1
|
Li X, Yu T, Li X, He X, Zhang B, Yang Y. Role of novel protein acylation modifications in immunity and its related diseases. Immunology 2024; 173:53-75. [PMID: 38866391 DOI: 10.1111/imm.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
The cross-regulation of immunity and metabolism is currently a research hotspot in life sciences and immunology. Metabolic immunology plays an important role in cutting-edge fields such as metabolic regulatory mechanisms in immune cell development and function, and metabolic targets and immune-related disease pathways. Protein post-translational modification (PTM) is a key epigenetic mechanism that regulates various biological processes and highlights metabolite functions. Currently, more than 400 PTM types have been identified to affect the functions of several proteins. Among these, metabolic PTMs, particularly various newly identified histone or non-histone acylation modifications, can effectively regulate various functions, processes and diseases of the immune system, as well as immune-related diseases. Thus, drugs aimed at targeted acylation modification can have substantial therapeutic potential in regulating immunity, indicating a new direction for further clinical translational research. This review summarises the characteristics and functions of seven novel lysine acylation modifications, including succinylation, S-palmitoylation, lactylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation and malonylation, and their association with immunity, thereby providing valuable references for the diagnosis and treatment of immune disorders associated with new acylation modifications.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
2
|
S Mesquita F, Abrami L, Linder ME, Bamji SX, Dickinson BC, van der Goot FG. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol 2024; 25:488-509. [PMID: 38355760 DOI: 10.1038/s41580-024-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.
Collapse
Affiliation(s)
- Francisco S Mesquita
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Yang A, Liu S, Zhang Y, Chen J, Fan Y, Wang F, Zou Y, Feng S, Wu J, Hu Q. Regulation of RAS palmitoyltransferases by accessory proteins and palmitoylation. Nat Struct Mol Biol 2024; 31:436-446. [PMID: 38182928 DOI: 10.1038/s41594-023-01183-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/17/2023] [Indexed: 01/07/2024]
Abstract
Palmitoylation of cysteine residues at the C-terminal hypervariable regions in human HRAS and NRAS, which is necessary for RAS signaling, is catalyzed by the acyltransferase DHHC9 in complex with its accessory protein GCP16. The molecular basis for the acyltransferase activity and the regulation of DHHC9 by GCP16 is not clear. Here we report the cryo-electron microscopy structures of the human DHHC9-GCP16 complex and its yeast counterpart-the Erf2-Erf4 complex, demonstrating that GCP16 and Erf4 are not directly involved in the catalytic process but stabilize the architecture of DHHC9 and Erf2, respectively. We found that a phospholipid binding to an arginine-rich region of DHHC9 and palmitoylation on three residues (C24, C25 and C288) were essential for the catalytic activity of the DHHC9-GCP16 complex. Moreover, we showed that GCP16 also formed complexes with DHHC14 and DHHC18 to catalyze RAS palmitoylation. These findings provide insights into the regulatory mechanism of RAS palmitoyltransferases.
Collapse
Affiliation(s)
- Anlan Yang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shengjie Liu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Fudan University, Shanghai, China
| | - Yuqi Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jia Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Mass Spectrometry & Metabolomics Core Facility, Westlake University, Hangzhou, China
| | - Yujing Fan
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Fengxiang Wang
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yilong Zou
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Mass Spectrometry & Metabolomics Core Facility, Westlake University, Hangzhou, China
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Qi Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
4
|
Martín JF, Liras P. Targeting of Specialized Metabolites Biosynthetic Enzymes to Membranes and Vesicles by Posttranslational Palmitoylation: A Mechanism of Non-Conventional Traffic and Secretion of Fungal Metabolites. Int J Mol Sci 2024; 25:1224. [PMID: 38279221 PMCID: PMC10816013 DOI: 10.3390/ijms25021224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
In nature, the formation of specialized (secondary) metabolites is associated with the late stages of fungal development. Enzymes involved in the biosynthesis of secondary metabolites in fungi are located in distinct subcellular compartments including the cytosol, peroxisomes, endosomes, endoplasmic reticulum, different types of vesicles, the plasma membrane and the cell wall space. The enzymes traffic between these subcellular compartments and the secretion through the plasma membrane are still unclear in the biosynthetic processes of most of these metabolites. Recent reports indicate that some of these enzymes initially located in the cytosol are later modified by posttranslational acylation and these modifications may target them to membrane vesicle systems. Many posttranslational modifications play key roles in the enzymatic function of different proteins in the cell. These modifications are very important in the modulation of regulatory proteins, in targeting of proteins, intracellular traffic and metabolites secretion. Particularly interesting are the protein modifications by palmitoylation, prenylation and miristoylation. Palmitoylation is a thiol group-acylation (S-acylation) of proteins by palmitic acid (C16) that is attached to the SH group of a conserved cysteine in proteins. Palmitoylation serves to target acylated proteins to the cytosolic surface of cell membranes, e.g., to the smooth endoplasmic reticulum, whereas the so-called toxisomes are formed in trichothecene biosynthesis. Palmitoylation of the initial enzymes involved in the biosynthesis of melanin serves to target them to endosomes and later to the conidia, whereas other non-palmitoylated laccases are secreted directly by the conventional secretory pathway to the cell wall space where they perform the last step(s) of melanin biosynthesis. Six other enzymes involved in the biosynthesis of endocrosin, gliotoxin and fumitremorgin believed to be cytosolic are also targeted to vesicles, although it is unclear if they are palmitoylated. Bioinformatic analysis suggests that palmitoylation may be frequent in the modification and targeting of polyketide synthetases and non-ribosomal peptide synthetases. The endosomes may integrate other small vesicles with different cargo proteins, forming multivesicular bodies that finally fuse with the plasma membrane during secretion. Another important effect of palmitoylation is that it regulates calcium metabolism by posttranslational modification of the phosphatase calcineurin. Mutants defective in the Akr1 palmitoyl transferase in several fungi are affected in calcium transport and homeostasis, thus impacting on the biosynthesis of calcium-regulated specialized metabolites. The palmitoylation of secondary metabolites biosynthetic enzymes and their temporal distribution respond to the conidiation signaling mechanism. In summary, this posttranslational modification drives the spatial traffic of the biosynthetic enzymes between the subcellular organelles and the plasma membrane. This article reviews the molecular mechanism of palmitoylation and the known fungal palmitoyl transferases. This novel information opens new ways to improve the biosynthesis of the bioactive metabolites and to increase its secretion in fungi.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain;
| | | |
Collapse
|
5
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
6
|
Palmitoyl Transferase FonPAT2-Catalyzed Palmitoylation of the FonAP-2 Complex Is Essential for Growth, Development, Stress Response, and Virulence in Fusarium oxysporum f. sp. niveum. Microbiol Spectr 2023; 11:e0386122. [PMID: 36533963 PMCID: PMC9927311 DOI: 10.1128/spectrum.03861-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protein palmitoylation, one of posttranslational modifications, is catalyzed by a group of palmitoyl transferases (PATs) and plays critical roles in the regulation of protein functions. However, little is known about the function and mechanism of PATs in plant pathogenic fungi. The present study reports the function and molecular mechanism of FonPATs in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon Fusarium wilt. The Fon genome contains six FonPAT genes with distinct functions in vegetative growth, conidiation and conidial morphology, and stress response. FonPAT1, FonPAT2, and FonPAT4 have PAT activity and are required for Fon virulence on watermelon mainly through regulating in planta fungal growth within host plants. Comparative proteomics analysis identified a set of proteins that were palmitoylated by FonPAT2, and some of them are previously reported pathogenicity-related proteins in fungi. The FonAP-2 complex core subunits FonAP-2α, FonAP-2β, and FonAP-2μ were palmitoylated by FonPAT2 in vivo. FonPAT2-catalyzed palmitoylation contributed to the stability and interaction ability of the core subunits to ensure the formation of the FonAP-2 complex, which is essential for vegetative growth, asexual reproduction, cell wall integrity, and virulence in Fon. These findings demonstrate that FonPAT1, FonPAT2, and FonPAT4 play important roles in Fon virulence and that FonPAT2-catalyzed palmitoylation of the FonAP-2 complex is critical to Fon virulence, providing novel insights into the importance of protein palmitoylation in the virulence of plant fungal pathogens. IMPORTANCE Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon Fusarium wilt, is one of the most serious threats for the sustainable development of the watermelon industry worldwide. However, little is known about the underlying molecular mechanism of pathogenicity in Fon. Here, we found that the palmitoyl transferase (FonPAT) genes play distinct and diverse roles in basic biological processes and stress response and demonstrated that FonPAT1, FonPAT2, and FonPAT4 have PAT activity and are required for virulence in Fon. We also found that FonPAT2 palmitoylates the core subunits of the FonAP-2 complex to maintain the stability and the formation of the FonAP-2 complex, which is essential for basic biological processes, stress response, and virulence in Fon. Our study provides new insights into the understanding of the molecular mechanism involved in Fon virulence and will be helpful in the development of novel strategies for disease management.
Collapse
|
7
|
Ravishankar R, Hildebrandt ER, Greenway G, Asad N, Gore S, Dore TM, Schmidt WK. Specific Disruption of Ras2 CAAX Proteolysis Alters Its Localization and Function. Microbiol Spectr 2023; 11:e0269222. [PMID: 36602340 PMCID: PMC9927470 DOI: 10.1128/spectrum.02692-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Many CAAX proteins, such as Ras GTPase, undergo a series of posttranslational modifications at their carboxyl terminus (i.e., cysteine prenylation, endoproteolysis of AAX, and carboxylmethylation). Some CAAX proteins, however, undergo prenylation-only modification, such as Saccharomyces cerevisiae Hsp40 Ydj1. We previously observed that altering the CAAX motif of Ydj1 from prenylation-only to canonical resulted in altered Ydj1 function and localization. Here, we investigated the effects of a reciprocal change that altered the well-characterized canonical CAAX motif of S. cerevisiae Ras2 to prenylation-only. We observed that the type of CAAX motif impacted Ras2 protein levels, localization, and function. Moreover, we observed that using a prenylation-only sequence to stage hyperactive Ras2-G19V as a farnesylated and nonproteolyzed intermediate resulted in a different phenotype relative to staging by a genetic RCE1 deletion strategy that simultaneously affected many CAAX proteins. These findings suggested that a prenylation-only CAAX motif is useful for probing the specific impact of CAAX proteolysis on Ras2 under conditions where other CAAX proteins are normally modified. We propose that our strategy could be easily applied to a wide range of CAAX proteins for examining the specific impact of CAAX proteolysis on their functions. IMPORTANCE CAAX proteins are subject to multiple posttranslational modifications: cysteine prenylation, CAAX proteolysis, and carboxylmethylation. For investigations of CAAX proteolysis, this study took the novel approach of using a proteolysis-resistant CAAX sequence to stage Saccharomyces cerevisiae Ras2 GTPase in a farnesylated and nonproteolyzed state. Our approach specifically limited the effects of disrupting CAAX proteolysis to Ras2. This represented an improvement over previous methods where CAAX proteolysis was inhibited by gene knockout, small interfering RNA knockdown, or biochemical inhibition of the Rce1 CAAX protease, which can lead to pleiotropic and unclear attribution of effects due to the action of Rce1 on multiple CAAX proteins. Our approach yielded results that demonstrated specific impacts of CAAX proteolysis on the function, localization, and other properties of Ras2, highlighting the utility of this approach for investigating the impact of CAAX proteolysis in other protein contexts.
Collapse
Affiliation(s)
- Rajani Ravishankar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Grace Greenway
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Nadeem Asad
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sangram Gore
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Timothy M. Dore
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
8
|
West SJ, Boehning D, Akimzhanov AM. Regulation of T cell function by protein S-acylation. Front Physiol 2022; 13:1040968. [PMID: 36467682 PMCID: PMC9709458 DOI: 10.3389/fphys.2022.1040968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 10/26/2023] Open
Abstract
S-acylation, the reversible lipidation of free cysteine residues with long-chain fatty acids, is a highly dynamic post-translational protein modification that has recently emerged as an important regulator of the T cell function. The reversible nature of S-acylation sets this modification apart from other forms of protein lipidation and allows it to play a unique role in intracellular signal transduction. In recent years, a significant number of T cell proteins, including receptors, enzymes, ion channels, and adaptor proteins, were identified as S-acylated. It has been shown that S-acylation critically contributes to their function by regulating protein localization, stability and protein-protein interactions. Furthermore, it has been demonstrated that zDHHC protein acyltransferases, the family of enzymes mediating this modification, also play a prominent role in T cell activation and differentiation. In this review, we aim to highlight the diversity of proteins undergoing S-acylation in T cells, elucidate the mechanisms by which reversible lipidation can impact protein function, and introduce protein acyltransferases as a novel class of regulatory T cell proteins.
Collapse
Affiliation(s)
- Savannah J. West
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, United States
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, United States
| |
Collapse
|
9
|
Elliot Murphy R, Banerjee A. In vitro reconstitution of substrate S-acylation by the zDHHC family of protein acyltransferases. Open Biol 2022; 12:210390. [PMID: 35414257 PMCID: PMC9006032 DOI: 10.1098/rsob.210390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 01/09/2023] Open
Abstract
Protein S-acylation, more commonly known as protein palmitoylation, is a biological process defined by the covalent attachment of long chain fatty acids onto cysteine residues of a protein, effectively altering the local hydrophobicity and influencing its stability, localization and overall function. Observed ubiquitously in all eukaryotes, this post translational modification is mediated by the 23-member family of zDHHC protein acyltransferases in mammals. There are thousands of proteins that are S-acylated and multiple zDHHC enzymes can potentially act on a single substrate. Since its discovery, numerous methods have been developed for the identification of zDHHC substrates and the individual members of the family that catalyse their acylation. Despite these recent advances in assay development, there is a persistent gap in knowledge relating to zDHHC substrate specificity and recognition, that can only be thoroughly addressed through in vitro reconstitution. Herein, we will review the various methods currently available for reconstitution of protein S-acylation for the purposes of identifying enzyme-substrate pairs with a particular emphasis on the advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- R. Elliot Murphy
- Section on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anirban Banerjee
- Section on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Zhang Y, Qin Z, Sun W, Chu F, Zhou F. Function of Protein S-Palmitoylation in Immunity and Immune-Related Diseases. Front Immunol 2021; 12:661202. [PMID: 34557182 PMCID: PMC8453015 DOI: 10.3389/fimmu.2021.661202] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/23/2021] [Indexed: 02/04/2023] Open
Abstract
Protein S-palmitoylation is a covalent and reversible lipid modification that specifically targets cysteine residues within many eukaryotic proteins. In mammalian cells, the ubiquitous palmitoyltransferases (PATs) and serine hydrolases, including acyl protein thioesterases (APTs), catalyze the addition and removal of palmitate, respectively. The attachment of palmitoyl groups alters the membrane affinity of the substrate protein changing its subcellular localization, stability, and protein-protein interactions. Forty years of research has led to the understanding of the role of protein palmitoylation in significantly regulating protein function in a variety of biological processes. Recent global profiling of immune cells has identified a large body of S-palmitoylated immunity-associated proteins. Localization of many immune molecules to the cellular membrane is required for the proper activation of innate and adaptive immune signaling. Emerging evidence has unveiled the crucial roles that palmitoylation plays to immune function, especially in partitioning immune signaling proteins to the membrane as well as to lipid rafts. More importantly, aberrant PAT activity and fluctuations in palmitoylation levels are strongly correlated with human immunologic diseases, such as sensory incompetence or over-response to pathogens. Therefore, targeting palmitoylation is a novel therapeutic approach for treating human immunologic diseases. In this review, we discuss the role that palmitoylation plays in both immunity and immunologic diseases as well as the significant potential of targeting palmitoylation in disease treatment.
Collapse
|
11
|
Chen JJ, Fan Y, Boehning D. Regulation of Dynamic Protein S-Acylation. Front Mol Biosci 2021; 8:656440. [PMID: 33981723 PMCID: PMC8107437 DOI: 10.3389/fmolb.2021.656440] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Protein S-acylation is the reversible addition of fatty acids to the cysteine residues of target proteins. It regulates multiple aspects of protein function, including the localization to membranes, intracellular trafficking, protein interactions, protein stability, and protein conformation. This process is regulated by palmitoyl acyltransferases that have the conserved amino acid sequence DHHC at their active site. Although they have conserved catalytic cores, DHHC enzymes vary in their protein substrate selection, lipid substrate preference, and regulatory mechanisms. Alterations in DHHC enzyme function are associated with many human diseases, including cancers and neurological conditions. The removal of fatty acids from acylated cysteine residues is catalyzed by acyl protein thioesterases. Notably, S-acylation is now known to be a highly dynamic process, and plays crucial roles in signaling transduction in various cell types. In this review, we will explore the recent findings on protein S-acylation, the enzymatic regulation of this process, and discuss examples of dynamic S-acylation.
Collapse
|
12
|
Abstract
Protein palmitoylation is the post-translational attachment of fatty acids, most commonly palmitate (C16 : 0), onto a cysteine residue of a protein. This reaction is catalysed by a family of integral membrane proteins, the zDHHC protein acyltransferases (PATs), so-called due to the presence of an invariant Asp-His-His-Cys (DHHC) cysteine-rich domain harbouring the catalytic centre of the enzyme. Conserved throughout eukaryotes, the zDHHC PATs are encoded by multigene families and mediate palmitoylation of thousands of protein substrates. In humans, a number of zDHHC proteins are associated with human diseases, including intellectual disability, Huntington's disease, schizophrenia and cancer. Key to understanding the physiological and pathophysiological importance of individual zDHHC proteins is the identification of their protein substrates. Here, we will describe the approaches and challenges in assigning substrates for individual zDHHCs, highlighting key mechanisms that underlie substrate recruitment.
Collapse
Affiliation(s)
- Martin Ian P Malgapo
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Maurine E Linder
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Ramazi S, Zahiri J. Posttranslational modifications in proteins: resources, tools and prediction methods. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6214407. [PMID: 33826699 DOI: 10.1093/database/baab012] [Citation(s) in RCA: 329] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/20/2021] [Indexed: 12/21/2022]
Abstract
Posttranslational modifications (PTMs) refer to amino acid side chain modification in some proteins after their biosynthesis. There are more than 400 different types of PTMs affecting many aspects of protein functions. Such modifications happen as crucial molecular regulatory mechanisms to regulate diverse cellular processes. These processes have a significant impact on the structure and function of proteins. Disruption in PTMs can lead to the dysfunction of vital biological processes and hence to various diseases. High-throughput experimental methods for discovery of PTMs are very laborious and time-consuming. Therefore, there is an urgent need for computational methods and powerful tools to predict PTMs. There are vast amounts of PTMs data, which are publicly accessible through many online databases. In this survey, we comprehensively reviewed the major online databases and related tools. The current challenges of computational methods were reviewed in detail as well.
Collapse
Affiliation(s)
- Shahin Ramazi
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Weber M, Basu S, González B, Greslehner GP, Singer S, Haskova D, Hasek J, Breitenbach M, W.Gourlay C, Cullen PJ, Rinnerthaler M. Actin Cytoskeleton Regulation by the Yeast NADPH Oxidase Yno1p Impacts Processes Controlled by MAPK Pathways. Antioxidants (Basel) 2021; 10:antiox10020322. [PMID: 33671669 PMCID: PMC7926930 DOI: 10.3390/antiox10020322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) that exceed the antioxidative capacity of the cell can be harmful and are termed oxidative stress. Increasing evidence suggests that ROS are not exclusively detrimental, but can fulfill important signaling functions. Recently, we have been able to demonstrate that a NADPH oxidase-like enzyme (termed Yno1p) exists in the single-celled organism Saccharomyces cerevisiae. This enzyme resides in the peripheral and perinuclear endoplasmic reticulum and functions in close proximity to the plasma membrane. Its product, hydrogen peroxide, which is also produced by the action of the superoxide dismutase, Sod1p, influences signaling of key regulatory proteins Ras2p and Yck1p/2p. In the present work, we demonstrate that Yno1p-derived H2O2 regulates outputs controlled by three MAP kinase pathways that can share components: the filamentous growth (filamentous growth MAPK (fMAPK)), pheromone response, and osmotic stress response (hyperosmolarity glycerol response, HOG) pathways. A key structural component and regulator in this process is the actin cytoskeleton. The nucleation and stabilization of actin are regulated by Yno1p. Cells lacking YNO1 showed reduced invasive growth, which could be reversed by stimulation of actin nucleation. Additionally, under osmotic stress, the vacuoles of a ∆yno1 strain show an enhanced fragmentation. During pheromone response induced by the addition of alpha-factor, Yno1p is responsible for a burst of ROS. Collectively, these results broaden the roles of ROS to encompass microbial differentiation responses and stress responses controlled by MAPK pathways.
Collapse
Affiliation(s)
- Manuela Weber
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Sukanya Basu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA; (S.B.); (B.G.)
| | - Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA; (S.B.); (B.G.)
| | - Gregor P. Greslehner
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Stefanie Singer
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Danusa Haskova
- Laboratory of Cell Reproduction, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (D.H.); (J.H.)
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (D.H.); (J.H.)
| | - Michael Breitenbach
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Campbell W.Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Kent CT2 9HY, UK;
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA; (S.B.); (B.G.)
- Correspondence: (P.J.C.); (M.R.)
| | - Mark Rinnerthaler
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
- Correspondence: (P.J.C.); (M.R.)
| |
Collapse
|
15
|
Schianchi F, Glatz JFC, Navarro Gascon A, Nabben M, Neumann D, Luiken JJFP. Putative Role of Protein Palmitoylation in Cardiac Lipid-Induced Insulin Resistance. Int J Mol Sci 2020; 21:ijms21249438. [PMID: 33322406 PMCID: PMC7764417 DOI: 10.3390/ijms21249438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
In the heart, inhibition of the insulin cascade following lipid overload is strongly associated with contractile dysfunction. The translocation of fatty acid transporter CD36 (SR-B2) from intracellular stores to the cell surface is a hallmark event in the lipid-overloaded heart, feeding forward to intracellular lipid accumulation. Yet, the molecular mechanisms by which intracellularly arrived lipids induce insulin resistance is ill-understood. Bioactive lipid metabolites (diacyl-glycerols, ceramides) are contributing factors but fail to correlate with the degree of cardiac insulin resistance in diabetic humans. This leaves room for other lipid-induced mechanisms involved in lipid-induced insulin resistance, including protein palmitoylation. Protein palmitoylation encompasses the reversible covalent attachment of palmitate moieties to cysteine residues and is governed by protein acyl-transferases and thioesterases. The function of palmitoylation is to provide proteins with proper spatiotemporal localization, thereby securing the correct unwinding of signaling pathways. In this review, we provide examples of palmitoylations of individual signaling proteins to discuss the emerging role of protein palmitoylation as a modulator of the insulin signaling cascade. Second, we speculate how protein hyper-palmitoylations (including that of CD36), as they occur during lipid oversupply, may lead to insulin resistance. Finally, we conclude that the protein palmitoylation machinery may offer novel targets to fight lipid-induced cardiomyopathy.
Collapse
Affiliation(s)
- Francesco Schianchi
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
| | - Jan F. C. Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
| | - Artur Navarro Gascon
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Pathology, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands;
| | - Joost J. F. P. Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-388-1998
| |
Collapse
|
16
|
Salaun C, Locatelli C, Zmuda F, Cabrera González J, Chamberlain LH. Accessory proteins of the zDHHC family of S-acylation enzymes. J Cell Sci 2020; 133:133/22/jcs251819. [PMID: 33203738 DOI: 10.1242/jcs.251819] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Almost two decades have passed since seminal work in Saccharomyces cerevisiae identified zinc finger DHHC domain-containing (zDHHC) enzymes as S-acyltransferases. These enzymes are ubiquitous in the eukarya domain, with 23 distinct zDHHC-encoding genes in the human genome. zDHHC enzymes mediate the bulk of S-acylation (also known as palmitoylation) reactions in cells, transferring acyl chains to cysteine thiolates, and in so-doing affecting the stability, localisation and function of several thousand proteins. Studies using purified components have shown that the minimal requirements for S-acylation are an appropriate zDHHC enzyme-substrate pair and fatty acyl-CoA. However, additional proteins including GCP16 (also known as Golga7), Golga7b, huntingtin and selenoprotein K, have been suggested to regulate the activity, stability and trafficking of certain zDHHC enzymes. In this Review, we discuss the role of these accessory proteins as essential components of the cellular S-acylation system.
Collapse
Affiliation(s)
- Christine Salaun
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Carolina Locatelli
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Filip Zmuda
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Juan Cabrera González
- Fac. de Ciencias Químicas, Universidad Complutense, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| |
Collapse
|
17
|
Philippe JM, Jenkins PM. Spatial organization of palmitoyl acyl transferases governs substrate localization and function. Mol Membr Biol 2020; 35:60-75. [PMID: 31969037 DOI: 10.1080/09687688.2019.1710274] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein palmitoylation is a critical posttranslational modification that regulates protein trafficking, localization, stability, sorting and function. In mammals, addition of this lipid modification onto proteins is mediated by a family of 23 palmitoyl acyl transferases (PATs). PATs often palmitoylate substrates in a promiscuous manner, precluding our understanding of how these enzymes achieve specificity for their substrates. Despite generous efforts to identify consensus motifs defining PAT-substrate specificity, it remains to be determined whether additional factors beyond interaction motifs, such as local palmitoylation, participate in PAT-substrate selection. In this review, we emphasize the role of local palmitoylation, in which substrates are palmitoylated and trapped in the same subcellular compartments as their PATs, as a mechanism of enzyme-substrate specificity. We focus here on non-Golgi-localized PATs, as physical proximity to their substrates enables them to engage in local palmitoylation, compared to Golgi PATs, which often direct trafficking of their substrates elsewhere. PAT subcellular localization may be an under-recognized, yet important determinant of PAT-substrate specificity that may work in conjunction or completely independently of interaction motifs. We also discuss some current hypotheses about protein motifs that contribute to localization of non-Golgi-localized PATs, important for the downstream targeting of their substrates.
Collapse
Affiliation(s)
- Julie M Philippe
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Abstract
Many sensory and chemical signal inputs are transmitted by intracellular GTP-binding (G) proteins. G proteins make up two major subfamilies: "large" G proteins comprising three subunits and "small" G proteins, such as the proto-oncogene product RAS, which contains a single subunit. Members of both subfamilies are regulated by post-translational modifications, including lipidation, proteolysis, and carboxyl methylation. Emerging studies have shown that these proteins are also modified by ubiquitination. Much of our current understanding of this post-translational modification comes from investigations of the large G-protein α subunit from yeast (Gpa1) and the three RAS isotypes in humans, NRAS, KRAS, and HRAS. Gα undergoes both mono- and polyubiquitination, and these modifications have distinct consequences for determining the sites and mechanisms of its degradation. Genetic and biochemical reconstitution studies have revealed the enzymes and binding partners required for addition and removal of ubiquitin, as well as the delivery and destruction of both the mono- and polyubiquitinated forms of the G protein. Complementary studies of RAS have identified multiple ubiquitination sites, each having distinct consequences for binding to regulatory proteins, shuttling to and from the plasma membrane, and degradation. Here, we review what is currently known about these two well-studied examples, Gpa1 and the human RAS proteins, that have revealed additional mechanisms of signal regulation and dysregulation relevant to human physiology. We also compare and contrast the effects of G-protein ubiquitination with other post-translational modifications of these proteins.
Collapse
Affiliation(s)
- Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
19
|
Su S, Hou Z, Wang L, Liu D, Hu J, Xu J, Tao J. Further confirmation of second- and third-generation Eimeria necatrix merozoite DEGs using suppression subtractive hybridization. Parasitol Res 2019; 118:1159-1169. [PMID: 30747293 DOI: 10.1007/s00436-019-06242-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/31/2019] [Indexed: 11/28/2022]
Abstract
In our previous study, we obtained a large number of differentially expressed genes (DEGs) between second-generation merozoites (MZ-2) and third-generation merozoites (MZ-3) of Eimeria necatrix using RNA sequencing (RNA-seq). Here, we report two subtractive cDNA libraries for MZ2 (forward library) and MZ3 (reverse library) that were constructed using suppression subtractive hybridization (SSH). PCR amplification revealed that the MZ2 and MZ3 libraries contained approximately 96.7% and 95% recombinant clones, respectively, and the length of the inserted fragments ranged from 0.5 to 1.5 kb. A total of 106 and 111 unique sequences were obtained from the MZ2 and MZ3 libraries, respectively, and were assembled into 13 specific consensus sequences (contigs or genes) (5 from MZ2 and 8 from MZ3). The qRT-PCR results revealed that 11 out of 13 genes were differentially expressed between MZ-2 and MZ-3. Of 13 genes, 11 genes were found in both SSH and our RNA-seq data and displayed a similar expression trend between SSH and RNA-seq data, and the remaining 2 genes have not been reported in both E. necatrix genome and our RNA-seq data. Among the 11 genes, the expression trends of 8 genes were highly consistent between SSH and our RNA-seq data. These DEGs may provide specialized functions related to the life-cycle transitions of Eimeria species.
Collapse
Affiliation(s)
- Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Junjie Hu
- Biology Department, Yunnan University, Kunming, 650500, People's Republic of China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
20
|
Ko PJ, Dixon SJ. Protein palmitoylation and cancer. EMBO Rep 2018; 19:embr.201846666. [PMID: 30232163 DOI: 10.15252/embr.201846666] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/24/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Protein S-palmitoylation is a reversible post-translational modification that alters the localization, stability, and function of hundreds of proteins in the cell. S-palmitoylation is essential for the function of both oncogenes (e.g., NRAS and EGFR) and tumor suppressors (e.g., SCRIB, melanocortin 1 receptor). In mammalian cells, the thioesterification of palmitate to internal cysteine residues is catalyzed by 23 Asp-His-His-Cys (DHHC)-family palmitoyl S-acyltransferases while the removal of palmitate is catalyzed by serine hydrolases, including acyl-protein thioesterases (APTs). These enzymes modulate the function of important oncogenes and tumor suppressors and often display altered expression patterns in cancer. Targeting S-palmitoylation or the enzymes responsible for palmitoylation dynamics may therefore represent a candidate therapeutic strategy for certain cancers.
Collapse
Affiliation(s)
- Pin-Joe Ko
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Membrane-Associated Proteins in Giardia lamblia. Genes (Basel) 2018; 9:genes9080404. [PMID: 30103435 PMCID: PMC6115752 DOI: 10.3390/genes9080404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/01/2023] Open
Abstract
The manner in which membrane-associated proteins interact with the membrane defines their subcellular fate and function. This interaction relies on the characteristics of the proteins, their journey after synthesis, and their interaction with other proteins or enzymes. Understanding these properties may help to define the function of a protein and also the role of an organelle. In the case of microorganisms like protozoa parasites, it may help to understand singular features that will eventually lead to the design of parasite-specific drugs. The protozoa parasite Giardia lamblia is an example of a widespread parasite that has been infecting humans and animals from ancestral times, adjusting itself to the changes of the environment inside and outside the host. Several membrane-associated proteins have been posted in the genome database GiardiaDB, although only a few of them have been characterized. This review discusses the data regarding membrane-associated proteins in relationship with lipids and specific organelles and their implication in the discovery of anti-giardial therapies.
Collapse
|
22
|
Zaballa ME, van der Goot FG. The molecular era of protein S-acylation: spotlight on structure, mechanisms, and dynamics. Crit Rev Biochem Mol Biol 2018; 53:420-451. [DOI: 10.1080/10409238.2018.1488804] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- María-Eugenia Zaballa
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Baek S, Kwon EY, Bae S, Cho B, Kim S, Hahn J. Improvement of
d
‐Lactic Acid Production in
Saccharomyces cerevisiae
Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700015] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/11/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Seung‐Ho Baek
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoulRepublic of Korea
| | - Eunice Y. Kwon
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoulRepublic of Korea
| | - Sang‐Jeong Bae
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoulRepublic of Korea
| | - Bo‐Ram Cho
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoulRepublic of Korea
| | - Seon‐Young Kim
- Personalized Genomic Medicine Research CenterKRIBBDaejeonRepublic of Korea
| | - Ji‐Sook Hahn
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
24
|
Substrate selectivity in the zDHHC family of S-acyltransferases. Biochem Soc Trans 2017; 45:751-758. [PMID: 28620036 DOI: 10.1042/bst20160309] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023]
Abstract
S-acylation is a reversible lipid modification occurring on cysteine residues mediated by a family of membrane-bound 'zDHHC' enzymes. S-acylation predominantly results in anchoring of soluble proteins to membrane compartments or in the trafficking of membrane proteins to different compartments. Recent work has shown that although S-acylation of some proteins may involve very weak interactions with zDHHC enzymes, a pool of zDHHC enzymes exhibit strong and specific interactions with substrates, thereby recruiting them for S-acylation. For example, the ankyrin-repeat domains of zDHHC17 and zDHHC13 interact specifically with unstructured consensus sequences present in some proteins, thus contributing to substrate specificity of these enzymes. In addition to this new information on zDHHC enzyme protein substrate specificity, recent work has also identified marked differences in selectivity of zDHHC enzymes for acyl-CoA substrates and has started to unravel the underlying molecular basis for this lipid selectivity. This review will focus on the protein and acyl-CoA selectivity of zDHHC enzymes.
Collapse
|
25
|
Hamel LD, Lenhart BJ, Mitchell DA, Santos RG, Giulianotti MA, Deschenes RJ. Identification of Protein Palmitoylation Inhibitors from a Scaffold Ranking Library. Comb Chem High Throughput Screen 2017; 19:262-74. [PMID: 27009891 PMCID: PMC5068503 DOI: 10.2174/1386207319666160324123844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/07/2016] [Accepted: 03/21/2016] [Indexed: 01/21/2023]
Abstract
The addition of palmitoyl moieties to proteins regulates their membrane targeting, subcellular localization, and stability. Dysregulation of the enzymes which catalyzed the palmitoyl addition and/or the substrates of these enzymes have been linked to cancer, cardiovascular, and neurological disorders, implying these enzymes and substrates are valid targets for pharmaceutical intervention. However, current chemical modulators of zDHHC PAT enzymes lack specificity and affinity, underscoring the need for screening campaigns to identify new specific, high affinity modulators. This report describes a mixture based screening approach to identify inhibitors of Erf2 activity. Erf2 is the Saccharomyces cerevisiae PAT responsible for catalyzing the palmitoylation of Ras2, an ortholog of the human Ras oncogene proteins. A chemical library developed by the Torrey Pines Institute for Molecular Studies consists of more than 30 million compounds designed around 68 molecular scaffolds that are systematically arranged into positional scanning and scaffold ranking formats. We have used this approach to identify and characterize several scaffold backbones and R-groups that reduce or eliminate the activity of Erf2 in vitro. Here, we present the analysis of one of the scaffold backbones, bis-cyclic piperazine. We identified compounds that inhibited Erf2 auto-palmitoylation activity using a fluorescence-based, coupled assay in a high throughput screening (HTS) format and validated the hits utilizing an orthogonal gel-based assay. Finally, we examined the effects of the compounds on cell growth in a yeast cell-based assay. Based on our results, we have identified specific, high affinity palmitoyl transferase inhibitors that will serve as a foundation for future compound design.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert J Deschenes
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA.
| |
Collapse
|
26
|
Abstract
The Ras proteins are well-known drivers of many cancers and thus represent attractive targets for the development of anticancer therapeutics. Inhibitors that disrupt the association of the Ras proteins with membranes by blocking the addition of the farnesyl lipid moiety to the Ras C-terminus failed in clinical trials. Here, we explore the possibility of targeting a second lipid modification, S-acylation, commonly referred to as palmitoylation, as a strategy to disrupt the membrane interaction of specific Ras isoforms. We review the enzymes involved in adding and removing palmitate from Ras and discuss their potential roles in regulating Ras tumorigenesis. In addition, we examine other proteins that affect Ras protein localization and may serve as future drug targets.
Collapse
|
27
|
Shen LF, Chen YJ, Liu KM, Haddad ANS, Song IW, Roan HY, Chen LY, Yen JJY, Chen YJ, Wu JY, Chen YT. Role of S-Palmitoylation by ZDHHC13 in Mitochondrial function and Metabolism in Liver. Sci Rep 2017; 7:2182. [PMID: 28526873 PMCID: PMC5438363 DOI: 10.1038/s41598-017-02159-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/12/2017] [Indexed: 11/17/2022] Open
Abstract
Palmitoyltransferase (PAT) catalyses protein S-palmitoylation which adds 16-carbon palmitate to specific cysteines and contributes to various biological functions. We previously reported that in mice, deficiency of Zdhhc13, a member of the PAT family, causes severe phenotypes including amyloidosis, alopecia, and osteoporosis. Here, we show that Zdhhc13 deficiency results in abnormal liver function, lipid abnormalities, and hypermetabolism. To elucidate the molecular mechanisms underlying these disease phenotypes, we applied a site-specific quantitative approach integrating an alkylating resin-assisted capture and mass spectrometry-based label-free strategy for studying the liver S-palmitoylome. We identified 2,190 S-palmitoylated peptides corresponding to 883 S-palmitoylated proteins. After normalization using the membrane proteome with TMT10-plex labelling, 400 (31%) of S-palmitoylation sites on 254 proteins were down-regulated in Zdhhc13-deficient mice, representing potential ZDHHC13 substrates. Among these, lipid metabolism and mitochondrial dysfunction proteins were overrepresented. MCAT and CTNND1 were confirmed to be specific ZDHHC13 substrates. Furthermore, we found impaired mitochondrial function in hepatocytes of Zdhhc13-deficient mice and Zdhhc13-knockdown Hep1–6 cells. These results indicate that ZDHHC13 is an important regulator of mitochondrial activity. Collectively, our study allows for a systematic view of S-palmitoylation for identification of ZDHHC13 substrates and demonstrates the role of ZDHHC13 in mitochondrial function and metabolism in liver.
Collapse
Affiliation(s)
- Li-Fen Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kai-Ming Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Amir N Saleem Haddad
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - I-Wen Song
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Yuh Roan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Li-Ying Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jeffrey J Y Yen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America.
| |
Collapse
|
28
|
Shibata T, Hadano J, Kawasaki D, Dong X, Kawabata SI. Drosophila TG-A transglutaminase is secreted via an unconventional Golgi-independent mechanism involving exosomes and two types of fatty acylations. J Biol Chem 2017; 292:10723-10734. [PMID: 28476891 DOI: 10.1074/jbc.m117.779710] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/26/2017] [Indexed: 01/07/2023] Open
Abstract
Transglutaminases (TGs) play essential intracellular and extracellular roles by covalently cross-linking many proteins. Drosophila TG is encoded by one gene and has two alternative splicing-derived isoforms, TG-A and TG-B, which contain distinct N-terminal 46- and 38-amino acid sequences, respectively. The TGs identified to date do not have a typical endoplasmic reticulum (ER)-signal peptide, and the molecular mechanisms of their secretion under physiologic conditions are unclear. Immunocytochemistry revealed that TG-A localizes to multivesicular-like structures, whereas TG-B localizes to the cytosol. We also found that TG-A, but not TG-B, was modified concomitantly by N-myristoylation and S-palmitoylation, and N-myristoylation was a pre-requisite for S-palmitoylation. Moreover, TG-A, but not TG-B, was secreted in response to calcium signaling induced by Ca2+ ionophores and uracil, a pathogenic bacteria-derived substance. Brefeldin A and monensin, inhibitors of the ER/Golgi-mediated conventional pathway, did not suppress TG-A secretion, whereas inhibition of S-palmitoylation by 2-bromopalmitate blocked TG-A secretion. Ultracentrifugation, electron microscopy analyses, and treatments with inhibitors of multivesicular body formation revealed that TG-A was secreted via exosomes together with co-transfected mammalian CD63, an exosomal marker, and the secreted TG-A was taken up by other cells. The 8-residue N-terminal fragment of TG-A containing the fatty acylation sites was both necessary and sufficient for the exosome-dependent secretion of TG-A. In conclusion, TG-A is secreted through an unconventional ER/Golgi-independent pathway involving two types of fatty acylations and exosomes.
Collapse
Affiliation(s)
- Toshio Shibata
- From the Department of Biology, Faculty of Science.,Institute for Advanced Study, and
| | - Jinki Hadano
- the Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Daichi Kawasaki
- the Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Xiaoqing Dong
- the Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shun-Ichiro Kawabata
- From the Department of Biology, Faculty of Science, .,the Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
29
|
Globa AK, Bamji SX. Protein palmitoylation in the development and plasticity of neuronal connections. Curr Opin Neurobiol 2017; 45:210-220. [PMID: 28366531 DOI: 10.1016/j.conb.2017.02.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/19/2017] [Accepted: 02/28/2017] [Indexed: 01/01/2023]
Abstract
Protein palmitoylation, or the reversible addition of the fatty acid, palmitate, onto substrate proteins, can impact the structure and stability of proteins as well as regulate protein-protein interactions and the trafficking and localization of proteins to cell membranes. This posttranslational modification is mediated by palmitoyl-acyltransferases, consisting of a family of 23 zDHHC proteins in mammals. This review focuses on the subcellular distribution of zDHHC proteins within the neuron and the regulation of zDHHC trafficking and function by synaptic activity. We review recent studies identifying actin binding proteins, cell adhesion molecules and synaptic scaffolding proteins as targets of palmitoylation, and examine the implications of activity-mediated palmitoylation in the establishment and plasticity of neuronal connections.
Collapse
Affiliation(s)
- Andrea K Globa
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
30
|
Wittouck S, van Noort V. Correlated duplications and losses in the evolution of palmitoylation writer and eraser families. BMC Evol Biol 2017; 17:83. [PMID: 28320309 PMCID: PMC5359973 DOI: 10.1186/s12862-017-0932-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/09/2017] [Indexed: 12/27/2022] Open
Abstract
Background Protein post-translational modifications (PTMs) change protein properties. Each PTM type is associated with domain families that apply the modification (writers), remove the modification (erasers) and bind to the modified sites (readers) together called toolkit domains. The evolutionary origin and diversification remains largely understudied, except for tyrosine phosphorylation. Protein palmitoylation entails the addition of a palmitoyl fatty acid to a cysteine residue. This PTM functions as a membrane anchor and is involved in a range of cellular processes. One writer family and two erasers families are known for protein palmitoylation. Results In this work we unravel the evolutionary history of these writer and eraser families. We constructed a high-quality profile hidden Markov model (HMM) of each family, searched for protein family members in fully sequenced genomes and subsequently constructed phylogenetic distributions of the families. We constructed Maximum Likelihood phylogenetic trees and using gene tree rearrangement and tree reconciliation inferred their evolutionary histories in terms of duplication and loss events. We identified lineages where the families expanded or contracted and found that the evolutionary histories of the families are correlated. The results show that the erasers were invented first, before the origin of the eukaryotes. The writers first arose in the eukaryotic ancestor. The writers and erasers show co-expansions in several eukaryotic ancestral lineages. These expansions often seem to be followed by contractions in some or all of the lineages further in evolution. Conclusions A general pattern of correlated evolution appears between writer and eraser domains. These co-evolution patterns could be used in new methods for interaction prediction based on phylogenies. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0932-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stijn Wittouck
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
31
|
Li Y, Qi B. Progress toward Understanding Protein S-acylation: Prospective in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:346. [PMID: 28392791 PMCID: PMC5364179 DOI: 10.3389/fpls.2017.00346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/28/2017] [Indexed: 05/02/2023]
Abstract
S-acylation, also known as S-palmitoylation or palmitoylation, is a reversible post-translational lipid modification in which long chain fatty acid, usually the 16-carbon palmitate, covalently attaches to a cysteine residue(s) throughout the protein via a thioester bond. It is involved in an array of important biological processes during growth and development, reproduction and stress responses in plant. S-acylation is a ubiquitous mechanism in eukaryotes catalyzed by a family of enzymes called Protein S-Acyl Transferases (PATs). Since the discovery of the first PAT in yeast in 2002 research in S-acylation has accelerated in the mammalian system and followed by in plant. However, it is still a difficult field to study due to the large number of PATs and even larger number of putative S-acylated substrate proteins they modify in each genome. This is coupled with drawbacks in the techniques used to study S-acylation, leading to the slower progress in this field compared to protein phosphorylation, for example. In this review we will summarize the discoveries made so far based on knowledge learnt from the characterization of protein S-acyltransferases and the S-acylated proteins, the interaction mechanisms between PAT and its specific substrate protein(s) in yeast and mammals. Research in protein S-acylation and PATs in plants will also be covered although this area is currently less well studied in yeast and mammalian systems.
Collapse
|
32
|
Cho E, Park M. Palmitoylation in Alzheimers disease and other neurodegenerative diseases. Pharmacol Res 2016; 111:133-151. [DOI: 10.1016/j.phrs.2016.06.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
|
33
|
Talas F, Kalih R, Miedaner T, McDonald BA. Genome-Wide Association Study Identifies Novel Candidate Genes for Aggressiveness, Deoxynivalenol Production, and Azole Sensitivity in Natural Field Populations of Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:417-30. [PMID: 26959837 DOI: 10.1094/mpmi-09-15-0218-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Genome-wide association studies can identify novel genomic regions and genes that affect quantitative traits. Fusarium head blight is a destructive disease caused by Fusarium graminearum that exhibits several quantitative traits, including aggressiveness, mycotoxin production, and fungicide resistance. Restriction site-associated DNA sequencing was performed for 220 isolates of F. graminearum. A total of 119 isolates were phenotyped for aggressiveness and deoxynivalenol (DON) production under natural field conditions across four environments. The effective concentration of propiconazole that inhibits isolate growth in vitro by 50% was calculated for 220 strains. Approximately 29,000 single nucleotide polymorphism markers were associated to each trait, resulting in 50, 29, and 74 quantitative trait nucleotides (QTNs) that were significantly associated to aggressiveness, DON production, and propiconazole sensitivity, respectively. Approximately 41% of these QTNs caused nonsynonymous substitutions in predicted exons, while the remainder were synonymous substitutions or located in intergenic regions. Three QTNs associated with propiconazole sensitivity were significant after Bonferroni correction. These QTNs were located in genes not previously associated with azole sensitivity. The majority of the detected QTNs were located in genes with predicted regulatory functions, suggesting that nucleotide variation in regulatory genes plays a major role in the corresponding quantitative trait variation.
Collapse
|
34
|
Abstract
Protein post-translational modifications (PTM) are commonly used to regulate biological processes. Protein S-acylation is an enzymatically regulated reversible modification that has been shown to modulate protein localization, activity and membrane binding. Proteome-scale discovery on Plasmodium falciparum schizonts has revealed a complement of more than 400 palmitoylated proteins, including those essential for host invasion and drug resistance. The wide regulatory affect on this species is endorsed by the presence of 12 proteins containing the conserved DHHC-CRD (DHHC motif within a cysteine-rich domain) that is associated with palmitoyl-transferase activity. Genetic interrogation of these enzymes in Apicomplexa has revealed essentiality and distinct localization at cellular compartments; these features are species specific and are not observed in yeast. It is clear that palmitoylation has an elaborate role in Plasmodium biology and opens intriguing questions on the functional consequence of this group of acylation modifications and how the protein S-acyl transferases (PATs) orchestrate molecular events.
Collapse
|
35
|
Fukata Y, Murakami T, Yokoi N, Fukata M. Local Palmitoylation Cycles and Specialized Membrane Domain Organization. CURRENT TOPICS IN MEMBRANES 2015; 77:97-141. [PMID: 26781831 DOI: 10.1016/bs.ctm.2015.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Palmitoylation is an evolutionally conserved lipid modification of proteins. Dynamic and reversible palmitoylation controls a wide range of molecular and cellular properties of proteins including the protein trafficking, protein function, protein stability, and specialized membrane domain organization. However, technical difficulties in (1) detection of palmitoylated substrate proteins and (2) purification and enzymology of palmitoylating enzymes have prevented the progress in palmitoylation research, compared with that in phosphorylation research. The recent development of proteomic and chemical biology techniques has unexpectedly expanded the known complement of palmitoylated proteins in various species and tissues/cells, and revealed the unique occurrence of palmitoylated proteins in membrane-bound organelles and specific membrane compartments. Furthermore, identification and characterization of DHHC (Asp-His-His-Cys) palmitoylating enzyme-substrate pairs have contributed to elucidating the regulatory mechanisms and pathophysiological significance of protein palmitoylation. Here, we review the recent progress in protein palmitoylation at the molecular, cellular, and in vivo level and discuss how locally regulated palmitoylation machinery works for dynamic nanoscale organization of membrane domains.
Collapse
Affiliation(s)
- Yuko Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Tatsuro Murakami
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Norihiko Yokoi
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
36
|
González Montoro A, Chumpen Ramirez S, Valdez Taubas J. The canonical DHHC motif is not absolutely required for the activity of the yeast S-acyltransferases Swf1 and Pfa4. J Biol Chem 2015. [PMID: 26224664 DOI: 10.1074/jbc.m115.651356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein S-acyltransferases, also known as palmitoyltransferases (PATs), are characterized by the presence of a 50-amino acid domain called the DHHC domain. Within this domain, these four amino acids constitute a highly conserved motif. It has been proposed that the palmitoylation reaction occurs through a palmitoyl-PAT covalent intermediate that involves the conserved cysteine in the DHHC motif. Mutation of this cysteine results in lack of function for several PATs, and DHHA or DHHS mutants are used regularly as catalytically inactive controls. In a genetic screen to isolate loss-of-function mutations in the yeast PAT Swf1, we isolated an allele encoding a Swf1 DHHR mutant. Overexpression of this mutant is able to partially complement a swf1Δ strain and to acylate the Swf1 substrates Tlg1, Syn8, and Snc1. Overexpression of the palmitoyltransferase Pfa4 DHHA or DHHR mutants also results in palmitoylation of its substrate Chs3. We also investigated the role of the first histidine of the DHHC motif. A Swf1 DQHC mutant is also partially active but a DQHR is not. Finally, we show that Swf1 substrates are differentially modified by both DHHR and DQHC Swf1 mutants. We propose that, in the absence of the canonical mechanism, alternative suboptimal mechanisms take place that are more dependent on the reactivity of the acceptor protein. These results also imply that caution must be exercised when proposing non-canonical roles for PATs on the basis of considering DHHC mutants as catalytically inactive and, more generally, contribute to an understanding of the mechanism of protein palmitoylation.
Collapse
Affiliation(s)
- Ayelén González Montoro
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Sabrina Chumpen Ramirez
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Javier Valdez Taubas
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
37
|
Cyclic Alopecia and Abnormal Epidermal Cornification in Zdhhc13-Deficient Mice Reveal the Importance of Palmitoylation in Hair and Skin Differentiation. J Invest Dermatol 2015; 135:2603-2610. [PMID: 26121212 DOI: 10.1038/jid.2015.240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/28/2015] [Accepted: 06/16/2015] [Indexed: 12/11/2022]
Abstract
Many biochemical pathways involved in hair and skin development have not been investigated. Here, we reported on the lesions and investigated the mechanism underlying hair and skin abnormalities in Zdhhc13(skc4) mice with a deficiency in DHHC13, a palmitoyl-acyl transferase encoded by Zdhhc13. Homozygous affected mice showed ragged and dilapidated cuticle of the hair shaft (CUH, a hair anchoring structure), poor hair anchoring ability, and premature hair loss at early telogen phase of the hair cycle, resulting in cyclic alopecia. Furthermore, the homozygous affected mice exhibited hyperproliferation of the epidermis, disturbed cornification, fragile cornified envelope (CE, a skin barrier structure), and impaired skin barrier function. Biochemical investigations revealed that cornifelin, which contains five palmitoylation sites at cysteine residues (C58, C59, C60, C95, and C101), was a specific substrate of DHHC13 and that it was absent in the CUH and CE structures of the affected mice. Furthermore, cornifelin levels were markedly reduced when two palmitoylated cysteines were replaced with serine (C95S and C101S). Taken together, our results suggest that DHHC13 is important for hair anchoring and skin barrier function and that cornifelin deficiency contributes to cyclic alopecia and skin abnormalities in Zdhhc13(skc4) mice.
Collapse
|
38
|
Abstract
Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom; and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J Shipston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom; and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Impact of Protein Palmitoylation on the Virulence Potential of Cryptococcus neoformans. EUKARYOTIC CELL 2015; 14:626-35. [PMID: 25862155 DOI: 10.1128/ec.00010-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/05/2015] [Indexed: 11/20/2022]
Abstract
The localization and specialized function of Ras-like proteins are largely determined by posttranslational processing events. In a highly regulated process, palmitoyl groups may be added to C-terminal cysteine residues, targeting these proteins to specific membranes. In the human fungal pathogen Cryptococcus neoformans, Ras1 protein palmitoylation is essential for growth at high temperature but is dispensable for sexual differentiation. Ras1 palmitoylation is also required for localization of this protein on the plasma membrane. Together, these results support a model in which specific Ras functions are mediated from different subcellular locations. We therefore hypothesize that proteins that activate Ras1 or mediate Ras1 localization to the plasma membrane will be important for C. neoformans pathogenesis. To further characterize the Ras1 signaling cascade mediating high-temperature growth, we have identified a family of protein S-acyltransferases (PATs), enzymes that mediate palmitoylation, in the C. neoformans genome database. Deletion strains for each candidate gene were generated by homogenous recombination, and each mutant strain was assessed for Ras1-mediated phenotypes, including high-temperature growth, morphogenesis, and sexual development. We found that full Ras1 palmitoylation and function required one particular PAT, Pfa4, and deletion of the PFA4 gene in C. neoformans resulted in altered Ras1 localization to membranes, impaired growth at 37°C, and reduced virulence.
Collapse
|
40
|
Chauvin S, Sobel A. Neuronal stathmins: A family of phosphoproteins cooperating for neuronal development, plasticity and regeneration. Prog Neurobiol 2015; 126:1-18. [DOI: 10.1016/j.pneurobio.2014.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023]
|
41
|
Casein kinase 1γ ensures monopolar growth polarity under incomplete DNA replication downstream of Cds1 and calcineurin in fission yeast. Mol Cell Biol 2015; 35:1533-42. [PMID: 25691662 DOI: 10.1128/mcb.01465-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Cell polarity is essential for various cellular functions during both proliferative and developmental stages, and it displays dynamic alterations in response to intracellular and extracellular cues. However, the molecular mechanisms underlying spatiotemporal control of polarity transition are poorly understood. Here, we show that fission yeast Cki3 (a casein kinase 1γ homolog) is a critical regulator to ensure persistent monopolar growth during S phase. Unlike the wild type, cki3 mutant cells undergo bipolar growth when S phase is blocked, a condition known to delay transition from monopolar to bipolar growth (termed NETO [new end takeoff]). Consistent with this role, Cki3 kinase activity is substantially increased, and cells lose their viability in the absence of Cki3 upon an S-phase block. Cki3 acts downstream of the checkpoint kinase Cds1/Chk2 and calcineurin, and the latter physically interacts with Cki3. Autophosphorylation in the C terminus is inhibitory toward Cki3 kinase activity, and calcineurin is responsible for its dephosphorylation. Cki3 localizes to the plasma membrane, and this localization requires the palmitoyltransferase complex Erf2-Erf4. Membrane localization is needed not only for proper NETO timing but also for Cki3 kinase activity. We propose that Cki3 acts as a critical inhibitor of cell polarity transition under S-phase arrest.
Collapse
|
42
|
Han J, Wu P, Wang F, Chen J. S-palmitoylation regulates AMPA receptors trafficking and function: a novel insight into synaptic regulation and therapeutics. Acta Pharm Sin B 2015; 5:1-7. [PMID: 26579419 PMCID: PMC4629138 DOI: 10.1016/j.apsb.2014.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 01/11/2023] Open
Abstract
Glutamate acting on AMPA-type ionotropic glutamate receptor (AMPAR) mediates the majority of fast excitatory synaptic transmission in the mammalian central nervous system. Dynamic regulation of AMPAR by post-translational modifications is one of the key elements that allow the nervous system to adapt to environment stimulations. S-palmitoylation, an important lipid modification by post-translational addition of a long-chain fatty acid to a cysteine residue, regulates AMPA receptor trafficking, which dynamically affects multiple fundamental brain functions, such as learning and memory. In vivo, S-palmitoylation is controlled by palmitoyl acyl transferases and palmitoyl thioesterases. In this review, we highlight advances in the mechanisms for dynamic AMPA receptors palmitoylation, and discuss how palmitoylation affects AMPA receptors function at synapses in recent years. Pharmacological regulation of S-palmitoylation may serve as a novel therapeutic strategy for neurobiological diseases.
Collapse
Key Words
- 17-ODYA, 17-octadecynoic acid
- ABE, acyl-biotinyl exchange
- ABP, AMPA receptor binding protein
- AD, Alzheimer׳s disease
- AKAP79/150, A-kinase anchoring protein 79/150
- AMPA receptors
- AMPAR, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor
- APT1, acyl-protein thioesterase-1
- APT2, acyl-protein thioesterase-2
- CP-AMPARs, Ca2+-permeable AMPARs
- DHHC
- DHHC, aspartate-histidine-histidine-cysteine
- FMRP, fragile X mental retardation protein
- FXS, Fragile X syndrome
- GAP-43, growth associated protein-43
- GRIP, glutamate receptor interacting protein
- LTD, long-term depression
- LTP, long-term potentiation
- PATs, palmitoyl acyl transferases
- PDZ, postsynaptic density-95/discs large/zona occludens-1
- PICK1, protein interacting with C-kinase 1
- PKA, protein kinase A
- PKC, protein kinase C
- PPT1, palmitoyl-protein thioesterase-1
- PSD-95, postsynaptic density-95
- Palmitoylation
- Ras, rat sarcoma
- SNAP-23, soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor protein-23
- Trafficking
Collapse
|
43
|
Hornemann T. Palmitoylation and depalmitoylation defects. J Inherit Metab Dis 2015; 38:179-86. [PMID: 25091425 DOI: 10.1007/s10545-014-9753-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022]
Abstract
Palmitoylation describes the enzymatic attachment of a 16-carbon atom fatty acid to a target protein. Such lipidation events occur in all eukaryotes and can be of reversible (S-palmitoylation) or irreversible (N-palmitoylation) nature. In particular S-palmitoylation is dynamically regulated by two opposing types of enzymes which add (palmitoyl acyltransferases - PAT) or remove (acyl protein thioesterases) palmitate from proteins. Protein palmitoylation is an important process that dynamically regulates the assembly and compartmentalization of many neuronal proteins at specific subcellular sites. Enzymes that regulate protein palmitoylation are critical for several biological processes. To date, eight palmitoylation related genes have been reported to be associated with human disease. This review intends to give an overview on the pathological changes which are associated with defects in the palmitoylation/depalmitoylation process.
Collapse
Affiliation(s)
- Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland,
| |
Collapse
|
44
|
Rho2 palmitoylation is required for plasma membrane localization and proper signaling to the fission yeast cell integrity mitogen- activated protein kinase pathway. Mol Cell Biol 2014; 34:2745-59. [PMID: 24820419 DOI: 10.1128/mcb.01515-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fission yeast small GTPase Rho2 regulates morphogenesis and is an upstream activator of the cell integrity pathway, whose key element, mitogen-activated protein kinase (MAPK) Pmk1, becomes activated by multiple environmental stimuli and controls several cellular functions. Here we demonstrate that farnesylated Rho2 becomes palmitoylated in vivo at cysteine-196 within its carboxyl end and that this modification allows its specific targeting to the plasma membrane. Unlike that of other palmitoylated and prenylated GTPases, the Rho2 control of morphogenesis and Pmk1 activity is strictly dependent upon plasma membrane localization and is not found in other cellular membranes. Indeed, artificial plasma membrane targeting bypassed the Rho2 need for palmitoylation in order to signal. Detailed functional analysis of Rho2 chimeras fused to the carboxyl end from the essential GTPase Rho1 showed that GTPase palmitoylation is partially dependent on the prenylation context and confirmed that Rho2 signaling is independent of Rho GTP dissociation inhibitor (GDI) function. We further demonstrate that Rho2 is an in vivo substrate for DHHC family acyltransferase Erf2 palmitoyltransferase. Remarkably, Rho3, another Erf2 target, negatively regulates Pmk1 activity in a Rho2-independent fashion, thus revealing the existence of cross talk whereby both GTPases antagonistically modulate the activity of this MAPK cascade.
Collapse
|
45
|
Merino MC, Zamponi N, Vranych CV, Touz MC, Rópolo AS. Identification of Giardia lamblia DHHC proteins and the role of protein S-palmitoylation in the encystation process. PLoS Negl Trop Dis 2014; 8:e2997. [PMID: 25058047 PMCID: PMC4109852 DOI: 10.1371/journal.pntd.0002997] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/23/2014] [Indexed: 12/17/2022] Open
Abstract
Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation. Giardiasis is a major cause of non-viral/non-bacterial diarrheal disease worldwide and has been included within the WHO Neglected Disease Initiative since 2004. Infection begins with the ingestion of Giardia lamblia in cyst form, which, after exposure to gastric acid in the host stomach and proteases in the duodenum, gives rise to trophozoites. The inverse process is called encystation and begins when the trophozoites migrate to the lower part of the small intestine where they receive signals that trigger synthesis of the components of the cyst wall. The cyst form enables the parasite to survive in the environment, infect a new host and evade the immune response. In this work, we explored the role of protein S-palmitoylation, a unique reversible post-translational modification, during Giardia encystation, because de novo generation of endomembrane compartments, protein sorting and vesicle fusion occur in this process. Our findings may contribute to the design of therapeutic agents against this important human pathogen.
Collapse
Affiliation(s)
- María C. Merino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| | - Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia V. Vranych
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C. Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea S. Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
46
|
He M, Abdi KM, Bennett V. Ankyrin-G palmitoylation and βII-spectrin binding to phosphoinositide lipids drive lateral membrane assembly. J Cell Biol 2014; 206:273-88. [PMID: 25049274 PMCID: PMC4107783 DOI: 10.1083/jcb.201401016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/17/2014] [Indexed: 12/22/2022] Open
Abstract
Ankyrin-G and βII-spectrin colocalize at sites of cell-cell contact in columnar epithelial cells and promote lateral membrane assembly. This study identifies two critical inputs from lipids that together provide a rationale for how ankyrin-G and βII-spectrin selectively localize to Madin-Darby canine kidney (MDCK) cell lateral membranes. We identify aspartate-histidine-histidine-cysteine 5/8 (DHHC5/8) as ankyrin-G palmitoyltransferases required for ankyrin-G lateral membrane localization and for assembly of lateral membranes. We also find that βII-spectrin functions as a coincidence detector that requires recognition of both ankyrin-G and phosphoinositide lipids for its lateral membrane localization. DHHC5/8 and βII-spectrin colocalize with ankyrin-G in micrometer-scale subdomains within the lateral membrane that are likely sites for palmitoylation of ankyrin-G. Loss of either DHHC5/8 or ankyrin-G-βII-spectrin interaction or βII-spectrin-phosphoinositide recognition through its pleckstrin homology domain all result in failure to build the lateral membrane. In summary, we identify a functional network connecting palmitoyltransferases DHHC5/8 with ankyrin-G, ankyrin-G with βII-spectrin, and βII-spectrin with phosphoinositides that is required for the columnar morphology of MDCK epithelial cells.
Collapse
Affiliation(s)
- Meng He
- Department of Pharmacology and Cancer Biology, Department of Cell Biology, Department of Biochemistry, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Khadar M Abdi
- Department of Pharmacology and Cancer Biology, Department of Cell Biology, Department of Biochemistry, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Vann Bennett
- Department of Pharmacology and Cancer Biology, Department of Cell Biology, Department of Biochemistry, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710Department of Pharmacology and Cancer Biology, Department of Cell Biology, Department of Biochemistry, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710 Howard Hughes Medical Institute, Durham, NC 27710
| |
Collapse
|
47
|
Norton TS, Fortwendel JR. Control of Ras-mediated signaling in Aspergillus fumigatus. Mycopathologia 2014; 178:325-30. [PMID: 24952717 DOI: 10.1007/s11046-014-9765-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
Pathogenic fungi employ numerous mechanisms to flourish in the stressful environment encountered within their mammalian hosts. Central to this arsenal for filamentous fungi is invasive growth within the host microenvironment, mediated by establishment and maintenance of polarized hyphal morphogenesis. In Aspergillus fumigatus, the RasA signal transduction pathway has emerged as a significant regulator of hyphal morphogenesis and virulence, among other processes. The factors contributing to the regulation of RasA itself are not as thoroughly understood, although proper temporal activation of RasA and spatial localization of RasA to the plasma membrane are known to play major roles. Interference with RasA palmitoylation or prenylation results in mislocalization of RasA and is associated with severe growth deficits. In addition, dysregulation of RasA activation results in severe morphologic aberrancies and growth deficits. This review highlights the relationship between RasA signaling, hyphal morphogenesis, and virulence in A. fumigatus and focuses on potential determinants of spatial and temporal RasA regulation.
Collapse
Affiliation(s)
- Tiffany S Norton
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, 5851 USA Drive North, MSB 2102, Mobile, AL, 36688, USA
| | | |
Collapse
|
48
|
Goldston AM, Sharma AI, Paul KS, Engman DM. Acylation in trypanosomatids: an essential process and potential drug target. Trends Parasitol 2014; 30:350-60. [PMID: 24954795 DOI: 10.1016/j.pt.2014.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Abstract
Fatty acylation--the addition of fatty acid moieties such as myristate and palmitate to proteins--is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their protein targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Amanda M Goldston
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Aabha I Sharma
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Kimberly S Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - David M Engman
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
49
|
Hamel LD, Deschenes RJ, Mitchell DA. A fluorescence-based assay to monitor autopalmitoylation of zDHHC proteins applicable to high-throughput screening. Anal Biochem 2014; 460:1-8. [PMID: 24878334 DOI: 10.1016/j.ab.2014.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 01/24/2023]
Abstract
Palmitoylation, the posttranslational thioester-linked modification of a 16-carbon saturated fatty acid onto the cysteine residue of a protein, has garnered considerable attention due to its implication in a multitude of disease states. The signature DHHC motif (Asp-His-His-Cys) identifies a family of protein acyltransferases (PATs) that catalyze the S-palmitoylation of target proteins via a two-step mechanism. In the first step, autopalmitoylation, palmitate is transferred from palmitoyl-CoA to the PAT, creating a palmitoyl:PAT intermediate and releasing reduced CoA. The palmitoyl moiety is then transferred to a protein substrate in the second step of the reaction. We have developed an in vitro, single-well, fluorescence-based enzyme assay that monitors the first step of the PAT reaction by coupling the production of reduced CoA to the reduction of NAD(+) using the α-ketoglutarate dehydrogenase complex. This assay is suitable for determining PAT kinetic parameters, elucidating lipid donor specificity and measuring PAT inhibition by 2-bromopalmitate. Finally, it can be used for high-throughput screening (HTS) campaigns for modulators of protein palmitoylation.
Collapse
Affiliation(s)
- Laura D Hamel
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Robert J Deschenes
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - David A Mitchell
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
50
|
Mitchell DA, Hamel LD, Reddy KD, Farh L, Rettew LM, Sanchez PR, Deschenes RJ. Mutations in the X-linked intellectual disability gene, zDHHC9, alter autopalmitoylation activity by distinct mechanisms. J Biol Chem 2014; 289:18582-92. [PMID: 24811172 DOI: 10.1074/jbc.m114.567420] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Early onset intellectual disabilities result in significant societal and economic costs and affect 1-3% of the population. The underlying genetic determinants are beginning to emerge and are interpreted in the context of years of work characterizing postsynaptic receptor and signaling functions of learning and memory. DNA sequence analysis of intellectual disability patients has revealed greater than 80 loci on the X-chromosome that are potentially linked to disease. One of the loci is zDHHC9, a gene encoding a Ras protein acyltransferase. Protein palmitoylation is a reversible modification that controls the subcellular localization and distribution of membrane receptors, scaffolds, and signaling proteins required for neuronal plasticity. Palmitoylation occurs in two steps. In the first step, autopalmitoylation, an enzyme-palmitoyl intermediate is formed. During the second step, the palmitoyl moiety is transferred to a protein substrate, or if no substrate is available, hydrolysis of the thioester linkage produces the enzyme and free palmitate. In this study, we demonstrate that two naturally occurring variants of zDHHC9, encoding R148W and P150S, affect the autopalmitoylation step of the reaction by lowering the steady state amount of the palmitoyl-zDHHC9 intermediate.
Collapse
Affiliation(s)
- David A Mitchell
- From the Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612 and
| | - Laura D Hamel
- From the Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612 and
| | - Krishna D Reddy
- From the Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612 and
| | - Lynn Farh
- the Department of Chemical Biology, National Pingtung University, Pingtung 900-03, Taiwan
| | - Logan M Rettew
- From the Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612 and
| | - Phillip R Sanchez
- From the Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612 and
| | - Robert J Deschenes
- From the Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612 and
| |
Collapse
|