytes on its own, despite the fact that NOTCH1 is activated by gain of function mutations in more than 55% of T-ALL cases. Rather, elevating NOTCH1 triggers a parallel pathway involving Hes1 and Myc that dramatically enhances the activity of SCL-LMO1 We conclude that the acquisition of self-renewal and the genesis of pre-LSCs from thymocytes with a finite lifespan represent a critical first event in T-ALL. Finally, LYL1 and LMO1 or LMO2 are co-expressed in most human T-ALL samples, except the cortical T subtype. We therefore anticipate that the self-renewal network described here may be relevant to a majority of human T-ALL. Deciphering the initiating events in lymphoid leukemia is important for the development of new therapeutic strategies. In this manuscript, we define oncogenic reprogramming as the process through which non-self-renewing progenitors are converted into pre-leukemic stem cells with sustained self-renewal capacities. We provide strong genetic evidence that this step is rate-limiting in leukemogenesis and requires the activation of a self-renewal program by oncogenic transcription factors, as exemplified by SCL and LMO1. Furthermore, NOTCH1 is a pathway that drives cell fate in the thymus. We demonstrate that homeostatic NOTCH1 levels that are highest in specific thymocyte subsets determine their susceptibilities to oncogenic reprogramming by SCL and LMO1. Our data provide novel insight into the acquisition of self-renewal as a critical first step in lymphoid cell transformation, requiring the synergistic interaction of oncogenic transcription factors with a cellular context controlled by high physiological NOTCH1.
Collapse
|
23
|
Goodings C, Tripathi R, Cleveland SM, Elliott N, Guo Y, Shyr Y, Davé UP. Enforced expression of E47 has differential effects on Lmo2-induced T-cell leukemias. Leuk Res 2014; 39:100-9. [PMID: 25499232 DOI: 10.1016/j.leukres.2014.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/30/2014] [Accepted: 11/22/2014] [Indexed: 11/18/2022]
Abstract
LIM domain only-2 (LMO2) overexpression in T cells induces leukemia but the molecular mechanism remains to be elucidated. In hematopoietic stem and progenitor cells, Lmo2 is part of a protein complex comprised of class II basic helix loop helix proteins, Tal1and Lyl1. The latter transcription factors heterodimerize with E2A proteins like E47 and Heb to bind E boxes. LMO2 and TAL1 or LYL1 cooperate to induce T-ALL in mouse models, and are concordantly expressed in human T-ALL. Furthermore, LMO2 cooperates with the loss of E2A suggesting that LMO2 functions by creating a deficiency of E2A. In this study, we tested this hypothesis in Lmo2-induced T-ALL cell lines. We transduced these lines with an E47/estrogen receptor fusion construct that could be forced to homodimerize with 4-hydroxytamoxifen. We discovered that forced homodimerization induced growth arrest in 2 of the 4 lines tested. The lines sensitive to E47 homodimerization accumulated in G1 and had reduced S phase entry. We analyzed the transcriptome of a resistant and a sensitive line to discern the E47 targets responsible for the cellular effects. Our results suggest that E47 has diverse effects in T-ALL but that functional deficiency of E47 is not a universal feature of Lmo2-induced T-ALL.
Collapse
Affiliation(s)
- Charnise Goodings
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rati Tripathi
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan M Cleveland
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Natalina Elliott
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan Guo
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Utpal P Davé
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
24
|
Wu W, Morrissey CS, Keller CA, Mishra T, Pimkin M, Blobel GA, Weiss MJ, Hardison RC. Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis. Genome Res 2014; 24:1945-62. [PMID: 25319994 PMCID: PMC4248312 DOI: 10.1101/gr.164830.113] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We used mouse ENCODE data along with complementary data from other laboratories to study the dynamics of occupancy and the role in gene regulation of the transcription factor TAL1, a critical regulator of hematopoiesis, at multiple stages of hematopoietic differentiation. We combined ChIP-seq and RNA-seq data in six mouse cell types representing a progression from multilineage precursors to differentiated erythroblasts and megakaryocytes. We found that sites of occupancy shift dramatically during commitment to the erythroid lineage, vary further during terminal maturation, and are strongly associated with changes in gene expression. In multilineage progenitors, the likely target genes are enriched for hematopoietic growth and functions associated with the mature cells of specific daughter lineages (such as megakaryocytes). In contrast, target genes in erythroblasts are specifically enriched for red cell functions. Furthermore, shifts in TAL1 occupancy during erythroid differentiation are associated with gene repression (dissociation) and induction (co-occupancy with GATA1). Based on both enrichment for transcription factor binding site motifs and co-occupancy determined by ChIP-seq, recruitment by GATA transcription factors appears to be a stronger determinant of TAL1 binding to chromatin than the canonical E-box binding site motif. Studies of additional proteins lead to the model that TAL1 regulates expression after being directed to a distinct subset of genomic binding sites in each cell type via its association with different complexes containing master regulators such as GATA2, ERG, and RUNX1 in multilineage cells and the lineage-specific master regulator GATA1 in erythroblasts.
Collapse
Affiliation(s)
- Weisheng Wu
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christapher S Morrissey
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheryl A Keller
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tejaswini Mishra
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Maxim Pimkin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell J Weiss
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
25
|
Longville BAC, Anderson D, Welch MD, Kees UR, Greene WK. Aberrant expression of aldehyde dehydrogenase 1A (ALDH1A) subfamily genes in acute lymphoblastic leukaemia is a common feature of T-lineage tumours. Br J Haematol 2014; 168:246-57. [DOI: 10.1111/bjh.13120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/29/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Brooke A. C. Longville
- Division of Children's Leukaemia and Cancer Research; Telethon Kids Institute; University of Western Australia; Perth WA 6008 Australia
| | - Denise Anderson
- Telethon Kids Institute; Centre for Child Health Research; The University of Western Australia; Perth WA 6008 Australia
| | - Mathew D. Welch
- Division of Children's Leukaemia and Cancer Research; Telethon Kids Institute; University of Western Australia; Perth WA 6008 Australia
| | - Ursula R. Kees
- Division of Children's Leukaemia and Cancer Research; Telethon Kids Institute; University of Western Australia; Perth WA 6008 Australia
| | - Wayne K. Greene
- School of Veterinary and Life Sciences; Murdoch University; Perth WA Australia
| |
Collapse
|
26
|
Smith S, Tripathi R, Goodings C, Cleveland S, Mathias E, Hardaway JA, Elliott N, Yi Y, Chen X, Downing J, Mullighan C, Swing DA, Tessarollo L, Li L, Love P, Jenkins NA, Copeland NG, Thompson MA, Du Y, Davé UP. LIM domain only-2 (LMO2) induces T-cell leukemia by two distinct pathways. PLoS One 2014; 9:e85883. [PMID: 24465765 PMCID: PMC3897537 DOI: 10.1371/journal.pone.0085883] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/03/2013] [Indexed: 02/03/2023] Open
Abstract
The LMO2 oncogene is deregulated in the majority of human T-cell leukemia cases and in most gene therapy-induced T-cell leukemias. We made transgenic mice with enforced expression of Lmo2 in T-cells by the CD2 promoter/enhancer. These transgenic mice developed highly penetrant T-ALL by two distinct patterns of gene expression: one in which there was concordant activation of Lyl1, Hhex, and Mycn or alternatively, with Notch1 target gene activation. Most strikingly, this gene expression clustering was conserved in human Early T-cell Precursor ALL (ETP-ALL), where LMO2, HHEX, LYL1, and MYCN were most highly expressed. We discovered that HHEX is a direct transcriptional target of LMO2 consistent with its concordant gene expression. Furthermore, conditional inactivation of Hhex in CD2-Lmo2 transgenic mice markedly attenuated T-ALL development, demonstrating that Hhex is a crucial mediator of Lmo2's oncogenic function. The CD2-Lmo2 transgenic mice offer mechanistic insight into concordant oncogene expression and provide a model for the highly treatment-resistant ETP-ALL subtype.
Collapse
Affiliation(s)
- Stephen Smith
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Rati Tripathi
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Charnise Goodings
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Susan Cleveland
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Elizabeth Mathias
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - J. Andrew Hardaway
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Natalina Elliott
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Yajun Yi
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Xi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James Downing
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Charles Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Deborah A. Swing
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Liqi Li
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Love
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy A. Jenkins
- The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Neal G. Copeland
- The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Mary Ann Thompson
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Utpal P. Davé
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| |
Collapse
|
27
|
Kitajima K, Kawaguchi M, Iacovino M, Kyba M, Hara T. Molecular Functions of the LIM-Homeobox Transcription FactorLhx2in Hematopoietic Progenitor Cells Derived from Mouse Embryonic Stem Cells. Stem Cells 2013; 31:2680-9. [DOI: 10.1002/stem.1500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/14/2013] [Accepted: 07/05/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Kenji Kitajima
- Stem Cell Project Group; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Manami Kawaguchi
- Stem Cell Project Group; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Michelina Iacovino
- Lillehei Heart Institute, Department of Pediatrics; University of Minnesota; Minneapolis Minnesota USA
| | - Michael Kyba
- Lillehei Heart Institute, Department of Pediatrics; University of Minnesota; Minneapolis Minnesota USA
| | - Takahiko Hara
- Stem Cell Project Group; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| |
Collapse
|
28
|
Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, Brand M, Gutierrez A, Kelliher MA, Jamieson CHM, von Boehmer H, Young RA, Look AT. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2013; 210:1545-57. [PMID: 23857984 PMCID: PMC3727321 DOI: 10.1084/jem.20122516] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
miR-223 is upregulated by the transcription factor TAL1 in human T-ALL cells and suppress the FBXW7 tumor suppressor. The oncogenic transcription factor TAL1/SCL is aberrantly expressed in 60% of cases of human T cell acute lymphoblastic leukemia (T-ALL) and initiates T-ALL in mouse models. By performing global microRNA (miRNA) expression profiling after depletion of TAL1, together with genome-wide analysis of TAL1 occupancy by chromatin immunoprecipitation coupled to massively parallel DNA sequencing, we identified the miRNA genes directly controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. The most dynamically regulated miRNA was miR-223, which is bound at its promoter and up-regulated by the TAL1 complex. miR-223 expression mirrors TAL1 levels during thymic development, with high expression in early thymocytes and marked down-regulation after the double-negative-2 stage of maturation. We demonstrate that aberrant miR-223 up-regulation by TAL1 is important for optimal growth of TAL1-positive T-ALL cells and that sustained expression of miR-223 partially rescues T-ALL cells after TAL1 knockdown. Overexpression of miR-223 also leads to marked down-regulation of FBXW7 protein expression, whereas knockdown of TAL1 leads to up-regulation of FBXW7 protein levels, with a marked reduction of its substrates MYC, MYB, NOTCH1, and CYCLIN E. We conclude that TAL1-mediated up-regulation of miR-223 promotes the malignant phenotype in T-ALL through repression of the FBXW7 tumor suppressor.
Collapse
Affiliation(s)
- Marc R Mansour
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02216, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rhie SK, Coetzee SG, Noushmehr H, Yan C, Kim JM, Haiman CA, Coetzee GA. Comprehensive functional annotation of seventy-one breast cancer risk Loci. PLoS One 2013; 8:e63925. [PMID: 23717510 PMCID: PMC3661550 DOI: 10.1371/journal.pone.0063925] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/08/2013] [Indexed: 02/06/2023] Open
Abstract
Breast Cancer (BCa) genome-wide association studies revealed allelic frequency differences between cases and controls at index single nucleotide polymorphisms (SNPs). To date, 71 loci have thus been identified and replicated. More than 320,000 SNPs at these loci define BCa risk due to linkage disequilibrium (LD). We propose that BCa risk resides in a subgroup of SNPs that functionally affects breast biology. Such a shortlist will aid in framing hypotheses to prioritize a manageable number of likely disease-causing SNPs. We extracted all the SNPs, residing in 1 Mb windows around breast cancer risk index SNP from the 1000 genomes project to find correlated SNPs. We used FunciSNP, an R/Bioconductor package developed in-house, to identify potentially functional SNPs at 71 risk loci by coinciding them with chromatin biofeatures. We identified 1,005 SNPs in LD with the index SNPs (r(2)≥0.5) in three categories; 21 in exons of 18 genes, 76 in transcription start site (TSS) regions of 25 genes, and 921 in enhancers. Thirteen SNPs were found in more than one category. We found two correlated and predicted non-benign coding variants (rs8100241 in exon 2 and rs8108174 in exon 3) of the gene, ANKLE1. Most putative functional LD SNPs, however, were found in either epigenetically defined enhancers or in gene TSS regions. Fifty-five percent of these non-coding SNPs are likely functional, since they affect response element (RE) sequences of transcription factors. Functionality of these SNPs was assessed by expression quantitative trait loci (eQTL) analysis and allele-specific enhancer assays. Unbiased analyses of SNPs at BCa risk loci revealed new and overlooked mechanisms that may affect risk of the disease, thereby providing a valuable resource for follow-up studies.
Collapse
Affiliation(s)
- Suhn Kyong Rhie
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Simon G. Coetzee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Houtan Noushmehr
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Chunli Yan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jae Mun Kim
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Gerhard A. Coetzee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
30
|
Oram SH, Thoms J, Sive JI, Calero-Nieto FJ, Kinston SJ, Schütte J, Knezevic K, Lock RB, Pimanda JE, Göttgens B. Bivalent promoter marks and a latent enhancer may prime the leukaemia oncogene LMO1 for ectopic expression in T-cell leukaemia. Leukemia 2013; 27:1348-57. [PMID: 23302769 PMCID: PMC3677138 DOI: 10.1038/leu.2013.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
LMO1 is a transcriptional regulator and a T-acute lymphoblastic leukaemia (T-ALL) oncogene. Although first identified in association with a chromosomal translocation in T-ALL, the ectopic expression of LMO1 occurs far more frequently in the absence of any known mutation involving its locus. Given that LMO1 is barely expressed in any haematopoietic lineage, and activation of transcriptional drivers in leukaemic cells is not well described, we investigated the regulation of this gene in normal haematopoietic and leukaemic cells. We show that LMO1 has two promoters that drive reporter gene expression in transgenic mice to neural tissues known to express endogenous LMO1. The LMO1 promoters display bivalent histone marks in multiple blood lineages including T-cells, and a 3' flanking region at LMO1 +57 contains a transcriptional enhancer that is active in developing blood cells in transgenic mouse embryos. The LMO1 promoters become activated in T-ALL together with the 3' enhancer, which is bound in primary T-ALL cells by SCL/TAL1 and GATA3. Taken together, our results show that LMO1 is poised for expression in normal progenitors, where activation of SCL/TAL1 together with a breakdown of epigenetic repression of LMO1 regulatory elements induces ectopic LMO1 expression that contributes to the development and maintenance of T-ALL.
Collapse
Affiliation(s)
- S H Oram
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Viger RS, Taniguchi H, Robert NM, Tremblay JJ. The 25th Volume: Role of the GATA Family of Transcription Factors in Andrology. ACTA ACUST UNITED AC 2013; 25:441-52. [PMID: 15223831 DOI: 10.1002/j.1939-4640.2004.tb02813.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Robert S Viger
- Ontogeny-Reproduction Research Unit, CHUL Research Centre, and Centre de Recherche en Biologie de la Reproduction, Department of Obstetrics and Gynecology, Faculty of Medicine, Université Laval, Ste-Foy, Québec, Canada.
| | | | | | | |
Collapse
|
32
|
Upstream distal regulatory elements contact the Lmo2 promoter in mouse erythroid cells. PLoS One 2012; 7:e52880. [PMID: 23285212 PMCID: PMC3528669 DOI: 10.1371/journal.pone.0052880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/22/2012] [Indexed: 01/06/2023] Open
Abstract
The Lim domain only 2 (Lmo2) gene encodes a transcriptional cofactor critical for the development of hematopoietic stem cells. Several distal regulatory elements have been identified upstream of the Lmo2 gene in the human and mouse genomes that are capable of enhancing reporter gene expression in erythroid cells and may be responsible for the high level transcription of Lmo2 in the erythroid lineage. In this study we investigate how these elements regulate transcription of Lmo2 and whether or not they function cooperatively in the endogenous context. Chromosome conformation capture (3C) experiments show that chromatin-chromatin interactions exist between upstream regulatory elements and the Lmo2 promoter in erythroid cells but that these interactions are absent from kidney where Lmo2 is transcribed at twelve fold lower levels. Specifically, long range chromatin-chromatin interactions occur between the Lmo2 proximal promoter and two broad regions, 3–31 and 66–105 kb upstream of Lmo2, which we term the proximal and distal control regions for Lmo2 (pCR and dCR respectively). Each of these regions is bound by several transcription factors suggesting that multiple regulatory elements cooperate in regulating high level transcription of Lmo2 in erythroid cells. Binding of CTCF and cohesin which support chromatin loops at other loci were also found within the dCR and at the Lmo2 proximal promoter. Intergenic transcription occurs throughout the dCR in erythroid cells but not in kidney suggesting a role for these intergenic transcripts in regulating Lmo2, similar to the broad domain of intergenic transcription observed at the human β-globin locus control region. Our data supports a model in which the dCR functions through a chromatin looping mechanism to contact and enhance Lmo2 transcription specifically in erythroid cells. Furthermore, these chromatin loops are supported by the cohesin complex recruited to both CTCF and transcription factor bound regions.
Collapse
|
33
|
Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012; 122:3398-406. [PMID: 23023710 DOI: 10.1172/jci61269] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
T cell acute lymphoblastic leukemias (T-ALLs) arise from the malignant transformation of hematopoietic progenitors primed toward T cell development, as result of a multistep oncogenic process involving constitutive activation of NOTCH signaling and genetic alterations in transcription factors, signaling oncogenes, and tumor suppressors. Notably, these genetic alterations define distinct molecular groups of T-ALL with specific gene expression signatures and clinicobiological features. This review summarizes recent advances in our understanding of the molecular genetics of T-ALL.
Collapse
Affiliation(s)
- Pieter Van Vlierberghe
- Institute for Cancer Genetics, Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
| | | |
Collapse
|
34
|
Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A, Ma W, Tatarek J, Ahn Y, Kelliher MA, Jamieson CHM, Staudt LM, Young RA, Look AT. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell 2012; 22:209-21. [PMID: 22897851 PMCID: PMC3422504 DOI: 10.1016/j.ccr.2012.06.007] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 03/09/2012] [Accepted: 06/15/2012] [Indexed: 11/16/2022]
Abstract
The oncogenic transcription factor TAL1/SCL is aberrantly expressed in over 40% of cases of human T cell acute lymphoblastic leukemia (T-ALL), emphasizing its importance in the molecular pathogenesis of T-ALL. Here we identify the core transcriptional regulatory circuit controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. We show that TAL1 forms a positive interconnected autoregulatory loop with GATA3 and RUNX1 and that the TAL1 complex directly activates the MYB oncogene, forming a positive feed-forward regulatory loop that reinforces and stabilizes the TAL1-regulated oncogenic program. One of the critical downstream targets in this circuitry is the TRIB2 gene, which is oppositely regulated by TAL1 and E2A/HEB and is essential for the survival of T-ALL cells.
Collapse
Affiliation(s)
- Takaomi Sanda
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lee N. Lawton
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Zi Peng Fan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Holger Kohlhammer
- Metabolism Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alejandro Gutierrez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Division of Hematology/Oncology, Children’s Hospital, Boston, MA 02115, USA
| | - Wenxue Ma
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jessica Tatarek
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yebin Ahn
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle A. Kelliher
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Catriona H. M. Jamieson
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Louis M. Staudt
- Metabolism Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Division of Hematology/Oncology, Children’s Hospital, Boston, MA 02115, USA
- Corresponding author: A. Thomas Look, M.D., Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Mayer 630, Boston, MA 02216, , Phone: 617-632-5826 Fax: 617-632-6989
| |
Collapse
|
35
|
Transcriptional activation of prostate specific homeobox gene NKX3-1 in subsets of T-cell lymphoblastic leukemia (T-ALL). PLoS One 2012; 7:e40747. [PMID: 22848398 PMCID: PMC3407137 DOI: 10.1371/journal.pone.0040747] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/12/2012] [Indexed: 01/26/2023] Open
Abstract
Homeobox genes encode transcription factors impacting key developmental processes including embryogenesis, organogenesis, and cell differentiation. Reflecting their tight transcriptional control, homeobox genes are often embedded in large non-coding, cis-regulatory regions, containing tissue specific elements. In T-cell acute lymphoblastic leukemia (T-ALL) homeobox genes are frequently deregulated by chromosomal aberrations, notably translocations adding T-cell specific activatory elements. NKX3-1 is a prostate specific homeobox gene activated in T-ALL patients expressing oncogenic TAL1 or displaying immature T-cell characteristics. After investigating regulation of NKX3-1 in primary cells and cell lines, we report its ectopic expression in T-ALL cells independent of chromosomal rearrangements. Using siRNAs and expression profiling, we exploited NKX3-1 positive T-ALL cell lines as tools to investigate aberrant activatory mechanisms. Our data confirmed NKX3-1 activation by TAL1/GATA3/LMO and identified LYL1 as an alternative activator in immature T-ALL cells devoid of GATA3. Moreover, we showed that NKX3-1 is directly activated by early T-cell homeodomain factor MSX2. These activators were regulated by MLL and/or by IL7-, BMP4- and IGF2-signalling. Finally, we demonstrated homeobox gene SIX6 as a direct leukemic target of NKX3-1 in T-ALL. In conclusion, we identified three major mechanisms of NKX3-1 regulation in T-ALL cell lines which are represented by activators TAL1, LYL1 and MSX2, corresponding to particular T-ALL subtypes described in patients. These results may contribute to the understanding of leukemic transcriptional networks underlying disturbed T-cell differentiation in T-ALL.
Collapse
|
36
|
Abstract
LMO2 regulates gene expression by facilitating the formation of multipartite DNA-binding complexes. In B cells, LMO2 is specifically up-regulated in the germinal center (GC) and is expressed in GC-derived non-Hodgkin lymphomas. LMO2 is one of the most powerful prognostic indicators in diffuse large B-cell (DLBCL) patients. However, its function in GC B cells and DLBCL is currently unknown. In this study, we characterized the LMO2 transcriptome and transcriptional complex in DLBCL cells. LMO2 regulates genes implicated in kinetochore function, chromosome assembly, and mitosis. Overexpression of LMO2 in DLBCL cell lines results in centrosome amplification. In DLBCL, the LMO2 complex contains some of the traditional partners, such as LDB1, E2A, HEB, Lyl1, ETO2, and SP1, but not TAL1 or GATA proteins. Furthermore, we identified novel LMO2 interacting partners: ELK1, nuclear factor of activated T-cells (NFATc1), and lymphoid enhancer-binding factor1 (LEF1) proteins. Reporter assays revealed that LMO2 increases transcriptional activity of NFATc1 and decreases transcriptional activity of LEF1 proteins. Overall, our studies identified a novel LMO2 transcriptome and interactome in DLBCL and provides a platform for future elucidation of LMO2 function in GC B cells and DLBCL pathogenesis.
Collapse
|
37
|
Protein networks as logic functions in development and cancer. PLoS Comput Biol 2011; 7:e1002180. [PMID: 21980275 PMCID: PMC3182870 DOI: 10.1371/journal.pcbi.1002180] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 07/17/2011] [Indexed: 11/23/2022] Open
Abstract
Many biological and clinical outcomes are based not on single proteins, but on modules of proteins embedded in protein networks. A fundamental question is how the proteins within each module contribute to the overall module activity. Here, we study the modules underlying three representative biological programs related to tissue development, breast cancer metastasis, or progression of brain cancer, respectively. For each case we apply a new method, called Network-Guided Forests, to identify predictive modules together with logic functions which tie the activity of each module to the activity of its component genes. The resulting modules implement a diverse repertoire of decision logic which cannot be captured using the simple approximations suggested in previous work such as gene summation or subtraction. We show that in cancer, certain combinations of oncogenes and tumor suppressors exert competing forces on the system, suggesting that medical genetics should move beyond cataloguing individual cancer genes to cataloguing their combinatorial logic. Biological outcomes are often determined by modules of proteins working in combination. In classic biological studies, these modules have been shown to encode a diverse repertoire of logic functions which provide the means to express complex regulatory programs using a limited number of proteins. Here, we integrate gene expression profiles and physical protein interaction maps to provide a systematic and global view of combinatorial network modules underlying representative developmental and cancer programs. We develop a new method that associates decision trees with concise network regions to identify network decision modules predictive of biological or clinical outcome. The resulting network signatures prove robust across different sample cohorts and capture causal mechanisms of development or disease. Furthermore, we find that the most predictive network decision functions rely on both coherent and opposing gene activities. Notably, in cancer progression the predictive gene associations often map to physical interactions between known oncogenes and tumor suppressors, where the combined activity of these genes determines disease outcome.
Collapse
|
38
|
Napoli JL. Physiological insights into all-trans-retinoic acid biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:152-67. [PMID: 21621639 DOI: 10.1016/j.bbalip.2011.05.004] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/05/2011] [Accepted: 05/12/2011] [Indexed: 01/25/2023]
Abstract
All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer, and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data support a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires the presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
|
39
|
Palii CG, Perez-Iratxeta C, Yao Z, Cao Y, Dai F, Davison J, Atkins H, Allan D, Dilworth FJ, Gentleman R, Tapscott SJ, Brand M. Differential genomic targeting of the transcription factor TAL1 in alternate haematopoietic lineages. EMBO J 2010; 30:494-509. [PMID: 21179004 PMCID: PMC3034015 DOI: 10.1038/emboj.2010.342] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/30/2010] [Indexed: 12/03/2022] Open
Abstract
Expression of the basic helix-loop-helix transcription factor TAL1/SCL is required for erythrocyte differentiation; aberrant expression in lymphoid cells leads to oncogenic transformation. Here, global analysis of TAL1 binding in erythroid and malignant T cells identifies cell type specific functional interaction with the transcription factors RUNX and ETS1. TAL1/SCL is a master regulator of haematopoiesis whose expression promotes opposite outcomes depending on the cell type: differentiation in the erythroid lineage or oncogenesis in the T-cell lineage. Here, we used a combination of ChIP sequencing and gene expression profiling to compare the function of TAL1 in normal erythroid and leukaemic T cells. Analysis of the genome-wide binding properties of TAL1 in these two haematopoietic lineages revealed new insight into the mechanism by which transcription factors select their binding sites in alternate lineages. Our study shows limited overlap in the TAL1-binding profile between the two cell types with an unexpected preference for ETS and RUNX motifs adjacent to E-boxes in the T-cell lineage. Furthermore, we show that TAL1 interacts with RUNX1 and ETS1, and that these transcription factors are critically required for TAL1 binding to genes that modulate T-cell differentiation. Thus, our findings highlight a critical role of the cellular environment in modulating transcription factor binding, and provide insight into the mechanism by which TAL1 inhibits differentiation leading to oncogenesis in the T-cell lineage.
Collapse
Affiliation(s)
- Carmen G Palii
- The Sprott Center for Stem Cell Research, Department of Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun W, Yang S, Shen W, Li H, Gao Y, Zhu TH. Identification of DeltaEF1 as a novel target that is negatively regulated by LMO2 in T-cell leukemia. Eur J Haematol 2010; 85:508-19. [PMID: 20731704 DOI: 10.1111/j.1600-0609.2010.01519.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lmo2 gene is a specific oncogene in T-cell leukemia, for its ectopic expression causes both increased pro-T-cell proliferation and differentiation arrest, leading to the onset of leukemia. Notably, DeltaEF1 (also known as ZEB1), a member of zinc finger-homeodomain family transcription factor, also exhibits crucial function in promoting T-cell differentiation. In this study, we found that DeltaEF1 was positively regulated by T-lineage-specific transcriptional regulator GATA3, while ectopically expressed LMO2 targeted to DeltaEF1 promoter by interaction with GATA3 and inhibited DeltaEF1 expression in transcriptional level. Moreover, LMO2 interacted with the N-terminal zinc finger domain of DeltaEF1 protein and inhibited its positive transcriptional regulatory function by this interaction. Taken together, our findings revealed that ectopically expressed LMO2 impaired the function of DeltaEF1 in both transcriptional and protein levels and identified DeltaEF1 as a novel pathogenic target of LMO2 in T-cell leukemia.
Collapse
Affiliation(s)
- Wei Sun
- Laboratory of Molecular Genetics, College of Medicine, Nankai University, Tianjin, China
| | | | | | | | | | | |
Collapse
|
41
|
El Omari K, Porcher C, Mancini EJ. Purification, crystallization and preliminary X-ray analysis of a fusion of the LIM domains of LMO2 and the LID domain of Ldb1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1466-9. [PMID: 21045296 DOI: 10.1107/s1744309110032872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 08/16/2010] [Indexed: 11/11/2022]
Abstract
LMO2 (LIM domain only 2), also known as rhombotin-2, is a transcriptional regulator that is essential for normal haematopoietic development. In malignant haematopoiesis, its ectopic expression in T cells is involved in the pathogenesis of leukaemia. LMO2 contains four zinc-finger domains and binds to the ubiquitous nuclear adaptor protein Ldb1 via the LIM-interaction domain (LID). Together, they act as scaffolding proteins and bridge important haematopoietic transcription factors such as SCL/Tal1, E2A and GATA-1. Solving the structure of the LMO2:Ldb1-LID complex would therefore be a first step towards understanding how haematopoietic specific protein complexes form and would also provide an attractive target for drug development in anticancer therapy, especially for T-cell leukaemia. Here, the expression, purification, crystallization and data collection of a fusion protein consisting of the two LIM domains of LMO2 linked to the LID domain of Ldb1 via a flexible linker is reported. The crystals belonged to space group C2, with unit-cell parameters a = 179.9, b = 51.5, c = 114.7 Å, β = 90.1°, and contained five molecules in the asymmetric unit. Multiple-wavelength anomalous dispersion (MAD) data have been collected at the zinc X-ray absorption edge to a resolution of 2.8 Å and the data were used to solve the structure of the LMO2:Ldb1-LID complex. Refinement and analysis of the electron-density map is in progress.
Collapse
Affiliation(s)
- Kamel El Omari
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | | | | |
Collapse
|
42
|
Kusy S, Gerby B, Goardon N, Gault N, Ferri F, Gérard D, Armstrong F, Ballerini P, Cayuela JM, Baruchel A, Pflumio F, Roméo PH. NKX3.1 is a direct TAL1 target gene that mediates proliferation of TAL1-expressing human T cell acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2010; 207:2141-56. [PMID: 20855495 PMCID: PMC2947082 DOI: 10.1084/jem.20100745] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
TAL1 (also known as SCL) is expressed in >40% of human T cell acute lymphoblastic leukemias (T-ALLs). TAL1 encodes a basic helix-loop-helix transcription factor that can interfere with the transcriptional activity of E2A and HEB during T cell leukemogenesis; however, the oncogenic pathways directly activated by TAL1 are not characterized. In this study, we show that, in human TAL1–expressing T-ALL cell lines, TAL1 directly activates NKX3.1, a tumor suppressor gene required for prostate stem cell maintenance. In human T-ALL cell lines, NKX3.1 gene activation is mediated by a TAL1–LMO–Ldb1 complex that is recruited by GATA-3 bound to an NKX3.1 gene promoter regulatory sequence. TAL1-induced NKX3.1 activation is associated with suppression of HP1-α (heterochromatin protein 1 α) binding and opening of chromatin on the NKX3.1 gene promoter. NKX3.1 is necessary for T-ALL proliferation, can partially restore proliferation in TAL1 knockdown cells, and directly regulates miR-17-92. In primary human TAL1-expressing leukemic cells, the NKX3.1 gene is expressed independently of the Notch pathway, and its inactivation impairs proliferation. Finally, TAL1 or NKX3.1 knockdown abrogates the ability of human T-ALL cells to efficiently induce leukemia development in mice. These results suggest that tumor suppressor or oncogenic activity of NKX3.1 depends on tissue expression.
Collapse
Affiliation(s)
- Sophie Kusy
- Laboratoire de recherche sur la Réparation et la Transcription dans les cellules Souches, Direction des Sciences du Vivant, Commissariat à l'Energie Atomique et aux Energies Alternatives, 92265 Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Géraud C, Schledzewski K, Demory A, Klein D, Kaus M, Peyre F, Sticht C, Evdokimov K, Lu S, Schmieder A, Goerdt S. Liver sinusoidal endothelium: a microenvironment-dependent differentiation program in rat including the novel junctional protein liver endothelial differentiation-associated protein-1. Hepatology 2010; 52:313-26. [PMID: 20578158 DOI: 10.1002/hep.23618] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
UNLABELLED Liver sinusoidal endothelium (LSEC) is a prime example of organ-specific microvascular differentiation and functions. Disease-associated capillarization of LSEC in vivo and dedifferentiation of LSEC in vitro indicate the importance of the hepatic microenvironment. To identify the LSEC-specific molecular differentiation program in the rat we used a two-sided gene expression profiling approach comparing LSEC freshly isolated ex vivo with both lung microvascular endothelial cells (LMEC) and with LSEC cultured for 42 hours. The LSEC signature consisted of 48 genes both down-regulated in LMEC and in LSEC upon culture (fold change >7 in at least one comparison); quantitative reverse-transcription polymerase chain reaction confirmation of these genes included numerous family members and signaling pathway-associated molecules. The LSEC differentiation program comprised distinct sets of growth (Wnt2, Fzd4, 5, 9, Wls, vascular endothelial growth factors [VEGFR] 1, 2, 3, Nrp2) and transcription factors (Gata4, Lmo3, Tcfec, Maf) as well as endocytosis-related (Stabilin-1/2, Lyve1, and Ehd3) and cytoskeleton-associated molecules (Rnd3/RhoE). Specific gene induction in cultured LSEC versus freshly isolated LSEC as well as LMEC (Esm-1, Aatf) and up-regulation of gene expression to LMEC levels (CXCR4, Apelin) confirmed true transdifferentiation of LSEC in vitro. In addition, our analysis identified a novel 26-kDa single-pass transmembrane protein, liver endothelial differentiation-associated protein (Leda)-1, that was selectively expressed in all liver endothelial cells and preferentially localized to the abluminal cell surface. Upon forced overexpression in MDCK cells, Leda-1 was sorted basolaterally to E-cadherin-positive adherens junctions, suggesting functional involvement in cell adhesion and polarity. CONCLUSION Comparative microvascular analysis in rat identified a hepatic microenvironment-dependent LSEC-specific differentiation program including the novel junctional molecule Leda-1.
Collapse
Affiliation(s)
- Cyrill Géraud
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gene enrichment profiles reveal T-cell development, differentiation, and lineage-specific transcription factors including ZBTB25 as a novel NF-AT repressor. Blood 2010; 115:5376-84. [PMID: 20410506 DOI: 10.1182/blood-2010-01-263855] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The identification of transcriptional regulatory networks, which control tissue-specific development and function, is of central importance to the understanding of lymphocyte biology. To decipher transcriptional networks in T-cell development and differentiation we developed a browsable expression atlas and applied a novel quantitative method to define gene sets most specific to each of the represented cell subsets and tissues. Using this system, body atlas size datasets can be used to examine gene enrichment profiles from a cell/tissue perspective rather than gene perspective, thereby identifying highly enriched genes within a cell type, which are often key to cellular differentiation and function. A systems analysis of transcriptional regulators within T cells during different phases of development and differentiation resulted in the identification of known key regulators and uncharacterized coexpressed regulators. ZBTB25, a BTB-POZ family transcription factor, was identified as a highly T cell-enriched transcription factor. We provide evidence that ZBTB25 functions as a negative regulator of nuclear factor of activated T cells (NF-AT) activation, such that RNA interference mediated knockdown resulted in enhanced activation of target genes. Together, these findings suggest a novel mechanism for NF-AT mediated gene expression and the compendium of expression data provides a quantitative platform to drive exploration of gene expression across a wide range of cell/tissue types.
Collapse
|
45
|
Homo-binding character of LMO2 isoforms and their both synergic and antagonistic functions in regulating hematopoietic-related target genes. J Biomed Sci 2010; 17:22. [PMID: 20346173 PMCID: PMC2854110 DOI: 10.1186/1423-0127-17-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/27/2010] [Indexed: 01/26/2023] Open
Abstract
Background The human lmo2 gene plays important roles in hematopoiesis and is associated with acute T lymphocyte leukemia. The gene encodes two protein isoforms, a longer form LMO2-L and a shorter form LMO2-S. Both isoforms function as bridge molecules to assemble their partners together to regulate their target genes. A typical LMO2 binding site consists of two elements, a GATA site and an E-box, with an interval of 9~12 bp. Methods In this study, the combination of MBP pulldown assay and mammalian two hybrid assay were used to confirm the homo-binding character of LMO2-L/-S isoforms. Luciferase reporter assay and Real-time PCR assay were used to detect expression levels and relative promoter activities of LMO2-L/-S isoforms. Co-transfection and Luciferase reporter assay were used to reveal the detailed regulatory pattern of LMO2-L/-S isoforms on their targets. Results Herein we report the homo-interaction character of LMO2-L and LMO2-S and their major difference in manner of regulating their target genes. Our results showed that LMO2-L and LMO2-S could only bind to themselves but not each other. It was also demonstrated that LMO2-L could either positively or negatively regulate the transcription of its different target genes, depending on the arrangement and strand location of the two elements GATA site and E-box, LMO2-S, however, performed constitutively transcriptional inhibiting function on all target genes. Conclusion These results suggest that LMO2 isoforms have independent functions while there is no interaction between each other and they could play synergetic or antagonistic roles precisely in regulating their different genes involved in normal and aberrant hematopoiesis.
Collapse
|
46
|
The TAL1/SCL transcription factor regulates cell cycle progression and proliferation in differentiating murine bone marrow monocyte precursors. Mol Cell Biol 2010; 30:2181-92. [PMID: 20194619 DOI: 10.1128/mcb.01441-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monocytopoiesis involves the stepwise differentiation in the bone marrow (BM) of common myeloid precursors (CMPs) to monocytes. The basic helix-loop-helix transcription factor TAL1/SCL plays a critical role in other hematopoietic lineages, and while it had been reported to be expressed by BM-derived macrophages, its role in monocytopoiesis had not been elucidated. Using cell explant models of monocyte/macrophage (MM) differentiation, one originating with CMPs and the other from more committed precursors, we characterized the phenotypic and molecular consequences of inactivation of Tal1 expression ex vivo. While Tal1 knockout had minimal effects on cell survival and slightly accelerated terminal differentiation, it profoundly inhibited cell proliferation and decreased entry into and traversal of the G(1) and S phases. In conjunction, steady-state levels of p16(Ink4a) mRNA were increased and those of Gata2 mRNA decreased. Chromatin immunoprecipitation analysis demonstrated the association of Tal1 and E47, one of its E protein DNA-binding partners, with an E box-GATA sequence element in intron 4 of the Gata2 gene and with three E boxes upstream of p16(Ink4a). Finally, wild-type Tal1, but not a DNA binding-defective mutant, rescued the proliferative defect in Tal1-null MM precursors. These results document the importance of this transcription factor in cell cycle progression and proliferation during monocytopoiesis and the requirement for direct DNA binding in these processes.
Collapse
|
47
|
Wang SL, Li X, Zhang S, Gui J, Huang DS. Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction. Comput Biol Med 2009; 40:179-89. [PMID: 20044083 DOI: 10.1016/j.compbiomed.2009.11.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/13/2009] [Accepted: 11/29/2009] [Indexed: 01/24/2023]
Abstract
Since Golub applied gene expression profiles (GEP) to the molecular classification of tumor subtypes for more accurately and reliably clinical diagnosis, a number of studies on GEP-based tumor classification have been done. However, the challenges from high dimension and small sample size of tumor dataset still exist. This paper presents a new tumor classification approach based on an ensemble of probabilistic neural network (PNN) and neighborhood rough set model based gene reduction. Informative genes were initially selected by gene ranking based on an iterative search margin algorithm and then were further refined by gene reduction to select many minimum gene subsets. Finally, the candidate base PNN classifiers trained by each of the selected gene subsets were integrated by majority voting strategy to construct an ensemble classifier. Experiments on tumor datasets showed that this approach can obtain both high and stable classification performance, which is not too sensitive to the number of initially selected genes and competitive to most existing methods. Additionally, the classification results can be cross-verified in a single biomedical experiment by the selected gene subsets, and biologically experimental results also proved that the genes included in the selected gene subsets are functionally related to carcinogenesis, indicating that the performance obtained by the proposed method is convincing.
Collapse
|
48
|
Touma SE, Perner S, Rubin MA, Nanus DM, Gudas LJ. Retinoid metabolism and ALDH1A2 (RALDH2) expression are altered in the transgenic adenocarcinoma mouse prostate model. Biochem Pharmacol 2009; 78:1127-38. [PMID: 19549509 PMCID: PMC2753223 DOI: 10.1016/j.bcp.2009.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 02/07/2023]
Abstract
Retinoids, which include vitamin A (retinol) and metabolites such as retinoic acid, can inhibit tumor growth and reverse carcinogenesis in animal models of prostate cancer. We analyzed retinoid signaling and metabolism in the TRAMP (transgenic adenocarcinoma mouse prostate) model. We detected increased retinol and retinyl esters in prostates pooled from 24 to 36 week TRAMP transgenic positive mice compared to nontransgenic littermates by HPLC. We used quantitative RT-PCR to measure transcripts for genes involved in retinoid signaling and metabolism, including ALDH1A1, ALDH1A2, ALDH1A3, CYP26A1, LRAT, and RARbeta(2), in prostate tissue from TRAMP positive (+) and age-matched littermate control mice ranging from 18 to 36 weeks. Transcript levels of ALDH1A1, a putative stem cell marker, were decreased in ventral and lateral lobes of prostates from TRAMP mice compared to age-matched, nontransgenic mice. ALDH1A2 (RALDH2) mRNA levels in dorsal and anterior lobes of TRAMP+ mice were lower than in age-matched (24 week) nontransgenic mice. We detected lower RARbeta(2) mRNA levels in dorsal prostate lobes of 36 week TRAMP mice relative to nontransgenic mice. We detected high levels of ALDH1A2 protein in the cytoplasm and nucleus in nontransgenic murine prostate paraffin sections, and lower ALDH1A2 protein levels in all prostate lobes of TRAMP mice compared to nontransgenic mice by immunohistochemistry. We also detected much lower cytoplasmic ALDH1A2 protein levels in all human prostate cancer paraffin sections stained (19 total) relative to normal human prostate tissue on the same sections. Our data indicate that this reduction in ALDH1A2 protein is an early event in human prostate cancer.
Collapse
Affiliation(s)
- Sue Ellen Touma
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065
| | - Sven Perner
- Department of Pathology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065
| | - Mark A. Rubin
- Department of Pathology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065
| | - David M. Nanus
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065
- Department of Urology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065
- Department of Urology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065
| |
Collapse
|
49
|
Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy. Pharmacol Ther 2009; 122:264-80. [DOI: 10.1016/j.pharmthera.2009.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/03/2009] [Indexed: 12/11/2022]
|
50
|
Lack of Gata3 results in conotruncal heart anomalies in mouse. Mech Dev 2009; 126:80-9. [DOI: 10.1016/j.mod.2008.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/10/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
|