1
|
Kwizera R, Xie J, Nurse N, Yuan C, Kirchmaier AL. Impacts of Nucleosome Positioning Elements and Pre-Assembled Chromatin States on Expression and Retention of Transgenes. Genes (Basel) 2024; 15:1232. [PMID: 39336823 PMCID: PMC11431089 DOI: 10.3390/genes15091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Transgene applications, ranging from gene therapy to the development of stable cell lines and organisms, rely on maintaining the expression of transgenes. To date, the use of plasmid-based transgenes has been limited by the loss of their expression shortly after their delivery into the target cells. The short-lived expression of plasmid-based transgenes has been largely attributed to host-cell-mediated degradation and/or silencing of transgenes. The development of chromatin-based strategies for gene delivery has the potential to facilitate defining the requirements for establishing epigenetic states and to enhance transgene expression for numerous applications. METHODS To assess the impact of "priming" plasmid-based transgenes to adopt accessible chromatin states to promote gene expression, nucleosome positioning elements were introduced at promoters of transgenes, and vectors were pre-assembled into nucleosomes containing unmodified histones or mutants mimicking constitutively acetylated states at residues 9 and 14 of histone H3 or residue 16 of histone H4 prior to their introduction into cells, then the transgene expression was monitored over time. RESULTS DNA sequences capable of positioning nucleosomes could positively impact the expression of adjacent transgenes in a distance-dependent manner in the absence of their pre-assembly into chromatin. Intriguingly, the pre-assembly of plasmids into chromatin facilitated the prolonged expression of transgenes relative to plasmids that were not pre-packaged into chromatin. Interactions between pre-assembled chromatin states and nucleosome positioning-derived effects on expression were also assessed and, generally, nucleosome positioning played the predominant role in influencing gene expression relative to priming with hyperacetylated chromatin states. CONCLUSIONS Strategies incorporating nucleosome positioning elements and the pre-assembly of plasmids into chromatin prior to nuclear delivery can modulate the expression of plasmid-based transgenes.
Collapse
Affiliation(s)
- Ronard Kwizera
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Nathan Nurse
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Ann L Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
van Breugel ME, Gerber A, van Leeuwen F. The choreography of chromatin in RNA polymerase III regulation. Biochem Soc Trans 2024; 52:1173-1189. [PMID: 38666598 PMCID: PMC11346459 DOI: 10.1042/bst20230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
Regulation of eukaryotic gene expression involves a dynamic interplay between the core transcriptional machinery, transcription factors, and chromatin organization and modification. While this applies to transcription by all RNA polymerase complexes, RNA polymerase III (RNAPIII) seems to be atypical with respect to its mechanisms of regulation. One distinctive feature of most RNAPIII transcribed genes is that they are devoid of nucleosomes, which relates to the high levels of transcription. Moreover, most of the regulatory sequences are not outside but within the transcribed open chromatin regions. Yet, several lines of evidence suggest that chromatin factors affect RNAPIII dynamics and activity and that gene sequence alone does not explain the observed regulation of RNAPIII. Here we discuss the role of chromatin modification and organization of RNAPIII transcribed genes and how they interact with the core transcriptional RNAPIII machinery and regulatory DNA elements in and around the transcribed genes.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam 1081HV, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
3
|
Struhl K. Non-canonical functions of enhancers: regulation of RNA polymerase III transcription, DNA replication, and V(D)J recombination. Trends Genet 2024; 40:471-479. [PMID: 38643034 PMCID: PMC11152991 DOI: 10.1016/j.tig.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Enhancers are the key regulators of other DNA-based processes by virtue of their unique ability to generate nucleosome-depleted regions in a highly regulated manner. Enhancers regulate cell-type-specific transcription of tRNA genes by RNA polymerase III (Pol III). They are also responsible for the binding of the origin replication complex (ORC) to DNA replication origins, thereby regulating origin utilization, replication timing, and replication-dependent chromosome breaks. Additionally, enhancers regulate V(D)J recombination by increasing access of the recombination-activating gene (RAG) recombinase to target sites and by generating non-coding enhancer RNAs and localized regions of trimethylated histone H3-K4 recognized by the RAG2 PHD domain. Thus, enhancers represent the first step in decoding the genome, and hence they regulate biological processes that, unlike RNA polymerase II (Pol II) transcription, do not have dedicated regulatory proteins.
Collapse
Affiliation(s)
- Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Basu M, Bhatt R, Sharma A, Boopathi R, Das S, Kundu TK. The Largest Subunit of Human TFIIIC Complex, TFIIIC220, a Lysine Acetyltransferase Targets Histone H3K18. J Biochem 2024; 175:205-213. [PMID: 37963603 DOI: 10.1093/jb/mvad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/23/2023] [Accepted: 10/21/2023] [Indexed: 11/16/2023] Open
Abstract
TFIIIC is a multi-subunit complex required for tRNA transcription by RNA polymerase III. Human TFIIIC holo-complex possesses lysine acetyltransferase activity that aids in relieving chromatin-mediated repression for RNA polymerase III-mediated transcription and chromatin assembly. Here we have characterized the acetyltransferase activity of the largest and DNA-binding subunit of TFIIIC complex, TFIIIC220. Purified recombinant human TFIIIC220 acetylated core histones H3, H4 and H2A in vitro. Moreover, we have identified the putative catalytic domain of TFIIIC220 that efficiently acetylates core histones in vitro. Mutating critical residues of the putative acetyl-CoA binding 'P loop' drastically reduced the catalytic activity of the acetyltransferase domain. Further analysis showed that the knockdown of TFIIIC220 in mammalian cell lines dramatically reduces global H3K18 acetylation level, which was rescued by overexpression of the putative acetyltransferase domain of human TFIIIC220. Our findings indicated a possibility of a crucial role for TFIIIC220 in maintaining acetylation homeostasis in the cell.
Collapse
Affiliation(s)
- Moumita Basu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560064, India
| | - Rohini Bhatt
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560064, India
| | - Anjali Sharma
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560064, India
| | - Ramachandran Boopathi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560064, India
| | - Sadhan Das
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560064, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560064, India
| |
Collapse
|
5
|
Structure of the TFIIIC subcomplex τA provides insights into RNA polymerase III pre-initiation complex formation. Nat Commun 2020; 11:4905. [PMID: 32999288 PMCID: PMC7528018 DOI: 10.1038/s41467-020-18707-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023] Open
Abstract
Transcription factor (TF) IIIC is a conserved eukaryotic six-subunit protein complex with dual function. It serves as a general TF for most RNA polymerase (Pol) III genes by recruiting TFIIIB, but it is also involved in chromatin organization and regulation of Pol II genes through interaction with CTCF and condensin II. Here, we report the structure of the S. cerevisiae TFIIIC subcomplex τA, which contains the most conserved subunits of TFIIIC and is responsible for recruitment of TFIIIB and transcription start site (TSS) selection at Pol III genes. We show that τA binding to its promoter is auto-inhibited by a disordered acidic tail of subunit τ95. We further provide a negative-stain reconstruction of τA bound to the TFIIIB subunits Brf1 and TBP. This shows that a ruler element in τA achieves positioning of TFIIIB upstream of the TSS, and suggests remodeling of the complex during assembly of TFIIIB by TFIIIC.
Collapse
|
6
|
Ferrari R, de Llobet Cucalon LI, Di Vona C, Le Dilly F, Vidal E, Lioutas A, Oliete JQ, Jochem L, Cutts E, Dieci G, Vannini A, Teichmann M, de la Luna S, Beato M. TFIIIC Binding to Alu Elements Controls Gene Expression via Chromatin Looping and Histone Acetylation. Mol Cell 2020; 77:475-487.e11. [PMID: 31759822 PMCID: PMC7014570 DOI: 10.1016/j.molcel.2019.10.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/20/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
How repetitive elements, epigenetic modifications, and architectural proteins interact ensuring proper genome expression remains poorly understood. Here, we report regulatory mechanisms unveiling a central role of Alu elements (AEs) and RNA polymerase III transcription factor C (TFIIIC) in structurally and functionally modulating the genome via chromatin looping and histone acetylation. Upon serum deprivation, a subset of AEs pre-marked by the activity-dependent neuroprotector homeobox Protein (ADNP) and located near cell-cycle genes recruits TFIIIC, which alters their chromatin accessibility by direct acetylation of histone H3 lysine-18 (H3K18). This facilitates the contacts of AEs with distant CTCF sites near promoter of other cell-cycle genes, which also become hyperacetylated at H3K18. These changes ensure basal transcription of cell-cycle genes and are critical for their re-activation upon serum re-exposure. Our study reveals how direct manipulation of the epigenetic state of AEs by a general transcription factor regulates 3D genome folding and expression.
Collapse
Affiliation(s)
- Roberto Ferrari
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Lara Isabel de Llobet Cucalon
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Chiara Di Vona
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - François Le Dilly
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Enrique Vidal
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Antonios Lioutas
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Javier Quilez Oliete
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Laura Jochem
- The Institute of Cancer Research (ICR), London, UK
| | - Erin Cutts
- The Institute of Cancer Research (ICR), London, UK
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alessandro Vannini
- The Institute of Cancer Research (ICR), London, UK; Human Technopole. Via Cristina Belgioioso, 171, 20157 Milano MI, Italy
| | - Martin Teichmann
- Université de Bordeaux, INSERM U1212 CNRS UMR 5320 146, Bordeaux, France
| | - Susana de la Luna
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
7
|
Krajewski WA. The intrinsic stability of H2B-ubiquitylated nucleosomes and their in vitro assembly/disassembly by histone chaperone NAP1. Biochim Biophys Acta Gen Subj 2019; 1864:129497. [PMID: 31785324 DOI: 10.1016/j.bbagen.2019.129497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Apart the gene-regulatory functions as docking sites for histone 'readers', some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors. METHODS We evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under 'physiological' ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1. RESULTS H2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under 'physiological' conditions in vitro. CONCLUSIONS AND GENERAL SIGNIFICANCE The increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation).
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia..
| |
Collapse
|
8
|
Krajewski WA, Li J, Dou Y. Effects of histone H2B ubiquitylation on the nucleosome structure and dynamics. Nucleic Acids Res 2019; 46:7631-7642. [PMID: 29931239 PMCID: PMC6125632 DOI: 10.1093/nar/gky526] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
DNA in nucleosomes has restricted nucleosome dynamics and is refractory to DNA-templated processes. Histone post-translational modifications play important roles in regulating DNA accessibility in nucleosomes. Whereas most histone modifications function either by mitigating the electrostatic shielding of histone tails or by recruiting 'reader' proteins, we show that ubiquitylation of H2B K34, which is located in a tight space protected by two coils of DNA superhelix, is able to directly influence the canonical nucleosome conformation via steric hindrances by ubiquitin groups. H2B K34 ubiquitylation significantly enhances nucleosome dynamics and promotes generation of hexasomes both with symmetrically or asymmetrically modified nucleosomes. Our results indicate a direct mechanism by which a histone modification regulates the chromatin structural states.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow, 119334, Russia.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiabin Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Ghosh R, Kaypee S, Shasmal M, Kundu TK, Roy S, Sengupta J. Tumor Suppressor p53-Mediated Structural Reorganization of the Transcriptional Coactivator p300. Biochemistry 2019; 58:3434-3443. [DOI: 10.1021/acs.biochem.9b00333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raka Ghosh
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | | | - Tapas K. Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Siddhartha Roy
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Jayati Sengupta
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
10
|
Sheikh BN, Akhtar A. The many lives of KATs - detectors, integrators and modulators of the cellular environment. Nat Rev Genet 2019; 20:7-23. [PMID: 30390049 DOI: 10.1038/s41576-018-0072-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Research over the past three decades has firmly established lysine acetyltransferases (KATs) as central players in regulating transcription. Recent advances in genomic sequencing, metabolomics, animal models and mass spectrometry technologies have uncovered unexpected new roles for KATs at the nexus between the environment and transcriptional regulation. Thousands of reversible acetylation sites have been mapped in the proteome that respond dynamically to the cellular milieu and maintain major processes such as metabolism, autophagy and stress response. Concurrently, researchers are continuously uncovering how deregulation of KAT activity drives disease, including cancer and developmental syndromes characterized by severe intellectual disability. These novel findings are reshaping our view of KATs away from mere modulators of chromatin to detectors of the cellular environment and integrators of diverse signalling pathways with the ability to modify cellular phenotype.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
11
|
Shukla A, Bhargava P. Regulation of tRNA gene transcription by the chromatin structure and nucleosome dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:295-309. [PMID: 29313808 DOI: 10.1016/j.bbagrm.2017.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023]
Abstract
The short, non-coding genes transcribed by the RNA polymerase (pol) III, necessary for survival of a cell, need to be repressed under the stress conditions in vivo. The pol III-transcribed genes have adopted several novel chromatin-based regulatory mechanisms to their advantage. In the budding yeast, the sub-nucleosomal size tRNA genes are found in the nucleosome-free regions, flanked by positioned nucleosomes at both the ends. With their chromosomes-wide distribution, all tRNA genes have a different chromatin context. A single nucleosome dynamics controls the accessibility of the genes for transcription. This dynamics operates under the influence of several chromatin modifiers in a gene-specific manner, giving the scope for differential regulation of even the isogenes within a tRNA gene family. The chromatin structure around the pol III-transcribed genes provides a context conducive for steady-state transcription as well as gene-specific transcriptional regulation upon signaling from the environmental cues. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Ashutosh Shukla
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
12
|
Chymkowitch P, Enserink JM. Regulation of tRNA synthesis by posttranslational modifications of RNA polymerase III subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:310-319. [PMID: 29127063 DOI: 10.1016/j.bbagrm.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
RNA polymerase III (RNAPIII) transcribes tRNA genes, 5S RNA as well as a number of other non-coding RNAs. Because transcription by RNAPIII is an energy-demanding process, its activity is tightly linked to the stress levels and nutrient status of the cell. Multiple signaling pathways control RNAPIII activity in response to environmental cues, but exactly how these pathways regulate RNAPIII is still poorly understood. One major target of these pathways is the transcriptional repressor Maf1, which inhibits RNAPIII activity under conditions that are detrimental to cell growth. However, recent studies have found that the cell can also directly regulate the RNAPIII machinery through phosphorylation and sumoylation of RNAPIII subunits. In this review we summarize post-translational modifications of RNAPIII subunits that mainly have been identified in large-scale proteomics studies, and we highlight several examples to discuss their relevance for regulation of RNAPIII.
Collapse
Affiliation(s)
- Pierre Chymkowitch
- Department of Microbiology, Oslo University Hospital, NO-0027 Oslo, Norway.
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371, Norway.
| |
Collapse
|
13
|
Park JL, Lee YS, Kunkeaw N, Kim SY, Kim IH, Lee YS. Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics 2017; 9:171-187. [PMID: 28112569 DOI: 10.2217/epi-2016-0108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA polymerase III (Pol III) synthesizes a range of medium-sized noncoding RNAs (collectively 'Pol III genes') whose early established biological roles were so essential that they were considered 'housekeeping genes'. Besides these fundamental functions, diverse unconventional roles of mammalian Pol III genes have recently been recognized and their expression must be exquisitely controlled. In this review, we summarize the epigenetic regulation of Pol III genes by chromatin structure, histone modification and CpG DNA methylation. We also recapitulate the association between dysregulation of Pol III genes and diseases such as cancer and neurological disorders. Additionally, we will discuss why in-depth molecular studies of Pol III genes have not been attempted and how nc886, a Pol III gene, may resolve this issue.
Collapse
Affiliation(s)
- Jong-Lyul Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea.,Department of Functional Genomics, University of Science & Technology, Daejeon 305-806, Korea
| | - Yeon-Su Lee
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Nawapol Kunkeaw
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1072, USA.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea.,Department of Functional Genomics, University of Science & Technology, Daejeon 305-806, Korea
| | - In-Hoo Kim
- Graduate School of Cancer Science & Policy, National Cancer Center, Goyang 10408, Korea
| | - Yong Sun Lee
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1072, USA.,Graduate School of Cancer Science & Policy, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
14
|
Kim Y, Lee J, Shin H, Jang S, Kim SC, Lee Y. Biosynthesis of brain cytoplasmic 200 RNA. Sci Rep 2017; 7:6884. [PMID: 28761139 PMCID: PMC5537265 DOI: 10.1038/s41598-017-05097-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Brain cytoplasmic 200 RNA (BC200 RNA), a neuron-specific non-coding RNA, is also highly expressed in a number of tumors of non-neuronal origin. However, the biosynthesis of BC200 RNA remains poorly understood. In this study, we show that the efficient transcription of BC200 RNA requires both internal and upstream promoter elements in cancer cells. The transcription complex seems to interact with a broad range of sequences within the upstream 100-bp region. The cellular levels and half-lives of BC200 RNA were found to differ across various cancer cell types, but there was no significant correlation between these parameters. Exogenously expressed BC200 RNA had a shorter half-life than that observed for the endogenous version in cancer cells, suggesting that BC200 RNA might be protected by some limiting factor(s) in cancer cells. Transient transfection experiments showed that the transcriptional activity of the exogenous BC200 RNA promoter element varied depending on the cancer cell type. However, the promoter activities together with the half-life data could not explain the differences in the levels of BC200 RNA among different cell types, suggesting that there is another level of transcriptional regulation beyond that detected by our transient transfection experiments.
Collapse
Affiliation(s)
- Youngmi Kim
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Jungmin Lee
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Heegwon Shin
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Seonghui Jang
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Sun Chang Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon, 34141, Korea.
| |
Collapse
|
15
|
Helbo AS, Lay FD, Jones PA, Liang G, Grønbæk K. Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters. Sci Rep 2017; 7:41947. [PMID: 28176797 PMCID: PMC5296907 DOI: 10.1038/srep41947] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022] Open
Abstract
Chromatin is structurally involved in the transcriptional regulation of all genes. While the nucleosome positioning at RNA polymerase II (pol II) promoters has been extensively studied, less is known about the chromatin structure at pol III promoters in human cells. We use a high-resolution analysis to show substantial differences in chromatin structure of pol II and pol III promoters, and between subtypes of pol III genes. Notably, the nucleosome depleted region at the transcription start site of pol III genes extends past the termination sequences, resulting in nucleosome free gene bodies. The +1 nucleosome is located further downstream than at pol II genes and furthermore displays weak positioning. The variable position of the +1 location is seen not only within individual cell populations and between cell types, but also between different pol III promoter subtypes, suggesting that the +1 nucleosome may be involved in the transcriptional regulation of pol III genes. We find that expression and DNA methylation patterns correlate with distinct accessibility patterns, where DNA methylation associates with the silencing and inaccessibility at promoters. Taken together, this study provides the first high-resolution map of nucleosome positioning and occupancy at human pol III promoters at specific loci and genome wide.
Collapse
Affiliation(s)
- Alexandra Søgaard Helbo
- Department of Hematology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Fides D Lay
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, 90089, USA
| | - Peter A Jones
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, 90089, USA.,Van Andel Research Institute, Grand Rapids, 49503, USA
| | - Gangning Liang
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, 90089, USA
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| |
Collapse
|
16
|
Dumay-Odelot H, Durrieu-Gaillard S, El Ayoubi L, Parrot C, Teichmann M. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription. Transcription 2015; 5:e27526. [PMID: 25764111 DOI: 10.4161/trns.27526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- a INSERM U869; University of Bordeaux; Institut Européen de Chimie et Biologie (IECB); 33607 Pessac, France
| | | | | | | | | |
Collapse
|
17
|
Sadeghifar F, Böhm S, Vintermist A, Östlund Farrants AK. The B-WICH chromatin-remodelling complex regulates RNA polymerase III transcription by promoting Max-dependent c-Myc binding. Nucleic Acids Res 2015; 43:4477-90. [PMID: 25883140 PMCID: PMC4482074 DOI: 10.1093/nar/gkv312] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/27/2015] [Indexed: 01/11/2023] Open
Abstract
The chromatin-remodelling complex B-WICH, comprised of William syndrome transcription factor, the ATPase SNF2h and nuclear myosin, specifically activates RNA polymerase III transcription of the 5S rRNA and 7SL genes. However, the underlying mechanism is unknown. Using high-resolution MN walking we demonstrate here that B-WICH changes the chromatin structure in the vicinity of the 5S rRNA and 7SL RNA genes during RNA polymerase III transcription. The action of B-WICH is required for the binding of the RNA polymerase machinery and the regulatory factors c-Myc at the 5S rRNA and 7SL RNA genes. In addition to the c-Myc binding site at the 5S genes, we have revealed a novel c-Myc and Max binding site in the intergenic spacer of the 5S rDNA. This region also contains a region remodelled by B-WICH. We demonstrate that c-Myc binds to both sites in a Max-dependent way, and thereby activate transcription by acetylating histone H3. The novel binding patterns of c-Myc and Max link transcription of 5S rRNA to the Myc/Max/Mxd network. Since B-WICH acts prior to c-Myc and other factors, we propose a model in which the B-WICH complex is required to maintain an open chromatin structure at these RNA polymerase III genes. This is a prerequisite for the binding of additional regulatory factors.
Collapse
Affiliation(s)
- Fatemeh Sadeghifar
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Stefanie Böhm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Anna Vintermist
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | | |
Collapse
|
18
|
SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nat Commun 2015; 6:6569. [PMID: 25798578 PMCID: PMC4382998 DOI: 10.1038/ncomms7569] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/03/2015] [Indexed: 12/31/2022] Open
Abstract
Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription.
Collapse
|
19
|
Methods to study histone chaperone function in nucleosome assembly and chromatin transcription. Methods Mol Biol 2015; 1288:375-94. [PMID: 25827892 DOI: 10.1007/978-1-4939-2474-5_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone chaperones are histone interacting proteins that are involved in various stages of histone metabolism in the cell such as histone storage, transport, nucleosome assembly and disassembly. Histone assembly and disassembly are essential processes in certain DNA-templated phenomena such as replication, repair and transcription in eukaryotes. Since the first histone chaperone Nucleoplasmin was discovered in Xenopus, a plethora of histone chaperones have been identified, characterized and their functional significance elucidated in the last 35 years or so. Some of the histone chaperone containing complexes such as FACT have been described to play a significant role in nucleosome disassembly during transcription elongation. We have reported earlier that human Nucleophosmin (NPM1), a histone chaperone belonging to the Nucleoplasmin family, is a co-activator of transcription. In this chapter, we describe several methods that are used to study the histone chaperone activity of proteins and their role in transcription.
Collapse
|
20
|
Sheikh BN. Crafting the brain - role of histone acetyltransferases in neural development and disease. Cell Tissue Res 2014; 356:553-73. [PMID: 24788822 DOI: 10.1007/s00441-014-1835-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023]
Abstract
The human brain is a highly specialized organ containing nearly 170 billion cells with specific functions. Development of the brain requires adequate proliferation, proper cell migration, differentiation and maturation of progenitors. This is in turn dependent on spatial and temporal coordination of gene transcription, which requires the integration of both cell intrinsic and environmental factors. Histone acetyltransferases (HATs) are one family of proteins that modulate expression levels of genes in a space- and time-dependent manner. HATs and their molecular complexes are able to integrate multiple molecular inputs and mediate transcriptional levels by acetylating histone proteins. In mammals, 19 HATs have been described and are separated into five families (p300/CBP, MYST, GNAT, NCOA and transcription-related HATs). During embryogenesis, individual HATs are expressed or activated at specific times and locations to coordinate proper development. Not surprisingly, mutations in HATs lead to severe developmental abnormalities in the nervous system and increased neurodegeneration. This review focuses on our current understanding of HATs and their biological roles during neural development.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Division of Development and Cancer, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Victoria, Australia,
| |
Collapse
|
21
|
Banerjee A, Majumder P, Sanyal S, Singh J, Jana K, Das C, Dasgupta D. The DNA intercalators ethidium bromide and propidium iodide also bind to core histones. FEBS Open Bio 2014; 4:251-9. [PMID: 24649406 PMCID: PMC3958746 DOI: 10.1016/j.fob.2014.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 01/17/2023] Open
Abstract
Eukaryotic DNA is compacted in the form of chromatin, in a complex with histones and other non-histone proteins. The intimate association of DNA and histones in chromatin raises the possibility that DNA-interactive small molecules may bind to chromatin-associated proteins such as histones. Employing biophysical and biochemical techniques we have characterized the interaction of a classical intercalator, ethidium bromide (EB) and its structural analogue propidium iodide (PI) with hierarchical genomic components: long chromatin, chromatosome, core octamer and chromosomal DNA. Our studies show that EB and PI affect both chromatin structure and function, inducing chromatin compaction and disruption of the integrity of the chromatosome. Calorimetric studies and fluorescence measurements of the ligands demonstrated and characterized the association of these ligands with core histones and the intact octamer in absence of DNA. The ligands affect acetylation of histone H3 at lysine 9 and acetylation of histone H4 at lysine 5 and lysine 8 ex vivo. PI alters the post-translational modifications to a greater extent than EB. This is the first report showing the dual binding (chromosomal DNA and core histones) property of a classical intercalator, EB, and its longer analogue, PI, in the context of chromatin.
Collapse
Affiliation(s)
- Amrita Banerjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Parijat Majumder
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Sulagna Sanyal
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Jasdeep Singh
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Kuladip Jana
- Division of Molecular Medicine, Centre for Translational Animal Research, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Chandrima Das
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Dipak Dasgupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| |
Collapse
|
22
|
Epigenetic regulation of transcription by RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1015-25. [DOI: 10.1016/j.bbagrm.2013.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 01/11/2023]
|
23
|
Schneider A, Chatterjee S, Bousiges O, Selvi BR, Swaminathan A, Cassel R, Blanc F, Kundu TK, Boutillier AL. Acetyltransferases (HATs) as targets for neurological therapeutics. Neurotherapeutics 2013; 10:568-88. [PMID: 24006237 PMCID: PMC3805875 DOI: 10.1007/s13311-013-0204-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The acetylation of histone and non-histone proteins controls a great deal of cellular functions, thereby affecting the entire organism, including the brain. Acetylation modifications are mediated through histone acetyltransferases (HAT) and deacetylases (HDAC), and the balance of these enzymes regulates neuronal homeostasis, maintaining the pre-existing acetyl marks responsible for the global chromatin structure, as well as regulating specific dynamic acetyl marks that respond to changes and facilitate neurons to encode and strengthen long-term events in the brain circuitry (e.g., memory formation). Unfortunately, the dysfunction of these finely-tuned regulations might lead to pathological conditions, and the deregulation of the HAT/HDAC balance has been implicated in neurological disorders. During the last decade, research has focused on HDAC inhibitors that induce a histone hyperacetylated state to compensate acetylation deficits. The use of these inhibitors as a therapeutic option was efficient in several animal models of neurological disorders. The elaboration of new cell-permeant HAT activators opens a new era of research on acetylation regulation. Although pathological animal models have not been tested yet, HAT activator molecules have already proven to be beneficial in ameliorating brain functions associated with learning and memory, and adult neurogenesis in wild-type animals. Thus, HAT activator molecules contribute to an exciting area of research.
Collapse
Affiliation(s)
- Anne Schneider
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Snehajyoti Chatterjee
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Olivier Bousiges
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - B. Ruthrotha Selvi
- />Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Amrutha Swaminathan
- />Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Raphaelle Cassel
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Frédéric Blanc
- />Service de Neuropsychologie and CMRR (Centre Mémoire de Ressources et de recherche) Laboratoire ICube, Université de Strasbourg, CNRS, équipe IMIS-Neurocrypto, 1, place de l’Hôpital, 67000 Strasbourg, France
| | - Tapas K. Kundu
- />Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Anne-Laurence Boutillier
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| |
Collapse
|
24
|
A novel activator of CBP/p300 acetyltransferases promotes neurogenesis and extends memory duration in adult mice. J Neurosci 2013; 33:10698-712. [PMID: 23804093 DOI: 10.1523/jneurosci.5772-12.2013] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although the brain functions of specific acetyltransferases such as the CREB-binding protein (CBP) and p300 have been well documented using mutant transgenic mice models, studies based on their direct pharmacological activation are still missing due to the lack of cell-permeable activators. Here we present a small-molecule (TTK21) activator of the histone acetyltransferases CBP/p300, which, when conjugated to glucose-based carbon nanosphere (CSP), passed the blood-brain barrier, induced no toxicity, and reached different parts of the brain. After intraperitoneal administration in mice, CSP-TTK21 significantly acetylated histones in the hippocampus and frontal cortex. Remarkably, CSP-TTK21 treatment promoted the formation of long and highly branched doublecortin-positive neurons in the subgranular zone of the dentate gyrus and reduced BrdU incorporation, suggesting that CBP/p300 activation favors maturation and differentiation of adult neuronal progenitors. In addition, mRNA levels of the neuroD1 differentiation marker and BDNF, a neurotrophin required for the terminal differentiation of newly generated neurons, were both increased in the hippocampus concomitantly with an enrichment of acetylated-histone on their proximal promoter. Finally, we found that CBP/p300 activation during a spatial training, while not improving retention of a recent memory, resulted in a significant extension of memory duration. This report is the first evidence for CBP/p300-mediated histone acetylation in the brain by an activator molecule, which has beneficial implications for the brain functions of adult neurogenesis and long-term memory. We propose that direct stimulation of acetyltransferase function could be useful in terms of therapeutic options for brain diseases.
Collapse
|
25
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
26
|
Analysis of protein acetyltransferase structure-function relation by surface-enhanced raman scattering (SERS): a tool to screen and characterize small molecule modulators. Methods Mol Biol 2013; 981:239-61. [PMID: 23381867 DOI: 10.1007/978-1-62703-305-3_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Among the different posttranslational modifications (PTMs) that significantly regulate the protein function, lysine acetylation has become the major focus, especially to understand the epigenetic role of the acetyltransferases, in cellular physiology. Furthermore, dysfunction of these acetyltransferases is well documented under pathophysiological conditions. Therefore, it is important to understand the dynamic structure-function relationship of acetyltransferases in a relatively less complicated and faster method, which could be efficiently exploited to design and synthesis of small molecule modulators (activators/inhibitors) of these enzymes for in vivo functional analysis and therapeutic purposes. We have developed surface-enhanced Raman scattering (SERS) method, for acetyltransferases towards this goal. By employing SERS, we have not only demonstrated the autoacetylation induced structural changes of p300 enzyme but also could use this technique to characterize and design potent, specific inhibitors as well as activators of the p300. In this chapter we shall describe the methods in detail which could be highly useful for other classes of HATs and PTM enzymes.
Collapse
|
27
|
Pascali C, Teichmann M. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization. Subcell Biochem 2013; 61:261-287. [PMID: 23150255 DOI: 10.1007/978-94-007-4525-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.
Collapse
Affiliation(s)
- Chiara Pascali
- Institut Européen de Chimie et Biologie (IECB), Université Bordeaux Segalen / INSERM U869, 2, rue Robert Escarpit, 33607, Pessac, France
| | | |
Collapse
|
28
|
Nishimoto N, Watanabe M, Watanabe S, Sugimoto N, Yugawa T, Ikura T, Koiwai O, Kiyono T, Fujita M. Heterocomplex Formation by Arp4 and β-Actin Involved in Integrity of the Brg1 Chromatin Remodeling Complex. J Cell Sci 2012; 125:3870-82. [DOI: 10.1242/jcs.104349] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although nuclear actin and Arps (actin-related proteins) are often identified as components of multi-protein, chromatin-modifying enzyme complexes such as chromatin remodeling and histone acetyltransferase (HAT) complexes, their molecular functions still remain largely elusive. We have investigated the role of BAF53/human Arp4 in Brg1 chromatin remodeling complexes. Depletion of Arp4 by RNA interference impaired their integrity and accelerated degradation of Brg1, indicating a crucial role in maintenance, at least in certain human cell lines. We further found that Arp4 can form a heterocomplex with β-actin. Based on structural similarities between conventional actin and Arp4 and the assumption that actin-Arp4 binding might mimic actin-actin binding, we introduced a series of mutations in Arp4 by which interactions with β-actin might be impaired. Some of them indeed caused reduced binding to β-actin. Interestingly, such mutant Arp4 proteins also showed reduced incorporation into Brg1 complexes and interactions with c-myc-associated complexes as well as Tip60 HAT complexes were also impaired. Based on these findings, we propose that β-actin-Arp4 complex formation may be a crucial feature in some chromatin-modifying enzyme complexes like the Brg1 complex.
Collapse
|
29
|
Extra-transcriptional functions of RNA Polymerase III complexes: TFIIIC as a potential global chromatin bookmark. Gene 2011; 493:169-75. [PMID: 21986035 DOI: 10.1016/j.gene.2011.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 11/21/2022]
Abstract
RNA polymerase III (Pol III) is one of three eukaryotic transcription complexes, and was identified as the complex responsible for production of transfer RNA and a limited number of other small RNAs. Pol III transcription at tRNA genes (tDNAs) requires the binding of two transcription factor complexes, TFIIIC and TFIIIB. Recent evidence points to a larger role for the Pol III transcription system in various other nuclear processes, including effects on nucleosome positioning, global genome and sub-nuclear organization, and direct effects on RNA polymerase II (Pol II) transcription. These effects are perhaps mediated by recruitment of a host of other chromatin proteins, including Pol II transcription factors and chromatin enzymes. Extra-TFIIIC sites (ETC sites) are chromosomal locations bound by TFIIIC without the rest of the Pol III complex, and bound TFIIIC alone is also able to mediate additional functions. These so called "extra-transcriptional effects" of the Pol III system are reviewed here, and a model is put forth suggesting that the TFIIIC transcription factor may act as a stably bound, global "bookmark" within chromatin to establish, maintain, or demarcate chromatin states as cells divide or change gene expression patterns.
Collapse
|
30
|
Lunyak VV, Atallah M. Genomic relationship between SINE retrotransposons, Pol III-Pol II transcription, and chromatin organization: the journey from junk to jewel. Biochem Cell Biol 2011; 89:495-504. [PMID: 21916613 DOI: 10.1139/o11-046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A typical eukaryotic genome harbors a rich variety of repetitive elements. The most abundant are retrotransposons, mobile retroelements that utilize reverse transcriptase and an RNA intermediate to relocate to a new location within the cellular genomes. A vast majority of the repetitive mammalian genome content has originated from the retrotransposition of SINE (100-300 bp short interspersed nuclear elements that are derived from the structural 7SL RNA or tRNA), LINE (7kb long interspersed nuclear element), and LTR (2-3 kb long terminal repeats) transposable element superfamilies. Broadly labeled as "evolutionary junkyard" or "fossils", this enigmatic "dark matter" of the genome possesses many yet to be discovered properties.
Collapse
|
31
|
Wang J, Geesman GJ, Hostikka SL, Atallah M, Blackwell B, Lee E, Cook PJ, Pasaniuc B, Shariat G, Halperin E, Dobke M, Rosenfeld MG, Jordan IK, Lunyak VV. Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle 2011; 10:3016-30. [PMID: 21862875 PMCID: PMC3218602 DOI: 10.4161/cc.10.17.17543] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 01/01/2023] Open
Abstract
Cellular aging is linked to deficiencies in efficient repair of DNA double strand breaks and authentic genome maintenance at the chromatin level. Aging poses a significant threat to adult stem cell function by triggering persistent DNA damage and ultimately cellular senescence. Senescence is often considered to be an irreversible process. Moreover, critical genomic regions engaged in persistent DNA damage accumulation are unknown. Here we report that 65% of naturally occurring repairable DNA damage in self-renewing adult stem cells occurs within transposable elements. Upregulation of Alu retrotransposon transcription upon ex vivo aging causes nuclear cytotoxicity associated with the formation of persistent DNA damage foci and loss of efficient DNA repair in pericentric chromatin. This occurs due to a failure to recruit of condensin I and cohesin complexes. Our results demonstrate that the cytotoxicity of induced Alu repeats is functionally relevant for the human adult stem cell aging. Stable suppression of Alu transcription can reverse the senescent phenotype, reinstating the cells' self-renewing properties and increasing their plasticity by altering so-called "master" pluripotency regulators.
Collapse
Affiliation(s)
- Jianrong Wang
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Autoregulation of an RNA polymerase II promoter by the RNA polymerase III transcription factor III C (TF(III)C) complex. Proc Natl Acad Sci U S A 2011; 108:8385-9. [PMID: 21536876 DOI: 10.1073/pnas.1019175108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Extra TF(III)C (ETC) sites are chromosomal locations bound in vivo by the RNA polymerase III (Pol III) transcription factor III C (TF(III)C) complex, but are not necessarily associated with Pol III transcription. Although the location of ETC sequences are conserved in budding yeast, and similar sites are found in other organisms, their functions are largely unstudied. One such site, ETC6 in Saccharomyces cerevisiae, lies upstream of TFC6, a gene encoding a subunit of the TF(III)C complex itself. Promoter analysis shows that the ETC6 B-box sequence is involved in autoregulation of the TFC6 promoter. Mutation of ETC6 increases TFC6 mRNA levels, whereas mutation immediately upstream severely weakens promoter activity. A temperature-sensitive mutation in TFC3 that weakens DNA binding of TF(III)C also results in increased TFC6 mRNA levels; however, no increase is observed in mutants of TF(III)B or Pol III subunits, demonstrating a specific role for the TF(III)C complex in TFC6 promoter regulation. Chromatin immunoprecipitation shows an inverse relationship of TF(III)C occupancy at ETC6 versus TFC6 mRNA levels. Overexpression of TFC6 increases association of TF(III)C at ETC6 (and other loci) and results in reduced expression of a TFC6 promoter-URA3 reporter gene. Both of these effects are dependent on the ETC6 B-box. These results demonstrate that the TFC6 promoter is directly regulated by the TF(III)C complex, a demonstration of an RNA polymerase II promoter being directly responsive to a core Pol III transcription factor complex. This regulation could have implications in controlling global tRNA expression levels.
Collapse
|
33
|
Gadad SS, Senapati P, Syed SH, Rajan RE, Shandilya J, Swaminathan V, Chatterjee S, Colombo E, Dimitrov S, Pelicci PG, Ranga U, Kundu TK. The multifunctional protein nucleophosmin (NPM1) is a human linker histone H1 chaperone. Biochemistry 2011; 50:2780-9. [PMID: 21425800 DOI: 10.1021/bi101835j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Linker histone H1 plays an essential role in chromatin organization. Proper deposition of linker histone H1 as well as its removal is essential for chromatin dynamics and function. Linker histone chaperones perform this important task during chromatin assembly and other DNA-templated phenomena in the cell. Our in vitro data show that the multifunctional histone chaperone NPM1 interacts with linker histone H1 through its first acidic stretch (residues 120-132). Association of NPM1 with linker histone H1 was also observed in cells in culture. NPM1 exhibited remarkable linker histone H1 chaperone activity, as it was able to efficiently deposit histone H1 onto dinucleosomal templates. Overexpression of NPM1 reduced the histone H1 occupancy on the chromatinized template of HIV-1 LTR in TZM-bl cells, which led to enhanced Tat-mediated transactivation. These data identify NPM1 as an important member of the linker histone chaperone family in humans.
Collapse
Affiliation(s)
- Shrikanth S Gadad
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Moqtaderi Z, Wang J, Raha D, White RJ, Snyder M, Weng Z, Struhl K. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells. Nat Struct Mol Biol 2010; 17:635-40. [PMID: 20418883 PMCID: PMC3350333 DOI: 10.1038/nsmb.1794] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/25/2010] [Indexed: 12/24/2022]
Abstract
Genome-wide occupancy profiles of five components of the RNA Polymerase III (Pol III) machinery in human cells identified the expected tRNA and non-coding RNA targets and revealed many additional Pol III-associated loci, mostly near SINEs. Several genes are targets of an alternative TFIIIB containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike non-expressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner.
Collapse
Affiliation(s)
- Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes. Nat Struct Mol Biol 2010; 17:629-34. [PMID: 20418881 PMCID: PMC2917008 DOI: 10.1038/nsmb.1806] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/15/2010] [Indexed: 12/16/2022]
Abstract
Epigenetic control is an important aspect of gene regulation. Despite detailed understanding of protein-coding gene expression, the transcription of non-coding RNA genes by RNA polymerase (pol) III is less well characterized. Here we profile the epigenetic features of pol III target genes throughout the human genome. This reveals that the chromatin landscape of pol III-transcribed genes resembles that of pol II templates in many ways, although there are also clear differences. Our analysis also discovered an entirely unexpected phenomenon, namely that pol II is present at the majority of genomic loci that are bound by pol III.
Collapse
|
36
|
Pradeepa MM, Nikhil G, Hari Kishore A, Bharath GN, Kundu TK, Rao MRS. Acetylation of transition protein 2 (TP2) by KAT3B (p300) alters its DNA condensation property and interaction with putative histone chaperone NPM3. J Biol Chem 2009; 284:29956-67. [PMID: 19710011 PMCID: PMC2785624 DOI: 10.1074/jbc.m109.052043] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 08/25/2009] [Indexed: 01/17/2023] Open
Abstract
The hallmark of mammalian spermiogenesis is the dramatic chromatin remodeling process wherein the nucleosomal histones are replaced by the transition proteins TP1, TP2, and TP4. Subsequently these transition proteins are replaced by the protamines P1 and P2. Hyperacetylation of histone H4 is linked to their replacement by transition proteins. Here we report that TP2 is acetylated in vivo as detected by anti-acetylated lysine antibody and mass spectrometric analysis. Further, recombinant TP2 is acetylated in vitro by acetyltransferase KAT3B (p300) more efficiently than by KAT2B (PCAF). In vivo p300 was demonstrated to acetylate TP2. p300 acetylates TP2 in its C-terminal domain, which is highly basic in nature and possesses chromatin-condensing properties. Mass spectrometric analysis showed that p300 acetylates four lysine residues in the C-terminal domain of TP2. Acetylation of TP2 by p300 leads to significant reduction in its DNA condensation property as studied by circular dichroism and atomic force microscopy analysis. TP2 also interacts with a putative histone chaperone, NPM3, wherein expression is elevated in haploid spermatids. Interestingly, acetylation of TP2 impedes its interaction with NPM3. Thus, acetylation of TP2 adds a new dimension to its role in the dynamic reorganization of chromatin during mammalian spermiogenesis.
Collapse
Affiliation(s)
- Madapura M. Pradeepa
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and
| | - Gupta Nikhil
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and
| | - Annavarapu Hari Kishore
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and
| | - Giriyapura N. Bharath
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and
| | - Tapas K. Kundu
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and
| | - Manchanahalli R. Satyanarayana Rao
- From the Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and
- the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
37
|
A positive but complex association between meiotic double-strand break hotspots and open chromatin in Saccharomyces cerevisiae. Genome Res 2009; 19:2245-57. [PMID: 19801530 DOI: 10.1101/gr.096297.109] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During meiosis, chromatin undergoes extensive changes to facilitate recombination, homolog pairing, and chromosome segregation. To investigate the relationship between chromatin organization and meiotic processes, we used formaldehyde-assisted isolation of regulatory elements (FAIRE) to map open chromatin during the transition from mitosis to meiosis in the budding yeast Saccharomyces cerevisiae. We found that meiosis-induced opening of chromatin is associated with meiotic DSB hotpots. The positive association between open chromatin and DSB hotspots is most prominent 3 h into meiosis, when the early meiotic genes DMC1 and HOP1 exhibit maximum transcription and the early recombination genes SPO11 and RAD51 are strongly up-regulated. While the degree of chromatin openness is positively associated with the occurrence of recombination hotspots, many hotspots occur outside of open chromatin. Of particular interest, many DSB hotspots that fell outside of meiotic open chromatin nonetheless occurred in chromatin that had recently been open during mitotic growth. Finally, we find evidence for meiosis-specific opening of chromatin at the regions adjacent to boundaries of subtelomeric sequences, which exhibit specific crossover control patterns hypothesized to be regulated by chromatin.
Collapse
|
38
|
Selvi B R, Pradhan SK, Shandilya J, Das C, Sailaja BS, Shankar G N, Gadad SS, Reddy A, Dasgupta D, Kundu TK. Sanguinarine interacts with chromatin, modulates epigenetic modifications, and transcription in the context of chromatin. ACTA ACUST UNITED AC 2009; 16:203-16. [PMID: 19246011 DOI: 10.1016/j.chembiol.2008.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/05/2008] [Accepted: 12/29/2008] [Indexed: 12/31/2022]
Abstract
DNA-binding anticancer agents cause alteration in chromatin structure and dynamics. We report the dynamic interaction of the DNA intercalator and potential anticancer plant alkaloid, sanguinarine (SGR), with chromatin. Association of SGR with different levels of chromatin structure was enthalpy driven with micromolar dissociation constant. Apart from DNA, it binds with comparable affinity with core histones and induces chromatin aggregation. The dual binding property of SGR leads to inhibition of core histone modifications. Although it potently inhibits H3K9 methylation by G9a in vitro, H3K4 and H3R17 methylation are more profoundly inhibited in cells. SGR inhibits histone acetylation both in vitro and in vivo. It does not affect the in vitro transcription from DNA template but significantly represses acetylation-dependent chromatin transcription. SGR-mediated repression of epigenetic marks and the alteration of chromatin geography (nucleography) also result in the modulation of global gene expression. These data, conclusively, show an anticancer DNA binding intercalator as a modulator of chromatin modifications and transcription in the chromatin context.
Collapse
Affiliation(s)
- Ruthrotha Selvi B
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Boumah CE, Lee M, Selvamurugan N, Shimizu E, Partridge NC. Runx2 recruits p300 to mediate parathyroid hormone's effects on histone acetylation and transcriptional activation of the matrix metalloproteinase-13 gene. Mol Endocrinol 2009; 23:1255-63. [PMID: 19423655 DOI: 10.1210/me.2008-0217] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PTH regulates transcription of a number of genes involved in bone remodeling and calcium homeostasis. We have previously shown that the matrix metalloproteinase-13 (MMP-13) gene is induced by PTH in osteoblastic cells as a secondary response through the protein kinase A pathway requiring the runt domain and activator protein 1 binding sites of the proximal promoter. Here, we investigated the changes PTH causes in histone acetylation in this region (which contains the only deoxyribonuclease-hypersensitive sites in the promoter) leading to MMP-13 gene activation in these cells. Chromatin immunoprecipitation experiments revealed that PTH rapidly increased histone H4 acetylation followed by histone H3 acetylation associated with the different regions of the MMP-13 proximal promoter. The hormone also stimulated p300 histone acetyl transferase activity and increased p300 bound to the MMP-13 proximal promoter, and this required protein synthesis. Upon PTH treatment, Runx2, already bound to the runt domain site of the MMP-13 promoter, interacted with p300, which then acetylated histones H4 and H3. The knockdown of either Runx2 or p300 by RNA interference reduced PTH-induced acetylation of histones H3 and H4, association of p300 with the MMP-13 promoter, and resultant MMP-13 gene transcription. Overall, our studies suggest that without altering the gross chromatin structure, PTH stimulates acetylation of histones H3 and H4 via recruitment of p300 to Runx2 bound to the MMP-13 promoter, resulting in gene activation. This work establishes the molecular basis of transcriptional regulation in osteoblasts by PTH, a hormone acting through a G-protein coupled receptor.
Collapse
Affiliation(s)
- Christine E Boumah
- Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
40
|
Birch JL, Tan BCM, Panov KI, Panova TB, Andersen JS, Owen-Hughes TA, Russell J, Lee SC, Zomerdijk JCBM. FACT facilitates chromatin transcription by RNA polymerases I and III. EMBO J 2009; 28:854-65. [PMID: 19214185 PMCID: PMC2647773 DOI: 10.1038/emboj.2009.33] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 01/21/2009] [Indexed: 01/23/2023] Open
Abstract
Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle. The subunits of the histone chaperone FACT (facilitates chromatin transcription), SSRP1 and Spt16, co-purify and co-immunoprecipitate with mammalian Pol I complexes. In cells, SSRP1 is detectable at the rRNA gene repeats. Crucially, siRNA-mediated repression of FACT subunit expression in cells results in a significant reduction in 47S pre-rRNA levels, whereas synthesis of the first 40 nt of the rRNA is not affected, implying that FACT is important for Pol I transcription elongation through chromatin. FACT also associates with RNA Pol III complexes, is present at the chromatin of genes transcribed by Pol III and facilitates their transcription in cells. Our findings indicate that, beyond the established role in Pol II transcription, FACT has physiological functions in chromatin transcription by all three nuclear RNA Pols. Our data also imply that local chromatin dynamics influence transcription of the active rRNA genes by Pol I and of Pol III-transcribed genes.
Collapse
Affiliation(s)
- Joanna L Birch
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gadad SS, Shandilya J, Swaminathan V, Kundu TK. Histone chaperone as coactivator of chromatin transcription: role of acetylation. Methods Mol Biol 2009; 523:263-278. [PMID: 19381933 DOI: 10.1007/978-1-59745-190-1_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Histone chaperones are a group of histone-interacting proteins, involved in several important cellular functions. These chaperones are essential to facilitate ordered assembly of nucleosomes, both in replication dependent and independent manner. Replication independent function of histone chaperone is necessary for histone eviction during transcriptional initiation and elongation. In this chapter we have discussed a method to evaluate the role of histone chaperone NPM1 (the only known chaperone to get acetylated with functional consequence) in the transcriptional activation which is acetylation dependent.
Collapse
Affiliation(s)
- Shrikanth S Gadad
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | | | | | | |
Collapse
|
42
|
The histone acetyltransferase PCAF associates with actin and hnRNP U for RNA polymerase II transcription. Mol Cell Biol 2008; 28:6342-57. [PMID: 18710935 DOI: 10.1128/mcb.00766-08] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Actin is a key regulator of RNA polymerase (pol) II transcription. In complex with specific hnRNPs, it has been proposed that actin functions to recruit pol II coactivators during the elongation of nascent transcripts. Here, we show by affinity chromatography, protein-protein interaction assays, and biochemical fractionation of nuclear extracts that the histone acetyltransferase (HAT) PCAF associates with actin and hnRNP U. PCAF and the nuclear actin-associated HAT activity detected in the DNase I-bound protein fraction could be released by disruption of the actin-hnRNP U complex. In addition, actin, hnRNP U, and PCAF were found to be associated with the Ser2/5- and Ser2-phosphorylated pol II carboxy-terminal domain construct. Chromatin and RNA immunoprecipitation assays demonstrated that actin, hnRNP U, and PCAF are present at the promoters and coding regions of constitutively expressed pol II genes and that they are associated with ribonucleoprotein complexes. Finally, disruption of the actin-hnRNP U interaction repressed bromouridine triphosphate incorporation in living cells, suggesting that actin and hnRNP U cooperate with PCAF in the regulation of pol II transcription elongation.
Collapse
|
43
|
Nikitina TV, Tishchenko LI. Expression of short interspersed elements and genes transcribed by RNA polymerase III in the regulation of cell processes. Mol Biol 2008. [DOI: 10.1134/s0026893308040018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Different functional modes of p300 in activation of RNA polymerase III transcription from chromatin templates. Mol Cell Biol 2008; 28:5764-76. [PMID: 18644873 DOI: 10.1128/mcb.01262-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional coactivators that regulate the activity of human RNA polymerase III (Pol III) in the context of chromatin have not been reported. Here, we describe a completely defined in vitro system for transcription of a human tRNA gene assembled into a chromatin template. Transcriptional activation and histone acetylation in this system depend on recruitment of p300 by general initiation factor TFIIIC, thus providing a new paradigm for recruitment of histone-modifying coactivators. Beyond its role as a chromatin-modifying factor, p300 displays an acetyltransferase-independent function at the level of preinitiation complex assembly. Thus, direct interaction of p300 with TFIIIC stabilizes binding of TFIIIC to core promoter elements and results in enhanced transcriptional activity on histone-free templates. Additional studies show that p300 is recruited to the promoters of actively transcribed tRNA and U6 snRNA genes in vivo. These studies identify TFIIIC as a recruitment factor for p300 and thus may have important implications for the emerging concept that tRNA genes or TFIIIC binding sites act as chromatin barriers to prohibit spreading of silenced heterochromatin domains.
Collapse
|
45
|
Lunyak VV. Boundaries. Boundaries...Boundaries??? Curr Opin Cell Biol 2008; 20:281-7. [PMID: 18524562 DOI: 10.1016/j.ceb.2008.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/20/2008] [Indexed: 12/11/2022]
Abstract
One way to modulate transcription is by partitioning the chromatin fiber within the nucleus into the active or inactive domains through the establishment of higher-order chromatin structure. Such subdivision of chromatin implies the existence of insulators and boundaries that delimit differentially regulated chromosomal loci. Recently published data on transcriptional interference from the repeated component of the genome fits the classic definition of insulator/boundary activity. This review discusses the phenomena of transcriptional interference and raises the question about functionality of genomic "junk" along with the need to stimulate a dialogue on how we would define the insulators and boundaries in the light of contemporary data. Rule 19 (a) (Boundaries)"Before the toss, the umpires shall agree the boundary of the field of play with both captains. The boundary shall, if possible, be marked along its whole length" Rules of Cricket.
Collapse
Affiliation(s)
- Victoria V Lunyak
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, United States.
| |
Collapse
|
46
|
CHD8 associates with human Staf and contributes to efficient U6 RNA polymerase III transcription. Mol Cell Biol 2007; 27:8729-38. [PMID: 17938208 DOI: 10.1128/mcb.00846-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chromatin remodeling and histone modification are essential for eukaryotic transcription regulation, but little is known about chromatin-modifying activities acting on RNA polymerase III (Pol III)-transcribed genes. The human U6 small nuclear RNA promoter, located 5' of the transcription start site, consists of a core region directing basal transcription and an activating region that recruits the transcription factors Oct-1 and Staf (ZNF143). Oct-1 activates transcription in part by helping recruit core binding factors, but nothing is known about the mechanisms of transcription activation by Staf. We show that Staf activates U6 transcription from a preassembled chromatin template in vitro and associates with several proteins linked to chromatin modification, among them chromodomain-helicase-DNA binding protein 8 (CHD8). CHD8 binds to histone H3 di- and trimethylated on lysine 4. It resides on the human U6 promoter as well as the mRNA IRF3 promoter in vivo and contributes to efficient transcription from both these promoters. Thus, Pol III transcription from type 3 promoters uses some of the same factors used for chromatin remodeling at Pol II promoters.
Collapse
|
47
|
Kenneth NS, Ramsbottom BA, Gomez-Roman N, Marshall L, Cole PA, White RJ. TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc Natl Acad Sci U S A 2007; 104:14917-22. [PMID: 17848523 PMCID: PMC1986588 DOI: 10.1073/pnas.0702909104] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of RNA polymerase (pol) II transcription by c-Myc generally involves recruitment of histone acetyltransferases and acetylation of histones H3 and H4. Here, we describe the mechanism used by c-Myc to activate pol III transcription of tRNA and 5S rRNA genes. Within 2 h of its induction, c-Myc appears at these genes along with the histone acetyltransferase GCN5 and the cofactor TRRAP. At the same time, occupancy of the pol III-specific factor TFIIIB increases and histone H3 becomes hyperacetylated, but increased histone H4 acetylation is not detected at these genes. The rapid acetylation of histone H3 and promoter assembly of TFIIIB, c-Myc, GCN5, and TRRAP are followed by recruitment of pol III and transcriptional induction. The selective acetylation of histone H3 distinguishes pol III activation by c-Myc from mechanisms observed in other systems.
Collapse
Affiliation(s)
- Niall S. Kenneth
- *Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Ben A. Ramsbottom
- *Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Natividad Gomez-Roman
- *Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Lynne Marshall
- *Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, United Kingdom; and
| | - Philip A. Cole
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Robert J. White
- *Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, United Kingdom; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Batta K, Kundu TK. Activation of p53 function by human transcriptional coactivator PC4: role of protein-protein interaction, DNA bending, and posttranslational modifications. Mol Cell Biol 2007; 27:7603-14. [PMID: 17785449 PMCID: PMC2169069 DOI: 10.1128/mcb.01064-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tumor suppressor p53 controls cell cycle checkpoints and apoptosis via the transactivation of several genes that are involved in these processes. The functions of p53 are regulated by a wide variety of proteins, which interact with it either directly or indirectly. The multifunctional human transcriptional coactivator PC4 interacts with p53 in vivo and in vitro and regulates its function. Here we report the molecular mechanisms of the PC4-mediated activation of p53 function. PC4 interacts with the DNA binding and C-terminal domains of p53 through its DNA binding domain, which is essential for the stimulation of p53 DNA binding. Remarkably, ligation-mediated circularization assays reveal that PC4 induces significant bending in the DNA double helix. Deletion mutants defective in DNA bending are found to be impaired in activating p53-mediated DNA binding and apoptosis. Furthermore, acetylation of PC4 enhances, while phosphorylation abolishes, its ability to bend DNA, activate p53 DNA binding, and, thereby, regulate p53 functions. In conclusion, PC4 activates p53 recruitment to p53-responsive promoters (Bax and p21) in vivo through its interaction with p53 and by providing bent substrate for p53 recruitment. These results elucidate the general molecular mechanisms of activation of p53 function, mediated by its coactivators.
Collapse
Affiliation(s)
- Kiran Batta
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, P.O. Bangalore-560064, India
| | | |
Collapse
|
49
|
Mantelingu K, Kishore AH, Balasubramanyam K, Kumar GVP, Altaf M, Swamy SN, Selvi R, Das C, Narayana C, Rangappa KS, Kundu TK. Activation of p300 Histone Acetyltransferase by Small Molecules Altering Enzyme Structure: Probed by Surface-Enhanced Raman Spectroscopy. J Phys Chem B 2007; 111:4527-34. [PMID: 17417897 DOI: 10.1021/jp067655s] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reversible acetylation of nucleosomal histones and nonhistone proteins play pivotal roles in the regulation of all the DNA templated phenomenon. Dysfunction of the enzymes involved in the acetylation/deacetylation leads to several diseases. Therefore, these enzymes are the targets for new generation therapeutics. Here, we report the synthesis of trifluoromethyl phenyl benzamides and their effect on histone acetyltransferase (HAT) activity of p300. One of these benzamides, CTPB (N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide), was discovered as a potent activator of the p300 HAT activity. We have found that pentadecyl hydrocarbon chain of CTPB is required to activate the HAT only under certain context. Furthermore, our results show that the relative position of -CF3 and -Cl in CTB (N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-benzamide) is also very critical for the activation. Surface-enhanced Raman spectroscopy (SERS) of p300 and the HAT activator complexes evidently suggest that the activation of HAT activity is achieved by the alteration of p300 structure. Therefore, apart from elucidating the chemical basis for small molecule mediated activation of p300, this report also describes, for the first time, Raman spectroscopic analysis of the complexes of histone-modifying enzymes and their modulators, which may be highly useful for therapeutic applications.
Collapse
Affiliation(s)
- K Mantelingu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-64, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mylona A, Fernández-Tornero C, Legrand P, Haupt M, Sentenac A, Acker J, Müller CW. Structure of the τ60/Δτ91 Subcomplex of Yeast Transcription Factor IIIC: Insights into Preinitiation Complex Assembly. Mol Cell 2006; 24:221-32. [PMID: 17052456 DOI: 10.1016/j.molcel.2006.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 07/06/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
Yeast RNA polymerase III is recruited upon binding of subcomplexes tauA and tauB of transcription factor IIIC (TFIIIC) to the A and B blocks of tRNA gene promoters. The tauB subcomplex consists of subunits tau60, tau91, and tau138. We determined the 3.2 A crystal structure of tau60 bound to a large C-terminal fragment of tau91 (Deltatau91). Deltatau91 protein contains a seven-bladed propeller preceded by an N-terminal extension, whereas tau60 contains a structurally homologous propeller followed by a C-terminal domain with a novel alpha/beta fold. The two propeller domains do not have any detectable DNA binding activity and mediate heterodimer formation that may serve as scaffold for tau138 assembly. We show that the C-terminal tau60 domain interacts with the TATA binding protein (TBP). Recombinant tauB recruits TBP and stimulates TFIIIB-directed transcription on a TATA box containing tRNA gene, implying a combined contribution of tauA and tauB to preinitiation complex formation.
Collapse
Affiliation(s)
- Anastasia Mylona
- European Molecular Biology Laboratory, Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|