1
|
Hentges KE. Mediator complex proteins are required for diverse developmental processes. Semin Cell Dev Biol 2011; 22:769-75. [PMID: 21854862 DOI: 10.1016/j.semcdb.2011.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 12/14/2022]
Abstract
The Mediator complex serves a crucial function in gene regulation, forming a link between gene-specific transcription factors and RNA polymerase II. Most protein-coding genes therefore require Mediator complex activity for transcriptional regulation. Given the essential functions performed by Mediator complex proteins in gene regulation, it is not surprising that mutations in Mediator complex genes disrupt animal and plant development. What is more intriguing is that the phenotypes of individual Mediator complex mutants are distinct from each other, demonstrating that certain developmental processes have a greater requirement for specific Mediator complex genes. Additionally, the range of developmental processes that are altered in Mediator complex mutants is broad, affecting a variety of cell types and physiological systems. Gene expression defects in Mediator complex mutants reveal distinct roles for individual Mediator proteins in transcriptional regulation, suggesting that the deletion of one Mediator complex protein does not interfere with transcription in general, but instead alters the expression of specific target genes. Mediator complex proteins may have diverse roles in different organisms as well, as mutants in the same Mediator gene in different species can display dissimilar phenotypes.
Collapse
Affiliation(s)
- Kathryn E Hentges
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
2
|
Valdés R, Medina Y, Ferro W, Reyes B, Geada D, Montero J, Alvarez T, Leyva A, Gómez L, Padilla S, Pacín L, Figueroa A, Tamayo A, Milá L, Aldama Y, Moya G, Reonde J, Abrahantes MDC. Comparison of different ligand densities in immunoaffinity chromatography of the plantibody HB-01 coupled to Sepharose CL-4B to purify the rHBsAg. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 852:1-7. [PMID: 17442634 DOI: 10.1016/j.jchromb.2006.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 11/23/2006] [Accepted: 12/03/2006] [Indexed: 11/20/2022]
Abstract
This paper evaluates the immunopurification behavior of a plantibody HBsAg specific plantibody coupled to Sepharose CL-4B at different ligand densities. Results show no significant differences in the adsorption and elution capacities, and rHBsAg recovery of immunosorbents at 3.43, 4.45, and 5.31 mg/mL of ligand densities compared to its mouse-derived mAb counterpart consistently used in the rHBsAg purification process. Therefore, plantibody ligand densities higher than 3.43 mg/mL do not improve the immunopurification behavior of this immunosorbent, but increase the antibody consumption and the Hepatitis B vaccine cost. Immunosorbent of 2.23 mg/mL of ligand density demonstrated a poor performance. The IgG leached detectable level never exceeded the approved limit (3 ng IgG/microg rHBsAg). Values close to this limit were only observed at the ligand density of 5.31 and 2.27 mg/mL. In the case of the ligand density of 2.23 mg/mL the IgG leached value was high (2.90 ng IgG/microg rHBsAg) due to a low level of eluted antigen. In conclusion, it supports feasibility of using this plantibody at 3.43 mg/mL of ligand density for large-scale immunopurification of rHBsAg for human use, avoiding the biosafety and ethical concerns of the massive use of animals for this purpose.
Collapse
Affiliation(s)
- Rodolfo Valdés
- Monoclonal Antibody Production Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
PARbZip proteins (proline and acidic amino acid-rich basic leucine zipper) represent a subfamily of circadian transcription factors belonging to the bZip family. They are transcriptionally controlled by the circadian molecular oscillator and are suspected to accomplish output functions of the clock. In turn, PARbZip proteins control expression of genes coding for enzymes involved in metabolism, but also expression of transcription factors which control the expression of these enzymes. For example, these transcription factors control vitamin B6 metabolism, which influences neurotransmitter homeostasis in the brain, and loss of PARbZip function leads to spontaneous and sound-induced epilepsy that are frequently lethal. In liver, kidney, and small intestine, PAR bZip transcription factors regulate phase I, II, and III detoxifying enzymes in addition to the constitutive androstane receptor (CAR), one of the principal sensors of xenobiotics. Indeed, knockout mice for the three PARbZip transcription factors are deficient in xenobiotic detoxification and display high morbidity, high mortality, and accelerated aging. Finally, less than 20% of these animals reach an age of 1 year. Accumulated evidences suggest that PARbZip transcription factors play a role of relay, coupling circadian metabolism of xenobiotic and probably endobiotic substances to the core clock circuitry of local circadian oscillators.
Collapse
|
4
|
Jiang D, Moxley RA, Jarrett HW. Promoter trapping of c-jun promoter-binding transcription factors. J Chromatogr A 2006; 1133:83-94. [PMID: 16934821 DOI: 10.1016/j.chroma.2006.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/29/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
A new method called promoter trapping was developed to purify promoter-protein complex using the c-jun promoter (-200+81) as a model, which was shown to have significant promoter activity. Polymerase chain reaction (PCR), lambda exonuclease digestion combined with (AC)(5)-Sepharose DNA affinity chromatography were used to produce c-jun promoter with a (GT)(5) tail at each 3' end. The intact promoter and different length pieces with one or two (GT)(5) tails had almost the same capacity to bind with (AC)(5)-Sepharose. In solution, tailed c-jun promoter (60 nM) and competitor poly dI:dC (30 ng/microl) was incubated with crude HEK293 nuclear extract to form a large protein-promoter complex, and the complex was then trapped by (AC)(5)-Sepharose by centrifugation or on a column. Compared with a popular alternative method, called here the immobilized promoter method, the products of promoter trapping were purer. The preinitiation complex purified by promoter trapping had the expected components including RNA polymerase II, TATA-box binding protein (TBP), TFIIF subunit RAP74, and transcription factor SP1, and transcribed RNA in vitro. Thus, the promoter trapping approach provides a useful tool for the purification and investigation of transcription complexes.
Collapse
Affiliation(s)
- Daifeng Jiang
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
5
|
George AA, Sharma M, Singh BN, Sahoo NC, Rao KVS. Transcription regulation from a TATA and INR-less promoter: spatial segregation of promoter function. EMBO J 2006; 25:811-21. [PMID: 16437157 PMCID: PMC1383549 DOI: 10.1038/sj.emboj.7600966] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 12/23/2005] [Indexed: 11/09/2022] Open
Abstract
The mode of regulation of class II genes that lack the known core promoter elements is presently unclear. Here, we studied one such example, the murine CD80 gene. An unusual mechanism was revealed wherein the pre-initiation complex (PIC) first assembled on an upstream, NF-kappaB enhancer element. Notably, this assembly occurred independent of contributions from the core promoter domain, and resulted in a PIC that was competent for transcription initiation. Positioning was subsequently achieved by exploiting the intrinsic architecture of the promoter, by virtue of which the tethered PIC was spatially juxtaposed with the transcription initiation site. Bridging interactions then ensued, through protein-protein contacts, which then enabled the elongation phase of CD80 transcription.
Collapse
Affiliation(s)
- Anuja A George
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Manish Sharma
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Badri N Singh
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Naresh C Sahoo
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Kanury VS Rao
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India. Tel.: +91 11 2617 6680; Fax: +91 11 267 5114; E-mail:
| |
Collapse
|
6
|
Nevado J, Tenbaum SP, Aranda A. hSrb7, an essential human Mediator component, acts as a coactivator for the thyroid hormone receptor. Mol Cell Endocrinol 2004; 222:41-51. [PMID: 15249124 DOI: 10.1016/j.mce.2004.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 05/11/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Nuclear hormone receptors interact with the basal-transcriptional complex and/or coactivators to regulate transcriptional activation. These activator-target interactions recruit the transcriptional machinery to the promoter and may also stimulate transcriptional events subsequent to the binding of the machinery to the promoter or enhancer element. We describe a novel functional interaction of the nuclear thyroid receptor (TR), with a human Mediator component (hSrb7), and a human TFIIH component (hMo15). In mammalian two-hybrid experiments as well as in GST-pull down assays, hSrb7 interacts with TR but not with other nuclear receptors such as the retinoic acid receptor (RAR) or the vitamin D receptor (VDR). Whereas hMo15 also interacts with VDR and RAR in mammalian two-hybrid assays, no association of hSrb7 with VDR or RAR is found. Accordingly, cotransfection of TR and hSrb7 increases thyroid hormone (T3)-dependent transcription in an AF-2-dependent manner, while hSrb7 causes no stimulation of vitamin D- or retinoic acid-mediated transactivation. These results reveal a novel co-activator role for hSrb7 and hMo15 on TR transcriptional responses, and demonstrate that different receptors can selectively target different co-activators or general transcription factors to stimulate transcription.
Collapse
Affiliation(s)
- Julián Nevado
- Unidad de Investigación, Hospital Universitario de Getafe, 28905 Getafe, Madrid, Spain
| | | | | |
Collapse
|
7
|
Zhou J, Hoggatt AM, Herring BP. Activation of the smooth muscle-specific telokin gene by thyrotroph embryonic factor (TEF). J Biol Chem 2004; 279:15929-37. [PMID: 14702338 DOI: 10.1074/jbc.m313822200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the telokin gene is restricted to smooth muscle cells throughout development, making this gene an excellent model for unraveling the mechanisms that regulate gene expression in smooth muscle tissues. To identify proteins that bind to the telokin promoter, the AT-rich/CArG core of the promoter was used as a probe to perform a Southwestern screen of a mouse bladder cDNA library. Four clones corresponding to two distinct isoforms of mouse thyrotroph embryonic factor (TEFalpha and TEFbeta) were identified from this screen. The two TEF isoforms differ from each other at their amino termini and result from alternative promoter usage. An RNase protection assay showed that both TEF isoforms are expressed at high levels in mouse lung, bladder, kidney, gut, and brain. Gel mobility shift assays demonstrated that purified TEF protein can specifically bind to an AT-rich region within the core of the telokin promoter. Furthermore, when overexpressed in 10T1/2 cells, TEF significantly increased the activity of a telokin promoter-reporter gene; this activation was further augmented by elevated intracellular calcium levels. In contrast, overexpression of TEF had no effect on reporter genes driven by SM22alpha, smooth muscle alpha-actin, or smooth muscle myosin heavy chain promoters. Consistent with these results, overexpression of TEFalpha and TEFbeta in A10 cells, using adenoviral vectors, increased expression of endogenous telokin without altering expression of myosin light chain 20, SM22alpha, smooth muscle alpha-actin, or calponin. These findings suggest that TEF factors contribute to the activation of the telokin promoter in smooth muscle cells in a calcium-dependent manner. These data also suggest that distinct transcription factors are required to control the expression of different smooth muscle genes in a single tissue.
Collapse
Affiliation(s)
- Jiliang Zhou
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA
| | | | | |
Collapse
|
8
|
Jenkins HL, Spencer CA. RNA polymerase II holoenzyme modifications accompany transcription reprogramming in herpes simplex virus type 1-infected cells. J Virol 2001; 75:9872-84. [PMID: 11559820 PMCID: PMC114559 DOI: 10.1128/jvi.75.20.9872-9884.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During lytic infection, herpes simplex virus type 1 (HSV-1) represses host transcription, recruits RNA polymerase II (RNAP II) to viral replication compartments, and alters the phosphorylation state of the RNAP II large subunit. Host transcription repression and RNAP II modifications require expression of viral immediate-early (IE) genes. Efficient modification of the RNAP II large subunit to the intermediately phosphorylated (IIi) form requires expression of ICP22 and the UL13 kinase. We have further investigated the mechanisms by which HSV-1 effects global changes in RNAP II transcription by analyzing the RNAP II holoenzyme. We find that the RNAP II general transcription factors (GTFs) remain abundant after infection and are recruited into viral replication compartments, suggesting that they continue to be involved in viral gene transcription. However, virus infection modifies the composition of the RNAP II holoenzyme, in particular triggering the loss of the essential GTF, TFIIE. Loss of TFIIE from the RNAP II holoenzyme requires viral IE gene expression, and viral IE proteins may be redundant in mediating this effect. Although viral IE proteins do not associate with the RNAP II holoenzyme, they interact with RNAP II in complexes of lower molecular mass. As the RNAP II holoenzyme containing TFIIE is necessary for activated transcription initiation and RNAP II large subunit phosphorylation in uninfected cells, virus-induced modifications to the holoenzyme may affect both of these processes, leading to aberrant phosphorylation of the RNAP II large subunit and repression of host gene transcription.
Collapse
Affiliation(s)
- H L Jenkins
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | | |
Collapse
|
9
|
Abstract
The TRAP/SMCC/Mediator complex is a mammalian transcriptional regulatory complex that contains over 25 polypeptides and is, in part, phylogenetically conserved. It was originally isolated as a thyroid hormone receptor (TR)-associated protein (TRAP) complex that mediates TR-activated transcription from DNA templates in conjunction with the general transcription machinery, and probably acts in vivo after the action of other receptor-interacting coactivators involved in chromatin remodeling. Subsequently, the TRAP complex was identified as a more broadly used coactivator complex for a wide variety of activators. The TRAP220 subunit mediates ligand-dependent interactions of the complex with TR and other nuclear receptors; and genetic ablation of murine TRAP220 has revealed that it is essential both for optimal TR function and for a variety of early developmental and adult homeostasis events in mice, but not for cell viability per se.
Collapse
Affiliation(s)
- M Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA
| | | |
Collapse
|
10
|
Leverrier S, Cinato E, Paul C, Derancourt J, Bemark M, Leanderson T, Legraverend C. Purification and cloning of type A/B hnRNP proteins involved in transcriptional activation from the Rat spi 2 gene GAGA box. Biol Chem 2000; 381:1031-40. [PMID: 11154060 DOI: 10.1515/bc.2000.127] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The GAGA box of the rat serine protease inhibitor 2 (spi 2) genes not only acts as a basal promoter element, but also mediates transcriptional activation by growth hormone and interleukin-6. The GAGA box is separated from the TATA box by only 12 bp, and this close association is required for efficient transcription. Hence, the GAGA box may influence transcription efficiency through interactions between GAGA box binding proteins and some components of the RNA polymerase II complex. Here we report the cloning of two GAGA box-binding proteins termed p38 and p40, that belong to the type A/B heterogeneous nuclear ribonucleoprotein subgroup. GAGA box mutations that diminish the affinity for p38 and p40 decrease basal and GH-induced reporter gene expression. Furthermore, nuclear extracts depleted of p38 and p40 can no longer support GAGA box-dependent in vitro transcription. Therefore, two polypeptides previously assigned to a family of RNA processing proteins also act as DNA-binding, promoter-specific transcription factors.
Collapse
Affiliation(s)
- S Leverrier
- INSERM U376, H pital A. de Villeneuve, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Ito M, Yuan CX, Okano HJ, Darnell RB, Roeder RG. Involvement of the TRAP220 component of the TRAP/SMCC coactivator complex in embryonic development and thyroid hormone action. Mol Cell 2000; 5:683-93. [PMID: 10882104 DOI: 10.1016/s1097-2765(00)80247-6] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The TRAP220 component of the TRAP/SMCC complex, a mammalian homologof the yeast Mediator that shows diverse coactivation functions, interacts directly with nuclear receptors. Ablation of the murine Trap220 gene revealed that null mutants die during an early gestational stage with heart failure and exhibit impaired neuronal development with extensive apoptosis. Primary embryonic fibroblasts derived from null mutants show an impaired cell cycle regulation and a prominent decrease of thyroid hormone receptor function that is restored by ectopic TRAP220 but no defect in activation by Gal4-RARalpha/RXRalpha, p53, or VP16. Moreover, haploinsufficient animals show growth retardation, pituitary hypothyroidism, and widely impaired transcription in certain organs. These results indicate that TRAP220 is essential for a wide range of physiological processes but also that it has gene- and activator-selective functions.
Collapse
Affiliation(s)
- M Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
12
|
Tudor M, Murray PJ, Onufryk C, Jaenisch R, Young RA. Ubiquitous expression and embryonic requirement for RNA polymerase II coactivator subunit Srb7 in mice. Genes Dev 1999; 13:2365-8. [PMID: 10500093 PMCID: PMC317028 DOI: 10.1101/gad.13.18.2365] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian RNA polymerase II complexes and coactivators containing homologs of yeast Srb/Med proteins have been isolated recently from tissue culture cells. The yeast Srb/Med complex is involved in global gene expression and is essential, but it is not yet known if its mammalian counterparts are broadly expressed in tissues or if they are essential. We have isolated the murine gene encoding Srb7, an Srb/Med complex protein whose sequence and function is highly conserved between yeast and humans. The mouse Srb7 gene is single copy, and Northern analysis showed that it is expressed in all tissues examined. Disruption of the gene in embryonic stem cells revealed that it is essential for cell viability and murine embryonic development. These results, together with evidence that murine Srb7 is associated exclusively with high molecular weight forms of RNA polymerase II in extracts, suggest that Srb7-containing polymerase complexes occur in most tissues and have essential roles in expression of protein coding genes.
Collapse
Affiliation(s)
- M Tudor
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 USA
| | | | | | | | | |
Collapse
|