1
|
Kodiha M, Azad N, Chu S, Crampton N, Stochaj U. Oxidative stress and signaling through EGFR and PKA pathways converge on the nuclear transport factor RanBP1. Eur J Cell Biol 2024; 103:151376. [PMID: 38011756 DOI: 10.1016/j.ejcb.2023.151376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Nuclear protein trafficking requires the soluble transport factor RanBP1. The subcellular distribution of RanBP1 is dynamic, as the protein shuttles between the nucleus and cytoplasm. To date, the signaling pathways regulating RanBP1 subcellular localization are poorly understood. During interphase, RanBP1 resides mostly in the cytoplasm. We show here that oxidative stress concentrates RanBP1 in the nucleus, and our study defines the underlying mechanisms. Specifically, RanBP1's cysteine residues are not essential for its oxidant-induced relocation. Furthermore, our pharmacological approaches uncover that signaling mediated by epidermal growth factor receptor (EGFR) and protein kinase A (PKA) control RanBP1 localization during stress. In particular, pharmacological inhibitors of EGFR or PKA diminish the oxidant-dependent relocation of RanBP1. Mutant analysis identified serine 60 and tyrosine 103 as regulators of RanBP1 nuclear accumulation during oxidant exposure. Taken together, our results define RanBP1 as a target of oxidative stress and a downstream effector of EGFR and PKA signaling routes. This positions RanBP1 at the intersection of important cellular signaling circuits.
Collapse
Affiliation(s)
- Mohamed Kodiha
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Nabila Azad
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Siwei Chu
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Noah Crampton
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada.
| |
Collapse
|
2
|
Kapinos LE, Kalita J, Kassianidou E, Rencurel C, Lim RYH. Mechanism of exportin retention in the cell nucleus. J Cell Biol 2024; 223:e202306094. [PMID: 38241019 PMCID: PMC10798875 DOI: 10.1083/jcb.202306094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Exportin receptors are concentrated in the nucleus to transport essential cargoes out of it. A mislocalization of exportins to the cytoplasm is linked to disease. Hence, it is important to understand how their containment within the nucleus is regulated. Here, we have studied the nuclear efflux of exportin2 (cellular apoptosis susceptibility protein or CAS) that delivers karyopherinα (Kapα or importinα), the cargo adaptor for karyopherinβ1 (Kapβ1 or importinβ1), to the cytoplasm in a Ran guanosine triphosphate (RanGTP)-mediated manner. We show that the N-terminus of CAS attenuates the interaction of RanGTPase activating protein 1 (RanGAP1) with RanGTP to slow GTP hydrolysis, which suppresses CAS nuclear exit at nuclear pore complexes (NPCs). Strikingly, a single phosphomimetic mutation (T18D) at the CAS N-terminus is sufficient to abolish its nuclear retention and coincides with metastatic cellular behavior. Furthermore, downregulating Kapβ1 disrupts CAS nuclear retention, which highlights the balance between their respective functions that is essential for maintaining the Kapα transport cycle. Therefore, NPCs play a functional role in selectively partitioning exportins in the cell nucleus.
Collapse
Affiliation(s)
- Larisa E. Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| | - Joanna Kalita
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| | - Elena Kassianidou
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| | - Chantal Rencurel
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| | - Roderick Y. H. Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| |
Collapse
|
3
|
Wang Y, Xiao T, Zhao C, Li G. The Regulation of Exosome Generation and Function in Physiological and Pathological Processes. Int J Mol Sci 2023; 25:255. [PMID: 38203424 PMCID: PMC10779122 DOI: 10.3390/ijms25010255] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes, a type of extracellular vesicle with a diameter of approximately 100 nm that is secreted by all cells, regulate the phenotype and function of recipient cells by carrying molecules such as proteins, nucleic acids, and lipids and are important mediators of intercellular communication. Exosomes are involved in various physiological and pathological processes such as immunomodulation, angiogenesis, tumorigenesis, metastasis, and chemoresistance. Due to their excellent properties, exosomes have shown their potential application in the clinical diagnosis and treatment of disease. The functions of exosomes depend on their biogenesis, uptake, and composition. Thus, a deeper understanding of these processes and regulatory mechanisms can help to find new targets for disease diagnosis and therapy. Therefore, this review summarizes and integrates the recent advances in the regulatory mechanisms of the entire biological process of exosomes, starting from the formation of early-sorting endosomes (ESCs) by plasma membrane invagination to the release of exosomes by fusion of multivesicular bodies (MVBs) with the plasma membrane, as well as the regulatory process of the interactions between exosomes and recipient cells. We also describe and discuss the regulatory mechanisms of exosome production in tumor cells and the potential of exosomes used in cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.W.); (T.X.); (C.Z.)
| |
Collapse
|
4
|
Udi Y, Zhang W, Stein ME, Ricardo-Lax I, Pasolli HA, Chait BT, Rout MP. A general method for quantitative fractionation of mammalian cells. J Cell Biol 2023; 222:213941. [PMID: 36920247 PMCID: PMC10040634 DOI: 10.1083/jcb.202209062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/11/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Subcellular fractionation in combination with mass spectrometry-based proteomics is a powerful tool to study localization of key proteins in health and disease. Here we offered a reliable and rapid method for mammalian cell fractionation, tuned for such proteomic analyses. This method proves readily applicable to different cell lines in which all the cellular contents are accounted for, while maintaining nuclear and nuclear envelope integrity. We demonstrated the method's utility by quantifying the effects of a nuclear export inhibitor on nucleoplasmic and cytoplasmic proteomes.
Collapse
Affiliation(s)
- Yael Udi
- Laboratory of Cellular and Structural Biology, The Rockefeller University , New York, NY, USA
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University , New York, NY, USA
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller University , New York, NY, USA
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University , New York, NY, USA
| | - Hilda A Pasolli
- Electron Microscopy Resource Center, The Rockefeller University , New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University , New York, NY, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University , New York, NY, USA
| |
Collapse
|
5
|
Audia S, Brescia C, Dattilo V, D’Antona L, Calvano P, Iuliano R, Trapasso F, Perrotti N, Amato R. RANBP1 (RAN Binding Protein 1): The Missing Genetic Piece in Cancer Pathophysiology and Other Complex Diseases. Cancers (Basel) 2023; 15:cancers15020486. [PMID: 36672435 PMCID: PMC9857238 DOI: 10.3390/cancers15020486] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
RANBP1 encoded by RANBP1 or HTF9A (Hpall Tiny Fragments Locus 9A), plays regulatory functions of the RAN-network, belonging to the RAS superfamily of small GTPases. Through this function, RANBP1 regulates the RANGAP1 activity and, thus, the fluctuations between GTP-RAN and GDP-RAN. In the light of this, RANBP1 take actions in maintaining the nucleus-cytoplasmic gradient, thus making nuclear import-export functional. RANBP1 has been implicated in the inter-nuclear transport of proteins, nucleic acids and microRNAs, fully contributing to cellular epigenomic signature. Recently, a RANBP1 diriment role in spindle checkpoint formation and nucleation has emerged, thus constituting an essential element in the control of mitotic stability. Over time, RANBP1 has been demonstrated to be variously involved in human cancers both for the role in controlling nuclear transport and RAN activity and for its ability to determine the efficiency of the mitotic process. RANBP1 also appears to be implicated in chemo-hormone and radio-resistance. A key role of this small-GTPases related protein has also been demonstrated in alterations of axonal flow and neuronal plasticity, as well as in viral and bacterial metabolism and in embryological maturation. In conclusion, RANBP1 appears not only to be an interesting factor in several pathological conditions but also a putative target of clinical interest.
Collapse
Affiliation(s)
- Salvatore Audia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Vincenzo Dattilo
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Lucia D’Antona
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Pierluigi Calvano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rosario Amato
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-3694084
| |
Collapse
|
6
|
Kaur S, Saldana AC, Elkahloun AG, Petersen JD, Arakelyan A, Singh SP, Jenkins LM, Kuo B, Reginauld B, Jordan DG, Tran AD, Wu W, Zimmerberg J, Margolis L, Roberts DD. CD47 interactions with exportin-1 limit the targeting of m 7G-modified RNAs to extracellular vesicles. J Cell Commun Signal 2022; 16:397-419. [PMID: 34841476 PMCID: PMC9411329 DOI: 10.1007/s12079-021-00646-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
CD47 is a marker of self and a signaling receptor for thrombospondin-1 that is also a component of extracellular vesicles (EVs) released by various cell types. Previous studies identified CD47-dependent functional effects of T cell EVs on target cells, mediated by delivery of their RNA contents, and enrichment of specific subsets of coding and noncoding RNAs in CD47+ EVs. Mass spectrometry was employed here to identify potential mechanisms by which CD47 regulates the trafficking of specific RNAs to EVs. Specific interactions of CD47 and its cytoplasmic adapter ubiquilin-1 with components of the exportin-1/Ran nuclear export complex were identified and confirmed by coimmunoprecipitation. Exportin-1 is known to regulate nuclear to cytoplasmic trafficking of 5'-7-methylguanosine (m7G)-modified microRNAs and mRNAs that interact with its cargo protein EIF4E. Interaction with CD47 was inhibited following alkylation of exportin-1 at Cys528 by its covalent inhibitor leptomycin B. Leptomycin B increased levels of m7G-modified RNAs, and their association with exportin-1 in EVs released from wild type but not CD47-deficient cells. In addition to perturbing nuclear to cytoplasmic transport, transcriptomic analyses of EVs released by wild type and CD47-deficient Jurkat T cells revealed a global CD47-dependent enrichment of m7G-modified microRNAs and mRNAs in EVs released by CD47-deficient cells. Correspondingly, decreasing CD47 expression in wild type cells or treatment with thrombospondin-1 enhanced levels of specific m7G-modified RNAs released in EVs, and re-expressing CD47 in CD47-deficient T cells decreased their levels. Therefore, CD47 signaling limits the trafficking of m7G-modified RNAs to EVs through physical interactions with the exportin-1/Ran transport complex.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Alejandra Cavazos Saldana
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Abdel G Elkahloun
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Jennifer D Petersen
- Section On Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Anush Arakelyan
- Section On Intercellular Interactions, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Bethany Kuo
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Bianca Reginauld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - David G Jordan
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Andy D Tran
- Confocal Microscopy Core Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Weiwei Wu
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Joshua Zimmerberg
- Section On Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Leonid Margolis
- Section On Intercellular Interactions, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA.
| |
Collapse
|
7
|
Shen Z, Zhuang W, Li K, Guo Y, Qu B, Chen S, Gao J, Liu J, Xu L, Dong X, Che J, Li Q. Identification of Novel Covalent XPO1 Inhibitors Based on a Hybrid Virtual Screening Strategy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082543. [PMID: 35458742 PMCID: PMC9024667 DOI: 10.3390/molecules27082543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Nuclear export protein 1 (XPO1), a member of the nuclear export protein-p (Karyopherin-P) superfamily, regulates the transport of “cargo” proteins. To facilitate this important process, which is essential for cellular homeostasis, XPO1 must first recognize and bind the cargo proteins. To inhibit this process, small molecule inhibitors have been designed that inhibit XPO1 activity through covalent binding. However, the scaffolds for these inhibitors are very limited. While virtual screening may be used to expand the diversity of the XPO1 inhibitor skeleton, enormous computational resources would be required to accomplish this using traditional screening methods. In the present study, we report the development of a hybrid virtual screening workflow and its application in XPO1 covalent inhibitor screening. After screening, several promising XPO1 covalent molecules were obtained. Of these, compound 8 performed well in both tumor cell proliferation assays and a nuclear export inhibition assay. In addition, molecular dynamics simulations were performed to provide information on the mode of interaction of compound 8 with XPO1. This research has identified a promising new scaffold for XPO1 inhibitors, and it demonstrates an effective and resource-saving workflow for identifying new covalent inhibitors.
Collapse
Affiliation(s)
- Zheyuan Shen
- Department of Urology, Rui’an People’s Hospital, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China;
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China; (S.C.); (J.G.); (X.D.)
| | - Weihao Zhuang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (W.Z.); (Y.G.); (B.Q.); (J.L.)
| | - Kang Li
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai 222000, China;
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (W.Z.); (Y.G.); (B.Q.); (J.L.)
| | - Bingxue Qu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (W.Z.); (Y.G.); (B.Q.); (J.L.)
| | - Sikang Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China; (S.C.); (J.G.); (X.D.)
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (W.Z.); (Y.G.); (B.Q.); (J.L.)
| | - Jian Gao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China; (S.C.); (J.G.); (X.D.)
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (W.Z.); (Y.G.); (B.Q.); (J.L.)
| | - Jing Liu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (W.Z.); (Y.G.); (B.Q.); (J.L.)
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China;
| | - Xiaowu Dong
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China; (S.C.); (J.G.); (X.D.)
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (W.Z.); (Y.G.); (B.Q.); (J.L.)
| | - Jinxin Che
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China; (S.C.); (J.G.); (X.D.)
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (W.Z.); (Y.G.); (B.Q.); (J.L.)
- Correspondence: (J.C.); (Q.L.)
| | - Qimeng Li
- Department of Urology, Rui’an People’s Hospital, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China;
- Correspondence: (J.C.); (Q.L.)
| |
Collapse
|
8
|
Qu B, Xu Y, Lu Y, Zhuang W, Jin X, Shi Q, Yan S, Guo Y, Shen Z, Che J, Wu Y, Tong L, Dong X, Yang H. Design, synthesis and biological evaluation of sulfonamides inhibitors of XPO1 displaying activity against multiple myeloma cells. Eur J Med Chem 2022; 235:114257. [DOI: 10.1016/j.ejmech.2022.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
9
|
Ogawa Y, Imamoto N. Methods to separate nuclear soluble fractions reflecting localizations in living cells. iScience 2021; 24:103503. [PMID: 34934922 DOI: 10.1016/j.isci.2021.103503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/15/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
To understand various intranuclear functions, it is important to know when, what, and how proteins enter the nucleus. Although many methods and commercial kits for nuclear fractionation have been developed, there are still no methods for obtaining a complete nuclear proteome. Soluble nuclear proteins are often lost during fractionation. We developed remarkably improved methods to obtain nuclear soluble fractions by optimizing the conditions of selective permeabilization of the plasma membrane. As a result, 10 million cells could be separated into the cytoplasmic and nuclear soluble fractions more precisely in a 1.5-mL test tube. Moreover, the addition of an inhibitor to prevent leakage from the nucleus retained small proteins in the nucleus. Because of the simple protocols and easy application for multiple samples, our methods are expected to be applied to various studies on spatiotemporal changes of dynamic nuclear proteins, such as signal transduction.
Collapse
Affiliation(s)
- Yutaka Ogawa
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Wei Z, Duan X, Li Q, Li Q, Wang Y. High expression of Ran binding protein 1 predicts poor outcomes in hepatocellular carcinoma patients: a Cancer Genome Atlas database analysis. J Gastrointest Oncol 2021; 12:2966-2984. [PMID: 35070423 PMCID: PMC8748041 DOI: 10.21037/jgo-21-541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/14/2021] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Ran-specific binding protein 1 (RANBP1) is involved in the regulation of the cell cycle, while its role in hepatocellular carcinoma (HCC) is unknown. Therefore, we aimed to demonstrate the association of RANBP1 with clinicopathologic features and potential biological functions in HCC based on The Cancer Genome Atlas (TCGA) data. METHODS We assessed RANBP1 expression and its correlation with clinicopathologic features and evaluated the prognostic value of RANBP1 with Kaplan-Meier survival analysis and the MethSurv database. Univariate and multivariate Cox regression analyses were conducted to elucidate the factors responsible for prognosis. The identification of a co-expression network and the analysis of related biological events with RANBP1 in HCC were assessed using LinkedOmics. Moreover, gene set enrichment analysis (GSEA) was employed to annotate the biological function of RANBP1. We also explored the correlation between RANBP1 and tumor immune infiltrates using a single sample GSEA (ssGSEA). RESULTS The expression of RANBP1 was found significantly elevated in HCC and linked to advanced T stage and histopathological grade. Up-regulated RANBP1 expression was linked to poor prognosis. High DNA methylation levels of RANBP1 were significantly linked to very poor overall survival (OS). Co-expression network analysis revealed that RANBP1 was involved in ribosome, spliceosome, deoxyribonucleic acid (DNA) replication, ribonucleic acid (RNA) transport, and cell cycle. GSEA showed enrichment of G2M-checkpoint, Wingless and Int-1 (Wnt) cell signaling, and DNA repair in the RANBP1 high-expression phenotype. By using ssGSEA analysis, the increased RANBP1 expression was positively linked to the immune infiltration level of T helper cell type-1 (Th1) and negatively linked to the immune infiltration levels of T helper cell type-17 (Th17). CONCLUSIONS Findings suggest that RANBP1 may play a pivotal role in HCC prognosis and can potentially serve as a candidate biosignature and as a therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhengxiao Wei
- Department of Clinical Laboratory, Public Health Clinical Center of Chengdu, Chengdu, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Qi Li
- College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory of Big Data for Bio-intelligence, Chongqing, China
| | - Qingfeng Li
- Department of Clinical Laboratory, Public Health Clinical Center of Chengdu, Chengdu, China
| | - Yu Wang
- College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory of Big Data for Bio-intelligence, Chongqing, China
| |
Collapse
|
11
|
Spatiotemporal 22q11.21 Protein Network Implicates DGCR8-Dependent MicroRNA Biogenesis as a Risk for Late-Fetal Cortical Development in Psychiatric Diseases. Life (Basel) 2021; 11:life11060514. [PMID: 34073122 PMCID: PMC8227527 DOI: 10.3390/life11060514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
The chromosome 22q11.21 copy number variant (CNV) is a vital risk factor that can be a genetic predisposition to neurodevelopmental disorders (NDD). As the 22q11.21 CNV affects multiple genes, causal disease genes and mechanisms affected are still poorly understood. Thus, we aimed to identify the most impactful 22q11.21 CNV genes and the potential impacted human brain regions, developmental stages and signaling pathways. We constructed the spatiotemporal dynamic networks of 22q11.21 CNV genes using the brain developmental transcriptome and physical protein–protein interactions. The affected brain regions, developmental stages, driver genes and pathways were subsequently investigated via integrated bioinformatics analysis. As a result, we first identified that 22q11.21 CNV genes affect the cortical area mainly during late fetal periods. Interestingly, we observed that connections between a driver gene, DGCR8, and its interacting partners, MECP2 and CUL3, also network hubs, only existed in the network of the late fetal period within the cortical region, suggesting their functional specificity during brain development. We also confirmed the physical interaction result between DGCR8 and CUL3 by liquid chromatography-tandem mass spectrometry. In conclusion, our results could suggest that the disruption of DGCR8-dependent microRNA biogenesis plays a vital role in NDD for late fetal cortical development.
Collapse
|
12
|
Lai KY, Rizzato M, Aydin I, Villalonga-Planells R, Drexler HCA, Schelhaas M. A Ran-binding protein facilitates nuclear import of human papillomavirus type 16. PLoS Pathog 2021; 17:e1009580. [PMID: 33974675 PMCID: PMC8139508 DOI: 10.1371/journal.ppat.1009580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 04/23/2021] [Indexed: 01/01/2023] Open
Abstract
Human papillomaviruses (HPVs) utilize an atypical mode of nuclear import during cell entry. Residing in the Golgi apparatus until mitosis onset, a subviral complex composed of the minor capsid protein L2 and viral DNA (L2/vDNA) is imported into the nucleus after nuclear envelope breakdown by associating with mitotic chromatin. In this complex, L2 plays a crucial role in the interactions with cellular factors that enable delivery and ultimately tethering of the viral genome to mitotic chromatin. To date, the cellular proteins facilitating these steps remain unknown. Here, we addressed which cellular proteins may be required for this process. Using label-free mass spectrometry, biochemical assays, microscopy, and functional virological assays, we discovered that L2 engages a hitherto unknown protein complex of Ran-binding protein 10 (RanBP10), karyopherin alpha2 (KPNA2), and dynein light chain DYNLT3 to facilitate transport towards mitotic chromatin. Thus, our study not only identifies novel cellular interactors and mechanism that facilitate a poorly understood step in HPV entry, but also a novel cellular transport complex. Human papillomaviruses (HPVs) cause proliferative lesions such as benign warts or malignant invasive cancers. Like other DNA viruses, HPV has to deliver its genome to the nucleus for viral genome transcription and replication. After initial attachment, HPVs are endocytosed to be eventually directed to the trans-Golgi-network (TGN) by intracellular trafficking, where they reside until cell division. Mitosis onset enables access of the virus to cellular chromatin after nuclear envelope breakdown. Tethering of the virus to mitotic chromatin ensures nuclear delivery upon reformation of the nuclear envelope after mitosis. Our previous work showed that the minor capsid protein L2 facilitates nuclear delivery. However, the detailed mechanism, namely, how HPV trafficks from cytosol to the nuclear space, is barely understood. Here, we identified for the first time cellular proteins that interacted with L2 for nuclear import. Mechanistically, the proteins formed a hitherto unknown cellular transport complex that interacted with L2 to direct the virus to mitotic chromosomes by microtubular transport. Our findings provided not only evidence for a transport mechanism of a poorly understood step of HPV entry, but also discovered a novel cellular transport complex.
Collapse
Affiliation(s)
- Kun-Yi Lai
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre ‘Cells in Motion’ (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Matteo Rizzato
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Inci Aydin
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | | | - Hannes C. A. Drexler
- Biomolecular Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre ‘Cells in Motion’ (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
13
|
Moriyama T, Yoneda Y, Oka M, Yamada M. Transportin-2 plays a critical role in nucleocytoplasmic shuttling of oestrogen receptor-α. Sci Rep 2020; 10:18640. [PMID: 33122699 PMCID: PMC7596556 DOI: 10.1038/s41598-020-75631-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Oestrogen receptor-α (ERα) shuttles continuously between the nucleus and the cytoplasm, and functions as an oestrogen-dependent transcription factor in the nucleus and as an active mediator of signalling pathways, such as phosphatidylinositol 3-kinase (PI3K)/AKT, in the cytoplasm. However, little is known regarding the mechanism of ERα nucleocytoplasmic shuttling. In this study, we found that ERα is transported into the nucleus by importin-α/β1. Furthermore, we found that Transportin-2 (TNPO2) is involved in 17β-oestradiol (E2)-dependent cytoplasmic localisation of ERα. Interestingly, it was found that TNPO2 does not mediate nuclear export, but rather is involved in the cytoplasmic retention of ERα via the proline/tyrosine (PY) motifs. Moreover, we found that TNPO2 competitively binds to the basic nuclear localisation signal (NLS) of ERα with importin-α to inhibit importin-α/β-dependent ERα nuclear import. Finally, we confirmed that TNPO2 knockdown enhances the nuclear localisation of wild-type ERα and reduces PI3K/AKT phosphorylation in the presence of E2. These results reveal that TNPO2 regulates nucleocytoplasmic shuttling and cytoplasmic retention of ERα, so that ERα has precise functions depending on the stimulation.
Collapse
Affiliation(s)
- Tetsuji Moriyama
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Yoshihiro Yoneda
- Health and Nutrition (NIBIOHN), National Institutes of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Laboratory of Nuclear Transport Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan. .,Life Science Research Laboratory, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| |
Collapse
|
14
|
Dissecting the mechanism of signaling-triggered nuclear export of newly synthesized influenza virus ribonucleoprotein complexes. Proc Natl Acad Sci U S A 2020; 117:16557-16566. [PMID: 32601201 PMCID: PMC7368312 DOI: 10.1073/pnas.2002828117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Influenza viruses (IV) replicate in the nucleus. Export of newly produced genomes, packaged in viral ribonucleoprotein (vRNP) complexes, relies on the nuclear CRM1 export pathway and appears to be timely controlled by virus-induced cellular signaling. However, the exact mechanism of the signaling-controlled complex assembly and export is enigmatic. Here we show that IV activates the Raf/MEK/ERK/RSK1 pathway, leading to phosphorylation at specific sites of the NP, which in turn, creates a docking site for binding of the M1 protein, an initial step in formation of vRNP export complexes. These findings are of broad relevance regarding the regulatory role of signaling pathways and posttranslational modifications in virus propagation and will strongly support ongoing development of an alternative anti-influenza therapy. Influenza viruses (IV) exploit a variety of signaling pathways. Previous studies showed that the rapidly accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway is functionally linked to nuclear export of viral ribonucleoprotein (vRNP) complexes, suggesting that vRNP export is a signaling-induced event. However, the underlying mechanism remained completely enigmatic. Here we have dissected the unknown molecular steps of signaling-driven vRNP export. We identified kinases RSK1/2 as downstream targets of virus-activated ERK signaling. While RSK2 displays an antiviral role, we demonstrate a virus-supportive function of RSK1, migrating to the nucleus to phosphorylate nucleoprotein (NP), the major constituent of vRNPs. This drives association with viral matrix protein 1 (M1) at the chromatin, important for vRNP export. Inhibition or knockdown of MEK, ERK or RSK1 caused impaired vRNP export and reduced progeny virus titers. This work not only expedites the development of anti-influenza strategies, but in addition demonstrates converse actions of different RSK isoforms.
Collapse
|
15
|
Yau KC, Arnaoutov A, Aksenova V, Kaufhold R, Chen S, Dasso M. RanBP1 controls the Ran pathway in mammalian cells through regulation of mitotic RCC1 dynamics. Cell Cycle 2020; 19:1899-1916. [PMID: 32594833 PMCID: PMC7469662 DOI: 10.1080/15384101.2020.1782036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Ran GTPase plays critical roles in multiple cellular processes including interphase nucleocytoplasmic transport and mitotic spindle assembly. During mitosis in mammalian cells, GTP-bound Ran (Ran-GTP) is concentrated near mitotic chromatin while GDP-bound Ran (Ran-GDP) is more abundant distal to chromosomes. This pattern spatially controls spindle formation because Ran-GTP locally releases spindle assembly factors (SAFs), such as Hepatoma Up-Regulated Protein (HURP), from inhibitory interactions near chromosomes. Regulator of Chromatin Condensation 1 (RCC1) is Ran’s chromatin-bound exchange factor, and RanBP1 is a conserved Ran-GTP-binding protein that has been implicated as a mitotic regulator of RCC1 in embryonic systems. Here, we show that RanBP1 controls mitotic RCC1 dynamics in human somatic tissue culture cells. In addition, we observed the re-localization of HURP in metaphase cells after RanBP1 degradation, consistent with the idea that altered RCC1 dynamics functionally modulate SAF activities. Together, our findings reveal an important mitotic role for RanBP1 in human somatic cells, controlling the spatial distribution and magnitude of mitotic Ran-GTP production and thereby ensuring the accurate execution of Ran-dependent mitotic events. Abbreviations AID: Auxin-induced degron; FLIP: Fluorescence loss in photobleaching; FRAP: Fluorescence recovery after photobleaching; GDP: guanosine diphosphate; GTP: guanosine triphosphate; HURP: Hepatoma Up-Regulated Protein; NE: nuclear envelope; NEBD: Nuclear Envelope Breakdown; RanBP1: Ran-binding protein 1; RanGAP1: Ran GTPase-Activating Protein 1; RCC1: Regulator of Chromatin Condensation 1; RRR complex: RCC1/Ran/RanBP1 heterotrimeric complex; SAF: Spindle Assembly Factor; TIR1: Transport Inhibitor Response 1 protein; XEE: Xenopus egg extract.
Collapse
Affiliation(s)
- Ka Chun Yau
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health , Bethesda, MD 20892, USA
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health , Bethesda, MD 20892, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health , Bethesda, MD 20892, USA
| | - Ross Kaufhold
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health , Bethesda, MD 20892, USA
| | - Shane Chen
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health , Bethesda, MD 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health , Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Integration analysis of a miRNA-mRNA expression in A549 cells infected with a novel H3N2 swine influenza virus and the 2009 H1N1 pandemic influenza virus. INFECTION GENETICS AND EVOLUTION 2019; 74:103922. [PMID: 31207403 DOI: 10.1016/j.meegid.2019.103922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023]
Abstract
Swine are reservoirs for anthropogenic/zoonotic influenza viruses, and the prevalence and repeated introduction of the 2009 H1N1 pandemic influenza virus (pdm/09) into pigs raises the possibility of generating novel swine influenza viruses with the potential to infect humans. However, studies aiming to identify miRNAs involved in the transfer of novel swine influenza virus infection to human cells are rare. In this investigation, from the view of small RNA, microarrays and high-throughput sequencing were used to detect differentially expressed miRNAs and mRNAs after human lung epithelial cells were infected with the following three stains of influenza viruses: a novel H3N2 swine influenza virus reassorted with pdm/09 fragments, pdm/09 and classical swine influenza virus. A miRNA-mRNA interaction map was generated to show the correlation between miRNAs related to infection by the viruses with human infective potential/capability. The expression of 4 miRNAs (hsa-miR-96-5p, hsa-miR-140-5p, hsa-miR-30a-3p and hsa-miR-582-5p) and 5 relevant mRNAs (RCC1, ERVFRD-1, RANBP1, SCARB2 and RPS29) was determined. The integration analysis indicated that these candidates have rarely been reported to be associated with influenza virus. Focusing on miRNA expression changes could reveal novel reassortant viruses with human infective potential that may provide insight into future pandemics.
Collapse
|
17
|
Ferreira PA. The coming-of-age of nucleocytoplasmic transport in motor neuron disease and neurodegeneration. Cell Mol Life Sci 2019; 76:2247-2273. [PMID: 30742233 PMCID: PMC6531325 DOI: 10.1007/s00018-019-03029-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
The nuclear pore is the gatekeeper of nucleocytoplasmic transport and signaling through which a vast flux of information is continuously exchanged between the nuclear and cytoplasmic compartments to maintain cellular homeostasis. A unifying and organizing principle has recently emerged that cements the notion that several forms of amyotrophic lateral sclerosis (ALS), and growing number of other neurodegenerative diseases, co-opt the dysregulation of nucleocytoplasmic transport and that this impairment is a pathogenic driver of neurodegeneration. The understanding of shared pathomechanisms that underpin neurodegenerative diseases with impairments in nucleocytoplasmic transport and how these interface with current concepts of nucleocytoplasmic transport is bound to illuminate this fundamental biological process in a yet more physiological context. Here, I summarize unresolved questions and evidence and extend basic and critical concepts and challenges of nucleocytoplasmic transport and its role in the pathogenesis of neurodegenerative diseases, such as ALS. These principles will help to appreciate the roles of nucleocytoplasmic transport in the pathogenesis of ALS and other neurodegenerative diseases, and generate a framework for new ideas of the susceptibility of motoneurons, and possibly other neurons, to degeneration by dysregulation of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
18
|
Phang CW, Gandah NA, Abd Malek SN, Karsani SA. Proteomic analysis of flavokawain C-induced cell death in HCT 116 colon carcinoma cell line. Eur J Pharmacol 2019; 853:388-399. [DOI: 10.1016/j.ejphar.2019.04.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
|
19
|
Li Y, Zhou J, Min S, Zhang Y, Zhang Y, Zhou Q, Shen X, Jia D, Han J, Sun Q. Distinct RanBP1 nuclear export and cargo dissociation mechanisms between fungi and animals. eLife 2019; 8:e41331. [PMID: 31021318 PMCID: PMC6524963 DOI: 10.7554/elife.41331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/24/2019] [Indexed: 02/05/2023] Open
Abstract
Ran binding protein 1 (RanBP1) is a cytoplasmic-enriched and nuclear-cytoplasmic shuttling protein, playing important roles in nuclear transport. Much of what we know about RanBP1 is learned from fungi. Intrigued by the long-standing paradox of harboring an extra NES in animal RanBP1, we discovered utterly unexpected cargo dissociation and nuclear export mechanisms for animal RanBP1. In contrast to CRM1-RanGTP sequestration mechanism of cargo dissociation in fungi, animal RanBP1 solely sequestered RanGTP from nuclear export complexes. In fungi, RanBP1, CRM1 and RanGTP formed a 1:1:1 nuclear export complex; in contrast, animal RanBP1, CRM1 and RanGTP formed a 1:1:2 nuclear export complex. The key feature for the two mechanistic changes from fungi to animals was the loss of affinity between RanBP1-RanGTP and CRM1, since residues mediating their interaction in fungi were not conserved in animals. The biological significances of these different mechanisms in fungi and animals were also studied.
Collapse
Affiliation(s)
- Yuling Li
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Jinhan Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Sui Min
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Yang Zhang
- Division of Abdominal Cancer, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre for BiotherapyChengduChina
| | - Yuqing Zhang
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Qiao Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Xiaofei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of NeurologyWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of NeurologyWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Junhong Han
- Division of Abdominal Cancer, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre for BiotherapyChengduChina
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| |
Collapse
|
20
|
Two isoforms of TALDO1 generated by alternative translational initiation show differential nucleocytoplasmic distribution to regulate the global metabolic network. Sci Rep 2016; 6:34648. [PMID: 27703206 PMCID: PMC5050407 DOI: 10.1038/srep34648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/16/2016] [Indexed: 01/22/2023] Open
Abstract
Transaldolase 1 (TALDO1) is a rate-limiting enzyme involved in the pentose phosphate pathway, which is traditionally thought to occur in the cytoplasm. In this study, we found that the gene TALDO1 has two translational initiation sites, generating two isoforms that differ by the presence of the first 10 N-terminal amino acids. Notably, the long and short isoforms were differentially localised to the cell nucleus and cytoplasm, respectively. Pull-down and in vitro transport assays showed that the long isoform, unlike the short one, binds to importin α and is actively transported into the nucleus in an importin α/β-dependent manner, demonstrating that the 10 N-terminal amino acids are essential for its nuclear localisation. Additionally, we found that these two isoforms can form homo- and/or hetero-dimers with different localisation dynamics. A metabolite analysis revealed that the subcellular localisation of TALDO1 is not crucial for its activity in the pentose phosphate pathway. However, the expression of these two isoforms differentially affected the levels of various metabolites, including components of the tricarboxylic acid cycle, nucleotides, and sugars. These results demonstrate that the nucleocytoplasmic distribution of TALDO1, modulated via alternative translational initiation and dimer formation, plays an important role in a wide range of metabolic networks.
Collapse
|
21
|
Kırlı K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C, Urlaub H, Görlich D. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. eLife 2015; 4:e11466. [PMID: 26673895 PMCID: PMC4764573 DOI: 10.7554/elife.11466] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/13/2015] [Indexed: 12/23/2022] Open
Abstract
CRM1 is a highly conserved, RanGTPase-driven exportin that carries proteins and RNPs from the nucleus to the cytoplasm. We now explored the cargo-spectrum of CRM1 in depth and identified surprisingly large numbers, namely >700 export substrates from the yeast S. cerevisiae, ≈1000 from Xenopus oocytes and >1050 from human cells. In addition, we quantified the partitioning of ≈5000 unique proteins between nucleus and cytoplasm of Xenopus oocytes. The data suggest new CRM1 functions in spatial control of vesicle coat-assembly, centrosomes, autophagy, peroxisome biogenesis, cytoskeleton, ribosome maturation, translation, mRNA degradation, and more generally in precluding a potentially detrimental action of cytoplasmic pathways within the nuclear interior. There are also numerous new instances where CRM1 appears to act in regulatory circuits. Altogether, our dataset allows unprecedented insights into the nucleocytoplasmic organisation of eukaryotic cells, into the contributions of an exceedingly promiscuous exportin and it provides a new basis for NES prediction.
Collapse
Affiliation(s)
- Koray Kırlı
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samir Karaca
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Heinz Jürgen Dehne
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Matthias Samwer
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kuan Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
22
|
Knyphausen P, Kuhlmann N, de Boor S, Lammers M. Lysine-acetylation as a fundamental regulator of Ran function: Implications for signaling of proteins of the Ras-superfamily. Small GTPases 2015; 6:189-95. [PMID: 26507377 PMCID: PMC4905271 DOI: 10.1080/21541248.2015.1103399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The small GTP-binding protein Ran is involved in the regulation of essential cellular processes in interphase but also in mitotic cells: Ran controls the nucleocytoplasmic transport of proteins and RNA, it regulates mitotic spindle formation and nuclear envelope assembly. Deregulations in Ran dependent processes were implicated in the development of severe diseases such as cancer and neurodegenerative disorders. To understand how Ran-function is regulated is therefore of highest importance. Recently, several lysine-acetylation sites in Ran were identified by quantitative mass-spectrometry, some being located in highly important regions such as the P-loop, switch I, switch II and the G5/SAK motif. We recently reported that lysine-acetylation regulates nearly all aspects of Ran-function such as RCC1 catalyzed nucleotide exchange, intrinsic nucleotide hydrolysis, its interaction with NTF2 and the formation of import- and export-complexes. As a hint for its biological importance, we identified Ran-specific lysine-deacetylases (KDACs) and -acetyltransferases (KATs). Also for other small GTPases such as Ras, Rho, Cdc42, and for many effectors and regulators thereof, lysine-acetylation sites were discovered. However, the functional impact of lysine-acetylation as a regulator of protein function has only been marginally investigated so far. We will discuss recent findings of lysine-acetylation as a novel modification to regulate Ras-protein signaling.
Collapse
Affiliation(s)
- Philipp Knyphausen
- a Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD ); University of Cologne ; Cologne , Germany
| | - Nora Kuhlmann
- a Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD ); University of Cologne ; Cologne , Germany
| | - Susanne de Boor
- a Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD ); University of Cologne ; Cologne , Germany
| | - Michael Lammers
- a Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD ); University of Cologne ; Cologne , Germany
| |
Collapse
|
23
|
Mukherjee H, Chan KP, Andresen V, Hanley ML, Gjertsen BT, Myers AG. Interactions of the natural product (+)-avrainvillamide with nucleophosmin and exportin-1 Mediate the cellular localization of nucleophosmin and its AML-associated mutants. ACS Chem Biol 2015; 10:855-63. [PMID: 25531824 PMCID: PMC4652655 DOI: 10.1021/cb500872g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nucleophosmin (NPM1) is a multifunctional phosphoprotein localized predominantly within the nucleoli of eukaryotic cells. Mutations within its C-terminal domain are frequently observed in patients with acute myeloid leukemia (AML), are thought to play a key role in the initiation of the disease, and result in aberrant, cytoplasmic localization of the mutant protein. We have previously shown that the electrophilic antiproliferative natural product (+)-avrainvillamide (1) binds to proteins, including nucleophosmin, by S-alkylation of cysteine residues. Here, we report that avrainvillamide restores nucleolar localization of certain AML-associated mutant forms of NPM1 and provide evidence that this relocalization is mediated by interactions of avrainvillamide with mutant NPM1 and exportin-1 (Crm1). Immunofluorescence and mass spectrometric experiments employing a series of different NPM1 constructs suggest that a specific interaction between avrainvillamide and Cys275 of certain NPM1 mutants mediates the relocalization of these proteins to the nucleolus. Avrainvillamide treatment is also shown to inhibit nuclear export of Crm1 cargo proteins, including AML-associated NPM1 mutants. We also observe that avrainvillamide treatment displaces Thr199-phosphorylated NPM1 from duplicated centrosomes, leads to an accumulation of supernumerary centrosomes, and inhibits dephosphorylation of Thr199-phosphorylated NPM1 by protein phosphatase 1. Avrainvillamide is the first small molecule reported to relocalize specific cytoplasmic AML-associated NPM1 mutants to the nucleolus, providing an important demonstration of principle that small molecule induction of a wild-type NPM1 localization phenotype is feasible in certain human cancer cells.
Collapse
Affiliation(s)
- Herschel Mukherjee
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Kok-Ping Chan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Vibeke Andresen
- Centre for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Mariah L. Hanley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Andrew G. Myers
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
24
|
Paronett EM, Meechan DW, Karpinski BA, LaMantia AS, Maynard TM. Ranbp1, Deleted in DiGeorge/22q11.2 Deletion Syndrome, is a Microcephaly Gene That Selectively Disrupts Layer 2/3 Cortical Projection Neuron Generation. Cereb Cortex 2014; 25:3977-93. [PMID: 25452572 DOI: 10.1093/cercor/bhu285] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ranbp1, a Ran GTPase-binding protein implicated in nuclear/cytoplasmic trafficking, is included within the DiGeorge/22q11.2 Deletion Syndrome (22q11.2 DS) critical region associated with behavioral impairments including autism and schizophrenia. Ranbp1 is highly expressed in the developing forebrain ventricular/subventricular zone but has no known obligate function during brain development. We assessed the role of Ranbp1 in a targeted mouse mutant. Ranbp1(-/-) mice are not recovered live at birth, and over 60% of Ranbp1(-/-) embryos are exencephalic. Non-exencephalic Ranbp1(-/-) embryos are microcephalic, and proliferation of cortical progenitors is altered. At E10.5, radial progenitors divide more slowly in the Ranpb1(-/-) dorsal pallium. At E14.5, basal, but not apical/radial glial progenitors, are compromised in the cortex. In both E10.5 apical and E14.5 basal progenitors, M phase of the cell cycle appears selectively retarded by loss of Ranpb1 function. Ranbp1(-/-)-dependent proliferative deficits substantially diminish the frequency of layer 2/3, but not layer 5/6 cortical projection neurons. Ranbp1(-/-) cortical phenotypes parallel less severe alterations in LgDel mice that carry a deletion parallel to many (but not all) 22q11.2 DS patients. Thus, Ranbp1 emerges as a microcephaly gene within the 22q11.2 deleted region that may contribute to altered cortical precursor proliferation and neurogenesis associated with broader 22q11.2 deletion.
Collapse
Affiliation(s)
| | - Daniel W Meechan
- GW Institute for Neuroscience Department of Pharmacology and Physiology
| | - Beverly A Karpinski
- GW Institute for Neuroscience Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | | | - Thomas M Maynard
- GW Institute for Neuroscience Department of Pharmacology and Physiology
| |
Collapse
|
25
|
Saito N, Sakakibara K, Sato T, Friedman JM, Kufe DW, VonHoff DD, Kawabe T. CBS9106-induced CRM1 degradation is mediated by cullin ring ligase activity and the neddylation pathway. Mol Cancer Ther 2014; 13:3013-23. [PMID: 25253782 DOI: 10.1158/1535-7163.mct-14-0064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chromosome region maintenance 1 (CRM1) mediates the nuclear export of proteins and mRNAs, and is overexpressed in various cancers. Recent studies have also reported that CRM1 protein expression is a negative prognostic factor in patients with cancer. Therefore, CRM1 is considered a potential target for anticancer therapy. Our previous study demonstrated that CBS9106, a synthetic small-molecular inhibitor of CRM1, decreases CRM1 protein through proteasomal degradation without affecting CRM1 mRNA levels. However, the mechanism by which CRM1 is degraded is not well understood. Here, we demonstrate a novel signaling pathway that plays an important role in CBS9106-induced CRM1 degradation. We found that MLN4924, a selective inhibitor of NEDD8-activating enzyme (NAE), effectively inhibits cullin neddylation and attenuates CBS9106-induced CRM1 degradation in a time- and dose-dependent manner. MLN4924 also attenuated CBS9106-induced nuclear accumulation of Ran-binding protein 1 (RanBP1), cell growth inhibition, and apoptosis. Furthermore, RNAi-mediated knockdown of neddylation pathway proteins (NEDD8 and UBA3) or cullin ring ligase (CRL) component protein (Rbx1) attenuated CRM1 protein degradation and G1 phase cell-cycle arrest by CBS9106. Knockdown of CSN5 or CAND1 also partially inhibited CBS9106-induced CRM1 degradation. These findings demonstrate that CBS9106-induced CRM1 degradation is conferred by CRL activity involving the neddylation pathway, and that this response to CBS9106 leads to cell growth inhibition and apoptosis.
Collapse
Affiliation(s)
| | | | | | | | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard School, Boston, Massachusetts
| | - Daniel D VonHoff
- Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | | |
Collapse
|
26
|
Fung HYJ, Chook YM. Atomic basis of CRM1-cargo recognition, release and inhibition. Semin Cancer Biol 2014; 27:52-61. [PMID: 24631835 PMCID: PMC4108548 DOI: 10.1016/j.semcancer.2014.03.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 11/19/2022]
Abstract
CRM1 or XPO1 is the major nuclear export receptor in the cell, which controls the nuclear-cytoplasmic localization of many proteins and RNAs. CRM1 is also a promising cancer drug target as the transport receptor is overexpressed in many cancers where some of its cargos are misregulated and mislocalized to the cytoplasm. Atomic level understanding of CRM1 function has greatly facilitated recent drug discovery and development of CRM1 inhibitors to target a variety of malignancies. Numerous atomic resolution CRM1 structures are now available, explaining how the exporter recognizes nuclear export signals in its cargos, how RanGTP and cargo bind with positive cooperativity, how RanBP1 causes release of export cargos in the cytoplasm and how diverse inhibitors such as Leptomycin B and the new KPT-SINE compounds block nuclear export. This review summarizes structure-function studies that explain CRM1-cargo recognition, release and inhibition.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, TX 75390-9041, USA.
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, TX 75390-9041, USA.
| |
Collapse
|
27
|
Ran GTPase in nuclear envelope formation and cancer metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:323-51. [PMID: 24563355 DOI: 10.1007/978-1-4899-8032-8_15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107-Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities.
Collapse
|
28
|
Abstract
Oocytes are extremely large cells that have to coordinate accurate chromosome segregation, asymmetric cytoplasm partitioning together with their own development as fertilizable gametes. For this, they undergo both global (cell cycle progression related) and local changes. It is therefore essential to be able to monitor local changes as they take place in live maturing oocytes. We describe here a method to follow RanGTP gradients using FRET technology in vivo.
Collapse
Affiliation(s)
- Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | | |
Collapse
|
29
|
Dückert H, Pries V, Khedkar V, Menninger S, Bruss H, Bird AW, Maliga Z, Brockmeyer A, Janning P, Hyman A, Grimme S, Schürmann M, Preut H, Hübel K, Ziegler S, Kumar K, Waldmann H. Natural product-inspired cascade synthesis yields modulators of centrosome integrity. Nat Chem Biol 2011; 8:179-84. [PMID: 22198731 DOI: 10.1038/nchembio.758] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 10/07/2011] [Indexed: 12/23/2022]
Abstract
In biology-oriented synthesis, the scaffolds of biologically relevant compound classes inspire the synthesis of focused compound collections enriched in bioactivity. This criterion is, in particular, met by the scaffolds of natural products selected in evolution. The synthesis of natural product-inspired compound collections calls for efficient reaction sequences that preferably combine multiple individual transformations in one operation. Here we report the development of a one-pot, twelve-step cascade reaction sequence that includes nine different reactions and two opposing kinds of organocatalysis. The cascade sequence proceeds within 10-30 min and transforms readily available substrates into complex indoloquinolizines that resemble the core tetracyclic scaffold of numerous polycyclic indole alkaloids. Biological investigation of a corresponding focused compound collection revealed modulators of centrosome integrity, termed centrocountins, which caused fragmented and supernumerary centrosomes, chromosome congression defects, multipolar mitotic spindles, acentrosomal spindle poles and multipolar cell division by targeting the centrosome-associated proteins nucleophosmin and Crm1.
Collapse
Affiliation(s)
- Heiko Dückert
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Dortmund, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kerro Dego O, Oliver SP, Almeida RA. Host-pathogen gene expression profiles during infection of primary bovine mammary epithelial cells with Escherichia coli strains associated with acute or persistent bovine mastitis. Vet Microbiol 2011; 155:291-7. [PMID: 21917386 DOI: 10.1016/j.vetmic.2011.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 01/06/2023]
Abstract
Escherichia coli intramammary infection (IMI) is often acute with local and systemic clinical manifestations that clear within 7 days. However, if not diagnosed early and treated, E. coli IMI could result in generalized systemic reaction and death. Persistent E. coli IMI is characterized by mild clinical manifestations followed by acute episodes of clinical mastitis during lactation. Factors responsible for pathogenesis of E. coli IMI and variation in clinical manifestations are not known. There are studies indicating that the outcome of E. coli IMI is mainly determined by cow factors. However, recent research demonstrated that virulence attributes of E. coli strains have significant impact on the outcome of E. coli IMI. The aims of this study were; (a) to compare gene expression profiles of PBMEC cocultured with strains of E. coli associated with acute or persistent IMI and; (b) to identify genes of E. coli induced during bacterial interaction with PBMEC. Utilizing cDNA we analyzed gene expression patterns of PBMEC cocultured with strains of E. coli using non-treated PBMEC as negative control. We evaluated also expression patterns of virulence associated genes of E. coli after co-culture with PBMEC using qRT-PCR. Our results showed that infection by both strains induced increased expression of pro-inflammatory cytokines, chemokines and innate immune response and apoptosis related genes. Our qRT-PCR results showed significant up-regulation of ler, eae, flic and iutA genes mainly in the strains of E. coli associated with persistent IMI. The pathogenesis and clinical severity of E. coli IMI may be determined by combined effects of host-pathogen factors.
Collapse
Affiliation(s)
- O Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
31
|
Ciciarello M, Roscioli E, Di Fiore B, Di Francesco L, Sobrero F, Bernard D, Mangiacasale R, Harel A, Schininà ME, Lavia P. Nuclear reformation after mitosis requires downregulation of the Ran GTPase effector RanBP1 in mammalian cells. Chromosoma 2010; 119:651-68. [PMID: 20658144 DOI: 10.1007/s00412-010-0286-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/28/2010] [Accepted: 06/30/2010] [Indexed: 11/26/2022]
Abstract
The GTPase Ran regulates nucleocytoplasmic transport in interphase and spindle organisation in mitosis via effectors of the importin beta superfamily. Ran-binding protein 1 (RanBP1) regulates guanine nucleotide turnover on Ran, as well as its interactions with effectors. Unlike other Ran network members that are steadily expressed, RanBP1 abundance is modulated during the mammalian cell cycle, peaking in mitosis and declining at mitotic exit. Here, we show that RanBP1 downregulation takes place in mid to late telophase, concomitant with the reformation of nuclei. Mild RanBP1 overexpression in murine cells causes RanBP1 to persist in late mitosis and hinders a set of events underlying the telophase to interphase transition, including chromatin decondensation, nuclear expansion and nuclear lamina reorganisation. Moreover, the reorganisation of nuclear pores fails associated with defective nuclear relocalisation of NLS cargoes. Co-expression of importin beta, together with RanBP1, however mitigates these defects. Thus, RanBP1 downregulation is required for nuclear reorganisation pathways operated by importin beta after mitosis.
Collapse
Affiliation(s)
- Marilena Ciciarello
- CNR National Research Council, Institute of Molecular Biology and Pathology, c/o Sapienza University of Rome, Rome, 00185, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lonhienne TG, Forwood JK, Marfori M, Robin G, Kobe B, Carroll BJ. Importin-beta is a GDP-to-GTP exchange factor of Ran: implications for the mechanism of nuclear import. J Biol Chem 2009; 284:22549-58. [PMID: 19549784 DOI: 10.1074/jbc.m109.019935] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ran-GTP interacts strongly with importin-beta, and this interaction promotes the release of the importin-alpha-nuclear localization signal cargo from importin-beta. Ran-GDP also interacts with importin-beta, but this interaction is 4 orders of magnitude weaker than the Ran-GTP.importin-beta interaction. Here we use the yeast complement of nuclear import proteins to show that the interaction between Ran-GDP and importin-beta promotes the dissociation of GDP from Ran. The release of GDP from the Ran-GDP-importin-beta complex stabilizes the complex, which cannot be dissociated by importin-alpha. Although Ran has a higher affinity for GDP compared with GTP, Ran in complex with importin-beta has a higher affinity for GTP. This feature is responsible for the generation of Ran-GTP from Ran-GDP by importin-beta. Ran-binding protein-1 (RanBP1) activates this reaction by forming a trimeric complex with Ran-GDP and importin-beta. Importin-alpha inhibits the GDP exchange reaction by sequestering importin-beta, whereas RanBP1 restores the GDP nucleotide exchange by importin-beta by forming a tetrameric complex with importin-beta, Ran, and importin-alpha. The exchange is also inhibited by nuclear-transport factor-2 (NTF2). We suggest a mechanism for nuclear import, additional to the established RCC1 (Ran-guanine exchange factor)-dependent pathway that incorporates these results.
Collapse
Affiliation(s)
- Thierry G Lonhienne
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Chemistry and Molecular Biosciences, University of Queensland, QLD 4072, St. Lucia, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
RanBP1 downregulation sensitizes cancer cells to taxol in a caspase-3-dependent manner. Oncogene 2009; 28:1748-58. [PMID: 19270727 DOI: 10.1038/onc.2009.24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitotic microtubule (MT)-targeting drugs are widely used to treat cancer. The GTPase Ran regulates multiple processes, including mitotic spindle assembly, spindle pole formation and MT dynamics; Ran activity is therefore essential to formation of a functional mitotic apparatus. The RanBP1 protein, which binds Ran and regulates its interaction with effectors, is overexpressed in many cancer types. Several observations indicate that RanBP1 contributes to regulate the function of the mitotic apparatus: RanBP1 inactivation yields hyperstable MTs and induces apoptosis during mitosis, reminiscent of the effects of the MT-stabilizing drug taxol. Here we have investigated the influence of RanBP1 on spontaneous and taxol-induced apoptosis in transformed cells. We report that RanBP1 downregulation by RNA interference activates apoptosis in several transformed cell lines regardless of their p53 status, but not in the caspase-3-defective MCF-7 breast cancer cell line. Furthermore, RanBP1-interfered cells show an increased apoptotic response to taxol compared to their counterpart with normal or high RanBP1 levels, and this response is caspase-3 dependent. These results indicate that RanBP1 can modulate the outcome of MT-targeting therapeutic protocols.
Collapse
|
34
|
Hatayama M, Tomizawa T, Sakai-Kato K, Bouvagnet P, Kose S, Imamoto N, Yokoyama S, Utsunomiya-Tate N, Mikoshiba K, Kigawa T, Aruga J. Functional and structural basis of the nuclear localization signal in the ZIC3 zinc finger domain. Hum Mol Genet 2008; 17:3459-73. [PMID: 18716025 PMCID: PMC2572694 DOI: 10.1093/hmg/ddn239] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Disruptions in ZIC3 cause heterotaxy, a congenital anomaly of the left–right axis. ZIC3 encodes a nuclear protein with a zinc finger (ZF) domain that contains five tandem C2H2 ZF motifs. Missense mutations in the first ZF motif (ZF1) result in defective nuclear localization, which may underlie the pathogenesis of heterotaxy. Here we revealed the structural and functional basis of the nuclear localization signal (NLS) of ZIC3 and investigated its relationship to the defect caused by ZF1 mutation. The ZIC3 NLS was located in the ZF2 and ZF3 regions, rather than ZF1. Several basic residues interspersed throughout these regions were responsible for the nuclear localization, but R320, K337 and R350 were particularly important. NMR structure analysis revealed that ZF1–4 had a similar structure to GLI ZF, and the basic side chains of the NLS clustered together in two regions on the protein surface, similar to classical bipartite NLSs. Among the residues for the ZF1 mutations, C253 and H286 were positioned for the metal chelation, whereas W255 was positioned in the hydrophobic core formed by ZF1 and ZF2. Tryptophan 255 was a highly conserved inter-finger connector and formed part of a structural motif (tandem CXW-C-H-H) that is shared with GLI, Glis and some fungal ZF proteins. Furthermore, we found that knockdown of Karyopherin α1/α6 impaired ZIC3 nuclear localization, and physical interactions between the NLS and the nuclear import adapter proteins were disturbed by mutations in the NLS but not by W255G. These results indicate that ZIC3 is imported into the cell nucleus by the Karyopherin (Importin) system and that the impaired nuclear localization by the ZF1 mutation is not due to a direct influence on the NLS.
Collapse
Affiliation(s)
- Minoru Hatayama
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The small nuclear GTPase Ran controls the directionality of macromolecular transport between the nucleus and the cytoplasm. Ran also has important roles during mitosis, when the nucleus is dramatically reorganized to allow chromosome segregation. Ran directs the assembly of the mitotic spindle, nuclear-envelope dynamics and the timing of cell-cycle transitions. The mechanisms that underlie these functions provide insights into the spatial and temporal coordination of the changes that occur in intracellular organization during the cell-division cycle.
Collapse
Affiliation(s)
- Paul R Clarke
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| | | |
Collapse
|
36
|
Malnou CE, Salem T, Brockly F, Wodrich H, Piechaczyk M, Jariel-Encontre I. Heterodimerization with Jun family members regulates c-Fos nucleocytoplasmic traffic. J Biol Chem 2007; 282:31046-59. [PMID: 17681951 DOI: 10.1074/jbc.m702833200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
c-Fos proto-oncoprotein forms AP-1 transcription complexes with heterodimerization partners such as c-Jun, JunB, and JunD. Thereby, it controls essential cell functions and exerts tumorigenic actions. The dynamics of c-Fos intracellular distribution is poorly understood. Hence, we have combined genetic, cell biology, and microscopic approaches to investigate this issue. In addition to a previously characterized basic nuclear localization signal (NLS) located within the central DNA-binding domain, we identified a second NLS within the c-Fos N-terminal region. This NLS is non-classic and its activity depends on transportin 1 in vivo. Under conditions of prominent nuclear localization, c-Fos can undergo nucleocytoplasmic shuttling through an active Crm-1 exportin-independent mechanism. Dimerization with the Jun proteins inhibits c-Fos nuclear exit. The strongest effect is observed with c-Jun probably in accordance with the relative stabilities of the different c-Fos:Jun dimers. Retrotransport inhibition is not caused by binding of dimers to DNA and, therefore, is not induced by indirect effects linked to activation of c-Fos target genes. Monomeric, but not dimeric, Jun proteins also shuttle actively. Thus, our work unveils a novel regulation operating on AP-1 by demonstrating that dimerization is crucial, not only for active transcription complex formation, but also for keeping them in the compartment where they exert their transcriptional function.
Collapse
Affiliation(s)
- Cécile E Malnou
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 1919 Route de Mende, Montpellier F-34293, France
| | | | | | | | | | | |
Collapse
|
37
|
Riddick G, Macara IG. A systems analysis of importin-{alpha}-{beta} mediated nuclear protein import. J Cell Biol 2005; 168:1027-38. [PMID: 15795315 PMCID: PMC2171841 DOI: 10.1083/jcb.200409024] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 02/16/2005] [Indexed: 11/22/2022] Open
Abstract
Importin-beta (Impbeta) is a major transport receptor for Ran-dependent import of nuclear cargo. Impbeta can bind cargo directly or through an adaptor such as Importin-alpha (Impalpha). Factors involved in nuclear transport have been well studied, but systems analysis can offer further insight into regulatory mechanisms. We used computer simulation and real-time assays in intact cells to examine Impalpha-beta-mediated import. The model reflects experimentally determined rates for cargo import and correctly predicts that import is limited principally by Impalpha and Ran, but is also sensitive to NTF2. The model predicts that CAS is not limiting for the initial rate of cargo import and, surprisingly, that increased concentrations of Impbeta and the exchange factor, RCC1, actually inhibit rather than stimulate import. These unexpected predictions were all validated experimentally. The model revealed that inhibition by RCC1 is caused by sequestration of nuclear Ran. Inhibition by Impbeta results from depletion nuclear RanGTP, and, in support of this mechanism, expression of mRFP-Ran reversed the inhibition.
Collapse
Affiliation(s)
- Gregory Riddick
- Center for Cell Signaling, Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
38
|
Plafker SM, Plafker KS, Weissman AM, Macara IG. Ubiquitin charging of human class III ubiquitin-conjugating enzymes triggers their nuclear import. ACTA ACUST UNITED AC 2004; 167:649-59. [PMID: 15545318 PMCID: PMC2172591 DOI: 10.1083/jcb.200406001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ubiquitin is a small polypeptide that is conjugated to proteins and commonly serves as a degradation signal. The attachment of ubiquitin (Ub) to a substrate proceeds through a multi-enzyme cascade involving an activating enzyme (E1), a conjugating enzyme (E2), and a protein ligase (E3). We previously demonstrated that a murine E2, UbcM2, is imported into nuclei by the transport receptor importin-11. We now show that the import mechanism for UbcM2 and two other human class III E2s (UbcH6 and UBE2E2) uniquely requires the covalent attachment of Ub to the active site cysteine of these enzymes. This coupling of E2 activation and transport arises from the selective interaction of importin-11 with the Ub-loaded forms of these enzymes. Together, these findings reveal that Ub charging can function as a nuclear import trigger, and identify a novel link between E2 regulation and karyopherin-mediated transport.
Collapse
Affiliation(s)
- Scott M Plafker
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | |
Collapse
|
39
|
Engelsma D, Bernad R, Calafat J, Fornerod M. Supraphysiological nuclear export signals bind CRM1 independently of RanGTP and arrest at Nup358. EMBO J 2004; 23:3643-52. [PMID: 15329671 PMCID: PMC517610 DOI: 10.1038/sj.emboj.7600370] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 07/23/2004] [Indexed: 11/09/2022] Open
Abstract
Leucine-rich nuclear export signals (NESs) mediate rapid nuclear export of proteins via interaction with CRM1. This interaction is stimulated by RanGTP but remains of a relatively low affinity. In order to identify strong signals, we screened a 15-mer random peptide library for CRM1 binding, both in the presence and absence of RanGTP. Under each condition, strikingly similar signals were enriched, conforming to the NES consensus sequence. A derivative of an NES selected in the absence of RanGTP exhibits very high affinity for CRM1 in vitro and stably binds without the requirement of RanGTP. Localisation studies and RNA interference demonstrate inefficient CRM1-mediated export and accumulation of CRM1 complexed with the high-affinity NES at nucleoporin Nup358. These results provide in vivo evidence for a nuclear export reaction intermediate. They suggest that NESs have evolved to maintain low affinity for CRM1 to allow efficient export complex disassembly and release from Nup358.
Collapse
Affiliation(s)
- Dieuwke Engelsma
- Department of Tumor Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rafael Bernad
- Department of Tumor Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jero Calafat
- Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarten Fornerod
- Department of Tumor Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Nicolás FJ, De Bosscher K, Schmierer B, Hill CS. Analysis of Smad nucleocytoplasmic shuttling in living cells. J Cell Sci 2004; 117:4113-25. [PMID: 15280432 DOI: 10.1242/jcs.01289] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor β (TGF-β) signalling leads to phosphorylation and activation of receptor-regulated Smad2 and Smad3, which form complexes with Smad4 and accumulate in the nucleus. The Smads, however, do not seem to reside statically in the cytoplasm in the absence of signalling or in the nucleus upon TGF-β stimulation, but have been suggested to shuttle continuously between these cellular compartments in both the absence and presence of TGF-β. Here we investigate this nucleocytoplasmic shuttling in detail in living cells using fusions of Smad2 and Smad4 with enhanced GFP. We first establish that the GFPSmad fusions behave like wild-type Smads in a variety of cellular assays. We go on to demonstrate directly, using photobleaching experiments, that Smad2 and Smad4 shuttle between the cytoplasm and nucleus in both TGF-β-induced cells and in uninduced cells. In uninduced cells, GFPSmad2 is less mobile in the cytoplasm than is GFPSmad4, suggesting that it may be tethered there. In addition, we show that both GFPSmad2 and GFPSmad4 undergo a substantial decrease in mobility in the nucleus upon TGF-β stimulation, suggesting that active complexes of Smads are tethered in the nucleus, whereas unactivated Smads are more freely diffusible. We propose that regulated cytoplasmic and nuclear retention may play a role in determining the distribution of Smads between the cytoplasm and the nucleus in both uninduced cells and upon TGF-β induction.
Collapse
Affiliation(s)
- Francisco J Nicolás
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | |
Collapse
|
41
|
Chen T, Brownawell AM, Macara IG. Nucleocytoplasmic shuttling of JAZ, a new cargo protein for exportin-5. Mol Cell Biol 2004; 24:6608-19. [PMID: 15254228 PMCID: PMC444848 DOI: 10.1128/mcb.24.15.6608-6619.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 03/24/2004] [Accepted: 05/06/2004] [Indexed: 11/20/2022] Open
Abstract
Exportin-5 is a nuclear export receptor for certain classes of double-stranded RNA (dsRNA), including pre-micro-RNAs, viral hairpin RNAs, and some tRNAs. It can also export the RNA binding proteins ILF3 and elongation factor EF1A. However, the rules that determine which RNA binding proteins are exportin-5 cargoes remain unclear. JAZ possesses an unusual dsRNA binding domain consisting of multiple C2H2 zinc fingers. We found that JAZ binds to exportin-5 in a Ran-GTP- and dsRNA-dependent manner. Exportin-5 stimulates JAZ shuttling, and gene silencing of exportin-5 reduces shuttling. Recombinant exportin-5 also stimulates nuclear export of JAZ in permeabilized cells. JAZ also binds to ILF3, and surprisingly, this interaction is RNA independent, even though it requires the dsRNA binding domains of ILF3. Exportin-5, JAZ, and ILF3 can form a heteromeric complex with Ran-GTP and dsRNA, and JAZ increases ILF3 binding to exportin-5. JAZ does not contain a classical nuclear localization signal, and in digitonin-permeabilized cells, nuclear accumulation of JAZ does not require energy or cytosol. Nonetheless, low temperatures prevent JAZ import, suggesting that nuclear entry does not occur via simple diffusion. Together, these data suggest that JAZ is exported by exportin-5 but translocates back into nuclei by a facilitated diffusion mechanism.
Collapse
Affiliation(s)
- Ting Chen
- Center for Cell Signaling, Department of Microbiology, Health Sciences Center, University of Virginia School of Medicine, Charlottesville, VA 22908-0577, USA
| | | | | |
Collapse
|
42
|
Kim SH, Roux SJ. An Arabidopsis Ran-binding protein, AtRanBP1c, is a co-activator of Ran GTPase-activating protein and requires the C-terminus for its cytoplasmic localization. PLANTA 2003; 216:1047-1052. [PMID: 12687374 DOI: 10.1007/s00425-002-0959-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Accepted: 11/16/2002] [Indexed: 05/24/2023]
Abstract
Ran-binding proteins (RanBPs) are a group of proteins that bind to Ran (Ras-related nuclear small GTP-binding protein), and thus either control the GTP/GDP-bound states of Ran or help couple the Ran GTPase cycle to a cellular process. AtRanBP1c is a Ran-binding protein from Arabidopsis thaliana (L.) Heynh. that was recently shown to be critically involved in the regulation of auxin-induced mitotic progression [S.-H. Kim et al. (2001) Plant Cell 13:2619-2630]. Here we report that AtRanBP1c inhibits the EDTA-induced release of GTP from Ran and serves as a co-activator of Ran-GTPase-activating protein (RanGAP) in vitro. Transient expression of AtRanBP1c fused to a beta-glucuronidase (GUS) reporter reveals that the protein localizes primarily to the cytosol. Neither the N- nor C-terminus of AtRanBP1c, which flank the Ran-binding domain (RanBD), is necessary for the binding of PsRan1-GTP to the protein, but both are needed for the cytosolic localization of GUS-fused AtRanBP1c. These findings, together with a previous report that AtRanBP1c is critically involved in root growth and development, imply that the promotion of GTP hydrolysis by the Ran/RanGAP/AtRanBP1c complex in the cytoplasm, and the resulting concentration gradient of Ran-GDP to Ran-GTP across the nuclear membrane could be important in the regulation of auxin-induced mitotic progression in root tips of A. thaliana.
Collapse
Affiliation(s)
- Soo-Hwan Kim
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
43
|
Steggerda SM, Paschal BM. Regulation of nuclear import and export by the GTPase Ran. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:41-91. [PMID: 12019565 DOI: 10.1016/s0074-7696(02)17012-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the control of nuclear import and export pathways by the small GTPase Ran. Transport of signal-containing cargo substrates is mediated by receptors that bind to the cargo proteins and RNAs and deliver them to the appropriate cellular compartment. Ran is an evolutionarily conserved member of the Ras superfamily that regulates all receptor-mediated transport between the nucleus and the cytoplasm. We describe the identification and characterization of the RanGTPase and its binding partners: the guanine nucleotide exchange factor, RanGEF; the GTPase activating protein, RanGAP; the soluble import and export receptors; Ran-binding domain-(RBD) containing proteins; and NTF2 and related factors.
Collapse
Affiliation(s)
- Susanne M Steggerda
- Center for Cell Signaling and Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville 22908, USA
| | | |
Collapse
|
44
|
Zhang C, Goldberg MW, Moore WJ, Allen TD, Clarke PR. Concentration of Ran on chromatin induces decondensation, nuclear envelope formation and nuclear pore complex assembly. Eur J Cell Biol 2002; 81:623-33. [PMID: 12494999 DOI: 10.1078/0171-9335-00288] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear envelope (NE) formation can be studied in a cell-free system made from Xenopus eggs. In this system, NE formation involves the small GTPase Ran. Ran associates with chromatin early in nuclear assembly and concentration of Ran on inert beads is sufficient to induce NE formation. Here, we show that Ran binds to chromatin prior to NE formation and recruits RCC1, the nucleotide exchange factor that generates Ran-GTP. In extracts prepared by high-speed centrifugation, increased concentrations of Ran are sufficient to induce chromatin decondensation and NE assembly. Using field emission in-lens scanning electron microscopy (FEISEM), we show that Ran promotes the formation of smoothed membranes and the assembly of nuclear pore complexes (NPCs). In contrast, RanT24N, a mutant that fails to bind GTP and inhibits RCC1, does not support efficient NE assembly, whereas RanQ69L, a mutant locked in a GTP-bound state, permits some membrane vesicle recruitment to chromatin, but inhibits vesicle fusion and NPC assembly. Thus, binding of Ran to chromatin, followed by local generation of Ran-GTP and GTP hydrolysis by Ran, induces chromatin decondensation, membrane vesicle recruitment, membrane formation and NPC assembly. We propose that the biological activity of Ran is determined by its targeting to structures such as chromatin as well as its guanine nucleotide bound state.
Collapse
Affiliation(s)
- Chuanmao Zhang
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| | | | | | | | | |
Collapse
|
45
|
Fornerod M, Ohno M. Exportin-mediated nuclear export of proteins and ribonucleoproteins. Results Probl Cell Differ 2002; 35:67-91. [PMID: 11791409 DOI: 10.1007/978-3-540-44603-3_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Maarten Fornerod
- EMBL, Gene Expression Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
46
|
Plafker K, Macara IG. Fluorescence resonance energy transfer biosensors that detect Ran conformational changes and a Ran x GDP-importin-beta -RanBP1 complex in vitro and in intact cells. J Biol Chem 2002; 277:30121-7. [PMID: 12034733 DOI: 10.1074/jbc.m203006200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ran GTPase plays a central role in nucleocytoplasmic transport. Association of Ran x GTP with transport carriers (karyopherins) triggers the loading/unloading of export or import cargo, respectively. The C-terminal tail of Ran x GTP is deployed in an extended conformation when associated with a Ran binding domain or importins. To monitor tail orientation, a Ran-GFP fusion was labeled with the fluorophore Alexa546. Fluorescence resonance energy transfer (FRET) occurs efficiently between the green fluorescent protein (GFP) and Alexa546 for Ran x GDP and Ran x GTP, suggesting that the tail is tethered in both states. However, Ran x GTP complexes with importin-beta, RanBP1, and Crm1 all show reduced FRET consistent with tail extension. Displacement of the C-terminal tail of Ran by karyopherins may be a general mechanism to facilitate RanBP1 binding. A Ran x GDP-RanBP1-importin-beta complex also displayed a low FRET signal. To detect this complex in vivo, a bipartite biosensor consisting of Ran-Alexa546 plus GST-GFP-RanBP1, was co-injected into the cytoplasm of cells. The Ran redistributed predominantly to the nucleus, and RanBP1 remained cytoplasmic. Nonetheless, a robust cytoplasmic FRET signal was detectable, which suggests that a significant fraction of cytoplasmic Ran.GDP may exist in a ternary complex with RanBP1 and importins.
Collapse
Affiliation(s)
- Kendra Plafker
- Center for Cell Signaling and the Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908-0577, USA
| | | |
Collapse
|
47
|
Lindsay ME, Plafker K, Smith AE, Clurman BE, Macara IG. Npap60/Nup50 is a tri-stable switch that stimulates importin-alpha:beta-mediated nuclear protein import. Cell 2002; 110:349-60. [PMID: 12176322 DOI: 10.1016/s0092-8674(02)00836-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many nuclear-targeted proteins are transported through the nuclear pore complex (NPC) by the importin-alpha:beta receptor. We now show that Npap60 (also called Nup50), a protein previously believed to be a structural component of the NPC, is a Ran binding protein and a cofactor for importin-alpha:beta-mediated import. Npap60 is a tri-stable switch that alternates between binding modes. The C terminus binds importin-beta through RanGTP. The N terminus binds the C terminus of importin-alpha, while a central domain binds importin-beta. Npap60:importin-alpha:beta binds cargo and can stimulate nuclear import. Endogenous Npap60 can shuttle and is accessible from the cytoplasmic side of the nuclear envelope. These results identify Npap60 as a cofactor for importin-alpha:beta nuclear import and as a previously unidentified subunit of the importin complex.
Collapse
Affiliation(s)
- Mark E Lindsay
- Center for Cell Signaling, Department of Microbiology, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
48
|
Plafker SM, Macara IG. Ribosomal protein L12 uses a distinct nuclear import pathway mediated by importin 11. Mol Cell Biol 2002; 22:1266-75. [PMID: 11809816 PMCID: PMC134630 DOI: 10.1128/mcb.22.4.1266-1275.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2001] [Revised: 07/25/2001] [Accepted: 11/19/2001] [Indexed: 11/20/2022] Open
Abstract
Ribosome biogenesis requires the nuclear translocation of ribosomal proteins from their site of synthesis in the cytoplasm to the nucleus. Analyses of the import mechanisms have revealed that most ribosomal proteins can be delivered to the nucleus by multiple transport receptors (karyopherins or importins). We now provide evidence that ribosomal protein L12 (rpL12) is distinguished from the bulk of ribosomal proteins because it accesses the importin 11 pathway as a major route into the nucleus. rpL12 specifically and directly interacted with importin 11 in vitro and in vivo. Both rpL12 binding to and import by importin 11 were inhibited by another importin 11 substrate, UbcM2, indicating that these two cargoes may bind overlapping sites on the transport receptor. In contrast, the import of rpL23a, a ribosomal protein that uses the general ribosomal protein import system, was not competed by UbcM2, and in an in vitro binding assay, importin 11 did not bind to the nuclear localization signal of rpL23a. Furthermore, in a transient transfection assay, the nuclear accumulation of rpL12 was increased by coexpressed importin 11, but not by other importins. These data are consistent with importin 11 being a mediator of rpL12 nuclear import. Taken together, these results indicate that rpL12 uses a distinct nuclear import pathway that may contribute to a mechanism for regulating ribosome synthesis and/or maturation.
Collapse
Affiliation(s)
- Scott M Plafker
- Center for Cell Signaling and Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
49
|
Affiliation(s)
- F Ralf Bischoff
- Division for Molecular Biology of Mitosis, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
50
|
Zhang F, White RL, Neufeld KL. Cell density and phosphorylation control the subcellular localization of adenomatous polyposis coli protein. Mol Cell Biol 2001; 21:8143-56. [PMID: 11689703 PMCID: PMC99979 DOI: 10.1128/mcb.21.23.8143-8156.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Accepted: 09/04/2001] [Indexed: 11/20/2022] Open
Abstract
Loss of functional adenomatous polyposis coli protein (APC) leads to uncontrolled proliferation of colonic epithelial cells, as evidenced by polyp formation, a prelude to carcinogenesis. As a tumor suppressor, APC targets the oncogene beta-catenin for proteasome-mediated cytoplasmic degradation. Recently, it was demonstrated that APC also interacts with nuclear beta-catenin, thereby reducing beta-catenin's activity as a transcription cofactor and enhancing its nuclear export. The first objective of this study was to analyze how cellular context affected APC distribution. We determined that cell density but not cell cycle influenced APC's subcellular distribution, with predominantly nuclear APC found in subconfluent MDCK and intestinal epithelial cells but both cytoplasmic and nuclear APC in superconfluent cells. Redistribution of APC protein did not depend on continual nuclear export. Focusing on the two defined nuclear localization signals in the C-terminal third of APC (NLS1(APC) and NLS2(APC)), we found that phosphorylation at the CK2 site increased and phosphorylation at the PKA site decreased NLS2(APC)-mediated nuclear translocation. Cell density-mediated redistribution of beta-galactosidase was achieved by fusion to NLS2(APC) but not to NLS1(APC). Both the CK2 and PKA sites were important for this density-mediated redistribution, and pharmacological agents that target CK2 and PKA instigated relocalization of endogenous APC. Our data provide evidence that physiological signals such as cell density regulate APC's nuclear distribution, with phosphorylation sites near NLS2(APC) being critical for this regulation.
Collapse
Affiliation(s)
- F Zhang
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|