1
|
Lichauco C, Foss EJ, Gatbonton-Schwager T, Athow NF, Lofts B, Acob R, Taylor E, Marquez JJ, Lao U, Miles S, Bedalov A. Sir2 and Fun30 regulate ribosomal DNA replication timing via MCM helicase positioning and nucleosome occupancy. eLife 2025; 13:RP97438. [PMID: 39831552 PMCID: PMC11745493 DOI: 10.7554/elife.97438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.
Collapse
Affiliation(s)
- Carmina Lichauco
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Eric J Foss
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Tonibelle Gatbonton-Schwager
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Nelson F Athow
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Brandon Lofts
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Robin Acob
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Erin Taylor
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - James J Marquez
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Uyen Lao
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Shawna Miles
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Antonio Bedalov
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Biochemistry and Department of Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
2
|
Lichauco C, Foss EJ, Gatbonton-Schwager T, Athow NF, Lofts B, Acob R, Taylor E, Marquez JJ, Lao U, Miles S, Bedalov A. Sir2 and Fun30 regulate ribosomal DNA replication timing via MCM helicase positioning and nucleosome occupancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586113. [PMID: 38585982 PMCID: PMC10996493 DOI: 10.1101/2024.03.21.586113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well-known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA arrays (rDNA). We have previously reported that in the absence of SIR2, a derepressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both, activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.
Collapse
Affiliation(s)
- Carmina Lichauco
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Eric J. Foss
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Tonibelle Gatbonton-Schwager
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Nelson F. Athow
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Brandon Lofts
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Robin Acob
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Erin Taylor
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - James J. Marquez
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Uyen Lao
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Shawna Miles
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Antonio Bedalov
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Biochemistry and Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
3
|
Dhillon N, Kamakaka RT. Transcriptional silencing in Saccharomyces cerevisiae: known unknowns. Epigenetics Chromatin 2024; 17:28. [PMID: 39272151 PMCID: PMC11401328 DOI: 10.1186/s13072-024-00553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae is a persistent and highly stable form of gene repression. It involves DNA silencers and repressor proteins that bind nucleosomes. The silenced state is influenced by numerous factors including the concentration of repressors, nature of activators, architecture of regulatory elements, modifying enzymes and the dynamics of chromatin.Silencers function to increase the residence time of repressor Sir proteins at silenced domains while clustering of silenced domains enables increased concentrations of repressors and helps facilitate long-range interactions. The presence of an accessible NDR at the regulatory regions of silenced genes, the cycling of chromatin configurations at regulatory sites, the mobility of Sir proteins, and the non-uniform distribution of the Sir proteins across the silenced domain, all result in silenced chromatin that only stably silences weak promoters and enhancers via changes in transcription burst duration and frequency.These data collectively suggest that silencing is probabilistic and the robustness of silencing is achieved through sub-optimization of many different nodes of action such that a stable expression state is generated and maintained even though individual constituents are in constant flux.
Collapse
Affiliation(s)
- Namrita Dhillon
- Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Rohinton T Kamakaka
- Department of MCD Biology, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
4
|
Measuring the buffering capacity of gene silencing in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2021; 118:2111841118. [PMID: 34857629 PMCID: PMC8670432 DOI: 10.1073/pnas.2111841118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 11/18/2022] Open
Abstract
Gene silencing, once established, is stably maintained for several generations. Despite the high fidelity of the inheritance of the silent state, individual components of silenced chromatin are in constant flux. Models suggest that silent loci can tolerate fluctuations in Sir proteins and histone acetylation levels, but the level of tolerance is unknown. To understand the quantitative relationships between H4K16 acetylation, Sir proteins, and silencing, we developed assays to quantitatively alter a H4K16 acetylation mimic allele and Sir protein levels and measure the effects of these changes on silencing. Our data suggest that a two- to threefold change in levels of histone marks and specific Sir proteins affects the stability of the silent state of a large chromatin domain. Gene silencing in budding yeast is mediated by Sir protein binding to unacetylated nucleosomes to form a chromatin structure that inhibits transcription. Transcriptional silencing is characterized by the high-fidelity transmission of the silent state. Despite its relative stability, the constituent parts of the silent state are in constant flux, giving rise to a model that silent loci can tolerate such fluctuations without functional consequences. However, the level of tolerance is unknown, and we developed methods to measure the threshold of histone acetylation that causes the silent chromatin state to switch to the active state as well as to measure the levels of the enzymes and structural proteins necessary for silencing. We show that loss of silencing required 50 to 75% acetyl-mimic histones, though the precise levels were influenced by silencer strength and upstream activating sequence (UAS) enhancer/promoter strength. Measurements of repressor protein levels necessary for silencing showed that reducing SIR4 gene dosage two- to threefold significantly weakened silencing, though reducing the gene copy numbers for Sir2 or Sir3 to the same extent did not significantly affect silencing suggesting that Sir4 was a limiting component in gene silencing. Calculations suggest that a mere twofold reduction in the ability of acetyltransferases to acetylate nucleosomes across a large array of nucleosomes may be sufficient to generate a transcriptionally silent domain.
Collapse
|
5
|
Loïodice I, Garnier M, Nikolov I, Taddei A. An Inducible System for Silencing Establishment Reveals a Stepwise Mechanism in Which Anchoring at the Nuclear Periphery Precedes Heterochromatin Formation. Cells 2021; 10:cells10112810. [PMID: 34831033 PMCID: PMC8616196 DOI: 10.3390/cells10112810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
In eukaryotic cells, silent chromatin is mainly found at the nuclear periphery forming subnuclear compartments that favor silencing establishment. Here, we set up an inducible system to monitor silencing establishment at an ectopic locus in relation with its subnuclear localization in budding yeast. We previously showed that introducing LacI bound lacO arrays in proximity to gene flanked by HML silencers favors the recruitment of the yeast silencing complex SIR at this locus, leading to its silencing and anchoring at the nuclear periphery. Using an inducible version of this system, we show that silencing establishment is a stepwise process occurring over several cell cycles, with the progressive recruitment of the SIR complex. In contrast, we observed a rapid, SIR-independent perinuclear anchoring, induced by the high amount of LacI binding at the lacO array leading to nucleosome eviction at this array and to the phosphorylation of H2A in the neighboring nucleosomes by Mec1 kinase. While the initial phosphorylation of H2A (H2A-P) and perinuclear anchoring are independent of the SIR complex, its latter recruitment stabilizes H2A-P and reinforces the perinuclear anchoring. Finally, we showed that Sir3 spreading stabilizes nucleosomes and limits the access of specific DNA-binding protein to DNA.
Collapse
Affiliation(s)
- Isabelle Loïodice
- Nuclear Dynamics Unit, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France; (I.L.); (M.G.); (I.N.)
| | - Mickael Garnier
- Nuclear Dynamics Unit, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France; (I.L.); (M.G.); (I.N.)
| | - Ivaylo Nikolov
- Nuclear Dynamics Unit, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France; (I.L.); (M.G.); (I.N.)
| | - Angela Taddei
- Nuclear Dynamics Unit, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France; (I.L.); (M.G.); (I.N.)
- Cogitamus Laboratory, F-75005 Paris, France
- Correspondence:
| |
Collapse
|
6
|
Tripuraneni V, Memisoglu G, MacAlpine HK, Tran TQ, Zhu W, Hartemink AJ, Haber JE, MacAlpine DM. Local nucleosome dynamics and eviction following a double-strand break are reversible by NHEJ-mediated repair in the absence of DNA replication. Genome Res 2021; 31:775-788. [PMID: 33811083 PMCID: PMC8092003 DOI: 10.1101/gr.271155.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/26/2021] [Indexed: 12/27/2022]
Abstract
We interrogated at nucleotide resolution the spatiotemporal order of chromatin changes that occur immediately following a site-specific double-strand break (DSB) upstream of the PHO5 locus and its subsequent repair by nonhomologous end joining (NHEJ). We observed the immediate eviction of a nucleosome flanking the break and the repositioning of adjacent nucleosomes away from the break. These early chromatin events were independent of the end-processing Mre11-Rad50-Xrs2 (MRX) complex and preceded the MRX-dependent broad eviction of histones and DNA end-resectioning that extends up to ∼8 kb away from the break. We also examined the temporal dynamics of NHEJ-mediated repair in a G1-arrested population. Concomitant with DSB repair by NHEJ, we observed the redeposition and precise repositioning of nucleosomes at their originally occupied positions. This re-establishment of the prelesion chromatin landscape suggests that a DNA replication-independent mechanism exists to preserve epigenome organization following DSB repair.
Collapse
Affiliation(s)
- Vinay Tripuraneni
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Gonen Memisoglu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Trung Q Tran
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - Wei Zhu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
7
|
Nucleosome Positioning Regulates the Establishment, Stability, and Inheritance of Heterochromatin in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2020; 117:27493-27501. [PMID: 33077593 DOI: 10.1073/pnas.2004111117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterochromatic domains are complex structures composed of nucleosome arrays that are bound by silencing factors. This composition raises the possibility that certain configurations of nucleosome arrays facilitate heterochromatic silencing. We tested this possibility in Saccharomyces cerevisiae by systematically altering the distance between heterochromatic nucleosome-depleted regions (NDRs), which is predicted to affect local nucleosome positioning by limiting how nucleosomes can be packed between NDRs. Consistent with this prediction, serial deletions that altered the distance between heterochromatic NDRs revealed a striking oscillatory relationship between inter-NDR distance and defects in nucleosome positioning. Furthermore, conditions that caused poor nucleosome positioning also led to defects in both heterochromatin stability and the ability of cells to generate and inherit epigenetic transcriptional states. These findings strongly suggest that nucleosome positioning can contribute to formation and maintenance of functional heterochromatin and point to previously unappreciated roles of NDR positioning within heterochromatic domains.
Collapse
|
8
|
Sieverman KJ, Rine J. Impact of Homologous Recombination on Silent Chromatin in Saccharomyces cerevisiae. Genetics 2018; 208:1099-1113. [PMID: 29339409 PMCID: PMC5844325 DOI: 10.1534/genetics.118.300704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Specialized chromatin domains repress transcription of genes within them and present a barrier to many DNA-protein interactions. Silent chromatin in the budding yeast Saccharomyces cerevisiae, akin to heterochromatin of metazoans and plants, inhibits transcription of PolII- and PolIII-transcribed genes, yet somehow grants access to proteins necessary for DNA transactions like replication and homologous recombination. In this study, we adapted a novel assay to detect even transient changes in the dynamics of transcriptional silencing at HML after it served as a template for homologous recombination. Homologous recombination specifically targeted to HML via double-strand-break formation at a homologous locus often led to transient loss of transcriptional silencing at HML Interestingly, many cells could template homology-directed repair at HML without an obligate loss of silencing, even in recombination events with extensive gene conversion tracts. In a population of cells that experienced silencing loss following recombination, transcription persisted for 2-3 hr after all double-strand breaks were repaired. mRNA levels from cells that experienced recombination-induced silencing loss did not approach the amount of mRNA seen in cells lacking transcriptional silencing. Thus, silencing loss at HML after homologous recombination was short-lived and limited.
Collapse
Affiliation(s)
- Kathryn J Sieverman
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, California 94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, California 94720
| |
Collapse
|
9
|
Guintini L, Tremblay M, Toussaint M, D'Amours A, Wellinger RE, Wellinger RJ, Conconi A. Repair of UV-induced DNA lesions in natural Saccharomyces cerevisiae telomeres is moderated by Sir2 and Sir3, and inhibited by yKu-Sir4 interaction. Nucleic Acids Res 2017; 45:4577-4589. [PMID: 28334768 PMCID: PMC5416773 DOI: 10.1093/nar/gkx123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 02/10/2017] [Indexed: 01/28/2023] Open
Abstract
Ultraviolet light (UV) causes DNA damage that is removed by nucleotide excision repair (NER). UV-induced DNA lesions must be recognized and repaired in nucleosomal DNA, higher order structures of chromatin and within different nuclear sub-compartments. Telomeric DNA is made of short tandem repeats located at the ends of chromosomes and their maintenance is critical to prevent genome instability. In Saccharomyces cerevisiae the chromatin structure of natural telomeres is distinctive and contingent to telomeric DNA sequences. Namely, nucleosomes and Sir proteins form the heterochromatin like structure of X-type telomeres, whereas a more open conformation is present at Y’-type telomeres. It is proposed that there are no nucleosomes on the most distal telomeric repeat DNA, which is bound by a complex of proteins and folded into higher order structure. How these structures affect NER is poorly understood. Our data indicate that the X-type, but not the Y’-type, sub-telomeric chromatin modulates NER, a consequence of Sir protein-dependent nucleosome stability. The telomere terminal complex also prevents NER, however, this effect is largely dependent on the yKu–Sir4 interaction, but Sir2 and Sir3 independent.
Collapse
Affiliation(s)
- Laetitia Guintini
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Maxime Tremblay
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Martin Toussaint
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Annie D'Amours
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Ralf E Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, CSIC, Avda Américo Vespucio s/n, Sevilla 41092, Spain
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| | - Antonio Conconi
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke J1E 4K8, Canada
| |
Collapse
|
10
|
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 2017; 203:1563-99. [PMID: 27516616 DOI: 10.1534/genetics.112.145243] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing.
Collapse
|
11
|
Behrouzi R, Lu C, Currie MA, Jih G, Iglesias N, Moazed D. Heterochromatin assembly by interrupted Sir3 bridges across neighboring nucleosomes. eLife 2016; 5. [PMID: 27835568 PMCID: PMC5106214 DOI: 10.7554/elife.17556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023] Open
Abstract
Heterochromatin is a conserved feature of eukaryotic chromosomes with central roles in regulation of gene expression and maintenance of genome stability. Heterochromatin formation involves spreading of chromatin-modifying factors away from initiation points over large DNA domains by poorly understood mechanisms. In Saccharomyces cerevisiae, heterochromatin formation requires the SIR complex, which contains subunits with histone-modifying, histone-binding, and self-association activities. Here, we analyze binding of the Sir proteins to reconstituted mono-, di-, tri-, and tetra-nucleosomal chromatin templates and show that key Sir-Sir interactions bridge only sites on different nucleosomes but not sites on the same nucleosome, and are therefore 'interrupted' with respect to sites on the same nucleosome. We observe maximal binding affinity and cooperativity to unmodified di-nucleosomes and propose that nucleosome pairs bearing unmodified histone H4-lysine16 and H3-lysine79 form the fundamental units of Sir chromatin binding and that cooperative binding requiring two appropriately modified nucleosomes mediates selective Sir recruitment and spreading.
Collapse
Affiliation(s)
- Reza Behrouzi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Chenning Lu
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Mark A Currie
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Gloria Jih
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Nahid Iglesias
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Danesh Moazed
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
12
|
Tsabar M, Hicks WM, Tsaponina O, Haber JE. Re-establishment of nucleosome occupancy during double-strand break repair in budding yeast. DNA Repair (Amst) 2016; 47:21-29. [PMID: 27720308 DOI: 10.1016/j.dnarep.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 02/02/2023]
Abstract
Homologous recombination (HR) is an evolutionarily conserved pathway in eukaryotes that repairs a double-strand break (DSB) by copying homologous sequences from a sister chromatid, a homologous chromosome or an ectopic location. Recombination is challenged by the packaging of DNA into nucleosomes, which may impair the process at many steps, from resection of the DSB ends to the re-establishement of nucleosomes after repair. However, nucleosome dynamics during DSB repair have not been well described, primarily because of a lack of well-ordered nucleosomes around a DSB. We designed a system in budding yeast Saccharomyces cerevisiae to monitor nucleosome dynamics during repair of an HO endonuclease-induced DSB. Nucleosome occupancy around the break is lost following DSB formation, by 5'-3' resection of the DSB end. Soon after repair is complete, nucleosome occupancy is partially restored in a repair-dependent but cell cycle-independent manner. Full re-establishment of nucleosome protection back to the level prior to DSB induction is achieved when the cell cycle resumes following repair. These findings may have implications to the mechanisms by which cells sense the completion of repair.
Collapse
Affiliation(s)
- Michael Tsabar
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, United States
| | - Wade M Hicks
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, United States
| | - Olga Tsaponina
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, United States
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, United States.
| |
Collapse
|
13
|
Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation. Genetics 2016; 204:177-90. [PMID: 27489001 DOI: 10.1534/genetics.116.190835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022] Open
Abstract
As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.
Collapse
|
14
|
Chen YF, Chou CC, Gartenberg MR. Determinants of Sir2-Mediated, Silent Chromatin Cohesion. Mol Cell Biol 2016; 36:2039-50. [PMID: 27185881 PMCID: PMC4946433 DOI: 10.1128/mcb.00057-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022] Open
Abstract
Cohesin associates with distinct sites on chromosomes to mediate sister chromatid cohesion. Single cohesin complexes are thought to bind by encircling both sister chromatids in a topological embrace. Transcriptionally repressed chromosomal domains in the yeast Saccharomyces cerevisiae represent specialized sites of cohesion where cohesin binds silent chromatin in a Sir2-dependent fashion. In this study, we investigated the molecular basis for Sir2-mediated cohesion. We identified a cluster of charged surface residues of Sir2, collectively termed the EKDK motif, that are required for cohesin function. In addition, we demonstrated that Esc8, a Sir2-interacting factor, is also required for silent chromatin cohesion. Esc8 was previously shown to associate with Isw1, the enzymatic core of ISW1 chromatin remodelers, to form a variant of the ISW1a chromatin remodeling complex. When ESC8 was deleted or the EKDK motif was mutated, cohesin binding at silenced chromatin domains persisted but cohesion of the domains was abolished. The data are not consistent with cohesin embracing both sister chromatids within silent chromatin domains. Transcriptional silencing remains largely intact in strains lacking ESC8 or bearing EKDK mutations, indicating that silencing and cohesion are separable functions of Sir2 and silent chromatin.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Chia-Ching Chou
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Marc R Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
15
|
Abstract
The budding yeast Saccharomyces cerevisiae has two alternative mating types designated MATa and MATα. These are distinguished by about 700 bp of unique sequences, Ya or Yα, including divergent promoter sequences and part of the open reading frames of genes that regulate mating phenotype. Homothallic budding yeast, carrying an active HO endonuclease gene, HO, can switch mating type through a recombination process known as gene conversion, in which a site-specific double-strand break (DSB) created immediately adjacent to the Y region results in replacement of the Y sequences with a copy of the opposite mating type information, which is harbored in one of two heterochromatic donor loci, HMLα or HMRa. HO gene expression is tightly regulated to ensure that only half of the cells in a lineage switch to the opposite MAT allele, thus promoting conjugation and diploid formation. Study of the silencing of these loci has provided a great deal of information about the role of the Sir2 histone deacetylase and its associated Sir3 and Sir4 proteins in creating heterochromatic regions. MAT switching has been examined in great detail to learn about the steps in homologous recombination. MAT switching is remarkably directional, with MATa recombining preferentially with HMLα and MATα using HMRa. Donor preference is controlled by a cis-acting recombination enhancer located near HML. RE is turned off in MATα cells but in MATa binds multiple copies of the Fkh1 transcription factor whose forkhead-associated phosphothreonine binding domain localizes at the DSB, bringing HML into conjunction with MATa.
Collapse
|
16
|
Abstract
Silencing assays have proven to be powerful tools not only for understanding how epigenetic processes function and defining the structural components of silent chromatin, but also for a useful readout for characterizing the functions of proteins involved in chromatin biology that influence epigenetic processes directly or indirectly. This chapter describes a collection of assays for monitoring silencing in Saccharomyces cerevisiae, including qualitative and quantitative methods as well as protocols that provide either indirect or direct measurements of the transcriptional state of loci regulated by silent chromatin.
Collapse
|
17
|
Ozer G, Collepardo-Guevara R, Schlick T. Forced unraveling of chromatin fibers with nonuniform linker DNA lengths. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064113. [PMID: 25564319 PMCID: PMC4554754 DOI: 10.1088/0953-8984/27/6/064113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The chromatin fiber undergoes significant structural changes during the cell's life cycle to modulate DNA accessibility. Detailed mechanisms of such structural transformations of chromatin fibers as affected by various internal and external conditions such as the ionic conditions of the medium, the linker DNA length, and the presence of linker histones, constitute an open challenge. Here we utilize Monte Carlo (MC) simulations of a coarse grained model of chromatin with nonuniform linker DNA lengths as found in vivo to help explain some aspects of this challenge. We investigate the unfolding mechanisms of chromatin fibers with alternating linker lengths of 26-62 bp and 44-79 bp using a series of end-to-end stretching trajectories with and without linker histones and compare results to uniform-linker-length fibers. We find that linker histones increase overall resistance of nonuniform fibers and lead to fiber unfolding with superbeads-on-a-string cluster transitions. Chromatin fibers with nonuniform linker DNA lengths display a more complex, multi-step yet smoother process of unfolding compared to their uniform counterparts, likely due to the existence of a more continuous range of nucleosome-nucleosome interactions. This finding echoes the theme that some heterogeneity in fiber component is biologically advantageous.
Collapse
Affiliation(s)
- Gungor Ozer
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003
| | | | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| |
Collapse
|
18
|
Bi X. Heterochromatin structure: lessons from the budding yeast. IUBMB Life 2014; 66:657-66. [PMID: 25355678 DOI: 10.1002/iub.1322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/12/2014] [Accepted: 10/14/2014] [Indexed: 12/28/2022]
Abstract
The eukaryotic genome can be roughly divided into euchromatin and heterochromatin domains that are structurally and functionally distinct. Heterochromatin is characterized by its high compactness and its inhibitory effect on DNA transactions such as gene expression. Formation of heterochromatin involves special histone modifications and the recruitment and spread of silencing complexes and causes changes in the primary and higher order structures of chromatin. The past two decades have seen dramatic advances in dissecting the molecular aspects of heterochromatin because of the identification of the histone code for heterochromatin as well as its writers and erasers (histone-modifying enzymes) and readers (silencing factors recognizing histone modifications). How heterochromatic histone modifications and silencing factors contribute to the special primary and higher order structures of heterochromatin has begun to be understood. The budding yeast Saccharomyces cerevisiae has long been used as a model organism for heterochromatin studies. Results from these studies have contributed significantly to the elucidation of the general principles governing the formation, maintenance, and function of heterochromatin. This review is focused on investigations into the structural aspects of heterochromatin in S. cerevisiae. Current understanding of other aspects of heterochromatin including how it promotes gene silencing and its epigenetic inheritance is briefly summarized.
Collapse
Affiliation(s)
- Xin Bi
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
19
|
Nucleosome-positioning sequence repeats impact chromatin silencing in yeast minichromosomes. Genetics 2014; 198:1015-29. [PMID: 25189873 DOI: 10.1534/genetics.114.169508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic gene expression occurs in the context of structurally distinct chromosomal domains such as the relatively open, gene-rich, and transcriptionally active euchromatin and the condensed and gene-poor heterochromatin where its specific chromatin environment inhibits transcription. To study gene silencing by heterochromatin, we created a minichromosome reporter system where the gene silencer elements were used to repress the URA3 reporter gene. The minichromosome reporters were propagated in yeast Saccharomyces cerevisiae at a stable copy number. Conduction of gene silencing through nucleosome arrays was studied by placing various repeats of clone-601 DNA with high affinity for histones between the silencer and reporter in the yeast minichromosomes. High-resolution chromatin mapping with micrococcal nuclease showed that the clone-601 nucleosome positioning downstream of the HML-E gene silencing element was not significantly altered by chromatin silencing. Using URA3 reporter assays, we observed that gene silencing was conducted through arrays of up to eight nucleosomes. We showed that the shorter nucleosome repeat lengths, typical of yeast (167 and 172 bp), were more efficient in conducting silencing in vivo compared to the longer repeats (207 bp) typical of higher eukaryotes. Both the longer and the shorter repeat lengths were able to conduct silencing in minichromosomes independently of clone-601 nucleosome positioning orientations vs. the silencer element. We suggest that the shorter nucleosome linkers are more suitable for conducting gene silencing than the long repeats in yeast due to their higher propensity to support native-like chromatin higher-order folding.
Collapse
|
20
|
Chromatin fiber polymorphism triggered by variations of DNA linker lengths. Proc Natl Acad Sci U S A 2014; 111:8061-6. [PMID: 24847063 DOI: 10.1073/pnas.1315872111] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNAs joining successive nucleosomes (measured in nucleosome-repeat lengths or NRLs) that characterize different cell types and cell cycle stages produce different structures. NRL is also nonuniform within single fibers, but how this diversity affects chromatin fiber structure is not clear. Here we perform Monte Carlo simulations of a coarse-grained oligonucleosome model to help interpret fiber structure subject to intrafiber NRL variations, as relevant to proliferating cells of interphase chromatin, fibers subject to remodeling factors, and regulatory DNA sequences. We find that intrafiber NRL variations have a profound impact on chromatin structure, with a wide range of different architectures emerging (highly bent narrow forms, canonical and irregular zigzag fibers, and polymorphic conformations), depending on the NRLs mixed. This stabilization of a wide range of fiber forms might allow NRL variations to regulate both fiber compaction and selective DNA exposure. The polymorphic forms spanning canonical to sharply bent structures, like hairpins and loops, arise from large NRL variations and are surprisingly more compact than uniform NRL structures. They are distinguished by tail-mediated far-nucleosome interactions, in addition to the near-nucleosome interactions of canonical 30-nm fibers. Polymorphism is consistent with chromatin's diverse biological functions and heterogeneous constituents. Intrafiber NRL variations, in particular, may contribute to fiber bending and looping and thus to distant communication in associated regulatory processes.
Collapse
|
21
|
Abstract
Heterochromatin imparts regional, promoter-independent repression of genes and is epigenetically heritable. Understanding how silencing achieves this regional repression is a fundamental problem in genetics and development. Current models of yeast silencing posit that Sir proteins, recruited by transcription factors bound to the silencers, spread throughout the silenced region. To test this model directly at high resolution, we probed the silenced chromatin architecture by chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-seq) of Sir proteins, histones, and a key histone modification, H4K16-acetyl. These analyses revealed that Sir proteins are strikingly concentrated at and immediately adjacent to the silencers, with lower levels of enrichment over the promoters at HML and HMR, the critical targets for transcriptional repression. The telomeres also showed discrete peaks of Sir enrichment yet a continuous domain of hypoacetylated histone H4K16. Surprisingly, ChIP-seq of cross-linked chromatin revealed a distribution of nucleosomes at silenced loci that was similar to Sir proteins, whereas native nucleosome maps showed a regular distribution throughout silenced loci, indicating that cross-linking captured a specialized chromatin organization imposed by Sir proteins. This specialized chromatin architecture observed in yeast informs the importance of a steric contribution to regional repression in other organisms.
Collapse
Affiliation(s)
- Deborah M Thurtle
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
22
|
Kapoor P, Shen X. Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol 2013; 24:238-46. [PMID: 24246764 DOI: 10.1016/j.tcb.2013.10.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 10/04/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
The mystery of nuclear actin has puzzled biologists for decades largely due to the lack of defined experimental systems. However, the development of actin-containing chromatin-modifying complexes as a defined genetic and biochemical system in the past decade has provided an unprecedented opportunity to dissect the mechanism of actin in the nucleus. Although the established functions of actin mostly rely on its dynamic polymerization, the novel finding of the mechanism of action of actin in the INO80 chromatin-remodeling complex suggests a conceptually distinct mode of actin that functions as a monomer. In this review we highlight the new paradigm and discuss how actin interaction with chromatin suggests a fundamental divergence between conventional cytoplasmic actin and nuclear actin. Furthermore, we provide how this framework could be applied to investigations of nuclear actin in other actin-containing chromatin-modifying complexes.
Collapse
Affiliation(s)
- Prabodh Kapoor
- Department of Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Xuetong Shen
- Department of Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA.
| |
Collapse
|
23
|
Yu Y, Deng Y, Reed SH, Millar CB, Waters R. Histone variant Htz1 promotes histone H3 acetylation to enhance nucleotide excision repair in Htz1 nucleosomes. Nucleic Acids Res 2013; 41:9006-19. [PMID: 23925126 PMCID: PMC3799447 DOI: 10.1093/nar/gkt688] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nucleotide excision repair (NER) is critical for maintaining genome integrity. How chromatin dynamics are regulated to facilitate this process in chromatin is still under exploration. We show here that a histone H2A variant, Htz1 (H2A.Z), in nucleosomes has a positive function in promoting efficient NER in yeast. Htz1 inherently enhances the occupancy of the histone acetyltransferase Gcn5 on chromatin to promote histone H3 acetylation after UV irradiation. Consequently, this results in an increased binding of a NER protein, Rad14, to damaged DNA. Cells without Htz1 show increased UV sensitivity and defective removal of UV-induced DNA damage in the Htz1-bearing nucleosomes at the repressed MFA2 promoter, but not in the HMRa locus where Htz1 is normally absent. Thus, the effect of Htz1 on NER is specifically relevant to its presence in chromatin within a damaged region. The chromatin accessibility to micrococcal nuclease in the MFA2 promoter is unaffected by HTZ1 deletion. Acetylation on previously identified lysines of Htz1 plays little role in NER or cell survival after UV. In summary, we have identified a novel aspect of chromatin that regulates efficient NER, and we provide a model for how Htz1 influences NER in Htz1 nucleosomes.
Collapse
Affiliation(s)
- Yachuan Yu
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK and Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
24
|
Abstract
Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break.
Collapse
|
25
|
McLaughlan JM, Liti G, Sharp S, Maslowska A, Louis EJ. Apparent ploidy effects on silencing are post-transcriptional at HML and telomeres in Saccharomyces cerevisiae. PLoS One 2012; 7:e39044. [PMID: 22792162 PMCID: PMC3392252 DOI: 10.1371/journal.pone.0039044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/17/2012] [Indexed: 02/07/2023] Open
Abstract
The repression of genes in regions of heterochromatin is known as transcriptional silencing. It occurs in a wide range of organisms and can have importance in adaptation to the environment, developmental changes and disease. The model organism Saccharomyces cerevisiae has been used for many years to study transcriptional silencing, but until recently no study has been made in relation to ploidy. The aim of this work was to compare transcriptional silencing in haploids and diploids at both telomeres and the hidden mating-type (HM) loci. Transcriptional silencing was assayed, by growth on 5-fluoroorotic acid (5-FOA) media or by flow cytometry, on strains where a telomere or HM locus was marked. RNA levels were measured by quantitative RT-PCR to confirm that effects were transcriptional. 5-FOA assays and flow cytometry were consistent with transcriptional silencing at telomeres and at HML being reduced as ploidy increases which agreed with conclusions in previous publications. However, QRT-PCR revealed that transcriptional silencing was unaffected by ploidy and thus protein levels were increasing independently of RNA levels. At telomere XI left (XI-L), changes in protein level were strongly influenced by mating-type, whereas at HML mating-type had much less influence. The post-transcriptional effects seen in this study, illustrate the often ignored need to measure RNA levels when assaying transcriptional silencing in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Jenny M. McLaughlan
- Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Gianni Liti
- Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Sarah Sharp
- Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Agnieszka Maslowska
- Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Edward J. Louis
- Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
26
|
Functions of protosilencers in the formation and maintenance of heterochromatin in Saccharomyces cerevisiae. PLoS One 2012; 7:e37092. [PMID: 22615905 PMCID: PMC3355138 DOI: 10.1371/journal.pone.0037092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 04/17/2012] [Indexed: 11/19/2022] Open
Abstract
In Saccharomyces cerevisiae, transcriptionally silent heterochromatin at HML and HMR loci is established by silencers that recruit SIR complex and promote its propagation along chromatin. Silencers consist of various combinations of two or three binding sites for origin recognition complex (ORC), Abf1 and Rap1. A single ORC, Abf1 or Rap1 site cannot promote silencing, but can enhance silencing by a distant silencer, and is called a protosilencer. The mechanism of protosilencer function is not known. We examine the functions of ORC, Abf1 and Rap1 sites as components of the HMR-E silencer, and as protosilencers. We find that the Rap1 site makes a larger and unique contribution to HMR-E function compared to ORC and Abf1 sites. On the other hand, Rap1 site does not act as a protosilencer to assist HML-E silencer in forming heterochromatin, whereas ORC and Abf1 sites do. Therefore, different mechanisms may be involved in the roles of Rap1 site as a component of HMR-E and as a protosilencer. Heterochromatin formed by ORC or Abf1 site in collaboration with HML-E is not as stable as that formed by HMR-E and HML-E, but increasing the copy number of Abf1 site enhances heterochromatin stability. ORC and Abf1 sites acting as protosilencers do not modulate chromatin structure in the absence of SIR complex, which argues against the hypothesis that protosilencers serve to create a chromatin structure favorable for SIR complex propagation. We also investigate the function of ARS1 containing an ORC site and an Abf1 site as a protosilencer. We find that ARS1 inserted at HML enhances heterochromatin stability, and promotes de novo formation of a chromatin structure that partially resembles heterochromatin in an S phase dependent manner. Taken together, our results indicate that protosilencers aid in the formation and maintenance of heterochromatin structure.
Collapse
|
27
|
Li J, Coïc E, Lee K, Lee CS, Kim JA, Wu Q, Haber JE. Regulation of budding yeast mating-type switching donor preference by the FHA domain of Fkh1. PLoS Genet 2012; 8:e1002630. [PMID: 22496671 PMCID: PMC3320585 DOI: 10.1371/journal.pgen.1002630] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/17/2012] [Indexed: 01/12/2023] Open
Abstract
During Saccharomyces cerevisiae mating-type switching, an HO endonuclease-induced double-strand break (DSB) at MAT is repaired by recombining with one of two donors, HMLα or HMRa, located at opposite ends of chromosome III. MATa cells preferentially recombine with HMLα; this decision depends on the Recombination Enhancer (RE), located about 17 kb to the right of HML. In MATα cells, HML is rarely used and RE is bound by the MATα2-Mcm1 corepressor, which prevents the binding of other proteins to RE. In contrast, in MATa cells, RE is bound by multiple copies of Fkh1 and a single copy of Swi4/Swi6. We report here that, when RE is replaced with four LexA operators in MATa cells, 95% of cells use HMR for repair, but expression of a LexA-Fkh1 fusion protein strongly increases HML usage. A LexA-Fkh1 truncation, containing only Fkh1's phosphothreonine-binding FHA domain, restores HML usage to 90%. A LexA-FHA-R80A mutant lacking phosphothreonine binding fails to increase HML usage. The LexA-FHA fusion protein associates with chromatin in a 10-kb interval surrounding the HO cleavage site at MAT, but only after DSB induction. This association occurs even in a donorless strain lacking HML. We propose that the FHA domain of Fkh1 regulates donor preference by physically interacting with phosphorylated threonine residues created on proteins bound near the DSB, thus positioning HML close to the DSB at MAT. Donor preference is independent of Mec1/ATR and Tel1/ATM checkpoint protein kinases but partially depends on casein kinase II. RE stimulates the strand invasion step of interchromosomal recombination even for non-MAT sequences. We also find that when RE binds to the region near the DSB at MATa then Mec1 and Tel1 checkpoint kinases are not only able to phosphorylate histone H2A (γ-H2AX) around the DSB but can also promote γ-H2AX spreading around the RE region. Mating-type gene switching occurs by a DSB–initiated gene conversion event using one of two donors, HML or HMR. MATa cells preferentially recombine with HML whereas MATα cells choose HMR. Donor preference is governed by the Recombination Enhancer (RE), located about 17 kb from HML. RE is repressed in MATα cells, whereas in MATa RE binds several copies of the Fkh1 protein. We replaced RE with four LexA operators and showed that the expression of LexA-Fkh1 fusion protein enhances HML usage. Donor preference depends on the phosphothreonine-binding FHA domain of Fkh1. LexA-FHAFkh1 physically associates with chromatin in the region surrounding the DSB at MAT. We propose that RE regulates donor preference by the binding of FHAFkh1 domains to phosphorylated sites around the DSB at MAT, thus bringing HML much closer than HMR. FHAFkh1 action partially depends on casein kinase II but not on the DNA damage checkpoint kinases Mec1 and Tel1. We also find that, when RE binds to the MAT region, phosphorylation of histone H2A (γ-H2AX) by Mec1/Tel1 not only surrounds the DSB but also spreads around RE. This is the first demonstration that γ-H2AX can spread to contiguous, but undamaged, chromatin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - James E. Haber
- Department of Biology and Rosenstiel Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
28
|
Functions of chromatin remodeling factors in heterochromatin formation and maintenance. SCIENCE CHINA-LIFE SCIENCES 2012; 55:89-96. [DOI: 10.1007/s11427-012-4267-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022]
|
29
|
Dodd IB, Sneppen K. Barriers and silencers: a theoretical toolkit for control and containment of nucleosome-based epigenetic states. J Mol Biol 2011; 414:624-37. [PMID: 22037584 DOI: 10.1016/j.jmb.2011.10.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/08/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
Abstract
Positive feedback in nucleosome modification has been proposed to allow large chromatin regions to exist stably and heritably in distinct expression states. However, modeling has shown that such epigenetic bistability requires that modifying enzymes recruited by nucleosomes are active on distant nucleosomes, potentially allowing uncontrollable spreading of modification. By modeling the silencing of mating-type loci in Saccharomyces cerevisiae, we show that a modification reaction that combines a long-range component and a locally acting component can provide bistability and can be blocked by simple barriers that interrupt the nucleosome chain. We find that robust containment of the silenced region could be achieved by the presence of a number of weak simple barriers in the surrounding chromatin and a limited capacity of the positive feedback reaction. In addition, we show that the state of the silenced region can be regulated by silencer elements acting only on neighboring nucleosomes. Thus, a relatively simple set of nucleosome-modifying enzymes and recognition domains is all that is needed to make chromatin-based epigenetics useful and safe.
Collapse
Affiliation(s)
- Ian B Dodd
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark.
| | | |
Collapse
|
30
|
Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition. Genetics 2011; 189:1225-33. [PMID: 21954161 DOI: 10.1534/genetics.111.132738] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the least understood aspects of homologous recombination is the process by which the ends of a double-strand break (DSB) search the entire genome for homologous templates that can be used to repair the break. We took advantage of the natural competition between the alternative donors HML and HMR employed during HO endonuclease-induced switching of the budding yeast MAT locus. The strong mating-type-dependent bias in the choice of the donors is enforced by the recombination enhancer (RE), which lies 17 kb proximal to HML. We investigated factors that improve the use of the disfavored donor. We show that the normal heterochromatic state of the donors does not impair donor usage, as donor choice is not affected by removing this epigenetic silencing. In contrast, increasing the length of homology shared by the disfavored donor increases its use. This result shows that donor choice is not irrevocable and implies that there are several encounters between the DSB ends and even the favored donor before recombination is accomplished. The increase by adding more homology is not linear; these results can be explained by a thermodynamic model that determines the energy cost of using one donor over the other. An important inference from this analysis is that when HML is favored as the donor, RE causes a reduction in its effective genomic distance from MAT from 200 kb to ∼20 kb, which we hypothesize occurs after the DSB is created, by epigenetic chromatin modifications around MAT.
Collapse
|
31
|
Yu Q, Zhang X, Bi X. Roles of chromatin remodeling factors in the formation and maintenance of heterochromatin structure. J Biol Chem 2011; 286:14659-69. [PMID: 21388962 DOI: 10.1074/jbc.m110.183269] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterochromatin consists of highly ordered nucleosomes with characteristic histone modifications. There is evidence implicating chromatin remodeling proteins in heterochromatin formation, but their exact roles are not clear. We demonstrate in Saccharomyces cerevisiae that the Fun30p and Isw1p chromatin remodeling factors are similarly required for transcriptional silencing at the HML locus, but they differentially contribute to the structure and stability of HML heterochromatin. In the absence of Fun30p, only a partially silenced structure is established at HML. Such a structure resembles fully silenced heterochromatin in histone modifications but differs markedly from both fully silenced and derepressed chromatin structures regarding nucleosome arrangement. This structure likely represents an intermediate state of heterochromatin that can be converted by Fun30p to the mature state. Moreover, Fun30p removal reduces the rate of de novo establishment of heterochromatin, suggesting that Fun30p assists the silencing machinery in forming heterochromatin. We also find evidence suggesting that Fun30p functions together with, or after, the action of the silencing machinery. On the other hand, Isw1p is dispensable for the formation of heterochromatin structure but is instead critically required for maintaining its stability. Therefore, chromatin remodeling proteins may rearrange nucleosomes during the formation of heterochromatin or serve to stabilize/maintain heterochromatin structure.
Collapse
Affiliation(s)
- Qun Yu
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | | | |
Collapse
|
32
|
Houghtaling S, Tsukuda T, Osley MA. Molecular assays to investigate chromatin changes during DNA double-strand break repair in yeast. Methods Mol Biol 2011; 745:79-97. [PMID: 21660690 DOI: 10.1007/978-1-61779-129-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multiple types of DNA damage, including bulky adducts, DNA single-strand breaks, and DNA double-strand breaks (DSBs), have deleterious effects on the genomes of eukaryotes. DSBs form normally during a variety of biological processes, such as V-D-J recombination and yeast mating type switching, but unprogrammed DSBs are among the most dangerous types of lesion because if left unrepaired they can lead to loss of genetic material or chromosomal rearrangements. The presence of DSBs leads to a DNA damage response involving activation of cell cycle checkpoints, recruitment of repair proteins, and chromatin remodeling. Because many of the proteins that mediate these processes are evolutionarily conserved, the budding yeast, Saccharomyces cerevisiae, has been used as a model organism to investigate the factors involved in the response to DSBs. Recent research on DSB repair has focused on the barrier that chromatin represents to the repair process. In this article, we describe molecular techniques available to analyze chromatin architecture near a defined DSB in budding yeast. These techniques may be of value to experimentalists who are investigating the role of a novel protein in DSB repair specifically in the context of chromatin.
Collapse
Affiliation(s)
- Scott Houghtaling
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
33
|
Sarkar S, Kiely R, McHugh PJ. The Ino80 chromatin-remodeling complex restores chromatin structure during UV DNA damage repair. ACTA ACUST UNITED AC 2010; 191:1061-8. [PMID: 21135142 PMCID: PMC3002029 DOI: 10.1083/jcb.201006178] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ino80 facilitates restoration of nucleosome structure during NER-mediated repair of UV-induced lesions. Chromatin structure is modulated during deoxyribonucleic acid excision repair, but how this is achieved is unclear. Loss of the yeast Ino80 chromatin-remodeling complex (Ino80-C) moderately sensitizes cells to ultraviolet (UV) light. In this paper, we show that INO80 acts in the same genetic pathway as nucleotide excision repair (NER) and that the Ino80-C contributes to efficient UV photoproduct removal in a region of high nucleosome occupancy. Moreover, Ino80 interacts with the early NER damage recognition complex Rad4–Rad23 and is recruited to chromatin by Rad4 in a UV damage–dependent manner. Using a modified chromatin immunoprecipitation assay, we find that chromatin disruption during UV lesion repair is normal, whereas the restoration of nucleosome structure is defective in ino80 mutant cells. Collectively, our work suggests that Ino80 is recruited to sites of UV lesion repair through interactions with the NER apparatus and is required for the restoration of chromatin structure after repair.
Collapse
Affiliation(s)
- Sovan Sarkar
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, England, UK
| | | | | |
Collapse
|
34
|
Abstract
Nucleosome positioning has been the subject of intense study for many years. The properties of micrococcal nuclease, the enzyme central to these studies, are discussed. The various methods used to determine nucleosome positions in vitro and in vivo are reviewed critically. These include the traditional low resolution method of indirect end-labelling, high resolution methods such as primer extension, monomer extension and nucleosome sequencing, and the high throughput methods for genome-wide analysis (microarray hybridisation and parallel sequencing). It is established that low resolution mapping yields an averaged chromatin structure, whereas high resolution mapping reveals the weighted superposition of all the chromatin states in a cell population. Mapping studies suggest that yeast DNA contains information specifying the positions of nucleosomes and that this code is made use of by the cell. It is proposed that the positioning code facilitates nucleosome spacing by encoding information for multiple alternative overlapping nucleosomal arrays. Such a code might facilitate the shunting of nucleosomes from one array to another by ATP-dependent chromatin remodelling machines.
Collapse
Affiliation(s)
- David J Clark
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Building 6A, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Abstract
Regulation of eukaryotic gene expression is far more complex than one might have imagined 30 years ago. However, progress towards understanding gene regulatory mechanisms has been rapid and comprehensive, which has made the integration of detailed observations into broadly connected concepts a challenge. This review attempts to integrate the following concepts: (1) a well-defined organization of nucleosomes and modification states at most genes; (2) regulatory networks of sequence-specific transcription factors; (3) chromatin remodeling coupled to promoter assembly of the general transcription factors and RNA polymerase II; and (4) phosphorylation states of RNA polymerase II coupled to chromatin modification states during transcription. The wealth of new insights arising from the tools of biochemistry, genomics, cell biology, and genetics is providing a remarkable view into the mechanics of gene regulation.
Collapse
Affiliation(s)
- Bryan J Venters
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
36
|
Loney ER, Inglis PW, Sharp S, Pryde FE, Kent NA, Mellor J, Louis EJ. Repressive and non-repressive chromatin at native telomeres in Saccharomyces cerevisiae. Epigenetics Chromatin 2009; 2:18. [PMID: 19954519 PMCID: PMC3225887 DOI: 10.1186/1756-8935-2-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 12/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Saccharomyces cerevisiae genes that are located close to a telomere can become transcriptionally repressed by an epigenetic process known as telomere position effect. There is large variation in the level of the telomere position effect among telomeres, with many native ends exhibiting little repression. RESULTS Chromatin analysis, using microccocal nuclease and indirect end labelling, reveals distinct patterns for ends with different silencing states. Differences were observed in the promoter accessibility of a subtelomeric reporter gene and a characteristic array of phased nucleosomes was observed on the centromere proximal side of core X at a repressive end. The silent information regulator proteins 2 - 4, the yKu heterodimer and the subtelomeric core X element are all required for the maintenance of the chromatin structure of repressive ends. However, gene deletions of particular histone modification proteins can eliminate the silencing without the disruption of this chromatin structure. CONCLUSION Our data identifies chromatin features that correlate with the silencing state and indicate that an array of phased nucleosomes is not sufficient for full repression.
Collapse
Affiliation(s)
- Esther R Loney
- 1Department of Oncology, University of Western Ontario, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
37
|
Johnson A, Li G, Sikorski TW, Buratowski S, Woodcock CL, Moazed D. Reconstitution of heterochromatin-dependent transcriptional gene silencing. Mol Cell 2009; 35:769-81. [PMID: 19782027 DOI: 10.1016/j.molcel.2009.07.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 05/22/2009] [Accepted: 07/22/2009] [Indexed: 12/26/2022]
Abstract
Heterochromatin assembly in budding yeast requires the SIR complex, which contains the NAD-dependent deacetylase Sir2 and the Sir3 and Sir4 proteins. Sir3 binds to nucleosomes containing deacetylated histone H4 lysine 16 (H4K16) and, with Sir4, promotes spreading of Sir2 and deacetylation along the chromatin fiber. Combined action of histone modifying and binding activities is a conserved hallmark of heterochromatin, but the relative contribution of each activity to silencing has remained unclear. Here, we reconstitute SIR-chromatin complexes using purified components and show that the SIR complex efficiently deacetylates chromatin templates and promotes the assembly of altered structures that silence Gal4-VP16-activated transcription. Silencing requires all three Sir proteins, even with fully deacetylated chromatin, and involves the specific association of Sir3 with deacetylated H4K16. These results define a minimal set of components that mediate heterochromatic gene silencing and demonstrate distinct contributions for histone deacetylation and nucleosome binding in the silencing mechanism.
Collapse
Affiliation(s)
- Aaron Johnson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
38
|
Caserta M, Agricola E, Churcher M, Hiriart E, Verdone L, Di Mauro E, Travers A. A translational signature for nucleosome positioning in vivo. Nucleic Acids Res 2009; 37:5309-21. [PMID: 19596807 PMCID: PMC2760819 DOI: 10.1093/nar/gkp574] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In vivo nucleosomes often occupy well-defined preferred positions on genomic DNA. An important question is to what extent these preferred positions are directly encoded by the DNA sequence itself. We derive here from in vivo positions, accurately mapped by partial micrococcal nuclease digestion, a translational positioning signal that identifies the approximate midpoint of DNA bound by a histone octamer. This midpoint is, on average, highly A/T rich (∼73%) and, in particular, the dinucleotide TpA occurs preferentially at this and other outward-facing minor grooves. We conclude that in this set of sequences the sequence code for DNA bending and nucleosome positioning differs from the other described sets and we suggest that the enrichment of AT-containing dinucleotides at the centre is required for local untwisting. We show that this signature is preferentially associated with nucleosomes flanking promoter regions and suggest that it contributes to the establishment of gene-specific nucleosome arrays.
Collapse
Affiliation(s)
- Micaela Caserta
- Fondazione Istituto Pasteur-Fondazione Cenci Bolognetti, Università La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Santangelo S, Cousins DJ, Winkelmann N, Triantaphyllopoulos K, Staynov DZ. Chromatin structure and DNA methylation of the IL-4 gene in human T(H)2 cells. Chromosome Res 2009; 17:485-96. [PMID: 19521787 DOI: 10.1007/s10577-009-9040-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 04/19/2009] [Accepted: 04/19/2009] [Indexed: 11/25/2022]
Abstract
Human T(H)2 cell differentiation results in the selective demethylation of several specific CpG dinucleotides in the IL-4 and IL-13 genes, which are expressed in activated T(H)2, but not T(H)1, cells. This demethylation is accompanied by the appearance of six DNase I hypersensitive sites within 1.4 kb at the 5'-end of the IL-4 gene. Micrococcal nuclease (MNase) digestion revealed that in both T(H)1 and T(H)2 cells nine nucleosomes with a repeat length of 201 bp are identically positioned around the 5'-end of the IL-4 gene. However, only in T(H)2 cells are six out of the eight intervening linkers exposed to DNase I. This suggests that a major perturbation of the higher-order chromatin structure occurs above the level of the nucleosome in vivo. It is observed in cells that are poised for expression but which are not actively expressing the gene (i.e. resting T(H)2 cells). Notably, all the demethylated CpGs in T(H)2 cells are found in DNA that is accessible to DNase I. This may suggest that the opening of the chromatin structure allows binding of specific trans-acting factors that prevent de novo methylation.
Collapse
|
40
|
Miele A, Bystricky K, Dekker J. Yeast silent mating type loci form heterochromatic clusters through silencer protein-dependent long-range interactions. PLoS Genet 2009; 5:e1000478. [PMID: 19424429 PMCID: PMC2673037 DOI: 10.1371/journal.pgen.1000478] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 04/09/2009] [Indexed: 01/10/2023] Open
Abstract
The organization of eukaryotic genomes is characterized by the presence of distinct euchromatic and heterochromatic sub-nuclear compartments. In Saccharomyces cerevisiae heterochromatic loci, including telomeres and silent mating type loci, form clusters at the nuclear periphery. We have employed live cell 3-D imaging and chromosome conformation capture (3C) to determine the contribution of nuclear positioning and heterochromatic factors in mediating associations of the silent mating type loci. We identify specific long-range interactions between HML and HMR that are dependent upon silencing proteins Sir2p, Sir3p, and Sir4p as well as Sir1p and Esc2p, two proteins involved in establishment of silencing. Although clustering of these loci frequently occurs near the nuclear periphery, colocalization can occur equally at more internal positions and is not affected in strains deleted for membrane anchoring proteins yKu70p and Esc1p. In addition, appropriate nucleosome assembly plays a role, as deletion of ASF1 or combined disruption of the CAF-1 and HIR complexes abolishes the HML-HMR interaction. Further, silencer proteins are required for clustering, but complete loss of clustering in asf1 and esc2 mutants had only minor effects on silencing. Our results indicate that formation of heterochromatic clusters depends on correctly assembled heterochromatin at the silent loci and, in addition, identify an Asf1p-, Esc2p-, and Sir1p-dependent step in heterochromatin formation that is not essential for gene silencing but is required for long-range interactions.
Collapse
MESH Headings
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/metabolism
- Gene Silencing
- Genes, Fungal
- Genes, Mating Type, Fungal/genetics
- Heterochromatin/genetics
- Heterochromatin/metabolism
- Imaging, Three-Dimensional
- Models, Genetic
- Multigene Family
- Mutation
- Nucleosomes/genetics
- Nucleosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/ultrastructure
- Silencer Elements, Transcriptional
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Adriana Miele
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), University of Toulouse, Toulouse, France
- UMR5099, Centre National de la Recherche Scientifique, IFR109, Toulouse, France
| | - Job Dekker
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
41
|
Regulation of nuclear positioning and dynamics of the silent mating type loci by the yeast Ku70/Ku80 complex. Mol Cell Biol 2008; 29:835-48. [PMID: 19047366 DOI: 10.1128/mcb.01009-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the hypothesis that the highly selective recombination of an active mating type locus (MAT) with either HMLalpha or HMRa is facilitated by the spatial positioning of relevant sequences within the budding yeast (Saccharomyces cerevisiae) nucleus. However, both position relative to the nuclear envelope (NE) and the subnuclear mobility of fluorescently tagged MAT, HML, or HMR loci are largely identical in haploid a and alpha cells. Irrespective of mating type, the expressed MAT locus is highly mobile within the nuclear lumen, while silent loci move less and are found preferentially near the NE. The perinuclear positions of HMR and HML are strongly compromised in strains lacking the Silent information regulator, Sir4. However, HMLalpha, unlike HMRa and most telomeres, shows increased NE association in a strain lacking yeast Ku70 (yKu70). Intriguingly, we find that the yKu complex is associated with HML and HMR sequences in a mating-type-specific manner. Its abundance decreases at the HMLalpha donor locus and increases transiently at MATa following DSB induction. Our data suggest that mating-type-specific binding of yKu to HMLalpha creates a local chromatin structure competent for recombination, which cooperates with the recombination enhancer to direct donor choice for gene conversion of the MATa locus.
Collapse
|
42
|
Yang B, Britton J, Kirchmaier AL. Insights into the impact of histone acetylation and methylation on Sir protein recruitment, spreading, and silencing in Saccharomyces cerevisiae. J Mol Biol 2008; 381:826-44. [PMID: 18619469 DOI: 10.1016/j.jmb.2008.06.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/14/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Silent chromatin formation in Saccharomyces cerevisiae begins with the recruitment of silent information regulator (Sir) proteins to silencers at the silent mating-type loci and to telomere ends. Next, Sir2/3/4 proteins propagate across these loci as histones are deacetylated by the NAD(+)-dependent histone deacetylase Sir2p, ultimately resulting in the cessation of transcription and in the loss of SET1- and DOT1-dependent methylation of histone H3 within silent chromatin. We analyzed the effects of modifiable lysine residues on histones H3 and H4 on experimentally defined steps in silencing: recruitment of Sir proteins to silencers, Sir protein spreading, and transcriptional repression. Loss of acetylation, but not methylation, facilitated both Sir recruitment and spreading, and Sir spreading across hypoacetylated chromatin could disrupt SET1- and DOT1-dependent histone methylation without silencing underlying genes. Our data indicate that loss of methylation of K4 and K79 on histone H3 reflects intermediate events during the formation of silent chromatin, and that retention of a positive charge at a single residue on histone H4 (K16) was both necessary and sufficient to permit Sir spreading beyond sites of their recruitment.
Collapse
Affiliation(s)
- Bo Yang
- Department of Biochemistry and Purdue Cancer Center, Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
43
|
Sir2 silences gene transcription by targeting the transition between RNA polymerase II initiation and elongation. Mol Cell Biol 2008; 28:3979-94. [PMID: 18391020 DOI: 10.1128/mcb.00019-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is well accepted that for transcriptional silencing in budding yeast, the evolutionarily conserved lysine deacetylase Sir2, in concert with its partner proteins Sir3 and Sir4, establishes a chromatin structure that prevents RNA polymerase II (Pol II) transcription. However, the mechanism of repression remains controversial. Here, we show that the recruitment of Pol II, as well as that of the general initiation factors TBP and TFIIH, occurs unimpeded to the silent HMRa1 and HMLalpha1/HMLalpha2 mating promoters. This, together with the fact that Pol II is Ser5 phosphorylated, implies that SIR-mediated silencing is permissive to both preinitiation complex (PIC) assembly and transcription initiation. In contrast, the occupancy of factors critical to both mRNA capping and Pol II elongation, including Cet1, Abd1, Spt5, Paf1C, and TFIIS, is virtually abolished. In agreement with this, efficiency of silencing correlates not with a restriction in Pol II promoter occupancy but with a restriction in capping enzyme recruitment. These observations pinpoint the transition between polymerase initiation and elongation as the step targeted by Sir2 and indicate that transcriptional silencing is achieved through the differential accessibility of initiation and capping/elongation factors to chromatin. We compare Sir2-mediated transcriptional silencing to a second repression mechanism, mediated by Tup1. In contrast to Sir2, Tup1 prevents TBP, Pol II, and TFIIH recruitment to the HMLalpha1 promoter, thereby abrogating PIC formation.
Collapse
|
44
|
Wu D, Topper LM, Wilson TE. Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae. Genetics 2008; 178:1237-49. [PMID: 18245831 PMCID: PMC2278085 DOI: 10.1534/genetics.107.083535] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 01/13/2008] [Indexed: 11/18/2022] Open
Abstract
Nonhomologous end joining (NHEJ) is an important DNA double-strand-break (DSB) repair pathway that requires three protein complexes in Saccharomyces cerevisiae: the Ku heterodimer (Yku70-Yku80), MRX (Mre11-Rad50-Xrs2), and DNA ligase IV (Dnl4-Lif1), as well as the ligase-associated protein Nej1. Here we use chromatin immunoprecipitation from yeast to dissect the recruitment and release of these protein complexes at HO-endonuclease-induced DSBs undergoing productive NHEJ. Results revealed that Ku and MRX assembled at a DSB independently and rapidly after DSB formation. Ligase IV appeared at the DSB later than Ku and MRX and in a strongly Ku-dependent manner. Ligase binding was extensive but slightly delayed in rad50 yeast. Ligase IV binding occurred independently of Nej1, but instead promoted loading of Nej1. Interestingly, dissociation of Ku and ligase from unrepaired DSBs depended on the presence of an intact MRX complex and ATP binding by Rad50, suggesting a possible role of MRX in terminating a NHEJ repair phase. This activity correlated with extended DSB resection, but limited degradation of DSB ends occurred even in MRX mutants with persistently bound Ku. These findings reveal the in vivo assembly of the NHEJ repair complex and shed light on the mechanisms controlling DSB repair pathway utilization.
Collapse
Affiliation(s)
- Dongliang Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA
| | | | | |
Collapse
|
45
|
Kim JA, Kruhlak M, Dotiwala F, Nussenzweig A, Haber JE. Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. ACTA ACUST UNITED AC 2007; 178:209-18. [PMID: 17635934 PMCID: PMC2064441 DOI: 10.1083/jcb.200612031] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Double-strand break (DSB) damage in yeast and mammalian cells induces the rapid ATM (ataxia telangiectasia mutated)/ATR (ataxia telangiectasia and Rad3 related)-dependent phosphorylation of histone H2AX (γ-H2AX). In budding yeast, a single endonuclease-induced DSB triggers γ-H2AX modification of 50 kb on either side of the DSB. The extent of γ-H2AX spreading does not depend on the chromosomal sequences. DNA resection after DSB formation causes the slow, progressive loss of γ-H2AX from single-stranded DNA and, after several hours, the Mec1 (ATR)-dependent spreading of γ-H2AX to more distant regions. Heterochromatic sequences are only weakly modified upon insertion of a 3-kb silent HMR locus into a γ-H2AX–covered region. The presence of heterochromatin does not stop the phosphorylation of chromatin more distant from the DSB. In mouse embryo fibroblasts, γ-H2AX distribution shows that γ-H2AX foci increase in size as chromatin becomes more accessible. In yeast, we see a high level of constitutive γ-H2AX in telomere regions in the absence of any exogenous DNA damage, suggesting that yeast chromosome ends are transiently detected as DSBs.
Collapse
Affiliation(s)
- Jung-Ae Kim
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
46
|
Huang S, Zhou H, Tarara J, Zhang Z. A novel role for histone chaperones CAF-1 and Rtt106p in heterochromatin silencing. EMBO J 2007; 26:2274-83. [PMID: 17410207 PMCID: PMC1864969 DOI: 10.1038/sj.emboj.7601670] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 03/09/2007] [Indexed: 12/31/2022] Open
Abstract
The histone chaperones CAF-1 and Rtt106p are required for heterochromatin silencing in the yeast Saccharomyces cerevisiae. Although it has been suggested that CAF-1 is involved in the maintenance of heterochromatin silencing, their exact functions during this process are not well understood. Here, we show that CAF-1 and Rtt106p are involved in the early stages of heterochromatin formation. The binding of Sir proteins to telomeric heterochromatin is significantly reduced and, additionally, Sir proteins are mislocalized in cells lacking CAF-1 and Rtt106p. At the HMR locus, CAF-1 and Rtt106p are required for the initial recruitment of Sir2p and Sir3p, but not Sir4p, to the HMR-E silencer, where silencing initiates, as well as the efficient spreading of all of these Sir proteins to the distal a1 gene. Moreover, silencing at the HMR locus is dramatically reduced in cells lacking CAF-1, Rtt106p, and Sir1p. Thus, these studies reveal a novel role for CAF-1 and Rtt106p in epigenetic silencing and indicate that the spreading of heterochromatin, a poorly understood process, requires histone chaperones.
Collapse
Affiliation(s)
- Shengbing Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jim Tarara
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 1502 Guggenheim, 200 First Street SW, Rochester, MN 55905, USA. Tel.: +1 507 538 6074; Fax: +1 507 284 9759; E-mail:
| |
Collapse
|
47
|
Ira G, Satory D, Haber JE. Conservative inheritance of newly synthesized DNA in double-strand break-induced gene conversion. Mol Cell Biol 2006; 26:9424-9. [PMID: 17030630 PMCID: PMC1698534 DOI: 10.1128/mcb.01654-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To distinguish among possible mechanisms of repair of a double-strand break (DSB) by gene conversion in budding yeast, Saccharomyces cerevisiae, we employed isotope density transfer to analyze budding yeast mating type (MAT) gene switching in G2/M-arrested cells. Both of the newly synthesized DNA strands created during gene conversion are found at the repaired locus, leaving the donor unchanged. These results support suggestions that mitotic DSBs are primarily repaired by a synthesis-dependent strand-annealing mechanism. We also show that the proportion of crossing-over associated with DSB-induced ectopic recombination is not affected by the presence of nonhomologous sequences at one or both ends of the DSB or the presence of additional sequences that must be copied from the donor.
Collapse
Affiliation(s)
- Grzegorz Ira
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02453-2728, USA
| | | | | |
Collapse
|
48
|
Zou Y, Yu Q, Bi X. Asymmetric positioning of nucleosomes and directional establishment of transcriptionally silent chromatin by Saccharomyces cerevisiae silencers. Mol Cell Biol 2006; 26:7806-19. [PMID: 16908533 PMCID: PMC1636860 DOI: 10.1128/mcb.01197-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, silencers flanking the HML and HMR loci consist of various combinations of binding sites for Abf1p, Rap1p, and the origin recognition complex (ORC) that serve to recruit the Sir silencing complex, thereby initiating the establishment of transcriptionally silent chromatin. There have been seemingly conflicting reports concerning whether silencers function in an orientation-dependent or -independent manner, and what determines the directionality of a silencer has not been explored. We demonstrate that chromatin plays a key role in determining the potency and directionality of silencers. We show that nucleosomes are asymmetrically distributed around the HML-I or HMR-E silencer so that a nucleosome is positioned close to the Abf1p side but not the ORC side of the silencer. This coincides with preferential association of Sir proteins and transcriptional silencing on the Abf1p side of the silencer. Elimination of the asymmetry in nucleosome positioning at a silencer leads to comparable silencing on both sides. Asymmetric nucleosome positioning in the immediate vicinity of a silencer is independent of its orientation and genomic context, indicating that it is the inherent property of the silencer. Moreover, it is also independent of the Sir complex and thus precedes the formation of silent chromatin. Finally, we demonstrate that asymmetric positioning of nucleosomes and directional silencing by a silencer depend on ORC and Abf1p. We conclude that the HML-I and HMR-E silencers promote asymmetric positioning of nucleosomes, leading to unequal potentials of transcriptional silencing on their sides and, hence, directional silencing.
Collapse
Affiliation(s)
- Yanfei Zou
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
49
|
Coïc E, Sun K, Wu C, Haber JE. Cell cycle-dependent regulation of Saccharomyces cerevisiae donor preference during mating-type switching by SBF (Swi4/Swi6) and Fkh1. Mol Cell Biol 2006; 26:5470-80. [PMID: 16809780 PMCID: PMC1592702 DOI: 10.1128/mcb.02443-05] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces mating-type switching occurs through a double-strand break-initiated gene conversion event at MAT, using one of two donors located distantly on the same chromosome, HMLalpha and HMRa. MATa cells preferentially choose HMLalpha, a decision that depends on the recombination enhancer (RE) that controls recombination along the left arm of chromosome III. We previously showed that an fhk1Delta mutation reduces HMLalpha usage in MATa cells, but not to the level seen when RE is deleted. We now report that donor preference also depends on binding of the Swi4/Swi6 (SBF) transcription factors to an evolutionarily conserved SCB site within RE. As at other SCB-containing promoters, SBF binds to RE in the G(1) phase. Surprisingly, Fkh1 binds to RE only in G(2), which contrasts with its cell cycle-independent binding to its other target promoters. SBF and Fkh1 define two independent RE activation pathways, as deletion of both Fkh1 and SCB results in nearly complete loss of HML usage in MATa cells. These transcription factors create an epigenetic modification of RE in a fashion that apparently does not involve transcription. In addition, the putative helicase Chl1, previously involved in donor preference, functions in the SBF pathway.
Collapse
Affiliation(s)
- Eric Coïc
- Department of Biology and Rosenstiel Center, Brandeis University, Waltham, MA 02254-9110, USA
| | | | | | | |
Collapse
|
50
|
Coïc E, Richard GF, Haber JE. Saccharomyces cerevisiae donor preference during mating-type switching is dependent on chromosome architecture and organization. Genetics 2006; 173:1197-206. [PMID: 16624909 PMCID: PMC1526691 DOI: 10.1534/genetics.106.055392] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces mating-type (MAT) switching occurs by gene conversion using one of two donors, HMLalpha and HMRa, located near the ends of the same chromosome. MATa cells preferentially choose HMLalpha, a decision that depends on the recombination enhancer (RE) that controls recombination along the left arm of chromosome III (III-L). When RE is inactive, the two chromosome arms constitute separate domains inaccessible to each other; thus HMRa, located on the same arm as MAT, becomes the default donor. Activation of RE increases HMLalpha usage, even when RE is moved 50 kb closer to the centromere. If MAT is inserted into the same domain as HML, RE plays little or no role in activating HML, thus ruling out any role for RE in remodeling the silent chromatin of HML in regulating donor preference. When the donors MAT and RE are moved to chromosome V, RE increases HML usage, but the inaccessibility of HML without RE apparently depends on other chromosome III-specific sequences. Similar conclusions were reached when RE was placed adjacent to leu2 or arg4 sequences engaged in spontaneous recombination. We propose that RE's targets are anchor sites that tether chromosome III-L in MATalpha cells thus reducing its mobility in the nucleus.
Collapse
Affiliation(s)
- Eric Coïc
- Department of Biology and Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | | | |
Collapse
|