1
|
Lu C, Cai Y, Wu S, Wang Y, Li JB, Xu G, Ma J. Deubiquitinating enzyme USP39 promotes the growth and metastasis of gastric cancer cells by modulating the degradation of RNA-binding protein RBM39. J Biol Chem 2024; 300:107751. [PMID: 39260689 PMCID: PMC11490714 DOI: 10.1016/j.jbc.2024.107751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
It has been revealed recently that the RNA-binding motif protein RBM39 is highly expressed in several cancers, which results in poor patient survival. However, how RBM39 is regulated in gastric cancer cells is unknown. Here, affinity purification-mass spectrometry and a biochemical screening are employed to identify the RBM39-interacting proteins and the deubiquitinating enzymes that regulate the RBM39 protein level. Integration of the data obtained from these two approaches uncovers USP39 as the potential deubiquitinating enzyme that regulates RBM39 stability. Bioinformatic analysis discloses that USP39 is increased in gastric cancer tissues and its elevation shortens the duration of overall survival for gastric cancer patients. Biochemical experiments verify that USP39 and RBM39 interact with each other and highly colocalize in the nucleus. Expression of USP39 elevates while USP39 knockdown attenuates the RBM39 protein level and their interaction regulates this modulation and their colocalization. Mechanistic studies reveal that USP39 reduces the K48-linked polyubiquitin chains on RBM39, thus enhancing its stability and increasing the protein level by preventing its proteasomal degradation. USP39 overexpression promotes while its knockdown attenuates the growth, colony formation, migration, and invasion of gastric cancer cells. Interestingly, overexpression of RBM39 partially restores the impact of USP39 depletion, while RBM39 knockdown partially abolishes the effect of USP39 overexpression on the growth, colony formation, migration, and invasion of gastric cancer cells. Collectively, this work identifies the first DUB for RBM39 and elucidates the regulatory functions and the underlying mechanism, providing a possible alternative approach to suppressing RBM39 by inhibiting USP39 in cancer therapy.
Collapse
Affiliation(s)
- Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yunxin Cai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Shenglong Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China; Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China.
| | - Jingjing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Beretta GL, Costantino M, Mirra L, Pettinari P, Perego P. Deubiquitinases in Ovarian Cancer: Role in Drug Resistance and Tumor Aggressiveness. Int J Biol Sci 2024; 20:5208-5222. [PMID: 39430244 PMCID: PMC11489175 DOI: 10.7150/ijbs.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/22/2024] Open
Abstract
Ovarian cancer is a lethal disease due to late diagnosis and occurrence of drug resistance that limits the efficacy of platinum-based therapy. Drug resistance mechanisms include both tumor intrinsic and tumor microenvironment-related factors. A role for deubiquitinases (DUBs) is starting to emerge in ovarian cancer. DUBs are a large family of enzymes that remove ubiquitin from target proteins and participate in processes affecting drug resistance such as DNA damage repair and apoptosis. Besides, DUBs modulate the functions of T cell populations favoring an immune suppressed microenvironment. Three DUBs are proteasome-associated, whereas the large majority are not. Among the former DUBs, USP14 has been proposed to modulate transcription factors such as Bcl6 and BACH1. In addition, RPN11/PSMD14 interferes with various processes including epithelial mesenchymal transition, also favored by non-proteasomal DUBs such as USP1 by acting on Snail. Besides, USP8 by stabilizing HER family receptors can confer drug resistance. Overall, DUBs appear to be druggable, with several inhibitors under development. Based on DUBs biological role, DUBs targeting appears promising in view of combination strategies involving different therapeutic approaches. Here, we summarize the relevance of DUBs in ovarian carcinoma and provide insights into future challenges for the treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| |
Collapse
|
3
|
Ding R, Yu X, Hu Z, Dong Y, Huang H, Zhang Y, Han Q, Ni ZY, Zhao R, Ye Y, Zou Q. Lactate modulates RNA splicing to promote CTLA-4 expression in tumor-infiltrating regulatory T cells. Immunity 2024; 57:528-540.e6. [PMID: 38417442 DOI: 10.1016/j.immuni.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 03/01/2024]
Abstract
RNA splicing is involved in cancer initiation and progression, but how it influences host antitumor immunity in the metabolically abnormal tumor microenvironment (TME) remains unclear. Here, we demonstrate that lactate modulates Foxp3-dependent RNA splicing to maintain the phenotypic and functional status of tumor-infiltrating regulatory T (Treg) cells via CTLA-4. RNA splicing in Treg cells was correlated with the Treg cell signatures in the TME. Ubiquitin-specific peptidase 39 (USP39), a component of the RNA splicing machinery, maintained RNA-splicing-mediated CTLA-4 expression to control Treg cell function. Mechanistically, lactate promoted USP39-mediated RNA splicing to facilitate CTLA-4 expression in a Foxp3-dependent manner. Moreover, the efficiency of CTLA-4 RNA splicing was increased in tumor-infiltrating Treg cells from patients with colorectal cancer. These findings highlight the immunological relevance of RNA splicing in Treg cells and provide important insights into the environmental mechanism governing CTLA-4 expression in Treg cells.
Collapse
Affiliation(s)
- Rui Ding
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyan Yu
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhilin Hu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, the School of Basic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yu Dong
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiyan Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuerong Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiaoqiao Han
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi-Yu Ni
- Clinical Medical College, Hebei University of Engineering, Handan 056038, Hebei, China; Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China; Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei, China.
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Youqiong Ye
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qiang Zou
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
4
|
Yu J, Yuan S, Song J, Yu S. USP39 interacts with SIRT7 to promote cervical squamous cell carcinoma by modulating autophagy and oxidative stress via FOXM1. J Transl Med 2023; 21:807. [PMID: 37957720 PMCID: PMC10641974 DOI: 10.1186/s12967-023-04623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Sirtuin 7 (SIRT7) is an oncogene that promotes tumor progression in various malignancies, however, its role and regulatory mechanism in cervical squamous cell carcinoma (CSCC) is unknown. Herein, we attempted to investigate the functional role and molecular mechanism of SIRT7 underlying CSCC progression. METHODS SIRT7 expression was evaluated in CSCC cells using various assays. We then used a series of function gain-and-loss experiments to determine the role of SIRT7 in CSCC progression. Furthermore, mechanism experiments were conducted to assess the interaction between SIRT7/USP39/FOXM1 in CSCC cells. Additionally, rescue assays were conducted to explore the regulatory function of USP39/FOXM1 in CSCC cellular processes. RESULTS SIRT7 was highly expressed in CSCC patient tissues and cell lines. SIRT7 deficiency showed significant repression on the proliferation, and autophagy of CSCC cells in vitro and tumorigenesis in vivo. Similarly, apoptosis and ROS production in CSCC cells were accelerated after the SIRT7 knockdown. Moreover, SIRT7 and USP39 were found colocalized in the cell nucleus. Interestingly, SIRT7 was revealed to deacetylate USP39 to promote its protein stability in CSCC cells. USP39 protein was also verified to be upregulated in CSCC tissues and cells. USP39 silencing showed suppressive effects on CSCC cell growth. Mechanistically, USP39 was revealed to upregulate SIRT7 by promoting the transcriptional activity of FOXM1. Rescue assays also indicated that SIRT7 promoted autophagy and inhibited ROS production in CSCC cells by regulating USP39/FOXM1. CONCLUSION The SIRT7/USP39/FOXM1 positive feedback network regulates autophagy and oxidative stress in CSCC, thus providing a new direction for CSCC-targeted therapy.
Collapse
Affiliation(s)
- Juanpeng Yu
- Department of Gynecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Shuai Yuan
- Department of Gynecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Jinglin Song
- Department of Obstetrics and Gynecology, Langao County Hospital of Traditional Chinese Medicine, Ankang, 725400, Shaanxi, China
| | - Shengsheng Yu
- Department of Gynecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
5
|
Zheng J, Wu S, Tang M, Xi S, Wang Y, Ren J, Luo H, Hu P, Sun L, Du Y, Yang H, Wang F, Gao H, Dai Z, Ou X, Li Y. USP39 promotes hepatocellular carcinogenesis through regulating alternative splicing in cooperation with SRSF6/HNRNPC. Cell Death Dis 2023; 14:670. [PMID: 37821439 PMCID: PMC10567755 DOI: 10.1038/s41419-023-06210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Abnormal alternative splicing (AS) caused by alterations in spliceosomal factors is implicated in cancers. Standard models posit that splice site selection is mainly determined by early spliceosomal U1 and U2 snRNPs. Whether and how other mid/late-acting spliceosome components such as USP39 modulate tumorigenic splice site choice remains largely elusive. We observed that hepatocyte-specific overexpression of USP39 promoted hepatocarcinogenesis and potently regulated splice site selection in transgenic mice. In human liver cancer cells, USP39 promoted tumor proliferation in a spliceosome-dependent manner. USP39 depletion deregulated hundreds of AS events, including the oncogenic splice-switching of KANK2. Mechanistically, we developed a novel RBP-motif enrichment analysis and found that USP39 modulated exon inclusion/exclusion by interacting with SRSF6/HNRNPC in both humans and mice. Our data represented a paradigm for the control of splice site selection by mid/late-acting spliceosome proteins and their interacting RBPs. USP39 and possibly other mid/late-acting spliceosome proteins may represent potential prognostic biomarkers and targets for cancer therapy.
Collapse
Affiliation(s)
- Jingyi Zheng
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shasha Wu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Mao Tang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shaoyan Xi
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanchen Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Ren
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hao Luo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Pengchao Hu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liangzhan Sun
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuyang Du
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hui Yang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fenfen Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Han Gao
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ziwei Dai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xijun Ou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yan Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Choi Y, Lee Y, Kim JS, Zhang P, Kim J. USP39-Mediated Non-Proteolytic Control of ETS2 Suppresses Nuclear Localization and Activity. Biomolecules 2023; 13:1475. [PMID: 37892157 PMCID: PMC10604658 DOI: 10.3390/biom13101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
ETS2 is a member of the ETS family of transcription factors and has been implicated in the regulation of cell proliferation, differentiation, apoptosis, and tumorigenesis. The aberrant activation of ETS2 is associated with various human cancers, highlighting its importance as a therapeutic target. Understanding the regulatory mechanisms and interacting partners of ETS2 is crucial for elucidating its precise role in cellular processes and developing novel strategies to modulate its activity. In this study, we conducted binding assays using a human deubiquitinase (DUB) library and identified USP39 as a novel ETS2-binding DUB. USP39 interacts with ETS2 through their respective amino-terminal regions, and the zinc finger and PNT domains are not required for this binding. USP39 deubiquitinates ETS2 without affecting its protein stability. Interestingly, however, USP39 significantly suppresses the transcriptional activity of ETS2. Furthermore, we demonstrated that USP39 leads to a reduction in the nuclear localization of ETS2. Our findings provide valuable insights into the intricate regulatory mechanisms governing ETS2 function. Understanding the interplay between USP39 and ETS2 may have implications for therapeutic interventions targeting ETS2-related diseases, including cancer, where the dysregulation of ETS2 is frequently observed.
Collapse
Affiliation(s)
- Yunsik Choi
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Yuri Lee
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Jin Seo Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Peijing Zhang
- Department of Biological Pharmaceutics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jongchan Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
7
|
Martino S, Carollo PS, Barra V. A Glimpse into Chromatin Organization and Nuclear Lamina Contribution in Neuronal Differentiation. Genes (Basel) 2023; 14:genes14051046. [PMID: 37239406 DOI: 10.3390/genes14051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
During embryonic development, stem cells undergo the differentiation process so that they can specialize for different functions within the organism. Complex programs of gene transcription are crucial for this process to happen. Epigenetic modifications and the architecture of chromatin in the nucleus, through the formation of specific regions of active as well as inactive chromatin, allow the coordinated regulation of the genes for each cell fate. In this mini-review, we discuss the current knowledge regarding the regulation of three-dimensional chromatin structure during neuronal differentiation. We also focus on the role the nuclear lamina plays in neurogenesis to ensure the tethering of the chromatin to the nuclear envelope.
Collapse
Affiliation(s)
- Salvatore Martino
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Pietro Salvatore Carollo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Viviana Barra
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
8
|
Carollo PS, Barra V. Chromatin epigenetics and nuclear lamina keep the nucleus in shape: Examples from natural and accelerated aging. Biol Cell 2023; 115:e2200023. [PMID: 36117150 DOI: 10.1111/boc.202200023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023]
Abstract
As the repository of genetic information, the cell nucleus must protect DNA integrity from mechanical stresses. The nuclear lamina, which resides within the nuclear envelope (NE), is made up of lamins, intermediate filaments bound to DNA. The nuclear lamina provides the nucleus with the ability to deal with inward as well as outward mechanical stimuli. Chromatin, in turn, through its degrees of compaction, shares this role with the nuclear lamina, thus, ensuring the plasticity of the nucleus. Perturbation of chromatin condensation or the nuclear lamina has been linked to a plethora of biological conditions, that range from cancer and genetic diseases (laminopathies) to aging, both natural and accelerated, such as the case of Hutchinson-Gilford Progeria Syndrome (HGPS). From the experimental results accumulated so far on the topic, a direct link between variations of the epigenetic pattern and nuclear lamina structure would be suggested, however, it has never been clarified thoroughly. This relationship, instead, has a downstream important implication on nucleus shape, genome preservation, force sensing, and, ultimately, aging-related disease onset. With this review, we aim to collect recent studies on the importance of both nuclear lamina components and chromatin status in nuclear mechanics. We also aim to bring to light evidence of the link between DNA methylation and nuclear lamina in natural and accelerated aging.
Collapse
Affiliation(s)
- Pietro Salvatore Carollo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Kimura-Yoshida C, Mochida K, Kanno SI, Matsuo I. USP39 is essential for mammalian epithelial morphogenesis through upregulation of planar cell polarity components. Commun Biol 2022; 5:378. [PMID: 35440748 PMCID: PMC9018712 DOI: 10.1038/s42003-022-03254-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Previously, we have shown that the translocation of Grainyhead-like 3 (GRHL3) transcription factor from the nucleus to the cytoplasm triggers the switch from canonical Wnt signaling for epidermal differentiation to non-canonical Wnt signaling for epithelial morphogenesis. However, the molecular mechanism that underlies the cytoplasmic localization of GRHL3 protein and that activates non-canonical Wnt signaling is not known. Here, we show that ubiquitin-specific protease 39 (USP39), a deubiquitinating enzyme, is involved in the subcellular localization of GRHL3 as a potential GRHL3-interacting protein and is necessary for epithelial morphogenesis to up-regulate expression of planar cell polarity (PCP) components. Notably, mouse Usp39-deficient embryos display early embryonic lethality due to a failure in primitive streak formation and apico-basal polarity in epiblast cells, resembling those of mutant embryos of the Prickle1 gene, a crucial PCP component. Current findings provide unique insights into how differentiation and morphogenesis are coordinated to construct three-dimensional complex structures via USP39. The ubiquitin specific protease 39 (USP39) interacts with the transcription factor and cytoplasmic regulator of planar cell polarity (PCP), Grainyheadlike 3 (Grhl3). USP39-dependent PCP gene upregulation contributes to epithelial morphogenesis.
Collapse
Affiliation(s)
- Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan.
| | - Kyoko Mochida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Shin-Ichiro Kanno
- IDAC Fellow Research Group for DNA Repair and Dynamic Proteome, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan. .,Department of Pediatric and Neonatal-Perinatal Research, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Idrissou M, Maréchal A. The PRP19 Ubiquitin Ligase, Standing at the Cross-Roads of mRNA Processing and Genome Stability. Cancers (Basel) 2022; 14:878. [PMID: 35205626 PMCID: PMC8869861 DOI: 10.3390/cancers14040878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/07/2022] Open
Abstract
mRNA processing factors are increasingly being recognized as important regulators of genome stability. By preventing and resolving RNA:DNA hybrids that form co-transcriptionally, these proteins help avoid replication-transcription conflicts and thus contribute to genome stability through their normal function in RNA maturation. Some of these factors also have direct roles in the activation of the DNA damage response and in DNA repair. One of the most intriguing cases is that of PRP19, an evolutionarily conserved essential E3 ubiquitin ligase that promotes mRNA splicing, but also participates directly in ATR activation, double-strand break resection and mitosis. Here, we review historical and recent work on PRP19 and its associated proteins, highlighting their multifarious cellular functions as central regulators of spliceosome activity, R-loop homeostasis, DNA damage signaling and repair and cell division. Finally, we discuss open questions that are bound to shed further light on the functions of PRP19-containing complexes in both normal and cancer cells.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N3, Canada
| | - Alexandre Maréchal
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N3, Canada
| |
Collapse
|
11
|
Ruan GX, Li Y, Chen W, Huang H, Zhang R, Chen C, Lam KP, Xu S, Ou X. The spliceosome component Usp39 controls B cell development by regulating immunoglobulin gene rearrangement. Cell Rep 2022; 38:110338. [PMID: 35139388 DOI: 10.1016/j.celrep.2022.110338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/18/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
The spliceosome is a large ribonucleoprotein complex responsible for pre-mRNA splicing and genome stability maintenance. Disruption of the spliceosome activity may lead to developmental disorders and tumorigenesis. However, the physiological role that the spliceosome plays in B cell development and function is still poorly defined. Here, we demonstrate that ubiquitin-specific peptidase 39 (Usp39), a spliceosome component of the U4/U6.U5 tri-snRNP complex, is essential for B cell development. Ablation of Usp39 in B cell lineage blocks pre-pro-B to pro-B cell transition in the bone marrow, leading to a profound reduction of mature B cells in the periphery. We show that Usp39 specifically regulates immunoglobulin gene rearrangement in a spliceosome-dependent manner, which involves modulating chromatin interactions at the Igh locus. Moreover, our results indicate that Usp39 deletion reduces the pre-malignant B cells in Eμ-Myc transgenic mice and significantly improves their survival.
Collapse
Affiliation(s)
- Gui-Xin Ruan
- Harbin Institute of Technology, Harbin 150001, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxing Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenjing Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hengjun Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rui Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changxu Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Departments of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Xijun Ou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
12
|
Pan XW, Xu D, Chen WJ, Chen JX, Chen WJ, Ye JQ, Gan SS, Zhou W, Song X, Shi L, Cui XG. USP39 promotes malignant proliferation and angiogenesis of renal cell carcinoma by inhibiting VEGF-A 165b alternative splicing via regulating SRSF1 and SRPK1. Cancer Cell Int 2021; 21:486. [PMID: 34544400 PMCID: PMC8454004 DOI: 10.1186/s12935-021-02161-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/18/2021] [Indexed: 01/01/2023] Open
Abstract
Background The benefit of targeted therapy for renal cell carcinoma (RCC) is largely crippled by drug resistance. Rapid disease progression and poor prognosis occur in patients with drug resistance. New treatments demand prompt exploration for clinical therapies. Ubiquitin-specific peptidase 39 (USP39) serves as the pro-tumor factor in several previous studies of other malignant tumors. To investigate the function and mechanism of USP39 in promoting malignant proliferation and angiogenesis of RCC. Methods We applied ONCOMINE database to analyze the correlation between USP39 expression level and the clinical characteristics of RCC. USP39 knockdown or overexpression plasmids were transfected into 786-O and ACHN cells. The HUVEC received cell supernatants of 786-O and ACHN cells with knockdown or overexpression USP39.The effect of USP39 on RCC was evaluated by MTT assay, cell cycle analysis, colony formation assay and tubule formation assay. The interaction between USP39 and VEGF-A alternative splicing was assessed by affinity purification and mass spectrometry, co-immunoprecipitation and Western blot assays. Results The mRNA expression level of USP39 in RCC was significantly higher than that in normal renal tissue (P < 0.001), and negatively correlated with the survival rate of RCC patients (P < 0.01). Silencing of USP39 in 786-O and ACHN cells inhibited cell proliferation and colony formation, and induced S phase arrest. USP39 overexpression significantly increased the number of tubules (P < 0.05) and branches (P < 0.01) formed by HUVEC cells, and USP39 knockdown produced an opposite effect (P < 0.05). The USP39 (101–565) fragment directly mediated its binding to SRSF1 and SRPK1, and promoted the phosphorylation of SRSF1 to regulate VEGF-A alternative splicing. USP39 knockdown upregulated the expression of VEGF-A165b, and USP39 overexpression downregulated the expression of VEGF-A165b significantly (both P < 0.05). Conclusion USP39 acted as a pro-tumor factor by motivating the malignant biological processes of RCC, probably through inhibiting VEGF-A165b alternative splicing and regulating SRSF1 and SRPK1. USP39 may prove to be a potential therapeutic target for RCC. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02161-x.
Collapse
Affiliation(s)
- Xiu-Wu Pan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.,Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Da Xu
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Wen-Jin Chen
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Jia-Xin Chen
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Wei-Jie Chen
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Jian-Qing Ye
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Si-Shun Gan
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Wang Zhou
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China.
| | - Xu Song
- Department of Urology, Shanghai Seventh People's Hospital, Shandong, 200137, China.
| | - Lei Shi
- Department of Urology, Yantai Yuhuangding Hospital of Qingdao University Medical College, Shandong, 264000, China.
| | - Xin-Gang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
13
|
Zhao Y, Geng H, Liu G, Ji Q, Cheng X, Li X, Liu W, Thorne RF, Zhang R, Liu X. The Deubiquitinase USP39 Promotes ESCC Tumorigenesis Through Pre-mRNA Splicing of the mTORC2 Component Rictor. Front Oncol 2021; 11:667495. [PMID: 34123832 PMCID: PMC8189149 DOI: 10.3389/fonc.2021.667495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Spliceosomes are large RNA-protein molecular complexes which mediate splicing of pre-mRNA in eukaryotic cells. Their function is frequently altered in cancer, providing opportunities for novel therapeutic approaches. The ubiquitin specific protease 39 (USP39) is a highly conserved deubiquitylation family member that plays an essential role in pre-mRNA splicing where it serves to assemble the mature spliceosome complex. Previous studies have reported that USP39 acts in an oncogenic manner where it contributes to cancer progression and predicts poor prognosis in various human tumor types. Here we report that USP39 is differentially upregulated in human esophageal squamous cell carcinoma (ESCC) and its expression is significantly associated with clinicopathological characteristics including differentiation status and TNM stage. We found the USP39 upregulation was maintained in ESCC cell lines where it functioned to promote cancer cell growth in vitro and in xenografts. RNA-seq analyses identified that mTOR pathway activation was affected by shRNA-mediated silencing of USP39. Subsequent biochemical analyses demonstrated that USP39 regulates the activity of mTORC2 by selectively enhancing the splicing and maturation of Rictor mRNA, although not other key mTORC components. Together, our report proposes USP39 as a biomarker and oncogenic factor in ESCC, with a potential for targeting the USP39/mTOR2/Rictor axis as a therapeutic strategy. Furthermore, our study adds ESCC to the list of cancers where USP39 contributes to tumorigenesis and progression.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Huiwu Geng
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Gang Liu
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Qiang Ji
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, China.,Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaomin Cheng
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Xinying Li
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Rick F Thorne
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Renquan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xiaoying Liu
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, China.,Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Chemical-Genetic Interactions with the Proline Analog L-Azetidine-2-Carboxylic Acid in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:4335-4345. [PMID: 33082270 PMCID: PMC7718759 DOI: 10.1534/g3.120.401876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Non-proteinogenic amino acids, such as the proline analog L-azetidine-2-carboxylic acid (AZC), are detrimental to cells because they are mis-incorporated into proteins and lead to proteotoxic stress. Our goal was to identify genes that show chemical-genetic interactions with AZC in Saccharomyces cerevisiae and thus also potentially define the pathways cells use to cope with amino acid mis-incorporation. Screening the yeast deletion and temperature sensitive collections, we found 72 alleles with negative chemical-genetic interactions with AZC treatment and 12 alleles that suppress AZC toxicity. Many of the genes with negative chemical-genetic interactions are involved in protein quality control pathways through the proteasome. Genes involved in actin cytoskeleton organization and endocytosis also had negative chemical-genetic interactions with AZC. Related to this, the number of actin patches per cell increases upon AZC treatment. Many of the same cellular processes were identified to have interactions with proteotoxic stress caused by two other amino acid analogs, canavanine and thialysine, or a mistranslating tRNA variant that mis-incorporates serine at proline codons. Alleles that suppressed AZC-induced toxicity functioned through the amino acid sensing TOR pathway or controlled amino acid permeases required for AZC uptake. Further suggesting the potential of genetic changes to influence the cellular response to proteotoxic stress, overexpressing many of the genes that had a negative chemical-genetic interaction with AZC suppressed AZC toxicity.
Collapse
|
15
|
Dong L, Yu L, Li H, Shi L, Luo Z, Zhao H, Liu Z, Yin G, Yan X, Lin Z. An NAD +-Dependent Deacetylase SIRT7 Promotes HCC Development Through Deacetylation of USP39. iScience 2020; 23:101351. [PMID: 32711345 PMCID: PMC7387830 DOI: 10.1016/j.isci.2020.101351] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/14/2020] [Accepted: 06/27/2020] [Indexed: 12/21/2022] Open
Abstract
Ubiquitin specific protease 39 (USP39), an ortholog of Sad1p in yeast, is essential for spliceosome assembly during pre-mRNA splicing in human. Although it is known that USP39 is upregulated and plays an oncogenic role in hepatocellular carcinoma (HCC), the underlying mechanism remains unknown. The results of this study demonstrated that USP39 can be acetylated by the histone acetyltransferase MYST1, which is required for its proteasome-mediated degradation by Von Hippel-Lindau protein. In HCC cells, USP39 interacts with and is deacetylated by the lysine deacetylase sirtuin 7 (SIRT7). Notably, the deacetylation of USP39 by SIRT7 promotes its stability and thereby accelerates HCC cell proliferation and tumorigenesis in vitro and in vivo. Our data demonstrated a novel mechanism by which SIRT7 modulates the deacetylation of USP39 to promote HCC development, thus providing an effective anti-tumor therapeutic strategy for HCC. SIRT7 modulates the deacetylation of USP39 MYST1 promotes the acetyl binding of USP39 USP39 acetylation induces its instability
Collapse
Affiliation(s)
- Ling Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Le Yu
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Hui Li
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Huakan Zhao
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhaojian Liu
- Department of Cell Biology, Shandong University School of Medicine, Jinan 250012, P.R. China
| | - Guobing Yin
- Department of Breast, Thyroid, Pancreatic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, P.R. China.
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China.
| |
Collapse
|
16
|
Mendoza-Ochoa GI, Barrass JD, Maudlin IE, Beggs JD. Blocking late stages of splicing quickly limits pre-spliceosome assembly in vivo. RNA Biol 2019; 16:1775-1784. [PMID: 31671032 PMCID: PMC6844569 DOI: 10.1080/15476286.2019.1657788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pre-messenger RNA splicing involves multi-step assembly of the large spliceosome complexes that catalyse the two consecutive trans-esterification reactions, resulting in intron removal. There is evidence that proof-reading mechanisms monitor the fidelity of this complex process. Transcripts that fail these fidelity tests are thought to be directed to degradation pathways, permitting the splicing factors to be recycled. While studying the roles of splicing factors in vivo, in budding yeast, we performed targeted depletion of individual proteins, and analysed the effect on co-transcriptional spliceosome assembly and splicing efficiency. Unexpectedly, depleting factors such as Prp16 or Prp22, that are known to function at the second catalytic step or later in the splicing pathway, resulted in a defect in the first step of splicing, and accumulation of arrested spliceosomes. Through a kinetic analysis of newly synthesized RNA, we observed that a second step splicing defect (the primary defect) was rapidly followed by the first step of splicing defect. Our results show that knocking down a splicing factor can quickly lead to a recycling defect with splicing factors sequestered in stalled complexes, thereby limiting new rounds of splicing. We demonstrate that this ‘feed-back’ effect can be minimized by depleting the target protein more gradually or only partially, allowing a better separation between primary and secondary effects. Our findings indicate that splicing surveillance mechanisms may not always cope with spliceosome assembly defects, and suggest that work involving knock-down of splicing factors or components of other large complexes should be carefully monitored to avoid potentially misleading conclusions.
Collapse
Affiliation(s)
- Gonzalo I Mendoza-Ochoa
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J David Barrass
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Isabella E Maudlin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jean D Beggs
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Li X, Fan Z, Yan M, Qu J, Xu JR, Jin Q. Spontaneous mutations in FgSAD1 suppress the growth defect of the Fgprp4 mutant by affecting tri-snRNP stability and its docking in Fusarium graminearum. Environ Microbiol 2019; 21:4488-4503. [PMID: 31291045 DOI: 10.1111/1462-2920.14736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
FgPrp4, the only kinase in the spliceosome, is not essential for viability, but is important for splicing efficiency in Fusarium graminearum. The Fgprp4 deletion mutant had severe growth defects but often produced spontaneous suppressors with faster growth rate. To better understand the suppression mechanism, we identified and characterized spontaneous mutations in the tri-snRNP-specific protein, FgSad1, which suppressed the growth defects of Fgprp4. The L512P mutation was verified for its suppressive effects on Fgprp4, suggesting that mutations in FgSad1 may have effects involving FgPrp4 phosphorylation on FgSad1. Phosphoproteomics analysis showed that FgSad1 may not be the direct substrate of FgPrp4 kinase. Furthermore, truncation analysis showed that the N-terminal, extra RS-rich region of FgSad1 is critical for its function and is post-translationally modified. The P258S or S269P mutations in FgSad1 increased its interactions with the U5 protein FgPrp8 and the U4/U6 protein FgPrp31, which may result in tri-snRNP stabilization. Additionally, the D76N mutation increased the association of FgSad1 with the U2 snRNP. These data indicate that suppressor mutations in FgSad1 increase the stability of the tri-snRNP and/or the affinity of FgSad1 with U2 snRNP and therefore potentially facilitate the docking of tri-snRNP into the spliceosome.
Collapse
Affiliation(s)
- Xiaoping Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhili Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ming Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Qu
- Microbial Resource Center, Microbiology Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Qiaojun Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
18
|
Ding K, Ji J, Zhang X, Huang B, Chen A, Zhang D, Li X, Wang X, Wang J. RNA splicing factor USP39 promotes glioma progression by inducing TAZ mRNA maturation. Oncogene 2019; 38:6414-6428. [PMID: 31332287 PMCID: PMC6756117 DOI: 10.1038/s41388-019-0888-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 06/06/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
Increasing evidence demonstrates that ubiquitin specific protease 39 (USP39) plays an oncogenic role in various human tumors. Here, using expression analysis of the publicly available Oncomine database, clinical glioma patient samples, and glioma cells, we found that USP39 was overexpressed in human gliomas. Knockdown of USP39 in glioma cells demonstrated that the protein promoted cell growth, invasion and migration in vitro and in a tumor model in nude mice. To identify mediators of USP39 growth-promoting properties, we used luciferase reporter constructs under transcriptional control of various promoters specific to seven canonical cancer-associated pathways. Luciferase activity from a synthetic TEAD-dependent YAP/TAZ-responsive reporter, as a direct readout of the Hippo signaling pathway, was decreased by 92% in cells with USP39 knockdown, whereas the luciferase activities from the other six cancer pathways, including MAPK/ERK, MAPK/JNK, NFκB, Notch, TGFβ, and Wnt, remained unchanged. TAZ protein expression however was decreased independent of canonical Hippo signaling. Immunohistochemistry revealed a positive correlation between USP39 and TAZ proteins in orthotopic xenografts derived from modified glioma cells expressing USP39 shRNAs and primary human glioma samples (p < 0.05). Finally, loss of USP39 decreased TAZ pre-mRNA splicing efficiency in glioma cells in vitro, which led to reduced levels of TAZ protein. In summary, USP39 has oncogenic properties that increase TAZ protein levels by inducing maturation of its mRNA. USP39 therefore provides a novel therapeutic target for the treatment of human glioma.
Collapse
Affiliation(s)
- Kaikai Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Xinyu Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China. .,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China.
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China. .,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China. .,Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
| |
Collapse
|
19
|
An Allosteric Network for Spliceosome Activation Revealed by High-Throughput Suppressor Analysis in Saccharomyces cerevisiae. Genetics 2019; 212:111-124. [PMID: 30898770 DOI: 10.1534/genetics.119.301922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
Selection of suppressor mutations that correct growth defects caused by substitutions in an RNA or protein can reveal functionally important molecular structures and interactions in living cells. This approach is particularly useful for the study of complex biological pathways involving many macromolecules, such as premessenger RNA (pre-mRNA) splicing. When a sufficiently large number of suppressor mutations is obtained and structural information is available, it is possible to generate detailed models of molecular function. However, the laborious and expensive task of identifying suppressor mutations in whole-genome selections limits the utility of this approach. Here I show that a custom targeted sequencing panel can greatly accelerate the identification of suppressor mutations in the Saccharomyces cerevisiae genome. Using a panel that targets 112 genes encoding pre-mRNA splicing factors, I identified 27 unique mutations in six protein-coding genes that each overcome the cold-sensitive block to spliceosome activation caused by a substitution in U4 small nuclear RNA. When mapped to existing structures of spliceosomal complexes, the identified suppressors implicate specific molecular contacts between the proteins Brr2, Prp6, Prp8, Prp31, Sad1, and Snu114 as functionally important in an early step of catalytic activation of the spliceosome. This approach shows great promise for elucidating the allosteric cascade of molecular interactions that direct accurate and efficient pre-mRNA splicing and should be broadly useful for understanding the dynamics of other complex biological assemblies or pathways.
Collapse
|
20
|
Dong X, Su H, Jiang F, Li H, Shi G, Fan L. miR-133a, directly targeted USP39, suppresses cell proliferation and predicts prognosis of gastric cancer. Oncol Lett 2018; 15:8311-8318. [PMID: 29805563 PMCID: PMC5950022 DOI: 10.3892/ol.2018.8421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/02/2018] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer has high incidence and mortality, and the mortality ranks second only to lung cancer. Downregulation of miR-133a has been observed in certain types of tumors, and it is involved in gastric cancer. The aim of the present study was to explore the molecular mechanisms of miR-133a and ubiquitin-specific protease 39 (USP39) in gastric cancer. Western blot analysis and RT-PCR were employed to measure miR-133a and USP39 expression. To confirm whether miR-133a targeted USP39, we conducted a luciferase reporter assay. We utilized 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay to detect the effects of miR-133a on gastric cell proliferation. miR-133a was significantly downregulated in cancer tissues and cell lines (HGC-27 and MGC-803), while the expression level of USP39 was higher in tumor tissues than in paracancerous tissues. Upregulated expression of miR-133a and/or USP39 downregulation could inhibit cell proliferation in gastric cancer cells. Furthermore, USP39 was identified as a direct target of miR-133a and the inverse relationship between them was also observed. USP39 was a firsthand target of miR-133a and there was a negative correlation between them. In addition, a low expression of miR-133a or overexpression of USP39 predicted poor prognosis. In conclusion, miR-133a may be a novel therapeutic target of microRNA-mediated suppression of cell proliferation in CC, but the role of the miR-133a/USP39 axis in CC progression needs further study.
Collapse
Affiliation(s)
- Xiang Dong
- Digestive System Department, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Hailong Su
- Department of General Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Feng Jiang
- Department of Imaging, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Haiyan Li
- Department of Anesthesiology, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Guangwen Shi
- Department of Obstetrics, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Lijuan Fan
- Digestive System Department, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
21
|
Xing Z, Sun F, He W, Wang Z, Song X, Zhang F. Downregulation of ubiquitin-specific peptidase 39 suppresses the proliferation and induces the apoptosis of human colorectal cancer cells. Oncol Lett 2018; 15:5443-5450. [PMID: 29556295 PMCID: PMC5844003 DOI: 10.3892/ol.2018.8061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
Ubiquitin-specific peptidase 39 (USP39) has been reported to participate in the mitotic spindle checkpoint and the process of cytokinesis. and has been identified as a therapeutic target for various types of cancer. However, the effect of USP39 in colorectal cancer (CRC) has not been investigated. To explore the functional role of USP39 in CRC cell growth, lentivirus-mediated RNA interference was applied to inhibit USP39 expression in SW1116 and HCT116 cells. The relative USP39 mRNA and protein expression levels were significantly reduced in the USP39 knockdown cells, as verified by reverse transcription-quantitative polymerase chain reaction and western blot analysis. USP39 knockdown significantly reduced the proliferation and colony formation abilities of CRC cells, and induced apoptosis and cell cycle arrest in the G2/M phases, as determined by an MTT assay, a colony formation assay and flow cytometry analysis. Furthermore, western blot analysis demonstrated that USP39 knockdown may have induced apoptosis through the upregulation of p53, p-p53, PARP and caspase-3 expression in SW1116 cells. In conclusion, USP39 may be a novel biological marker for targeted therapy against CRC, and requires further investigation.
Collapse
Affiliation(s)
- Zhiyuan Xing
- Department of General Surgery, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266000, P.R. China
| | - Fengbo Sun
- Department of General Surgery, Qingdao Haici Medical Group, Qingdao, Shandong 266000, P.R. China
| | - Wang He
- Department of Hepatopathy, Qingdao Sixth People's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Zhiwei Wang
- Department of General Surgery, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266000, P.R. China
| | - Xiuqi Song
- Department of General Surgery, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266000, P.R. China
| | - Fengjuan Zhang
- Department of Infection, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
22
|
Xu Y, Zhu MR, Zhang JY, Si GM, Lv JJ. Knockdown of ubiquitin‑specific peptidase 39 inhibits the malignant progression of human renal cell carcinoma. Mol Med Rep 2018; 17:4729-4735. [PMID: 29328477 DOI: 10.3892/mmr.2018.8421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/04/2017] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin specific peptidase 39 (USP39) serves important roles in mRNA processing and is involved in tumorigenesis of multiple solid malignancies. However, the influence and underlying mechanism of USP39 on human renal cell carcinomas (RCC) remain to be elucidated. The current study investigated the functional roles of USP39 in human RCC cell lines. siRNA‑mediated RNA interference was used to downregulate USP39 in RCC cells. CCK‑8, wound healing and invasion assays were performed to assess the proliferative ability and metastatic potential. The cell cycle distribution and apoptosis were evaluated by flow cytometry. The activity of signaling pathways and the expression of cell cycle‑related proteins were detected by western blot analysis. The siRNA‑directed RNA interference targeting USP39 could effectively downregulate the expression level of USP39 in two RCC cell lines. Depletion of USP39 by siRNA significantly suppressed cell growth and decreased invasive capacity of RCC cells. Silencing of USP39 induced cell apoptosis and cell cycle arrest at G2/M phase. Additionally, the expression levels of apoptotic and G2/M phase‑related proteins were notably decreased following depletion of USP39. Mechanistically, downregulation of USP39 blocked the activation of Akt and extracellular signal regulated kinase signaling pathways in RCC cells. These findings indicate that USP39 may serve as an oncogenic factor in RCC and could be a potential therapeutic candidate for human RCCs.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Mei-Rong Zhu
- Department of Urology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Jing-Yong Zhang
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Guo-Min Si
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jia-Ju Lv
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
23
|
Overexpression of USP39 predicts poor prognosis and promotes tumorigenesis of prostate cancer via promoting EGFR mRNA maturation and transcription elongation. Oncotarget 2017; 7:22016-30. [PMID: 26959883 PMCID: PMC5008341 DOI: 10.18632/oncotarget.7882] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/23/2016] [Indexed: 12/14/2022] Open
Abstract
Castration resistance is a serious problem facing clinical treatment of prostate cancer (PCa). The underlying molecular mechanisms of acquired proliferation ability of tumor cells upon androgen deprivation are largely undetermined. In the present study, we identified that ubiquitin specific peptidase 39 (USP39) was significantly upregulated in PCa samples and cell lines. Elevated USP39 expression was positively correlated with Gleason score, predicted a poor outcome, and functioned as an independent risk factor for biochemical recurrence (BCR) especially in patients with a Gleason score ≤7. Our cell-based study showed that the expression level of USP39 was the highest in AR-negative PCa cell lines. Knockdown of USP39 in PCa cells inhibited cancer colony formation and tumor cell growth, and induced G2/M arrest and cell apoptosis. Microarray analysis suggested that knockdown of USP39 caused a reduced expression of EGFR. Silencing of USP39 inhibited the expression of EGFR 3′-end, and presented a remarkable block to the maturation of EGFR mRNA, suggesting that silencing of USP39 decreased the transcriptional elongation and maturation of EGFR mRNA. Oncomine datasets analysis showed that USP39 expression was positively correlated with EGFR level. The above findings suggest that USP39 plays a vital oncogenic role in the tumorigenesis of PCa and may prove to be a potential biomarker for predicting the prognosis of PCa patients.
Collapse
|
24
|
Gan Z, Han K, Lin S, Hu H, Shen Z, Min D. Knockdown of ubiquitin-specific peptidase 39 inhibited the growth of osteosarcoma cells and induced apoptosis in vitro. Biol Res 2017; 50:15. [PMID: 28403900 PMCID: PMC5389082 DOI: 10.1186/s40659-017-0121-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Ubiquitin specific peptidase 39 (USP39), an essential factor in the assembly of the mature spliceosome complex, has an aberrant expression in several cancer. However, its function and the corresponding mechanism on human osteosarcoma has not been fully explored yet. Methods The mRNA and DNA copies of USP39 were increased in osteosarcoma cancer tissues compared with the one in human normal tissues according to datasets from the publicly available Oncomine database. A further western blot analysis also demonstrated an aberrant endogenous expression of USP39 in three different osteosarcoma cells. Then lentivirus-mediated short hairpin RNA (shRNA) was designed to silence USP39 in human osteosarcoma cell line U2OS, which is used to test the impact of USP39-silencing on cellular proliferation, colony formation, cell cycle distribution and apoptosis. Results Knockdown of USP39 expression in U2OS cell significantly decreased cell proliferation, impaired colony formation ability. A further analysis indicated suppression of USP39 arrested cell cycle progression at G2/M phase via p21 dependent way. In addition, the results of Annexin V/7-AAD staining suggested the knockdown of USP39 could promote U2OS cell apoptosis through PARP cleavage. Conclusions These results uncover the critical role of USP39 in regulating cancer cell mitosis and indicate USP39 is critical for osteosarcoma tumorigenesis.
Collapse
Affiliation(s)
- Zhihua Gan
- Department of Medical Oncology, The Affiliated 6th People's Hospital of Shanghai Jiaotong University, Shanghai, 200223, China
| | - Kun Han
- Department of Medical Oncology, The Affiliated 6th People's Hospital of Shanghai Jiaotong University, Shanghai, 200223, China
| | - Shuchen Lin
- Department of Medical Oncology, The Affiliated 6th People's Hospital of Shanghai Jiaotong University, Shanghai, 200223, China
| | - Haiyan Hu
- Department of Medical Oncology, The Affiliated 6th People's Hospital of Shanghai Jiaotong University, Shanghai, 200223, China
| | - Zan Shen
- Department of Medical Oncology, The Affiliated 6th People's Hospital of Shanghai Jiaotong University, Shanghai, 200223, China
| | - Daliu Min
- Department of Medical Oncology, The Affiliated 6th People's Hospital of Shanghai Jiaotong University, Shanghai, 200223, China.
| |
Collapse
|
25
|
Ubiquitin-specific protease 39 is overexpressed in human lung cancer and promotes tumor cell proliferation in vitro. Mol Cell Biochem 2016; 422:97-107. [DOI: 10.1007/s11010-016-2809-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
|
26
|
Masoumi KC, Marfany G, Wu Y, Massoumi R. Putative role of SUMOylation in controlling the activity of deubiquitinating enzymes in cancer. Future Oncol 2016; 12:565-74. [PMID: 26777062 DOI: 10.2217/fon.15.320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) are specialized proteins that can recognize ubiquitinated proteins, and after direct interaction, deconjugate monomeric or polymeric ubiquitin chains, thus changing the fate of the substrates. This process is instrumental in mediating or changing downstream signaling pathways. Beside mutations and alterations in their expression levels, the activity and stability of deubiquitinating enzymes is vital for their function. SUMOylations consist of the conjugation of the small peptide SUMO to protein substrates which is very similar to ubiquitination in the mechanistic and machinery required. In this review, we will focus on how SUMOylation can regulate DUB enzymatic activity, stability or DUB interaction with partners and substrates, in cancer. Furthermore, we will discuss the impact of these recent findings in the identification of new potential tools for efficient anticancer treatment strategies.
Collapse
Affiliation(s)
- Katarzyna C Masoumi
- Department of Laboratory Medicine, Medicon Village, Lund University, 22381 Lund, Sweden
| | - Gemma Marfany
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.,Institut de Biomedicina (IBUB), Universitat de Barcelona, 08007 Barcelona, Spain.,CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Yingli Wu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ramin Massoumi
- Department of Laboratory Medicine, Medicon Village, Lund University, 22381 Lund, Sweden
| |
Collapse
|
27
|
Liu S, Liu X, Wang H, Zhou Q, Liang Y, Sui A, Yao R, Zhao B, Sun M. Lentiviral vector-mediated doxycycline-inducible USP39 shRNA or cDNA expression in triple-negative breast cancer cells. Oncol Rep 2015; 33:2477-83. [PMID: 25812575 DOI: 10.3892/or.2015.3872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/24/2015] [Indexed: 11/06/2022] Open
Abstract
Triple-negative breast cancer (TNBC), characterized by distinct biological and clinicopathological features, has a poor prognosis due to lack of effective therapeutic targets. Our previous data revealed that high levels of USP39 were selectively present in TNBC samples compared with their normal breast tissue samples and USP39 was also expressed at different levels in cultured TNBC cells and normal breast cells. Yet, the underlying cellular and molecular mechanisms of USP39 remain unclear. In the present study, we describe a doxycycline (DOX)-regulated lentiviral vector system expressing shRNA or cDNA of the USP39 gene in the TNBC cell line MDA-MB-231. USP39 expression was knocked down by the miR-30-based inducible lentiviral short hairpin RNA (shRNA) delivery system or overexpressed by the inducible cDNA system. The inducible shRNA-mediated downregulation of USP39 expression markedly reduced the proliferation and colony-forming ability of MDA-MB-231 cells, while overexpression of USP39 by the inducible system did not promote cancer cell proliferation. The lentiviral vector-mediated Tet-on system demonstrated efficient and inducible knockdown of USP39 or overexpression of USP39 in TNBC cells, facilitating a wide variety of applications for gene knockdown and overexpression experiments in gene functional studies in vitro and in vivo.
Collapse
Affiliation(s)
- Shihai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiangping Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Haibo Wang
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Quan Zhou
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ye Liang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Aihua Sui
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Bin Zhao
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ming Sun
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
28
|
Pan Z, Pan H, Zhang J, Yang Y, Liu H, Yang Y, Huang G, Ni J, Huang J, Zhou W. Lentivirus mediated silencing of ubiquitin specific peptidase 39 inhibits cell proliferation of human hepatocellular carcinoma cells in vitro. Biol Res 2015; 48:18. [PMID: 25889525 PMCID: PMC4389921 DOI: 10.1186/s40659-015-0006-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/23/2015] [Indexed: 02/07/2023] Open
Abstract
Background Ubiquitin Specific Peptidase 39 (USP39) is a 65 kDa SR-related protein involved in RNA splicing. Previous studies showed that USP39 is related with tumorigenesis of human breast cancer cells. Results In the present study, we investigated the functions of USP39 in human hepatocellular carcinoma (HCC) cell line SMMC-7721. We knocked down the expression of USP39 through lentivirus mediated RNA interference. The results of qRT-PCR and western blotting assay showed that both the mRNA and protein levels were suppressed efficiently after USP39 specific shRNA was delivered into SMMC-7721 cells. Cell growth was significantly inhibited as determined by MTT assay. Crystal violet staining indicated that colony numbers and sizes were both reduced after knock-down of USP39. Furthermore, suppression of USP39 arrested cell cycle progression at G2/M phase in SMMC-7721cells. In addition, Annexin V showed that downregulation of USP39 significantly increased the population of apoptotic cells. Conclusions All our results suggest that USP39 is important for HCC cell proliferation and is a potential target for molecular therapy of HCC. Electronic supplementary material The online version of this article (doi:10.1186/s40659-015-0006-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zeya Pan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China.
| | - Hao Pan
- Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, 1380 West Zhongshan Road, 200336, Shanghai, China.
| | - Jin Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China.
| | - Yun Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China.
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China.
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China.
| | - Gang Huang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China.
| | - Junsheng Ni
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China.
| | - Jian Huang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China.
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China.
| |
Collapse
|
29
|
Chen HC, Chang KJ, Su YL, Huang YH, Cheng SC. Structural requirement of Ntc77 for spliceosome activation and first catalytic step. Nucleic Acids Res 2014; 42:12261-71. [PMID: 25294830 PMCID: PMC4231770 DOI: 10.1093/nar/gku914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The Prp19-associated complex is required for spliceosome activation by stabilizing the binding of U5 and U6 on the spliceosome after the release of U4. The complex comprises at least eight proteins, among which Ntc90 and Ntc77 contain multiple tetratricopeptide repeat (TPR) elements. We have previously shown that Ntc90 is not involved in spliceosome activation, but is required for the recruitment of essential first-step factor Yju2 to the spliceosome. We demonstrate here that Ntc77 has dual functions in both spliceosome activation and the first catalytic step in recruiting Yju2. We have identified an amino-terminal region of Ntc77, which encompasses the N-terminal domain and the first three TPR motifs, dispensable for spliceosome activation but required for stable interaction of Yju2 with the spliceosome. Deletion of this region had no severe effect on the integrity of the NTC, binding of NTC to the spliceosome or spliceosome activation, but impaired splicing and exhibited a dominant-negative growth phenotype. Our data reveal functional roles of Ntc77 in both spliceosome activation and the first catalytic step, and distinct structural domains of Ntc77 required for these two steps.
Collapse
Affiliation(s)
- Hsin-Chou Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, Republic of China Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai, Taipei, Taiwan 112, Republic of China
| | - Kae-Jiun Chang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, Republic of China
| | - Yu-Lun Su
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, Republic of China
| | - Yu-Hsin Huang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
30
|
Hadjivassiliou H, Rosenberg OS, Guthrie C. The crystal structure of S. cerevisiae Sad1, a catalytically inactive deubiquitinase that is broadly required for pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2014; 20:656-69. [PMID: 24681967 PMCID: PMC3988567 DOI: 10.1261/rna.042838.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/03/2014] [Indexed: 05/27/2023]
Abstract
Sad1 is an essential splicing factor initially identified in a genetic screen in Saccharomyces cerevisiae for snRNP assembly defects. Based on sequence homology, Sad1, or USP39 in humans, is predicted to comprise two domains: a zinc finger ubiquitin binding domain (ZnF-UBP) and an inactive ubiquitin-specific protease (iUSP) domain, both of which are well conserved. The role of these domains in splicing and their interaction with ubiquitin are unknown. We first used splicing microarrays to analyze Sad1 function in vivo and found that Sad1 is critical for the splicing of nearly all yeast intron-containing genes. By using in vitro assays, we then showed that it is required for the assembly of the active spliceosome. To gain structural insights into Sad1 function, we determined the crystal structure of the full-length protein at 1.8 Å resolution. In the structure, the iUSP domain forms the characteristic ubiquitin binding pocket, though with an amino acid substitution in the active site that results in complete inactivation of the enzymatic activity of the domain. The ZnF-UBP domain of Sad1 shares high structural similarly to other ZnF-UBPs; however, Sad1's ZnF-UBP does not possess the canonical ubiquitin binding motif. Given the precedents for ZnF-UBP domains to function as activators for their neighboring USP domains, we propose that Sad1's ZnF-UBP acts in a ubiquitin-independent capacity to recruit and/or activate Sad1's iUSP domain to interact with the spliceosome.
Collapse
Affiliation(s)
- Haralambos Hadjivassiliou
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | - Oren S. Rosenberg
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, California 94143-0414, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| |
Collapse
|
31
|
Sad1 counteracts Brr2-mediated dissociation of U4/U6.U5 in tri-snRNP homeostasis. Mol Cell Biol 2013; 34:210-20. [PMID: 24190974 DOI: 10.1128/mcb.00837-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Sad1 protein was previously identified in a screen for factors involved in the assembly of the U4/U6 di-snRNP particle. Sad1 is required for pre-mRNA splicing both in vivo and in vitro, and its human orthologue has been shown to associate with U4/U6.U5 tri-snRNP. We show here that Sad1 plays a role in maintaining a functional form of the tri-snRNP by promoting the association of U5 snRNP with U4/U6 di-snRNP. In the absence of Sad1, the U4/U6.U5 tri-snRNP dissociates into U5 and U4/U6 upon ATP hydrolysis and cannot bind to the spliceosome. The separated U4/U6 and U5 can reassociate upon incubation more favorably in the absence of ATP and in the presence of Sad1. Brr2 is responsible for mediating ATP-dependent dissociation of the tri-snRNP. Our results demonstrate a role of Sad1 in maintaining the integrity of the tri-snRNP by counteracting Brr2-mediated dissociation of tri-snRNP and provide insights into homeostasis of the tri-snRNP.
Collapse
|
32
|
WANG HAIBO, JI XIAOJUN, LIU XIANGPING, YAO RUYONG, CHI JINGWEI, LIU SHIHAI, WANG YU, CAO WEIHONG, ZHOU QUAN. Lentivirus-mediated inhibition of USP39 suppresses the growth of breast cancer cells in vitro. Oncol Rep 2013; 30:2871-7. [DOI: 10.3892/or.2013.2798] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/30/2013] [Indexed: 01/07/2023] Open
|
33
|
Mpn1, mutated in poikiloderma with neutropenia protein 1, is a conserved 3'-to-5' RNA exonuclease processing U6 small nuclear RNA. Cell Rep 2012; 2:855-65. [PMID: 23022480 DOI: 10.1016/j.celrep.2012.08.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 01/09/2023] Open
Abstract
Clericuzio-type poikiloderma with neutropenia (PN) is a rare genodermatosis associated with mutations in the C16orf57 gene, which codes for the uncharacterized protein hMpn1. We show here that, in both fission yeasts and humans, Mpn1 processes the spliceosomal U6 small nuclear RNA (snRNA) posttranscriptionally. In Mpn1-deficient cells, U6 molecules carry 3' end polyuridine tails that are longer than those in normal cells and lack a terminal 2',3' cyclic phosphate group. In mpn1Δ yeast cells, U6 snRNA and U4/U6 di-small nuclear RNA protein complex levels are diminished, leading to precursor messenger RNA splicing defects, which are reverted by expression of either yeast or human Mpn1 and by overexpression of U6. Recombinant hMpn1 is a 3'-to-5' RNA exonuclease that removes uridines from U6 3' ends, generating terminal 2',3' cyclic phosphates in vitro. Finally, U6 degradation rates increase in mpn1Δ yeasts and in lymphoblasts established from individuals affected by PN. Our data indicate that Mpn1 promotes U6 stability through 3' end posttranscriptional processing and implicate altered U6 metabolism as a potential mechanism for PN pathogenesis.
Collapse
|
34
|
Düring L, Thorsen M, Petersen DSN, Køster B, Jensen TH, Holmberg S. MRN1 implicates chromatin remodeling complexes and architectural factors in mRNA maturation. PLoS One 2012; 7:e44373. [PMID: 23028530 PMCID: PMC3445587 DOI: 10.1371/journal.pone.0044373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 08/06/2012] [Indexed: 11/18/2022] Open
Abstract
A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6ΔΔ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin architectural proteins Nhp6A/Nhp6B, accumulate intron-containing pre-mRNA at the restrictive temperature. In addition, we demonstrate that rsc8-ts16 nhp6ΔΔ cells contain low levels of U6 snRNA and U4/U6 di-snRNA that is further exacerbated after two hours growth at the restrictive temperature. This change in U6 snRNA and U4/U6 di-snRNA levels in rsc8-ts16 nhp6ΔΔ cells is indicative of splicing deficient conditions. We identify MRN1 (multi-copy suppressor of rsc nhp6ΔΔ) as a growth suppressor of rsc nhp6ΔΔ synthetic sickness. Mrn1 is an RNA binding protein that localizes both to the nucleus and cytoplasm. Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309Δ, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing.
Collapse
Affiliation(s)
- Louis Düring
- Department of Biology, Copenhagen BioCenter, University of Copenhagen, Copenhagen, Denmark
| | - Michael Thorsen
- Department of Biology, Copenhagen BioCenter, University of Copenhagen, Copenhagen, Denmark
| | | | - Brian Køster
- Department of Biology, Copenhagen BioCenter, University of Copenhagen, Copenhagen, Denmark
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Steen Holmberg
- Department of Biology, Copenhagen BioCenter, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Ohbayashi I, Konishi M, Ebine K, Sugiyama M. Genetic identification of Arabidopsis RID2 as an essential factor involved in pre-rRNA processing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:49-60. [PMID: 21401745 DOI: 10.1111/j.1365-313x.2011.04574.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A temperature-sensitive mutant of Arabidopsis, root initiation defective 2-1 (rid2-1), is characterized by peculiar defects in callus formation. To gain insights into the requirements for the reactivation of cell division, we analyzed this mutant and isolated the gene responsible, RID2. The phenotypes of rid2-1 in tissue culture and in seedlings indicated that the rid2 mutation has various (acute and non-acute) inhibitory effects on different aspects of cell proliferation. This suggests that the RID2 function is not directly involved in every cycle of cell division, but is related to 'vitality', supporting cell proliferation. The rid2-1 mutation was shown to cause nucleolar vacuolation and excessive accumulation of various intermediates of pre-rRNA processing. Positional cloning of the RID2 gene revealed that it encodes an evolutionarily conserved methyltransferase-like protein, which was found to localize in the nucleus, with accumulation being most evident in the nucleolus. It can be inferred from these findings that RID2 contributes to the nucleolar activity for pre-rRNA processing, probably through some methylation reaction.
Collapse
Affiliation(s)
- Iwai Ohbayashi
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
36
|
Ianiri G, Wright SAI, Castoria R, Idnurm A. Development of resources for the analysis of gene function in Pucciniomycotina red yeasts. Fungal Genet Biol 2011; 48:685-95. [PMID: 21402165 DOI: 10.1016/j.fgb.2011.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/05/2011] [Accepted: 03/08/2011] [Indexed: 11/16/2022]
Abstract
The Pucciniomycotina is an important subphylum of basidiomycete fungi but with limited tools to analyze gene functions. Transformation protocols were established for a Sporobolomyces species (strain IAM 13481), the first Pucciniomycotina species with a completed draft genome sequence, to enable assessment of gene function through phenotypic characterization of mutant strains. Transformation markers were the URA3 and URA5 genes that enable selection and counter-selection based on uracil auxotrophy and resistance to 5-fluoroorotic acid. The wild type copies of these genes were cloned into plasmids that were used for transformation of Sporobolomyces sp. by both biolistic and Agrobacterium-mediated approaches. These resources have been deposited to be available from the Fungal Genetics Stock Center. To show that these techniques could be used to elucidate gene functions, the LEU1 gene was targeted for specific homologous replacement, and also demonstrating that this gene is required for the biosynthesis of leucine in basidiomycete fungi. T-DNA insertional mutants were isolated and further characterized, revealing insertions in genes that encode the homologs of Chs7, Erg3, Kre6, Kex1, Pik1, Sad1, Ssu1 and Tlg1. Phenotypic analysis of these mutants reveals both conserved and divergent functions compared with other fungi. Some of these strains exhibit reduced resistance to detergents, the antifungal agent fluconazole or sodium sulfite, or lower recovery from heat stress. While there are current experimental limitations for Sporobolomyces sp. such as the lack of Mendelian genetics for conventional mating, these findings demonstrate the facile nature of at least one Pucciniomycotina species for genetic manipulation and the potential to develop these organisms into new models for understanding gene function and evolution in the fungi.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
37
|
Ríos Y, Melmed S, Lin S, Liu NA. Zebrafish usp39 mutation leads to rb1 mRNA splicing defect and pituitary lineage expansion. PLoS Genet 2011; 7:e1001271. [PMID: 21249182 PMCID: PMC3020934 DOI: 10.1371/journal.pgen.1001271] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 12/08/2010] [Indexed: 11/30/2022] Open
Abstract
Loss of retinoblastoma (Rb) tumor suppressor function is associated with human malignancies. Molecular and genetic mechanisms responsible for tumorigenic Rb downregulation are not fully defined. Through a forward genetic screen and positional cloning, we identified and characterized a zebrafish ubiquitin specific peptidase 39 (usp39) mutation, the yeast and human homolog of which encodes a component of RNA splicing machinery. Zebrafish usp39 mutants exhibit microcephaly and adenohypophyseal cell lineage expansion without apparent changes in major hypothalamic hormonal and regulatory signals. Gene expression profiling of usp39 mutants revealed decreased rb1 and increased e2f4, rbl2 (p130), and cdkn1a (p21) expression. Rb1 mRNA overexpression, or antisense morpholino knockdown of e2f4, partially reversed embryonic pituitary expansion in usp39 mutants. Analysis of pre-mRNA splicing status of critical cell cycle regulators showed misspliced Rb1 pre-mRNA resulting in a premature stop codon. These studies unravel a novel mechanism for rb1 regulation by a neuronal mRNA splicing factor, usp39. Zebrafish usp39 regulates embryonic pituitary homeostasis by targeting rb1 and e2f4 expression, respectively, contributing to increased adenohypophyseal sensitivity to these altered cell cycle regulators. These results provide a mechanism for dysregulated rb1 and e2f4 pathways that may result in pituitary tumorigenesis. Previous studies have shown that Rb+/− mice develop pituitary adenomas; however, RB1 mutations have not been found in human pituitary tumors. In the present study, we uncovered a novel genetic pathway that may lead to Rb downregulation through RNA splicing mediated by usp39, a gene involved in assembly of the spliceosome. Our forward genetic study in zebrafish suggests that loss of usp39 results in aberrant rb1 mRNA splicing, which likely causes elevated expression of its target e2f4, a key regulator known to have oncogenic activity when overexpressed. We established that e2f4 upregulation is a main factor responsible for the adenohypophyseal cell lineage hyperplasia observed in the zebrafish usp39 mutant. It should be of interest to investigate if mutations or downregulation of USP39 would contribute to pituitary tumorigenesis in humans.
Collapse
Affiliation(s)
- Yesenia Ríos
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shlomo Melmed
- Department of Medicine, Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shuo Lin
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (SL); (NAL)
| | - Ning-Ai Liu
- Department of Medicine, Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (SL); (NAL)
| |
Collapse
|
38
|
Song EJ, Werner SL, Neubauer J, Stegmeier F, Aspden J, Rio D, Harper JW, Elledge SJ, Kirschner MW, Rape M. The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes Dev 2010; 24:1434-47. [PMID: 20595234 DOI: 10.1101/gad.1925010] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The spliceosome, a dynamic assembly of proteins and RNAs, catalyzes the excision of intron sequences from nascent mRNAs. Recent work has suggested that the activity and composition of the spliceosome are regulated by ubiquitination, but the underlying mechanisms have not been elucidated. Here, we report that the spliceosomal Prp19 complex modifies Prp3, a component of the U4 snRNP, with nonproteolytic K63-linked ubiquitin chains. The K63-linked chains increase the affinity of Prp3 for the U5 snRNP component Prp8, thereby allowing for the stabilization of the U4/U6.U5 snRNP. Prp3 is deubiquitinated by Usp4 and its substrate targeting factor, the U4/U6 recycling protein Sart3, which likely facilitates ejection of U4 proteins from the spliceosome during maturation of its active site. Loss of Usp4 in cells interferes with the accumulation of correctly spliced mRNAs, including those for alpha-tubulin and Bub1, and impairs cell cycle progression. We propose that the reversible ubiquitination of spliceosomal proteins, such as Prp3, guides rearrangements in the composition of the spliceosome at distinct steps of the splicing reaction.
Collapse
Affiliation(s)
- Eun Joo Song
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Reijns MAM, Auchynnikava T, Beggs JD. Analysis of Lsm1p and Lsm8p domains in the cellular localization of Lsm complexes in budding yeast. FEBS J 2009; 276:3602-17. [PMID: 19490016 PMCID: PMC2776932 DOI: 10.1111/j.1742-4658.2009.07080.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In eukaryotes, two heteroheptameric Sm-like (Lsm) complexes that differ by a single subunit localize to different cellular compartments and have distinct functions in RNA metabolism. The cytoplasmic Lsm1–7p complex promotes mRNA decapping and localizes to processing bodies, whereas the Lsm2–8p complex takes part in a variety of nuclear RNA processing events. The structural features that determine their different functions and localizations are not known. Here, we analyse a range of mutant and hybrid Lsm1 and Lsm8 proteins, shedding light on the relative importance of their various domains in determining their localization and ability to support growth. Although no single domain is either essential or sufficient for cellular localization, the Lsm1p N-terminus may act as part of a nuclear exclusion signal for Lsm1–7p, and the shorter Lsm8p N-terminus contributes to nuclear accumulation of Lsm2–8p. The C-terminal regions seem to play a secondary role in determining localization, with little or no contribution coming from the central Sm domains. The essential Lsm8 protein is remarkably resistant to mutation in terms of supporting viability, whereas Lsm1p appears more sensitive. These findings contribute to our understanding of how two very similar protein complexes can have different properties.
Collapse
|
40
|
Bellare P, Small EC, Huang X, Wohlschlegel JA, Staley JP, Sontheimer EJ. A role for ubiquitin in the spliceosome assembly pathway. Nat Struct Mol Biol 2008; 15:444-51. [PMID: 18425143 DOI: 10.1038/nsmb.1401] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 02/13/2008] [Indexed: 01/15/2023]
Abstract
The spliceosome uses numerous strategies to regulate its function in mRNA maturation. Ubiquitin regulates many cellular processes, but its potential roles during splicing are unknown. We have developed a new strategy that reveals a direct role for ubiquitin in the dynamics of splicing complexes. A ubiquitin mutant (I44A) that can enter the conjugation pathway but is compromised in downstream functions diminishes splicing activity by reducing the levels of the U4/U6-U5 small nuclear ribonucleoprotein (snRNP). Similarly, an inhibitor of ubiquitin's protein-protein interactions, ubistatin A, reduces U4/U6-U5 triple snRNP levels in vitro. When ubiquitin interactions are blocked, ATP-dependent disassembly of purified U4/U6-U5 particles is accelerated, indicating a direct role for ubiquitin in repressing U4/U6 unwinding. Finally, we show that the conserved splicing factor Prp8 is ubiquitinated within purified triple snRNPs. These results reveal a previously unknown ubiquitin-dependent mechanism for controlling the pre-mRNA splicing pathway.
Collapse
Affiliation(s)
- Priya Bellare
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
41
|
Bae E, Reiter NJ, Bingman CA, Kwan SS, Lee D, Phillips GN, Butcher SE, Brow DA. Structure and interactions of the first three RNA recognition motifs of splicing factor prp24. J Mol Biol 2007; 367:1447-58. [PMID: 17320109 PMCID: PMC1939982 DOI: 10.1016/j.jmb.2007.01.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 01/24/2007] [Accepted: 01/31/2007] [Indexed: 11/21/2022]
Abstract
The essential Saccharomyces cerevisiae pre-messenger RNA splicing protein 24 (Prp24) has four RNA recognition motifs (RRMs) and facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 is a component of the free U6 small nuclear ribonucleoprotein particle (snRNP) but not the U4/U6 bi-snRNP, and so is thought to be displaced from U6 by U4/U6 base-pairing. The interaction partners of each of the four RRMs of Prp24 and how these interactions direct U4/U6 pairing are not known. Here we report the crystal structure of the first three RRMs and the solution structure of the first two RRMs of Prp24. Strikingly, RRM 2 forms extensive inter-domain contacts with RRMs 1 and 3. These contacts occupy much of the canonical RNA-binding faces (beta-sheets) of RRMs 1 and 2, but leave the beta-sheet of RRM 3 exposed. Previously identified substitutions in Prp24 that suppress mutations in U4 and U6 spliceosomal RNAs cluster primarily in the beta-sheet of RRM 3, but also in a conserved loop of RRM 2. RNA binding assays and chemical shift mapping indicate that a large basic patch evident on the surface of RRMs 1 and 2 is part of a high affinity U6 RNA binding site. Our results suggest that Prp24 binds free U6 RNA primarily with RRMs 1 and 2, which may remodel the U6 secondary structure. The beta-sheet of RRM 3 then influences U4/U6 pairing through interaction with an unidentified ligand.
Collapse
Affiliation(s)
- Euiyoung Bae
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706, USA
| | - Nicholas J. Reiter
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Craig A. Bingman
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706, USA
| | - Sharon S. Kwan
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Donghan Lee
- National Cancer Institute, Frederick, MD 21702, USA
| | - George N. Phillips
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706, USA
| | - Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - David A. Brow
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
42
|
Chen CH, Kao DI, Chan SP, Kao TC, Lin JY, Cheng SC. Functional links between the Prp19-associated complex, U4/U6 biogenesis, and spliceosome recycling. RNA (NEW YORK, N.Y.) 2006; 12:765-74. [PMID: 16540691 PMCID: PMC1440898 DOI: 10.1261/rna.2292106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Prp19-associated complex, consisting of at least eight protein components, is involved in spliceosome activation by specifying the interaction of U5 and U6 with pre-mRNA for their stable association with the spliceosome after U4 dissociation. We show here that yeast cells depleted of one or two of the Prp19-associated components, accumulate the free form of U4. In NTC25-deleted cells, the level of U6 was also reduced. Extracts prepared from NTC25-deleted cells contained neither free U4 nor U6 and were ineffective in spliceosome recycling in the in vitro splicing reaction. Overexpression of U6 partially rescued the temperature-sensitive growth defect and decreased the relative amount of free U4 in NTC25-deleted cells, indicating that the accumulation of free U4 was a consequence of insufficient amounts of U6 snRNA. Extracts prepared from U6-overproducing NTC25-deleted cells containing free-form U6 were capable of spliceosome recycling, suggesting a role of free U6 RNP in spliceosome recycling. Our results demonstrate that in addition to direct participation in spliceosome activation, the Prp19-associated complex has an indirect role in spliceosome recycling through affecting the biogenesis of U4/U6 snRNP in the in vivo splicing reaction.
Collapse
Affiliation(s)
- Chun-Hong Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Bellare P, Kutach AK, Rines AK, Guthrie C, Sontheimer EJ. Ubiquitin binding by a variant Jab1/MPN domain in the essential pre-mRNA splicing factor Prp8p. RNA (NEW YORK, N.Y.) 2006; 12:292-302. [PMID: 16428608 PMCID: PMC1370909 DOI: 10.1261/rna.2152306] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The U1, U2, U4/U6, and U5 small nuclear ribonucleoproteins (snRNPs) are components of the spliceosome, which catalyzes pre-mRNA splicing. One of the largest and the most highly conserved proteins in the spliceosome is Prp8p, a component of the U5 snRNP. Despite its size and conservation, very few motifs have been identified that suggest specific biochemical functions. A variant of the Jab1/MPN domain found in a class of deubiquitinating enzymes is present near the C terminus of Prp8p. Ubiquitination regulates a broad range of cellular pathways, and its functions generally require ubiquitin recognition by one or more ubiquitin-binding domains (UBDs). No precise role for ubiquitin has been defined in the pre-mRNA splicing pathway, and no known UBDs have been found within splicing proteins. Here we show that a Prp8p fragment containing the Jab1/MPN domain binds directly to ubiquitin with an affinity comparable to other known UBDs. Several mutations within this domain that compromise splicing also reduce interaction of the fragment with ubiquitin-Sepharose. Our results define a new UBD and suggest functional links between ubiquitin and the pre-mRNA splicing machinery.
Collapse
Affiliation(s)
- Priya Bellare
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
44
|
Nijman SMB, Luna-Vargas MPA, Velds A, Brummelkamp TR, Dirac AMG, Sixma TK, Bernards R. A genomic and functional inventory of deubiquitinating enzymes. Cell 2006; 123:773-86. [PMID: 16325574 DOI: 10.1016/j.cell.2005.11.007] [Citation(s) in RCA: 1447] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Posttranslational modification of proteins by the small molecule ubiquitin is a key regulatory event, and the enzymes catalyzing these modifications have been the focus of many studies. Deubiquitinating enzymes, which mediate the removal and processing of ubiquitin, may be functionally as important but are less well understood. Here, we present an inventory of the deubiquitinating enzymes encoded in the human genome. In addition, we review the literature concerning these enzymes, with particular emphasis on their function, specificity, and the regulation of their activity.
Collapse
Affiliation(s)
- Sebastian M B Nijman
- Division of Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
45
|
Brenner TJ, Guthrie C. Genetic analysis reveals a role for the C terminus of the Saccharomyces cerevisiae GTPase Snu114 during spliceosome activation. Genetics 2005; 170:1063-80. [PMID: 15911574 PMCID: PMC1451163 DOI: 10.1534/genetics.105.042044] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Snu114 is the only GTPase required for mRNA splicing. As a homolog of elongation factor G, it contains three domains (III-V) predicted to undergo a large rearrangement following GTP hydrolysis. To assess the functional importance of the domains of Snu114, we used random mutagenesis to create conditionally lethal alleles. We identified three main classes: (1) mutations that are predicted to affect GTP binding and hydrolysis, (2) mutations that are clustered in 10- to 20-amino-acid stretches in each of domains III-V, and (3) mutations that result in deletion of up to 70 amino acids from the C terminus. Representative mutations from each of these classes blocked the first step of splicing in vivo and in vitro. The growth defects caused by most alleles were synthetically exacerbated by mutations in PRP8, a U5 snRNP protein that physically interacts with Snu114, as well as in genes involved in snRNP biogenesis, including SAD1 and BRR1. The allele snu114-60, which truncates the C terminus, was synthetically lethal with factors required for activation of the spliceosome, including the DExD/H-box ATPases BRR2 and PRP28. We propose that GTP hydrolysis results in a rearrangement between Prp8 and the C terminus of Snu114 that leads to release of U1 and U4, thus activating the spliceosome for catalysis.
Collapse
Affiliation(s)
| | - Christine Guthrie
- Corresponding author: Department of Biochemistry and Biophysics, 600 16th St., Genentech Hall, San Francisco, CA 94143-2200. E-mail:
| |
Collapse
|
46
|
Abstract
Pre-messenger RNA (pre-mRNA) splicing is a central step in gene expression. Lying between transcription and protein synthesis, pre-mRNA splicing removes sequences (introns) that would otherwise disrupt the coding potential of intron-containing transcripts. This process takes place in the nucleus, catalyzed by a large RNA-protein complex called the spliceosome. Prp8p, one of the largest and most highly conserved of nuclear proteins, occupies a central position in the catalytic core of the spliceosome, and has been implicated in several crucial molecular rearrangements that occur there. Recently, Prp8p has also come under the spotlight for its role in the inherited human disease, Retinitis Pigmentosa.Prp8 is unique, having no obvious homology to other proteins; however, using bioinformatical analysis we reveal the presence of a conserved RNA recognition motif (RRM), an MPN/JAB domain and a putative nuclear localization signal (NLS). Here, we review biochemical and genetical data, mostly related to the human and yeast proteins, that describe Prp8's central role within the spliceosome and its molecular interactions during spliceosome formation, as splicing proceeds, and in post-splicing complexes.
Collapse
Affiliation(s)
- Richard J Grainger
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, United Kingdom
| | | |
Collapse
|
47
|
Quesada V, Díaz-Perales A, Gutiérrez-Fernández A, Garabaya C, Cal S, López-Otín C. Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochem Biophys Res Commun 2004; 314:54-62. [PMID: 14715245 DOI: 10.1016/j.bbrc.2003.12.050] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have identified and cloned 22 human cDNAs encoding novel members of the ubiquitin-specific protease (USP) family. Eighteen of the identified proteins contain all structural features characteristic of these cysteine proteinases, whereas four of them have been classified as non-peptidase homologues. Northern blot analysis demonstrated that the identified USPs are broadly and differentially distributed in human tissues, some of them being especially abundant in skeletal muscle or testis. Enzymatic studies performed with the identified USPs revealed that at least twelve of them are deubiquitylating enzymes based on their ability to cleave ubiquitin from a ubiquitin-beta-galactosidase fusion protein. These results provide additional evidence of the extreme complexity and diversity of the USP proteolytic system in human tissues and open the possibility to explore the relevance of their multiple components in the regulation of ubiquitin-mediated pathways in normal and pathological functions.
Collapse
Affiliation(s)
- Víctor Quesada
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Wang Q, Hobbs K, Lynn B, Rymond BC. The Clf1p splicing factor promotes spliceosome assembly through N-terminal tetratricopeptide repeat contacts. J Biol Chem 2003; 278:7875-83. [PMID: 12509417 DOI: 10.1074/jbc.m210839200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spliceosome assembly follows a well conserved pathway of subunit addition that includes both small nuclear ribonucleoprotein (snRNP) particles and non-snRNP splicing factors. Clf1p is an unusual splicing factor composed almost entirely of direct repeats of the tetratricopeptide repeat (TPR) protein-binding motif. Here we show that the Clf1p protein resides in at least two multisubunit protein complexes, a small nuclear RNA-free structure similar to what was reported as the Prp19p complex (nineteen complex; NTC) and an RNP structure that contains the U2, U5, and U6 small nuclear RNAs. Thirty Ccf (Clf1p complex factor) proteins have been identified by mass spectroscopy or immune detection as known or suspected components of the yeast spliceosome. Deletion of TPR1 or TPR2 from an epitope-tagged Clf1p protein (i.e. Clf1Delta2-TAP) destabilizes Clf1p complexes assembled in vivo, causing the release of the Cef1p and Prp19p NTC factors and decreased association of the Rse1p, Snu114p, and Hsh155p snRNP proteins. In vitro, temperature inactivation of Clf1Delta2p impairs the prespliceosome to spliceosome transition and prevents Prp19p recruitment to the splicing complex. These and related data support the view that the poly-TPR Clf1p splicing factor promotes the functional integration of the U4/U6.U5 tri-snRNP particle into the U1-, U2-dependent prespliceosome.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Biology, University of Kentucky, Lexington 40506-0225, USA
| | | | | | | |
Collapse
|
49
|
Mougin A, Gottschalk A, Fabrizio P, Lührmann R, Branlant C. Direct probing of RNA structure and RNA-protein interactions in purified HeLa cell's and yeast spliceosomal U4/U6.U5 tri-snRNP particles. J Mol Biol 2002; 317:631-49. [PMID: 11955014 DOI: 10.1006/jmbi.2002.5451] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The U4/U6.U5 tri-snRNP is a key component of spliceosomes. By using chemical reagents and RNases, we performed the first extensive experimental analysis of the structure and accessibility of U4 and U6 snRNAs in tri-snRNPs. These were purified from HeLa cell nuclear extract and Saccharomyces cerevisiae cellular extract. U5 accessibility was also investigated. For both species, data demonstrate the formation of the U4/U6 Y-shaped structure. In the human tri-snRNP and U4/U6 snRNP, U6 forms the long range interaction, that was previously proposed to be responsible for dissociation of the deproteinized U4/U6 duplex. In both yeast and human tri-snRNPs, U5 is more protected than U4 and U6, suggesting that the U5 snRNP-specific protein complex and other components of the tri-snRNP wrapped the 5' stem-loop of U5. Loop I of U5 is partially accessible, and chemical modifications of loop I were identical in yeast and human tri-snRNPs. This reflects a strong conservation of the interactions of proteins with the functional loop I. Only some parts of the U4/U6 Y-shaped motif (the 5' stem-loop of U4 and helix II) are protected. Due to difference of protein composition of yeast and human tri-snRNP, the U6 segment linking the 5' stem-loop to the Y-shaped structure and the U4 central single-stranded segment are more accessible in the yeast than in the human tri-snRNP, especially, the phylogenetically conserved ACAGAG sequence of U6. Data are discussed taking into account knowledge on RNA and protein components of yeast and human snRNPs and their involvement in splicesome assembly.
Collapse
Affiliation(s)
- Annie Mougin
- UMR 7567 CNRS-UHP Nancy I, Maturation des ARN et Enzymologie Moléculaire, Université H. Poincaré B.P. 239, 54506 Vandoeuvre-les Nancy Cédex, France
| | | | | | | | | |
Collapse
|
50
|
Anantharaman V, Koonin EV, Aravind L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 2002; 30:1427-64. [PMID: 11917006 PMCID: PMC101826 DOI: 10.1093/nar/30.7.1427] [Citation(s) in RCA: 399] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA metabolism, broadly defined as the compendium of all processes that involve RNA, including transcription, processing and modification of transcripts, translation, RNA degradation and its regulation, is the central and most evolutionarily conserved part of cell physiology. A comprehensive, genome-wide census of all enzymatic and non-enzymatic protein domains involved in RNA metabolism was conducted by using sequence profile analysis and structural comparisons. Proteins related to RNA metabolism comprise from 3 to 11% of the complete protein repertoire in bacteria, archaea and eukaryotes, with the greatest fraction seen in parasitic bacteria with small genomes. Approximately one-half of protein domains involved in RNA metabolism are present in most, if not all, species from all three primary kingdoms and are traceable to the last universal common ancestor (LUCA). The principal features of LUCA's RNA metabolism system were reconstructed by parsimony-based evolutionary analysis of all relevant groups of orthologous proteins. This reconstruction shows that LUCA possessed not only the basal translation system, but also the principal forms of RNA modification, such as methylation, pseudouridylation and thiouridylation, as well as simple mechanisms for polyadenylation and RNA degradation. Some of these ancient domains form paralogous groups whose evolution can be traced back in time beyond LUCA, towards low-specificity proteins, which probably functioned as cofactors for ribozymes within the RNA world framework. The main lineage-specific innovations of RNA metabolism systems were identified. The most notable phase of innovation in RNA metabolism coincides with the advent of eukaryotes and was brought about by the merge of the archaeal and bacterial systems via mitochondrial endosymbiosis, but also involved emergence of several new, eukaryote-specific RNA-binding domains. Subsequent, vast expansions of these domains mark the origin of alternative splicing in animals and probably in plants. In addition to the reconstruction of the evolutionary history of RNA metabolism, this analysis produced numerous functional predictions, e.g. of previously undetected enzymes of RNA modification.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Building 389, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|