1
|
Zamani-Dahaj SA, Burnetti A, Day TC, Yunker PJ, Ratcliff WC, Herron MD. Spontaneous Emergence of Multicellular Heritability. Genes (Basel) 2023; 14:1635. [PMID: 37628687 PMCID: PMC10454505 DOI: 10.3390/genes14081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The major transitions in evolution include events and processes that result in the emergence of new levels of biological individuality. For collectives to undergo Darwinian evolution, their traits must be heritable, but the emergence of higher-level heritability is poorly understood and has long been considered a stumbling block for nascent evolutionary transitions. Using analytical models, synthetic biology, and biologically-informed simulations, we explored the emergence of trait heritability during the evolution of multicellularity. Prior work on the evolution of multicellularity has asserted that substantial collective-level trait heritability either emerges only late in the transition or requires some evolutionary change subsequent to the formation of clonal multicellular groups. In a prior analytical model, we showed that collective-level heritability not only exists but is usually more heritable than the underlying cell-level trait upon which it is based, as soon as multicellular groups form. Here, we show that key assumptions and predictions of that model are borne out in a real engineered biological system, with important implications for the emergence of collective-level heritability.
Collapse
Affiliation(s)
- Seyed Alireza Zamani-Dahaj
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Georgia Institute of Technology, School of Physics, Atlanta, GA 30332, USA; (T.C.D.); (P.J.Y.)
| | - Anthony Burnetti
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (A.B.); (M.D.H.)
| | - Thomas C. Day
- Georgia Institute of Technology, School of Physics, Atlanta, GA 30332, USA; (T.C.D.); (P.J.Y.)
| | - Peter J. Yunker
- Georgia Institute of Technology, School of Physics, Atlanta, GA 30332, USA; (T.C.D.); (P.J.Y.)
| | - William C. Ratcliff
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (A.B.); (M.D.H.)
| | - Matthew D. Herron
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (A.B.); (M.D.H.)
| |
Collapse
|
2
|
Zhou H, Shi BJ. New roles of DNA-binding and forkhead-associated domains of Fkh1 and Fkh2 in cellular functions. Cell Biochem Funct 2022; 40:888-902. [PMID: 36121195 DOI: 10.1002/cbf.3750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
Two yeast forkhead transcription factors Fkh1 and Fkh2 regulate the transcription of CLB2 cluster genes important for mitosis. Both proteins contain a DNA-binding domain (DBD) and a forkhead-associated domain (FHAD), which are essential for ternary complex formation with transcription factor Mcm1, the transcription of CLB2 cluster genes and the physical interaction with Ndd1 and Clb2. Fkh2 also contains an additional C' domain that contains six consensus Cdk phosphorylation sites, but the function of this domain is dispensable. Here, we found new roles of the DBD, the FHAD, and the C' domain of Fkh1 and Fkh2 in cellular functions. The Fkh2 DBD determines the genetic interaction with NDD1, while both the FHAD and DBD of Fkh1 or Fkh2 determine cell morphology and stability of their own transcripts. Both HFADs, but not DBDs, also mediate physical interaction between Fkh1 and Fkh2. DBD and HFAD of Fkh1 and DBD, but not HFAD, of Fkh2 are also fundamental for nuclear localization. However, the Fkh2-specific C' domain has no role in these aspects except in the stability of some fkh mutant transcripts, which is either increased or decreased in the presence of this domain. These findings reveal that Fkh1 and Fkh2 have multiple cellular functions and function mainly via their DBD and FHAD through a domain-controlled feedback regulation mechanism.
Collapse
Affiliation(s)
- Hui Zhou
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Bu-Jun Shi
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| |
Collapse
|
3
|
Villalobos Solis MI, Engle NL, Spangler MK, Cottaz S, Fort S, Maeda J, Ané JM, Tschaplinski TJ, Labbé JL, Hettich RL, Abraham PE, Rush TA. Expanding the Biological Role of Lipo-Chitooligosaccharides and Chitooligosaccharides in Laccaria bicolor Growth and Development. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:808578. [PMID: 37746234 PMCID: PMC10512320 DOI: 10.3389/ffunb.2022.808578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 09/26/2023]
Abstract
The role of lipo-chitooligosaccharides (LCOs) as signaling molecules that mediate the establishment of symbiotic relationships between fungi and plants is being redefined. New evidence suggests that the production of these molecular signals may be more of a common trait in fungi than what was previously thought. LCOs affect different aspects of growth and development in fungi. For the ectomycorrhizal forming fungi, Laccaria bicolor, the production and effects of LCOs have always been studied with a symbiotic plant partner; however, there is still no scientific evidence describing the effects that these molecules have on this organism. Here, we explored the physiological, molecular, and metabolomic changes in L. bicolor when grown in the presence of exogenous sulfated and non-sulfated LCOs, as well as the chitooligomers, chitotetraose (CO4), and chitooctaose (CO8). Physiological data from 21 days post-induction showed reduced fungal growth in response to CO and LCO treatments compared to solvent controls. The underlying molecular changes were interrogated by proteomics, which revealed substantial alterations to biological processes related to growth and development. Moreover, metabolite data showed that LCOs and COs caused a downregulation of organic acids, sugars, and fatty acids. At the same time, exposure to LCOs resulted in the overproduction of lactic acid in L. bicolor. Altogether, these results suggest that these signals might be fungistatic compounds and contribute to current research efforts investigating the emerging impacts of these molecules on fungal growth and development.
Collapse
Affiliation(s)
| | - Nancy L. Engle
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Margaret K. Spangler
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sylvain Cottaz
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Sébastien Fort
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Jesse L. Labbé
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L. Hettich
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Paul E. Abraham
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Tomás A. Rush
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
4
|
Vandermeulen MD, Cullen PJ. New Aspects of Invasive Growth Regulation Identified by Functional Profiling of MAPK Pathway Targets in Saccharomyces cerevisiae. Genetics 2020; 216:95-116. [PMID: 32665277 PMCID: PMC7463291 DOI: 10.1534/genetics.120.303369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
MAPK pathways are drivers of morphogenesis and stress responses in eukaryotes. A major function of MAPK pathways is the transcriptional induction of target genes, which produce proteins that collectively generate a cellular response. One approach to comprehensively understand how MAPK pathways regulate cellular responses is to characterize the individual functions of their transcriptional targets. Here, by examining uncharacterized targets of the MAPK pathway that positively regulates filamentous growth in Saccharomyces cerevisiae (fMAPK pathway), we identified a new role for the pathway in negatively regulating invasive growth. Specifically, four targets were identified that had an inhibitory role in invasive growth: RPI1, RGD2, TIP1, and NFG1/YLR042cNFG1 was a highly induced unknown open reading frame that negatively regulated the filamentous growth MAPK pathway. We also identified SFG1, which encodes a transcription factor, as a target of the fMAPK pathway. Sfg1p promoted cell adhesion independently from the fMAPK pathway target and major cell adhesion flocculin Flo11p, by repressing genes encoding presumptive cell-wall-degrading enzymes. Sfg1p also contributed to FLO11 expression. Sfg1p and Flo11p regulated different aspects of cell adhesion, and their roles varied based on the environment. Sfg1p also induced an elongated cell morphology, presumably through a cell-cycle delay. Thus, the fMAPK pathway coordinates positive and negative regulatory proteins to fine-tune filamentous growth resulting in a nuanced response. Functional analysis of other pathways' targets may lead to a more comprehensive understanding of how signaling cascades generate biological responses.
Collapse
Affiliation(s)
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, New York 14260-1300
| |
Collapse
|
5
|
Ryu HY, Duan R, Ahn SH. Yeast symmetric arginine methyltransferase Hsl7 has a repressive role in transcription. Res Microbiol 2019; 170:222-229. [PMID: 30660775 DOI: 10.1016/j.resmic.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/29/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
Protein arginine methylation, an evolutionarily conserved post-translational modification, serves critical cellular functions by transferring a methyl group to a variety of substrates, including histones and some transcription factors. In budding yeast, Hsl7 (histone synthetic lethal 7) displays type II PRMT (protein arginine methyltransferase) activity by generating symmetric dimethylarginine residues on histone H2A in vitro. However, identification of the in vivo substrate of Hsl7 and how it contributes to important cellular processes remain largely unexplored. In the present study, we show that Hsl7 has a repressive role in transcription. We found that Hsl7 is responsible for in vivo symmetric dimethylation of histone H4 arginine 3 (H4R3me2s) in a transcriptionally repressed state. Tandem affinity purification further demonstrated that Hsl7 physically interacts with histone deacetylase Rpd3, and both similarly repress transcription. Our results suggest that H4R3me2s generation by the type II PRMT Hsl7 is required for transcriptional repression, possibly in cooperation with histone deacetylation by Rpd3.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea
| | - Ruxin Duan
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
6
|
Lu AX, Chong YT, Hsu IS, Strome B, Handfield LF, Kraus O, Andrews BJ, Moses AM. Integrating images from multiple microscopy screens reveals diverse patterns of change in the subcellular localization of proteins. eLife 2018; 7:e31872. [PMID: 29620521 PMCID: PMC5935485 DOI: 10.7554/elife.31872] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/30/2018] [Indexed: 01/29/2023] Open
Abstract
The evaluation of protein localization changes on a systematic level is a powerful tool for understanding how cells respond to environmental, chemical, or genetic perturbations. To date, work in understanding these proteomic responses through high-throughput imaging has catalogued localization changes independently for each perturbation. To distinguish changes that are targeted responses to the specific perturbation or more generalized programs, we developed a scalable approach to visualize the localization behavior of proteins across multiple experiments as a quantitative pattern. By applying this approach to 24 experimental screens consisting of nearly 400,000 images, we differentiated specific responses from more generalized ones, discovered nuance in the localization behavior of stress-responsive proteins, and formed hypotheses by clustering proteins that have similar patterns. Previous approaches aim to capture all localization changes for a single screen as accurately as possible, whereas our work aims to integrate large amounts of imaging data to find unexpected new cell biology.
Collapse
Affiliation(s)
- Alex X Lu
- Department of Computer ScienceUniversity of TorontoTorontoCanada
| | - Yolanda T Chong
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Ian Shen Hsu
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Bob Strome
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | | | - Oren Kraus
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada
| | - Brenda J Andrews
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
| | - Alan M Moses
- Department of Computer ScienceUniversity of TorontoTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
- Center for Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoCanada
| |
Collapse
|
7
|
Zhao XM, Li S. HISP: a hybrid intelligent approach for identifying directed signaling pathways. J Mol Cell Biol 2018; 9:453-462. [DOI: 10.1093/jmcb/mjx054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/20/2017] [Indexed: 01/15/2023] Open
Affiliation(s)
- Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Shan Li
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Abstract
Cell differentiation requires different pathways to act in concert to produce a specialized cell type. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth in response to nutrient limitation. Differentiation to the filamentous cell type requires multiple signaling pathways, including a mitogen-activated protein kinase (MAPK) pathway. To identify new regulators of the filamentous growth MAPK pathway, a genetic screen was performed with a collection of 4072 nonessential deletion mutants constructed in the filamentous (Σ1278b) strain background. The screen, in combination with directed gene-deletion analysis, uncovered 97 new regulators of the filamentous growth MAPK pathway comprising 40% of the major regulators of filamentous growth. Functional classification extended known connections to the pathway and identified new connections. One function for the extensive regulatory network was to adjust the activity of the filamentous growth MAPK pathway to the activity of other pathways that regulate the response. In support of this idea, an unregulated filamentous growth MAPK pathway led to an uncoordinated response. Many of the pathways that regulate filamentous growth also regulated each other's targets, which brings to light an integrated signaling network that regulates the differentiation response. The regulatory network characterized here provides a template for understanding MAPK-dependent differentiation that may extend to other systems, including fungal pathogens and metazoans.
Collapse
|
9
|
Zhang Y, Kweon HK, Shively C, Kumar A, Andrews PC. Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data. PLoS Comput Biol 2013; 9:e1003077. [PMID: 23825934 PMCID: PMC3694812 DOI: 10.1371/journal.pcbi.1003077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 04/17/2013] [Indexed: 11/19/2022] Open
Abstract
Reversible phosphorylation is one of the major mechanisms of signal transduction, and signaling networks are critical regulators of cell growth and development. However, few of these networks have been delineated completely. Towards this end, quantitative phosphoproteomics is emerging as a useful tool enabling large-scale determination of relative phosphorylation levels. However, phosphoproteomics differs from classical proteomics by a more extensive sampling limitation due to the limited number of detectable sites per protein. Here, we propose a comprehensive quantitative analysis pipeline customized for phosphoproteome data from interventional experiments for identifying key proteins in specific pathways, discovering the protein-protein interactions and inferring the signaling network. We also made an effort to partially compensate for the missing value problem, a chronic issue for proteomics studies. The dataset used for this study was generated using SILAC (Stable Isotope Labeling with Amino acids in Cell culture) technique with interventional experiments (kinase-dead mutations). The major components of the pipeline include phosphopeptide meta-analysis, correlation network analysis and causal relationship discovery. We have successfully applied our pipeline to interventional experiments identifying phosphorylation events underlying the transition to a filamentous growth form in Saccharomyces cerevisiae. We identified 5 high-confidence proteins from meta-analysis, and 19 hub proteins from correlation analysis (Pbi2p and Hsp42p were identified by both analyses). All these proteins are involved in stress responses. Nine of them have direct or indirect evidence of involvement in filamentous growth. In addition, we tested four of our predicted proteins, Nth1p, Pbi2p, Pdr12p and Rcn2p, by interventional phenotypic experiments and all of them present differential invasive growth, providing prospective validation of our approach. This comprehensive pipeline presents a systematic way for discovering signaling networks using interventional phosphoproteome data and can suggest candidate proteins for further investigation. We anticipate the methodology to be applicable as well to other interventional studies via different experimental platforms.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hye Kyong Kweon
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Christian Shively
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Philip C. Andrews
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
10
|
Sharifpoor S, van Dyk D, Costanzo M, Baryshnikova A, Friesen H, Douglas AC, Youn JY, VanderSluis B, Myers CL, Papp B, Boone C, Andrews BJ. Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 2012; 22:791-801. [PMID: 22282571 DOI: 10.1101/gr.129213.111] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated by cognate kinases. Kinases most sensitive to dosage perturbations had constitutive cell cycle or cell polarity functions under standard growth conditions. Condition-specific screens confirmed that the spectrum of kinase dosage interactions can be expanded substantially in activating conditions. An integrated network composed of systematic SDL, negative and positive loss-of-function GIs, and literature-curated kinase-substrate interactions revealed kinase-dependent regulatory motifs predictive of novel gene-specific phenotypes. Our study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks.
Collapse
Affiliation(s)
- Sara Sharifpoor
- Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, Ontario M5S3E1, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Merlini L, Piatti S. The mother-bud neck as a signaling platform for the coordination between spindle position and cytokinesis in budding yeast. Biol Chem 2012; 392:805-12. [PMID: 21824008 DOI: 10.1515/bc.2011.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During asymmetric cell division, spindle positioning is critical for ensuring the unequal inheritance of polarity factors. In budding yeast, the mother-bud neck determines the cleavage plane and a correct nuclear division between mother and daughter cell requires orientation of the mitotic spindle along the mother-bud axis. A surveillance device called the spindle position/orientation checkpoint (SPOC) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability. Cytoskeletal proteins called septins form a ring at the bud neck that is essential for cytokinesis. Furthermore, septins and septin-associated proteins are implicated in spindle positioning and SPOC. In this review, we discuss the emerging connections between septins and the SPOC and the role of the mother-bud neck as a signaling platform to couple proper chromosome segregation to cytokinesis.
Collapse
Affiliation(s)
- Laura Merlini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
12
|
Abstract
Studies of the processes leading to the construction of a bud and its separation from the mother cell in Saccharomyces cerevisiae have provided foundational paradigms for the mechanisms of polarity establishment, cytoskeletal organization, and cytokinesis. Here we review our current understanding of how these morphogenetic events occur and how they are controlled by the cell-cycle-regulatory cyclin-CDK system. In addition, defects in morphogenesis provide signals that feed back on the cyclin-CDK system, and we review what is known regarding regulation of cell-cycle progression in response to such defects, primarily acting through the kinase Swe1p. The bidirectional communication between morphogenesis and the cell cycle is crucial for successful proliferation, and its study has illuminated many elegant and often unexpected regulatory mechanisms. Despite considerable progress, however, many of the most puzzling mysteries in this field remain to be resolved.
Collapse
Affiliation(s)
- Audrey S. Howell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
13
|
Natural variation in CDC28 underlies morphological phenotypes in an environmental yeast isolate. Genetics 2011; 188:723-30. [PMID: 21527779 DOI: 10.1534/genetics.111.128819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Morphological differences among individuals in a species represent one of the most striking aspects of biology, and a primary aim of modern genetics is to uncover the molecular basis of morphological variation. In a survey of meiosis phenotypes among environmental isolates of Saccharomyces cerevisiae, we observed an unusual arrangement of meiotic spores within the spore sac in a strain from Ivory Coast, West Africa. We mined population genomic data to identify CDC28 as the major genetic determinant of meiotic and budding cell shape behaviors in this strain. Molecular genetic methods confirmed the role of the Ivory Coast variant of CDC28 in the arrangement of spores after meiosis, in the shape of budding cells in rich medium and in the morphology of filamentous growth during nitrogen limitation. Our results shed new light on the role of CDC28 in yeast cell division, and our work suggests that with the growing availability of genomic data sets in many systems, a priori prediction of functional variants will become an increasingly powerful strategy in molecular genetics.
Collapse
|
14
|
Caydasi AK, Ibrahim B, Pereira G. Monitoring spindle orientation: Spindle position checkpoint in charge. Cell Div 2010; 5:28. [PMID: 21143992 PMCID: PMC3004881 DOI: 10.1186/1747-1028-5-28] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/11/2010] [Indexed: 12/15/2022] Open
Abstract
Every cell division in budding yeast is inherently asymmetric and counts on the correct positioning of the mitotic spindle along the mother-daughter polarity axis for faithful chromosome segregation. A surveillance mechanism named the spindle position checkpoint (SPOC), monitors the orientation of the mitotic spindle and prevents cells from exiting mitosis when the spindle fails to align along the mother-daughter axis. SPOC is essential for maintenance of ploidy in budding yeast and similar mechanisms might exist in higher eukaryotes to ensure faithful asymmetric cell division. Here, we review the current model of SPOC activation and highlight the importance of protein localization and phosphorylation for SPOC function.
Collapse
Affiliation(s)
- Ayse K Caydasi
- German Cancer Research Centre, DKFZ-ZMBH Alliance, Molecular Biology of Centrosomes and Cilia, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
15
|
Caydasi AK, Kurtulmus B, Orrico MIL, Hofmann A, Ibrahim B, Pereira G. Elm1 kinase activates the spindle position checkpoint kinase Kin4. ACTA ACUST UNITED AC 2010; 190:975-89. [PMID: 20855503 PMCID: PMC3101594 DOI: 10.1083/jcb.201006151] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Elm1 phosphorylates a conserved residue within the Kin4 kinase domain to coordinate spindle position with cell cycle progression. Budding yeast asymmetric cell division relies upon the precise coordination of spindle orientation and cell cycle progression. The spindle position checkpoint (SPOC) is a surveillance mechanism that prevents cells with misoriented spindles from exiting mitosis. The cortical kinase Kin4 acts near the top of this network. How Kin4 kinase activity is regulated and maintained in respect to spindle positional cues remains to be established. Here, we show that the bud neck–associated kinase Elm1 participates in Kin4 activation and SPOC signaling by phosphorylating a conserved residue within the activation loop of Kin4. Blocking Elm1 function abolishes Kin4 kinase activity in vivo and eliminates the SPOC response to spindle misalignment. These findings establish a novel function for Elm1 in the coordination of spindle positioning with cell cycle progression via its control of Kin4.
Collapse
Affiliation(s)
- Ayse Koca Caydasi
- German Cancer Research Center, DKFZ-ZMBH Alliance, Molecular Biology of Centrosomes and Cilia, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Xu T, Shively CA, Jin R, Eckwahl MJ, Dobry CJ, Song Q, Kumar A. A profile of differentially abundant proteins at the yeast cell periphery during pseudohyphal growth. J Biol Chem 2010; 285:15476-15488. [PMID: 20228058 DOI: 10.1074/jbc.m110.114926] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Yeast filamentous growth is a stress response to conditions of nitrogen deprivation, wherein yeast colonies form pseudohyphal filaments of elongated and connected cells. As proteins mediating adhesion and transport are required for this growth transition, we expect that the protein complement at the yeast cell periphery plays a critical and tightly regulated role in pseudohyphal filamentation. To identify proteins differentially abundant at the yeast cell periphery during pseudohyphal growth, we generated quantitative proteomic profiles of plasma membrane protein preparations under conditions of vegetative growth and filamentation. By isobaric tags for relative and absolute quantification chemistry and two-dimensional liquid chromatography-tandem mass spectrometry, we profiled 2463 peptides and 356 proteins, identifying 11 differentially abundant proteins that localize to the yeast cell periphery. This protein set includes Ylr414cp, herein renamed Pun1p, a previously uncharacterized protein localized to the plasma membrane compartment of Can1. Pun1p abundance is doubled under conditions of nitrogen stress, and deletion of PUN1 abolishes filamentous growth in haploids and diploids; pun1Delta mutants are noninvasive, lack surface-spread filamentation, grow slowly, and exhibit impaired cell adhesion. Conversely, overexpression of PUN1 results in exaggerated cell elongation under conditions of nitrogen stress. PUN1 contributes to yeast nitrogen signaling, as pun1Delta mutants misregulate amino acid biosynthetic genes during nitrogen stress. By chromatin immunoprecipitation and reverse transcription-PCR, we find that the filamentous growth factor Mss11p directly binds the PUN1 promoter and regulates its transcription. In total, this study provides the first profile of differential protein abundance during pseudohyphal growth, identifying a previously uncharacterized membrane compartment of Can1 protein required for wild-type nitrogen signaling and filamentous growth.
Collapse
Affiliation(s)
- Tao Xu
- Department of Molecular, Cellular, and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216
| | - Christian A Shively
- Department of Molecular, Cellular, and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216
| | - Rui Jin
- Department of Molecular, Cellular, and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216
| | - Matthew J Eckwahl
- Department of Molecular, Cellular, and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216
| | - Craig J Dobry
- Department of Molecular, Cellular, and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216
| | - Qingxuan Song
- Department of Molecular, Cellular, and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216.
| |
Collapse
|
17
|
Roles of the Snf1-activating kinases during nitrogen limitation and pseudohyphal differentiation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2009; 9:208-14. [PMID: 19880754 DOI: 10.1128/ec.00216-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, Snf1 protein kinase is important for growth on carbon sources that are less preferred than glucose. When glucose becomes limiting, Snf1 undergoes catalytic activation, which requires phosphorylation of its T-loop threonine (Thr210). Thr210 phosphorylation can be performed by any of three Snf1-activating kinases: Sak1, Tos3, and Elm1. These kinases are redundant in that all three must be eliminated to confer snf1Delta-like growth defects on nonpreferred carbon sources. We previously showed that in addition to glucose signaling, Snf1 also participates in nitrogen signaling and is required for diploid pseudohyphal differentiation, a filamentous-growth response to nitrogen limitation. Here, we addressed the roles of the Snf1-activating kinases in this process. Loss of Sak1 caused a defect in pseudohyphal differentiation, whereas Tos3 and Elm1 were dispensable. Sak1 was also required for increased Thr210 phosphorylation of Snf1 under nitrogen-limiting conditions. Expression of a catalytically hyperactive version of Snf1 restored pseudohyphal differentiation in the sak1Delta/sak1Delta mutant. Thus, while the Snf1-activating kinases exhibit redundancy for growth on nonpreferred carbon sources, the loss of Sak1 alone produced a significant defect in a nitrogen-regulated phenotype, and this defect resulted from deficient Snf1 activation rather than from disruption of another pathway. Our results suggest that Sak1 is involved in nitrogen signaling upstream of Snf1.
Collapse
|
18
|
Gale CA, Leonard MD, Finley KR, Christensen L, McClellan M, Abbey D, Kurischko C, Bensen E, Tzafrir I, Kauffman S, Becker J, Berman J. SLA2 mutations cause SWE1-mediated cell cycle phenotypes in Candida albicans and Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2009; 155:3847-3859. [PMID: 19778960 DOI: 10.1099/mic.0.033233-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The early endocytic patch protein Sla2 is important for morphogenesis and growth rates in Saccharomyces cerevisiae and Candida albicans, but the mechanism that connects these processes is not clear. Here we report that growth defects in cells lacking CaSLA2 or ScSLA2 are associated with a cell cycle delay that is influenced by Swe1, a morphogenesis checkpoint kinase. To establish how Swe1 monitors Sla2 function, we compared actin organization and cell cycle dynamics in strains lacking other components of early endocytic patches (Sla1 and Abp1) with those in strains lacking Sla2. Only sla2 strains had defects in actin cables, a known trigger of the morphogenesis checkpoint, yet all three strains exhibited Swe1-dependent phenotypes. Thus, Swe1 appears to monitor actin patch in addition to actin cable function. Furthermore, Swe1 contributed to virulence in a mouse model of disseminated candidiasis, implying a role for the morphogenesis checkpoint during the pathogenesis of C. albicans infections.
Collapse
Affiliation(s)
- Cheryl A Gale
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pediatrics, University of Minnesota, Minneapolis MN 55455, USA
| | - Michelle D Leonard
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kenneth R Finley
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Leah Christensen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Darren Abbey
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cornelia Kurischko
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric Bensen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Iris Tzafrir
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jeff Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Judith Berman
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Szkotnicki L, Crutchley JM, Zyla TR, Bardes ESG, Lew DJ. The checkpoint kinase Hsl1p is activated by Elm1p-dependent phosphorylation. Mol Biol Cell 2008; 19:4675-86. [PMID: 18768748 DOI: 10.1091/mbc.e08-06-0663] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Saccharomyces cerevisiae cells growing in the outdoor environment must adapt to sudden changes in temperature and other variables. Many such changes trigger stress responses that delay bud emergence until the cells can adapt. In such circumstances, the morphogenesis checkpoint delays mitosis until a bud has been formed. Mitotic delay is due to the Wee1 family mitotic inhibitor Swe1p, whose degradation is linked to bud emergence by the checkpoint kinase Hsl1p. Hsl1p is concentrated at the mother-bud neck through association with septin filaments, and it was reported that Hsl1p activation involved relief of autoinhibition in response to septin interaction. Here we challenge the previous identification of an autoinhibitory domain and show instead that Hsl1p activation involves the phosphorylation of threonine 273, promoted by the septin-associated kinase Elm1p. We identified elm1 mutants in a screen for defects in Swe1p degradation and show that a phosphomimic T273E mutation in HSL1 bypasses the need for Elm1p in this pathway.
Collapse
Affiliation(s)
- Lee Szkotnicki
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
20
|
A novel genetic screen implicates Elm1 in the inactivation of the yeast transcription factor SBF. PLoS One 2008; 3:e1500. [PMID: 18231587 PMCID: PMC2198942 DOI: 10.1371/journal.pone.0001500] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 12/21/2007] [Indexed: 11/19/2022] Open
Abstract
Background Despite extensive large scale analyses of expression and protein-protein interactions (PPI) in the model organism Saccharomyces cerevisiae, over a thousand yeast genes remain uncharacterized. We have developed a novel strategy in yeast that directly combines genetics with proteomics in the same screen to assign function to proteins based on the observation of genetic perturbations of sentinel protein interactions (GePPI). As proof of principle of the GePPI screen, we applied it to identify proteins involved in the regulation of an important yeast cell cycle transcription factor, SBF that activates gene expression during G1 and S phase. Methodology/Principle Findings The principle of GePPI is that if a protein is involved in a pathway of interest, deletion of the corresponding gene will result in perturbation of sentinel PPIs that report on the activity of the pathway. We created a fluorescent protein-fragment complementation assay (PCA) to detect the interaction between Cdc28 and Swi4, which leads to the inactivation of SBF. The PCA signal was quantified by microscopy and image analysis in deletion strains corresponding to 25 candidate genes that are periodically expressed during the cell cycle and are substrates of Cdc28. We showed that the serine-threonine kinase Elm1 plays a role in the inactivation of SBF and that phosphorylation of Elm1 by Cdc28 may be a mechanism to inactivate Elm1 upon completion of mitosis. Conclusions/Significance Our findings demonstrate that GePPI is an effective strategy to directly link proteins of known or unknown function to a specific biological pathway of interest. The ease in generating PCA assays for any protein interaction and the availability of the yeast deletion strain collection allows GePPI to be applied to any cellular network. In addition, the high degree of conservation between yeast and mammalian proteins and pathways suggest GePPI could be used to generate insight into human disease.
Collapse
|
21
|
Hood-DeGrenier JK, Boulton CN, Lyo V. Cytoplasmic Clb2 is required for timely inactivation of the mitotic inhibitor Swe1 and normal bud morphogenesis in Saccharomyces cerevisiae. Curr Genet 2006; 51:1-18. [PMID: 17033818 DOI: 10.1007/s00294-006-0102-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/05/2006] [Accepted: 09/10/2006] [Indexed: 10/24/2022]
Abstract
Subcellular localization is an important determinant of substrate and functional specificity for cyclin-cyclin dependent kinase (CDK) complexes. This work addresses the cytoplasmic function of the budding yeast mitotic cyclin Clb2, which is mostly nuclear but is also present in the bulk cytoplasm and at the mother-bud neck. Clb2 contains two leucine-rich nuclear export signals (NESs)--one of which we newly describe here--that maintain its presence in the cytoplasm. Yeast strains bearing mutations in one or both of these NESs have elongated buds, indicative of a G2/M cell cycle delay. A small number of these cells exhibit a filamentous-like morphology under conditions that do not normally induce filamentous growth. These phenotypes are enhanced by deletion of the other three mitotic cyclins (CLB1,3,4) and are dependent on expression of Swe1, the yeast Cdk1 inhibitory kinase. Deltaclb1,3,4 Deltabud3 cells, which fail to localize Clb2 to the bud neck, also exhibit a Swe1-dependent elongated bud phenotype. Our results support a model in which cytoplasmic Clb2-Cdk1 is required for timely inactivation of Swe1 at the G2/M transition and bud neck targeting of Clb2 contributes to the efficiency of this process. Cytoplasmic Clb2 may also be important for repression of filamentous growth.
Collapse
|
22
|
Martinez JS, Jeong DE, Choi E, Billings BM, Hall MC. Acm1 is a negative regulator of the CDH1-dependent anaphase-promoting complex/cyclosome in budding yeast. Mol Cell Biol 2006; 26:9162-76. [PMID: 17030612 PMCID: PMC1698549 DOI: 10.1128/mcb.00603-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cdh1 is a coactivator of the anaphase-promoting complex/cyclosome (APC/C) and contributes to mitotic exit and G1 maintenance by facilitating the polyubiquitination and subsequent proteolysis of specific substrates. Here, we report that budding yeast Cdh1 is a component of a cell cycle-regulated complex that includes the 14-3-3 homologs Bmh1 and Bmh2 and a previously uncharacterized protein, which we name Acm1 (APC/CCdh1 modulator 1). Association of Cdh1 with Bmh1 and Bmh2 requires Acm1, and the Acm1 protein is cell cycle regulated, appearing late in G1 and disappearing in late M. In acm1Delta strains, Cdh1 localization to the bud neck and association with two substrates, Clb2 and Hsl1, were strongly enhanced. Several lines of evidence suggest that Acm1 can suppress APC/CCdh1-mediated proteolysis of mitotic cyclins. First, overexpression of Acm1 fully restored viability to cells expressing toxic levels of Cdh1 or a constitutively active Cdh1 mutant lacking inhibitory phosphorylation sites. Second, overexpression of Acm1 was toxic in sic1Delta cells. Third, ACM1 deletion exacerbated a low-penetrance elongated-bud phenotype caused by modest overexpression of Cdh1. This bud elongation was independent of the morphogenesis checkpoint, and the combination of acm1Delta and hsl1Delta resulted in a dramatic enhancement of bud elongation and G2/M delay. Effects on bud elongation were attenuated when Cdh1 was replaced with a mutant lacking the C-terminal IR dipeptide, suggesting that APC/C-dependent proteolysis is required for this phenotype. We propose that Acm1 and Bmh1/Bmh2 constitute a specialized inhibitor of APC/CCdh1.
Collapse
Affiliation(s)
- Juan S Martinez
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | | | | | | | | |
Collapse
|
23
|
Helfer H, Gladfelter AS. AgSwe1p regulates mitosis in response to morphogenesis and nutrients in multinucleated Ashbya gossypii cells. Mol Biol Cell 2006; 17:4494-512. [PMID: 16899511 PMCID: PMC1635347 DOI: 10.1091/mbc.e06-03-0215] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclei in the filamentous, multinucleated fungus Ashbya gossypii divide asynchronously. We have investigated what internal and external signals spatially direct mitosis within these hyphal cells. Mitoses are most common near cortical septin rings found at growing tips and branchpoints. In septin mutants, mitoses are no longer concentrated at branchpoints, suggesting that the septin rings function to locally promote mitosis near new branches. Similarly, cells lacking AgSwe1p kinase (a Wee1 homologue), AgHsl1p (a Nim1-related kinase), and AgMih1p phosphatase (the Cdc25 homologue that likely counteracts AgSwe1p activity) also have mitoses distributed randomly in the hyphae as opposed to at branchpoints. Surprisingly, however, no phosphorylation of the CDK tyrosine 18 residue, the conserved substrate of Swe1p kinases, was detected in normally growing cells. In contrast, abundant CDK tyrosine phosphorylation was apparent in starving cells, resulting in diminished nuclear density. This starvation-induced CDK phosphorylation is AgSwe1p dependent, and overexpressed AgSwe1p is sufficient to delay nuclei even in rich nutrient conditions. In starving cells lacking septins or AgSwe1p negative regulators, the nuclear density is further diminished compared with wild type. We have generated a model in which AgSwe1p may regulate mitosis in response to cell intrinsic morphogenesis cues and external nutrient availability in multinucleated cells.
Collapse
Affiliation(s)
- Hanspeter Helfer
- University of Basel Biozentrum, Molecular Microbiology, 4056 Basel, Switzerland
| | | |
Collapse
|
24
|
Souid AK, Gao C, Wang L, Milgrom E, Shen WCW. ELM1 is required for multidrug resistance in Saccharomyces cerevisiae. Genetics 2006; 173:1919-37. [PMID: 16751665 PMCID: PMC1569693 DOI: 10.1534/genetics.106.057596] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 05/30/2006] [Indexed: 02/08/2023] Open
Abstract
In Saccharomyces cerevisiae, transcription of several drug transporter genes, including the major transporter gene PDR5, has been shown to peak during mitosis. The significance of this observation, however, remains unclear. PDR1 encodes the primary transcription activator of multiple drug transporter genes in S. cerevisiae, including PDR5. Here, we show that in synchronized PDR1 and pdr1-3 (multidrug resistant) strains, cellular efflux of a known substrate of ATP-binding-cassette transporters, doxorubicin (a fluorescent anticancer drug), is highest during mitosis when PDR5 transcription peaks. A genetic screen performed to identify regulators of multidrug resistance revealed that a truncation mutation in ELM1 (elm1-300) suppressed the multidrug resistance of pdr1-3. ELM1 encodes a serine/threonine protein kinase required for proper regulation of multiple cellular kinases, including those involved in mitosis, cytokinesis, and cellular morphogenesis. elm1-300 as well as elm1Delta mutations in a pdr1-3 strain also caused elongated bud morphology (indicating a G2/M delay) and reduction of PDR5 transcription under induced and noninduced conditions. Interestingly, mutations in several genes functionally related to ELM1, including cla4Delta, gin4Delta, and cdc28-C127Y, also caused drastic reductions in drug resistance and PDR5 transcription. Collectively, these data show that ELM1, and genes encoding related serine/threonine protein kinases, are required for regulation of multidrug resistance involving, at least in part, control of PDR5 transcription.
Collapse
Affiliation(s)
- Abdul-Kader Souid
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | |
Collapse
|
25
|
Asano S, Park JE, Yu LR, Zhou M, Sakchaisri K, Park CJ, Kang YH, Thorner J, Veenstra TD, Lee KS. Direct phosphorylation and activation of a Nim1-related kinase Gin4 by Elm1 in budding yeast. J Biol Chem 2006; 281:27090-8. [PMID: 16861226 DOI: 10.1074/jbc.m601483200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In budding yeast, Gin4, a Nim1-related kinase, plays an important role in proper organization of the septin ring at the mother-bud neck, a filamentous structure that is critical for diverse cellular processes including mitotic entry and cytokinesis. How Gin4 kinase activity is regulated is not known. Here we showed that a neck-associated Ser/Thr kinase Elm1, which is important for septin assembly, is critical for proper modification of Gin4 and its physiological substrate Shs1. In vitro studies with purified recombinant proteins demonstrated that Elm1 directly phosphorylates and activates Gin4, which in turn phosphorylates Shs1. Consistent with these observations, acute inhibition of Elm1 activity abolished mitotic Gin4 phosphorylation and Gin4-dependent Shs1 modification in vivo. In addition, a gin4 mutant lacking the Elm1-dependent phosphorylation sites exhibited an impaired localization to the bud-neck and, as a result, induced a significant growth defect with an elongated bud morphology. Thus, Elm1 regulates the septin assembly-dependent cellular events by directly phosphorylating and activating the Gin4-dependent pathway(s).
Collapse
Affiliation(s)
- Satoshi Asano
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Suzuki T, Omi K, Ito T, Takata T, Kikutsugi H, Fujimura T, Kono K, Kamihara T. Ethanol-induced pseudohyphal transition in the cells of Candida tropicalis: participation of phosphoinositide signal transduction. FEMS Yeast Res 2006; 6:177-85. [PMID: 16487341 DOI: 10.1111/j.1574-1364.2005.00020.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Ethanol-induced pseudohyphal development in the cells of Candida tropicalis Pk233 was accompanied by the transient accumulation of inositol 1,4,5-trisphosphate (IP3) that occurred at an early growth stage. The concomitant addition of myo-inositol prevented the activation of IP3 accumulation and cancelled pseudohyphal development in the presence of ethanol. The addition of a specific phospholipase C inhibitor, U73 122, inhibited ethanol-induced pseudohyphal transition at the concentrations of subinhibitory levels of cell growth. Pseudohyphal development was also induced by the Ca2+ ionophore, A23 187 in the absence of ethanol. The effect of A23 187 on the development of pseudohyphae was little influenced by myo-inositol, but stimulated by concomitant addition of 12-O-tetradecanoylphorbol 13-acetate. These results suggest that ethanol activated phospholipase C in competition with myo-inositol, and the resulting IP3-Ca2+ and protein kinase C pathways of PI signal transduction may work in pseudohyphal transition.
Collapse
Affiliation(s)
- Takahito Suzuki
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bensen ES, Clemente-Blanco A, Finley KR, Correa-Bordes J, Berman J. The mitotic cyclins Clb2p and Clb4p affect morphogenesis in Candida albicans. Mol Biol Cell 2005; 16:3387-400. [PMID: 15888543 PMCID: PMC1165420 DOI: 10.1091/mbc.e04-12-1081] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ability of Candida albicans to switch cellular morphologies is crucial for its ability to cause infection. Because the cell cycle machinery participates in Saccharomyces cerevisiae filamentous growth, we characterized in detail the two C. albicans B-type cyclins, CLB2 and CLB4, to better understand the molecular mechanisms that underlie the C. albicans morphogenic switch. Both Clb2p and Clb4p levels are cell cycle regulated, peaking at G2/M and declining before mitotic exit. On hyphal induction, the accumulation of the G1 cyclin Cln1p was prolonged, whereas the accumulation of both Clb proteins was delayed when compared with yeast form cells, indicating that CLB2 and CLB4 are differentially regulated in the two morphologies and that the dynamics of cyclin appearance differs between yeast and hyphal forms of growth. Clb2p-depleted cells were inviable and arrested with hyper-elongated projections containing two nuclei, suggesting that Clb2p is not required for entry into mitosis. Unlike Clb2p-depleted cells, Clb4p-depleted cells were viable and formed constitutive pseudohyphae. Clb proteins lacking destruction box domains blocked cell cycle progression resulting in the formation of long projections, indicating that both Clb2p and Clb4p must be degraded before mitotic exit. In addition, overexpression of either B-type cyclin reduced the extent of filamentous growth. Taken together, these data indicate that Clb2p and Clb4p regulate C. albicans morphogenesis by negatively regulating polarized growth.
Collapse
Affiliation(s)
- Eric S Bensen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
28
|
Lee KS, Park JE, Asano S, Park CJ. Yeast polo-like kinases: functionally conserved multitask mitotic regulators. Oncogene 2005; 24:217-29. [PMID: 15640837 DOI: 10.1038/sj.onc.1208271] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The polo-like kinases (Plks) are a conserved subfamily of Ser/Thr protein kinases that play pivotal roles in regulating various cellular and biochemical events at multiple stages of M phase. Genetic and biochemical data revealed that both the budding yeast and the fission yeast polo kinase homologs (Cdc5 and Plo1, respectively) bear remarkable functional similarities with those in metazoan organisms, suggesting that the role of Plks is largely conserved throughout evolution. Thus, studies on Plks in genetically amenable lower eucaryotic organisms may yield valuable insights into the function of Plks in higher eucaryotic organisms. In this review, common properties and distinct functions of Cdc5 and Plo1 will be discussed and compared to properties and functions of Plks in higher eucaryotic organisms.
Collapse
Affiliation(s)
- Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bldg 37, Rm 3118, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
29
|
Park JE, Park CJ, Sakchaisri K, Karpova T, Asano S, McNally J, Sunwoo Y, Leem SH, Lee KS. Novel functional dissection of the localization-specific roles of budding yeast polo kinase Cdc5p. Mol Cell Biol 2004; 24:9873-86. [PMID: 15509790 PMCID: PMC525480 DOI: 10.1128/mcb.24.22.9873-9886.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Budding yeast polo kinase Cdc5p localizes to the spindle pole body (SPB) and to the bud-neck and plays multiple roles during M-phase progression. To dissect localization-specific mitotic functions of Cdc5p, we tethered a localization-defective N-terminal kinase domain of Cdc5p (Cdc5pDeltaC) to the SPB or to the bud-neck with components specifically localizing to one of these sites and characterized these mutants in a cdc5Delta background. Characterization of a viable, SPB-localizing, CDC5DeltaC-CNM67 mutant revealed that it is defective in timely degradation of Swe1p, a negative regulator of Cdc28p. Loss of BFA1, a negative regulator of mitotic exit, rescued the lethality of a neck-localizing CDC5DeltaC-CDC12 or CDC5DeltaC-CDC3 mutant but yielded severe defects in cytokinesis. These data suggest that the SPB-associated Cdc5p activity is critical for both mitotic exit and cytokinesis, whereas the bud neck-localized Cdc5p is required for proper Swe1p regulation. Interestingly, a cdc5Delta bfa1Delta swe1Delta triple mutant is viable but grows slowly, whereas cdc5Delta cells bearing both CDC5DeltaC-CNM67 and CDC5DeltaC-CDC12 grow well with only a mild cell cycle delay. Thus, SPB- and the bud-neck-localized Cdc5p control most of the critical Cdc5p functions and downregulation of Bfa1p and Swe1p at the respective locations are two critical factors that require Cdc5p.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Allen NA, Calzone L, Chen KC, Ciliberto A, Ramakrishnan N, Shaffer CA, Sible JC, Tyson JJ, Vass MT, Watson LT, Zwolak JW. Modeling regulatory networks at Virginia Tech. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2004; 7:285-99. [PMID: 14583117 DOI: 10.1089/153623103322452404] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The life of a cell is governed by the physicochemical properties of a complex network of interacting macromolecules (primarily genes and proteins). Hence, a full scientific understanding of and rational engineering approach to cell physiology require accurate mathematical models of the spatial and temporal dynamics of these macromolecular assemblies, especially the networks involved in integrating signals and regulating cellular responses. The Virginia Tech Consortium is involved in three specific goals of DARPA's computational biology program (Bio-COMP): to create effective software tools for modeling gene-protein-metabolite networks, to employ these tools in creating a new generation of realistic models, and to test and refine these models by well-conceived experimental studies. The special emphasis of this group is to understand the mechanisms of cell cycle control in eukaryotes (yeast cells and frog eggs). The software tools developed at Virginia Tech are designed to meet general requirements of modeling regulatory networks and are collected in a problem-solving environment called JigCell.
Collapse
Affiliation(s)
- Nicholas A Allen
- The Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kellogg DR. Wee1-dependent mechanisms required for coordination of cell growth and cell division. J Cell Sci 2004; 116:4883-90. [PMID: 14625382 DOI: 10.1242/jcs.00908] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wee1-related kinases function in a highly conserved mechanism that controls the timing of entry into mitosis. Loss of Wee1 function causes fission yeast and budding yeast cells to enter mitosis before sufficient growth has occurred, leading to formation of daughter cells that are smaller than normal. Early work in fission yeast suggested that Wee1 is part of a cell-size checkpoint that prevents entry into mitosis before cells have reached a critical size. Recent experiments in fission yeast and budding yeast have provided new support for this idea. In addition, studies in budding yeast have revealed the existence of highly intricate signaling networks that are required for regulation of Swe1, the budding yeast homolog of Wee1. Further understanding of these signaling networks may provide important clues to how cell growth and cell division are coordinated.
Collapse
Affiliation(s)
- Douglas R Kellogg
- Sinsheimer Laboratories, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
32
|
Sreenivasan A, Bishop AC, Shokat KM, Kellogg DR. Specific inhibition of Elm1 kinase activity reveals functions required for early G1 events. Mol Cell Biol 2003; 23:6327-37. [PMID: 12917352 PMCID: PMC180931 DOI: 10.1128/mcb.23.17.6327-6337.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In budding yeast, the Elm1 kinase is required for coordination of cell growth and cell division at G(2)/M. Elm1 is also required for efficient cytokinesis and for regulation of Swe1, the budding yeast homolog of the Wee1 kinase. To further characterize Elm1 function, we engineered an ELM1 allele that can be rapidly and selectively inhibited in vivo. We found that inhibition of Elm1 kinase activity during G(2) results in a phenotype similar to the phenotype caused by deletion of the ELM1 gene, as expected. However, inhibition of Elm1 kinase activity earlier in the cell cycle results in a prolonged G(1) delay. The G(1) requirement for Elm1 kinase activity occurs before bud emergence, polarization of the septins, and synthesis of G(1) cyclins. Inhibition of Elm1 kinase activity during early G(1) also causes defects in the organization of septins, and inhibition of Elm1 kinase activity in a strain lacking the redundant G(1) cyclins CLN1 and CLN2 is lethal. These results demonstrate that the Elm1 kinase plays an important role in G(1) events required for bud emergence and septin organization.
Collapse
Affiliation(s)
- Aparna Sreenivasan
- Sinsheimer Laboratories, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
33
|
Wittenberg C, La Valle R. Cell-cycle-regulatory elements and the control of cell differentiation in the budding yeast. Bioessays 2003; 25:856-67. [PMID: 12938175 DOI: 10.1002/bies.10327] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The stable differentiation of cells into other cell types typically involves dramatic reorganization of cellular structures and functions. This often includes remodeling of the cell cycle and the apparatus that controls it. Here we review our understanding of the role and regulation of cell cycle control elements during cell differentiation in the yeast, Saccharomyces cerevisiae. Although the process of differentiation may be more overtly obvious in metazoan organisms, those systems are by nature more difficult to study at a mechanistic level. We consider the relatively well-understood mechanisms by which mating-type switching and the pheromone-induced differentiation of gametes are coupled to the cell cycle as well as the more obscure mechanisms that govern the remodeling of the cell cycle during meiosis and filamentous growth. In some cases, the cell cycle is a primary stimulus for differentiation whereas, in other cases, the signals that promote differentiation alter the cell cycle. Thus, despite relative simplicity of these processes in yeast, the nature of the interplay between the cell cycle and differentiation is diverse.
Collapse
Affiliation(s)
- Curt Wittenberg
- Department of Molecular Biology and Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
34
|
Theesfeld CL, Zyla TR, Bardes EGS, Lew DJ. A monitor for bud emergence in the yeast morphogenesis checkpoint. Mol Biol Cell 2003; 14:3280-91. [PMID: 12925763 PMCID: PMC181567 DOI: 10.1091/mbc.e03-03-0154] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Revised: 04/16/2003] [Accepted: 04/17/2003] [Indexed: 11/11/2022] Open
Abstract
Cell cycle transitions are subject to regulation by both external signals and internal checkpoints that monitor satisfactory progression of key cell cycle events. In budding yeast, the morphogenesis checkpoint arrests the cell cycle in response to perturbations that affect the actin cytoskeleton and bud formation. Herein, we identify a step in this checkpoint pathway that seems to be directly responsive to bud emergence. Activation of the kinase Hsl1p is dependent upon its recruitment to a cortical domain organized by the septins, a family of conserved filament-forming proteins. Under conditions that delayed or blocked bud emergence, Hsl1p recruitment to the septin cortex still took place, but hyperphosphorylation of Hsl1p and recruitment of the Hsl1p-binding protein Hsl7p to the septin cortex only occurred after bud emergence. At this time, the septin cortex spread to form a collar between mother and bud, and Hsl1p and Hsl7p were restricted to the bud side of the septin collar. We discuss models for translating cellular geometry (in this case, the emergence of a bud) into biochemical signals regulating cell proliferation.
Collapse
Affiliation(s)
- Chandra L Theesfeld
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
35
|
Thomas CL, Blacketer MJ, Edgington NP, Myers AM. Assembly interdependence among the S. cerevisiae bud neck ring proteins Elm1p, Hsl1p and Cdc12p. Yeast 2003; 20:813-26. [PMID: 12845607 DOI: 10.1002/yea.1003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Saccharomyces cerevisiae, a complex comprising more than 20 different polypeptides assembles in a ring at the neck between the mother cell and the bud. This complex functions to coordinate cell morphology with cell division. Relatively little is known about this control system, including the physical relationships between the components of the neck ring. This study addressed the assembly interactions of three components of the ring, specifically the protein kinases Elm1p and Hsl1p and the septin Cdc12p. Specific amino acid substitutions in each of these three proteins were identified that either cause or suppress a characteristic phenotype of abnormally elongated cells and delay in the G(2)-M transition. Each protein was fused to green fluorescent protein, and its ability to localize at the neck was monitored in vivo in cells of various genotypes. Localization of Hsl1p to the neck requires Elm1p function. Elm1p localized normally in the absence of Hsl1p, although a specific point mutation in Hsl1p clearly affected Elm1p localization. The cdc12-122 mutation prevented assembly of Elm1p or Hsl1p into the neck ring. Normal assembly of Cdc12p at the neck was dependent upon Elm1p and also, to a smaller extent, on Hsl1p. Ectopic localization of Cdc12p at the bud tip was observed frequently in elm1 mutants and also, to a lesser extent, in hsl1 mutants. Thus, Elm1p is a key factor in the assembly and/or maintenance of Hsl1p, as well as at least one septin, into the bud neck ring.
Collapse
Affiliation(s)
- Courtney L Thomas
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
36
|
Barelle CJ, Bohula EA, Kron SJ, Wessels D, Soll DR, Schäfer A, Brown AJP, Gow NAR. Asynchronous cell cycle and asymmetric vacuolar inheritance in true hyphae of Candida albicans. EUKARYOTIC CELL 2003; 2:398-410. [PMID: 12796285 PMCID: PMC161449 DOI: 10.1128/ec.2.3.398-410.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans forms unconstricted hyphae in serum-containing medium that are divided into discrete compartments. Time-lapse photomicroscopy, flow cytometry, and a novel three-dimensional imaging system were used to demonstrate that the kinetics and cell cycle events accompanying hyphal development were correlated with dynamic changes in vacuole morphology and the pattern of vacuole inheritance. Apical cells of hyphae underwent continuous extension before and after the first cytokinesis event. However, the resulting mother cell and sub-apical compartments did not immediately reenter the cell cycle and instead underwent cell cycle arrest before reentering the cycle. Vacuole was inherited asymmetrically at cytokinesis so that the distal, arrested compartments inherited most vacuole and the growing apical cell inherited most cytoplasm. Hydroxyurea release experiments demonstrated that the arrested, vacuolated hyphal compartments were in the G(1) phase of the cycle. The period of cell cycle arrest was decreased by the provision of assimilatable forms of nitrogen, suggesting that the hyphal cell cycle is regulated by nitrogen limitation that results in sup-apical cell cycle arrest. This pattern of growth is distinct from that of the synchronous, symmetrical development of pseudohyphae of C. albicans and other yeast species. These observations suggest that the cellular vacuole space correlates with alterations in the cell cycles of different cell types and that the total organelle space may influence size-regulated functions and hence the timing of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Caroline J Barelle
- Department of Molecular and Cell Biology, Institute of Molecular Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Toby GG, Gherraby W, Coleman TR, Golemis EA. A novel RING finger protein, human enhancer of invasion 10, alters mitotic progression through regulation of cyclin B levels. Mol Cell Biol 2003; 23:2109-22. [PMID: 12612082 PMCID: PMC149478 DOI: 10.1128/mcb.23.6.2109-2122.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The process of cellular morphogenesis is highly conserved in eukaryotes and is dependent upon the function of proteins that are centrally involved in specification of the cell cycle. The human enhancer of invasion clone 10 (HEI10) protein was identified from a HeLa cell library based on its ability to promote yeast agar invasion and filamentation. Through two-hybrid screening, the mitotic cyclin B1 and an E2 ubiquitin-conjugating enzyme were isolated as HEI10-interacting proteins. Mutation of the HEI10 divergent RING finger motif (characteristic of E3 ubiquitin ligases) and Cdc2/cyclin binding and phosphorylation sites alter HEI10-dependent yeast phenotypes, including delay in G(2)/M transition. In vertebrates, the addition of HEI10 inhibits nuclear envelope breakdown and mitotic entry in Xenopus egg extracts. Mechanistically, HEI10 expression reduces cyclin B levels in cycling Xenopus eggs and reduces levels of the cyclin B ortholog Clb2p in yeast. HEI10 is itself a specific in vitro substrate of purified cyclin B/cdc2, with a TPVR motif as primary phosphorylation site. Finally, HEI10 is itself ubiquitinated in egg extracts and is also autoubiquitinated in vitro. These and other points lead to a model in which HEI10 defines a divergent class of E3 ubiquitin ligase, functioning in progression through G(2)/M.
Collapse
Affiliation(s)
- Garabet G Toby
- Division of Basic Science, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
38
|
Harvey SL, Kellogg DR. Conservation of mechanisms controlling entry into mitosis: budding yeast wee1 delays entry into mitosis and is required for cell size control. Curr Biol 2003; 13:264-75. [PMID: 12593792 DOI: 10.1016/s0960-9822(03)00049-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND In fission yeast, the Wee1 kinase delays entry into mitosis until a critical cell size has been reached; however, a similar role for Wee1-related kinases has not been reported in other organisms. SWE1, the budding yeast homolog of wee1, is thought to function in a morphogenesis checkpoint that delays entry into mitosis in response to defects in bud morphogenesis. RESULTS In contrast to previous studies, we found that budding yeast swe1 Delta cells undergo premature entry into mitosis, leading to birth of abnormally small cells. Additional experiments suggest that conditions that activate the morphogenesis checkpoint may actually be activating a G2/M cell size checkpoint. For example, actin depolymerization is thought to activate the morphogenesis checkpoint by inhibiting bud morphogenesis. However, actin depolymerization also inhibits bud growth, suggesting that it could activate a cell size checkpoint. Consistent with this possibility, we found that actin depolymerization fails to induce a G2/M delay once daughter buds pass a critical size. Other conditions that activate the morphogenesis checkpoint block bud formation, which could also activate a size checkpoint if cell size at G2/M is monitored in the daughter bud. Previous work reported that Swe1 is degraded during G2, which was proposed to account for failure of large-budded cells to arrest in response to actin depolymerization. However, we found that Swe1 is present throughout G2 and undergoes hyperphosphorylation as cells enter mitosis, as found in other organisms. CONCLUSIONS Our results suggest that the mechanisms known to coordinate entry into mitosis in other organisms have been conserved in budding yeast.
Collapse
Affiliation(s)
- Stacy L Harvey
- Department of Molecular, Cellular, and Developmental Biology, Sinsheimer Labs, University of California, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
39
|
Abstract
We investigated the organization of interacting proteins and protein complexes into networks of modules. A network-clustering method was developed to identify modules. This method of network-structure determination was validated by clustering known signaling-protein modules and by identifying module rudiments in exclusively high-throughput protein-interaction data with high error frequencies and low coverage. The signaling network controlling the yeast developmental transition to a filamentous form was clustered. Abstraction of a modular network-structure model identified module-organizer proteins and module-connector proteins. The functions of these proteins suggest that they are important for module function and intermodule communication.
Collapse
Affiliation(s)
- Alexander W Rives
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103, USA
| | | |
Collapse
|
40
|
Brinkworth RI, Breinl RA, Kobe B. Structural basis and prediction of substrate specificity in protein serine/threonine kinases. Proc Natl Acad Sci U S A 2003; 100:74-9. [PMID: 12502784 PMCID: PMC140887 DOI: 10.1073/pnas.0134224100] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The large number of protein kinases makes it impractical to determine their specificities and substrates experimentally. Using the available crystal structures, molecular modeling, and sequence analyses of kinases and substrates, we developed a set of rules governing the binding of a heptapeptide substrate motif (surrounding the phosphorylation site) to the kinase and implemented these rules in a web-interfaced program for automated prediction of optimal substrate peptides, taking only the amino acid sequence of a protein kinase as input. We show the utility of the method by analyzing yeast cell cycle control and DNA damage checkpoint pathways. Our method is the only available predictive method generally applicable for identifying possible substrate proteins for protein serinethreonine kinases and helps in silico construction of signaling pathways. The accuracy of prediction is comparable to the accuracy of data from systematic large-scale experimental approaches.
Collapse
Affiliation(s)
- Ross I Brinkworth
- Department of Biochemistry and Molecular Biology and Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
41
|
Park CJ, Song S, Lee PR, Shou W, Deshaies RJ, Lee KS. Loss of CDC5 function in Saccharomyces cerevisiae leads to defects in Swe1p regulation and Bfa1p/Bub2p-independent cytokinesis. Genetics 2003; 163:21-33. [PMID: 12586693 PMCID: PMC1462412 DOI: 10.1093/genetics/163.1.21] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In many organisms, polo kinases appear to play multiple roles during M-phase progression. To provide new insights into the function of budding yeast polo kinase Cdc5p, we generated novel temperature-sensitive cdc5 mutants by mutagenizing the C-terminal domain. Here we show that, at a semipermissive temperature, the cdc5-3 mutant exhibited a synergistic bud elongation and growth defect with loss of HSL1, a component important for normal G(2)/M transition. Loss of SWE1, which phosphorylates and inactivates the budding yeast Cdk1 homolog Cdc28p, suppressed the cdc5-3 hsl1Delta defect, suggesting that Cdc5p functions at a point upstream of Swe1p. In addition, the cdc5-4 and cdc5-7 mutants exhibited chained cell morphologies with shared cytoplasms between the connected cell bodies, indicating a cytokinetic defect. Close examination of these mutants revealed delayed septin assembly at the incipient bud site and loosely organized septin rings at the mother-bud neck. Components in the mitotic exit network (MEN) play important roles in normal cytokinesis. However, loss of BFA1 or BUB2, negative regulators of the MEN, failed to remedy the cytokinetic defect of these mutants, indicating that Cdc5p promotes cytokinesis independently of Bfa1p and Bub2p. Thus, Cdc5p contributes to the activation of the Swe1p-dependent Cdc28p/Clb pathway, normal septin function, and cytokinesis.
Collapse
Affiliation(s)
- Chong Jin Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
42
|
Lee PR, Song S, Ro HS, Park CJ, Lippincott J, Li R, Pringle JR, De Virgilio C, Longtine MS, Lee KS. Bni5p, a septin-interacting protein, is required for normal septin function and cytokinesis in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:6906-20. [PMID: 12215547 PMCID: PMC134035 DOI: 10.1128/mcb.22.19.6906-6920.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, the Cdc3p, Cdc10p, Cdc11p, Cdc12p, and Sep7p/Shs1p septins assemble early in the cell cycle in a ring that marks the future cytokinetic site. The septins appear to be major structural components of a set of filaments at the mother-bud neck and function as a scaffold for recruiting proteins involved in cytokinesis and other processes. We isolated a novel gene, BNI5, as a dosage suppressor of the cdc12-6 growth defect. Overexpression of BNI5 also suppressed the growth defects of cdc10-1, cdc11-6, and sep7Delta strains. Loss of BNI5 resulted in a cytokinesis defect, as evidenced by the formation of connected cells with shared cytoplasms, and deletion of BNI5 in a cdc3-6, cdc10-1, cdc11-6, cdc12-6, or sep7Delta mutant strain resulted in enhanced defects in septin localization and cytokinesis. Bni5p localizes to the mother-bud neck in a septin-dependent manner shortly after bud emergence and disappears from the neck approximately 2 to 3 min before spindle disassembly. Two-hybrid, in vitro binding, and protein-localization studies suggest that Bni5p interacts with the N-terminal domain of Cdc11p, which also appears to be sufficient for the localization of Cdc11p, its interaction with other septins, and other critical aspects of its function. Our data suggest that the Bni5p-septin interaction is important for septin ring stability and function, which is in turn critical for normal cytokinesis.
Collapse
Affiliation(s)
- Philip R Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Khan F, Tang J, Qin CL, Kim K. Cyclin-dependent kinase TPK2 is a critical cell cycle regulator in Toxoplasma gondii. Mol Microbiol 2002; 45:321-32. [PMID: 12123447 DOI: 10.1046/j.1365-2958.2002.03026.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Apicomplexan parasite Toxoplasma gondii replicates by endodyogeny, an unusual form of binary fission. We tested the role of TPK2, a homologue of the CDC2 cyclin-dependent kinases, in cell cycle regulation. TPK2 tagged with HA epitope (TPK2-HA-wt) was expressed in mammalian cells as confirmed by Western blot analysis using HA tag and PSTAIRE antibodies. TPK2-HA-wt phosphorylated a peptide from Histone H1, proving that TPK2 is a functional kinase. TPK2-HA-wt coimmunoprecipitated with mammalian cyclins A, B1, D3 and E. Despite being a functional kinase, TPK2 did not rescue Schizosaccharomyces pombe cdc2 and Saccharomyces cerevisiae cdc28 mutant strains. Overexpression of a dominant-negative mutant of TPK2 (TPK2-HA-dn) in T. gondii tachyzoites arrested replication. FACS analysis of tachyzoites expressing TPK2-HA-dn revealed an increase in the fraction of cells in S-phase when compared with TPK2-HA-wt transfected parasites. Expression of TPK2-HA-wt did not arrest tachyzoite replication. No discernable G2 cell cycle block was evident suggesting that cell cycle checkpoints differ in T. gondii from most other eukaryotic cells. These data suggest that TPK2 executes an essential function in T. gondii cell cycle and is likely to be the T. gondii CDC2 orthologue.
Collapse
Affiliation(s)
- Farzana Khan
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
44
|
Price DM, Jin Z, Rabinovitch S, Campbell SD. Ectopic expression of the Drosophila Cdk1 inhibitory kinases, Wee1 and Myt1, interferes with the second mitotic wave and disrupts pattern formation during eye development. Genetics 2002; 161:721-31. [PMID: 12072468 PMCID: PMC1462153 DOI: 10.1093/genetics/161.2.721] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Wee1 kinases catalyze inhibitory phosphorylation of the mitotic regulator Cdk1, preventing mitosis during S phase and delaying it in response to DNA damage or developmental signals during G2. Unlike yeast, metazoans have two distinct Wee1-like kinases, a nuclear protein (Wee1) and a cytoplasmic protein (Myt1). We have isolated the genes encoding Drosophila Wee1 and Myt1 and are using genetic approaches to dissect their functions during normal development. Overexpression of Dwee1 or Dmyt1 during eye development generates a rough adult eye phenotype. The phenotype can be modified by altering the gene dosage of known regulators of the G2/M transition, suggesting that we could use these transgenic strains in modifier screens to identify potential regulators of Wee1 and Myt1. To confirm this idea, we tested a collection of deletions for loci that can modify the eye overexpression phenotypes and identified several loci as dominant modifiers. Mutations affecting the Delta/Notch signaling pathway strongly enhance a GMR-Dmyt1 eye phenotype but do not affect a GMR-Dwee1 eye phenotype, suggesting that Myt1 is potentially a downstream target for Notch activity during eye development. We also observed interactions with p53, which suggest that Wee1 and Myt1 activity can block apoptosis.
Collapse
Affiliation(s)
- Donald M Price
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | |
Collapse
|
45
|
Palecek SP, Parikh AS, Kron SJ. Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth. MICROBIOLOGY (READING, ENGLAND) 2002; 148:893-907. [PMID: 11932437 DOI: 10.1099/00221287-148-4-893] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Sean P Palecek
- Department of Chemical Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA1
| | - Archita S Parikh
- Center for Molecular Oncology2 and Department of Molecular Genetics and Cell Biology3, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen J Kron
- Center for Molecular Oncology2 and Department of Molecular Genetics and Cell Biology3, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
46
|
Hazan I, Sepulveda-Becerra M, Liu H. Hyphal elongation is regulated independently of cell cycle in Candida albicans. Mol Biol Cell 2002; 13:134-45. [PMID: 11809828 PMCID: PMC65078 DOI: 10.1091/mbc.01-03-0116] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2001] [Revised: 10/16/2001] [Accepted: 10/24/2001] [Indexed: 01/01/2023] Open
Abstract
The mechanism for apical growth during hyphal morphogenesis in Candida albicans is unknown. Studies from Saccharomyces cerevisiae indicate that cell morphogenesis may involve cell cycle regulation by cyclin-dependent kinase. To examine whether this is the mechanism for hyphal morphogenesis, the temporal appearance of different spindle pole body and spindle structures, the cell cycle-regulated rearrangements of the actin cytoskeleton, and the phosphorylation state of the conserved Tyr19 of Cdc28 during the cell cycle were compared and found to be similar between yeast and serum-induced hyphal apical cells. These data suggest that hyphal elongation is not mediated by altering cell cycle progression or through phosphorylation of Tyr19 of Cdc28. We have also shown that germ tubes can evaginate before spindle pole body duplication, chitin ring formation, and DNA replication. Similarly, tip-associated actin polarization in each hypha occurs before the events of the G(1)/S transition and persists throughout the cell cycle, whereas cell cycle-regulated actin assemblies come and go. We have also shown that cells in phases other than G(1) can be induced to form hyphae. Hyphae induced from G(1) cells have no constrictions, and the first chitin ring is positioned in the germ tube at various distances from the base. Hyphae induced from budded cells have a constriction and a chitin ring at the bud neck, beyond which the hyphae continue to elongate with no further constrictions. Our data suggest that hyphal elongation and cell cycle morphogenesis programs are uncoupled, and each contributes to different aspects of cell morphogenesis.
Collapse
Affiliation(s)
- Idit Hazan
- Department of Biological Chemistry, University of California-Irvine, Irvine, CA 92697-1700, USA
| | | | | |
Collapse
|
47
|
Ahn SH, Tobe BT, Fitz Gerald JN, Anderson SL, Acurio A, Kron SJ. Enhanced cell polarity in mutants of the budding yeast cyclin-dependent kinase Cdc28p. Mol Biol Cell 2001; 12:3589-600. [PMID: 11694591 PMCID: PMC60278 DOI: 10.1091/mbc.12.11.3589] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The yeast cyclin-dependent kinase Cdc28p regulates bud morphogenesis and cell cycle progression via the antagonistic activities of Cln and Clb cyclins. Cln G1 cyclins direct polarized growth and bud emergence, whereas Clb G2 cyclins promote isotropic growth of the bud and chromosome segregation. Using colony morphology as a screen to dissect regulation of polarity by Cdc28p, we identified nine point mutations that block the apical-isotropic switch while maintaining other functions. Like a clb2 Delta mutation, each confers tubular bud shape, apically polarized actin distribution, unipolar budding, and delayed anaphase. The mutations are all suppressed by CLB2 overexpression and are synthetically lethal with a CLB2 deletion. However, defects in multiple independent pathways may underlie their common phenotype, because the mutations are scattered throughout the CDC28 sequence, complement each other, and confer diverse biochemical properties. Glu12Gly, a mutation that alters a residue involved in Swe1p inhibition of Cdc28p, was unique in being suppressed by deficiency of SWE1 or CLN1. With wild-type CDC28, filament formation induced by CLN1 overexpression was markedly decreased in a SWE1 deletion. These results suggest that Swe1p, via inhibition of Clb2p/Cdc28p, may mediate much of the effect of Cln1p on filamentous morphogenesis.
Collapse
Affiliation(s)
- S H Ahn
- Center for Molecular Oncology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
48
|
Sudbery PE. The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization. Mol Microbiol 2001; 41:19-31. [PMID: 11454197 DOI: 10.1046/j.1365-2958.2001.02459.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The location of the septin ring in the germ tubes of Candida albicans hyphae and pseudohyphae was studied using an antibody to Saccharomyces cerevisiae Cdc11p. In pseudohyphae induced by growth at 35 degrees C in YEPD or Lee's medium, a septin ring formed at or near (mean 1.8 microm) the neck between the mother cell and the germ tube. This became double later in the cycle, and the first mitosis took place across the plane of this double ring. A septin ring also formed at the germ tube neck of developing hyphae induced by serum or growth on Lee's medium at 37 degrees C. However, at later times, this ring became disorganized and disappeared. A second double ring then appeared 10-15 microm (mean 12.5 microm) along the length of the germ tube. The nucleus subsequently migrated out of the mother cell into the germ tube, and the first mitosis took place across the plane of this second septin ring. The relocation of the septin ring in developing hyphae provides a clear-cut molecular distinction between hyphae and pseudohyphae. Commitment to one type of septin localization and mitosis was shown to occur early in the first mitotic cycle, well before evagination. Germ tubes of hyphae and pseudohyphae also have different widths. A point of commitment to germ tube width was also demonstrated, but occurred later in the cycle, approximately coincident with the time of evagination.
Collapse
Affiliation(s)
- P E Sudbery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
49
|
La Valle R, Wittenberg C. A role for the Swe1 checkpoint kinase during filamentous growth of Saccharomyces cerevisiae. Genetics 2001; 158:549-62. [PMID: 11404321 PMCID: PMC1461683 DOI: 10.1093/genetics/158.2.549] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study we show that inactivation of Hsl1 or Hsl7, negative regulators of the Swe1 kinase, enhances the invasive behavior of haploid and diploid cells. The enhancement of filamentous growth caused by inactivation of both genes is mediated via the Swe1 protein kinase. Whereas Swe1 contributes noticeably to the effectiveness of haploid invasive growth under all conditions tested, its contribution to pseudohyphal growth is limited to the morphological response under standard assay conditions. However, Swe1 is essential for pseudohyphal differentiation under a number of nonstandard assay conditions including altered temperature and increased nitrogen. Swe1 is also required for pseudohyphal growth in the absence of Tec1 and for the induction of filamentation by butanol, a related phenomenon. Although inactivation of Hsl1 is sufficient to suppress the defect in filamentous growth caused by inactivation of Tec1 or Flo8, it is insufficient to promote filamentous growth in the absence of both factors. Moreover, inactivation of Hsl1 will not bypass the requirement for nitrogen starvation or growth on solid medium for pseudohyphal differentiation. We conclude that the Swe1 kinase modulates filamentous development under a broad spectrum of conditions and that its role is partially redundant with the Tec1 and Flo8 transcription factors.
Collapse
Affiliation(s)
- R La Valle
- Departments of Molecular Biology and Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
50
|
Miled C, Mann C, Faye G. Xbp1-mediated repression of CLB gene expression contributes to the modifications of yeast cell morphology and cell cycle seen during nitrogen-limited growth. Mol Cell Biol 2001; 21:3714-24. [PMID: 11340165 PMCID: PMC87007 DOI: 10.1128/mcb.21.11.3714-3724.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast cells undergo morphological transformations in response to diverse environmental signals. One such event, called pseudohyphal differentiation, occurs when diploid yeast cells are partially starved for nitrogen on a solid agar medium. The nitrogen-starved cells elongate, and a small fraction form filaments that penetrate the agar surface. The molecular basis for the changes in cell morphology and cell cycle in response to nitrogen limitation are poorly defined, in part because the heterogeneous growth states of partially starved cells on agar media are not amenable to biochemical analysis. In this work, we used chemostat cultures to study the role of cell cycle regulators with respect to yeast differentiation in response to nitrogen limitation under controlled, homogeneous culture conditions. We found that Clb1, Clb2, and Clb5 cyclin levels are reduced in nitrogen-limited chemostat cultures compared to levels in rich-medium cultures, whereas the Xbp1 transcriptional repressor is highly induced under these conditions. Furthermore, the deletion of XBP1 prevents the drop in Clb2 levels and inhibits cellular elongation in nitrogen-limited chemostat cultures as well as inhibiting pseudohyphal growth on nitrogen-limited agar media. Deletion of the CLB2 gene restores an elongated morphology and filamentation to the xbp1Delta mutant in response to nitrogen limitation. Transcriptional activation of the XBP1 gene and the subsequent repression of CLB gene expression are thus key responses of yeast cells to nitrogen limitation.
Collapse
Affiliation(s)
- C Miled
- Institut Curie d'Orsay, Centre Universitaire, F-91405 Orsay, France
| | | | | |
Collapse
|