1
|
Chhabra Y, Bielefeldt-Ohmann H, Brooks TL, Brooks AJ, Waters MJ. Roles of Growth Hormone-Dependent JAK-STAT5 and Lyn Kinase Signaling in Determining Lifespan and Cancer Incidence. Endocrinology 2024; 165:bqae136. [PMID: 39378329 PMCID: PMC11500606 DOI: 10.1210/endocr/bqae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024]
Abstract
In rodents, loss of growth hormone (GH) or its receptor is associated with extended lifespan. We aimed to determine the signaling process resulting in this longevity using GH receptor (GHR)-mutant mice with key signaling pathways deleted and correlate this with cancer incidence and expression of genes associated with longevity. GHR uses both canonical janus kinase (JAK)2-signal transducer and activator of transcription (STAT) signaling as well as signaling via the LYN-ERK1/2 pathway. We used C57BL/6 mice with loss of key receptor tyrosines and truncation resulting in 1) loss of most STAT5 response to GH; 2) total inability to generate STAT5 to GH; 3) loss of Box1 to prevent activation of JAK2 but not LYN kinase; or 4) total knockout of the receptor. For each mutant we analyzed lifespan, histopathology to determine likely cause of death, and hepatic gene and protein expression. The extended lifespan is evident in the Box1-mutant males (retains Lyn activation), which have a median lifespan of 1016 days compared to 890 days for the Ghr-/- males. In the females, GhrBox1-/- mice have a median lifespan of 970 days compared to 911 days for the knockout females. Sexually dimorphic GHR-STAT5 is repressive for longevity, since its removal results in a median lifespan of 1003 days in females compared to 734 days for wild-type females. Numerous transcripts related to insulin sensitivity, oxidative stress response, and mitochondrial function are regulated by GHR-STAT5; however, LYN-responsive genes involve DNA repair, cell cycle control, and anti-inflammatory response. There appears to be a yin-yang relationship between JAK2 and LYN that determines lifespan.
Collapse
Affiliation(s)
- Yash Chhabra
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4069, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Helle Bielefeldt-Ohmann
- School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia 4069, Australia
| | - Tania Louise Brooks
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4069, Australia
| | - Andrew James Brooks
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4069, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Michael J Waters
- Institute for Molecular Bioscience, University of Queensland, St Lucia 4069, Australia
| |
Collapse
|
2
|
Rebello CJ, Coulter AA, Reaume AG, Cong W, Cusimano LA, Greenway FL. MLR-1023 Treatment in Mice and Humans Induces a Thermogenic Program, and Menthol Potentiates the Effect. Pharmaceuticals (Basel) 2021; 14:ph14111196. [PMID: 34832978 PMCID: PMC8625945 DOI: 10.3390/ph14111196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
A glucose-lowering medication that acts by a different mechanism than metformin, or other approved diabetes medications, can supplement monotherapies when patients fail to meet blood glucose goals. We examined the actions underlying the effects of an insulin sensitizer, tolimidone (MLR-1023) and investigated its effects on body weight. Diet-induced obesity (CD1/ICR) and type 2 diabetes (db/db) mouse models were used to study the effect of MLR-1023 on metabolic outcomes and to explore its synergy with menthol. We also examined the efficacy of MLR-1023 alone in a clinical trial (NCT02317796), as well as in combination with menthol in human adipocytes. MLR-1023 produced weight loss in humans in four weeks, and in mice fed a high-fat diet it reduced weight gain and fat mass without affecting food intake. In human adipocytes from obese donors, the upregulation of Uncoupling Protein 1, Glucose (UCP)1, adiponectin, Glucose Transporter Type 4 (GLUT4), Adipose Triglyceride Lipase (ATGL), Carnitine palmitoyltransferase 1 beta (CPT1β), and Transient Receptor Potential Melastin (TRPM8) mRNA expression suggested the induction of thermogenesis. The TRPM8 agonist, menthol, potentiated the effect of MLR-1023 on the upregulation of genes for energy expenditure and insulin sensitivity in human adipocytes, and reduced fasting blood glucose in mice. The amplification of the thermogenic program by MLR-1023 and menthol in the absence of adrenergic activation will likely be well-tolerated, and bears investigation in a clinical trial.
Collapse
Affiliation(s)
- Candida J. Rebello
- Clinical Trials Unit, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (C.J.R.); (A.A.C.)
| | - Ann A. Coulter
- Clinical Trials Unit, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (C.J.R.); (A.A.C.)
| | - Andrew G. Reaume
- Melior Discovery Inc., 860 Springdale Drive, Exton, PA 19341, USA; (A.G.R.); (W.C.)
| | - Weina Cong
- Melior Discovery Inc., 860 Springdale Drive, Exton, PA 19341, USA; (A.G.R.); (W.C.)
| | - Luke A. Cusimano
- Cusimano Plastic and Reconstructive Surgery, 5233 Dijon Dr, Baton Rouge, LA 70808, USA;
| | - Frank L. Greenway
- Clinical Trials Unit, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (C.J.R.); (A.A.C.)
- Correspondence: ; Tel.: +1-(225)-763-2576; Fax: +1-(225)-763-3022
| |
Collapse
|
3
|
Wang H, Diaz AK, Shaw TI, Li Y, Niu M, Cho JH, Paugh BS, Zhang Y, Sifford J, Bai B, Wu Z, Tan H, Zhou S, Hover LD, Tillman HS, Shirinifard A, Thiagarajan S, Sablauer A, Pagala V, High AA, Wang X, Li C, Baker SJ, Peng J. Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes. Nat Commun 2019; 10:3718. [PMID: 31420543 PMCID: PMC6697699 DOI: 10.1038/s41467-019-11661-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven by mutated RTK oncogenes, PDGFRA and NTRK1, analyzing 13,860 proteins and 30,431 phosphosites by mass spectrometry. Systems biology approaches identify numerous master regulators, including 41 kinases and 23 transcription factors. Pathway activity computation and mouse survival indicate the NTRK1 mutation induces a higher activation of AKT downstream targets including MYC and JUN, drives a positive feedback loop to up-regulate multiple other RTKs, and confers higher oncogenic potency than the PDGFRA mutation. A mini-gRNA library CRISPR-Cas9 validation screening shows 56% of tested master regulators are important for the viability of NTRK-driven HGG cells, including TFs (Myc and Jun) and metabolic kinases (AMPKa1 and AMPKa2), confirming the validity of the multiomics integrative approaches, and providing novel tumor vulnerabilities.
Collapse
Affiliation(s)
- Hong Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Alexander K Diaz
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Timothy I Shaw
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuxin Li
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Barbara S Paugh
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Sifford
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bing Bai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suiping Zhou
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Laura D Hover
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather S Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Thiagarajan
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Andras Sablauer
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
4
|
Zhang J, Gelman IH, Katsuta E, Liang Y, Wang X, Li J, Qu J, Yan L, Takabe K, Hochwald SN. Glucose Drives Growth Factor-Independent Esophageal Cancer Proliferation via Phosphohistidine-Focal Adhesion Kinase Signaling. Cell Mol Gastroenterol Hepatol 2019; 8:37-60. [PMID: 30836148 PMCID: PMC6518323 DOI: 10.1016/j.jcmgh.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Most targeted therapies against cancer are designed to block growth factor-stimulated oncogenic growth. However, response rates are low, and resistance to therapy is high. One mechanism might relate to the ability of tumor cells to induce growth factor-independent proliferation (GFIP). This project aims to understand how (1) cancer cells preferentially derive a major growth advantage by using critical metabolic products of glucose, such as phosphoenolpyruvate (PEP), to drive proliferation and (2) esophageal squamous cell carcinoma (ESCC) cells, but not esophageal adenocarcinoma cells, can induce GFIP by using glycolysis to activate phosphohistidine (poHis)-mediated signaling through focal adhesion kinase (FAK). METHODS The hypothesis to be tested is that ESCC GFIP induced by glucose is facilitated by PEP-mediated histidine phosphorylation (poHis) of FAK, leading to the possibility that ESCC progression can be targeted by blocking poHis signaling. Biochemical, molecular biological, and in vivo experiments including bromodeoxyuridine/5-ethynyl-2'-deoxyuridine labeling, radioisotope tracing, CRISPR gene editing, and analysis of signaling gene sets in human cancer tissues and xenograft models were performed to define the mechanisms underlying ESCC GFIP. RESULTS Glucose promotes growth factor-independent DNA replication and accumulation of PEP in ESCC cells. PEP is the direct phospho-donor to poHis58-FAK within a known "HG" motif for histidine phosphorylation. Glucose-induced poHis58 promotes growth factor-independent FAK-mediated proliferation. Furthermore, glucose activates phosphatidylinositol-3'-kinase/AKT via poHis58-FAK signaling. Non-phosphorylatable His58A-FAK reduces xenograft growth. CONCLUSIONS Glucose induces ESCC, but not esophageal adenocarcinoma GFIP via PEP-His58-FAK-AKT signaling. ESCC progression is controlled by actionable growth factor-independent, glucose-induced pathways that regulate proliferation through novel histidine phosphorylation of FAK.
Collapse
Affiliation(s)
- Jianliang Zhang
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Irwin H. Gelman
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eriko Katsuta
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Yuanzi Liang
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Xue Wang
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jun Li
- University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Jun Qu
- University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Li Yan
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Steven N. Hochwald
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York,Correspondence Address correspondence to: Steven N. Hochwald, MD, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York 14263. fax: (716) 845-1060.
| |
Collapse
|
5
|
Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis. Oncogene 2015; 35:1926-42. [PMID: 26119934 PMCID: PMC4486081 DOI: 10.1038/onc.2015.256] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/10/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022]
Abstract
Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors, including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions, including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins, including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC.
Collapse
|
6
|
Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Future Med Chem 2014; 6:541-61. [PMID: 24649957 DOI: 10.4155/fmc.13.216] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein kinases are involved in many essential cellular processes and their deregulation can lead to a variety of diseases, including cancer. The pharmaceutical industry has invested heavily in the identification of kinase inhibitors to modulate these disease-promoting pathways, resulting in several successful drugs. However, the field is challenging as it is difficult to identify novel selective inhibitors with good pharmacokinetic/pharmacodynamic properties. In addition, resistance to kinase inhibitor treatment frequently arises. The identification of non-ATP site targeting ('allosteric') inhibitors, the identification of kinase activators and the expansion of kinase target space to include the less studied members of the family, including atypical- and pseudo-kinases, are potential avenues to overcome these challenges. In this perspective, the opportunities and challenges of following these approaches and others will be discussed.
Collapse
|
7
|
Tagawa K, Homma H, Saito A, Fujita K, Chen X, Imoto S, Oka T, Ito H, Motoki K, Yoshida C, Hatsuta H, Murayama S, Iwatsubo T, Miyano S, Okazawa H. Comprehensive phosphoproteome analysis unravels the core signaling network that initiates the earliest synapse pathology in preclinical Alzheimer's disease brain. Hum Mol Genet 2014; 24:540-58. [PMID: 25231903 DOI: 10.1093/hmg/ddu475] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using a high-end mass spectrometry, we screened phosphoproteins and phosphopeptides in four types of Alzheimer's disease (AD) mouse models and human AD postmortem brains. We identified commonly changed phosphoproteins in multiple models and also determined phosphoproteins related to initiation of amyloid beta (Aβ) deposition in the mouse brain. After confirming these proteins were also changed in and human AD brains, we put the proteins on experimentally verified protein-protein interaction databases. Surprisingly, most of the core phosphoproteins were directly connected, and they formed a functional network linked to synaptic spine formation. The change of the core network started at a preclinical stage even before histological Aβ deposition. Systems biology analyses suggested that phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS) by overactivated kinases including protein kinases C and calmodulin-dependent kinases initiates synapse pathology. Two-photon microscopic observation revealed recovery of abnormal spine formation in the AD model mice by targeting a core protein MARCKS or by inhibiting candidate kinases, supporting our hypothesis formulated based on phosphoproteome analysis.
Collapse
Affiliation(s)
- Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ayumu Saito
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Xigui Chen
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Seiya Imoto
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tsutomu Oka
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hikaru Ito
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kazumi Motoki
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Chisato Yoshida
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroyuki Hatsuta
- Department of Neuropathology, Brain Bank for Aging Research, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan and
| | - Shigeo Murayama
- Department of Neuropathology, Brain Bank for Aging Research, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan and
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
8
|
Chen J, Meng Y, Zhou J, Zhuo M, Ling F, Zhang Y, Du H, Wang X. Identifying candidate genes for Type 2 Diabetes Mellitus and obesity through gene expression profiling in multiple tissues or cells. J Diabetes Res 2013; 2013:970435. [PMID: 24455749 PMCID: PMC3888709 DOI: 10.1155/2013/970435] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/30/2013] [Accepted: 10/25/2013] [Indexed: 12/18/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) and obesity have become increasingly prevalent in recent years. Recent studies have focused on identifying causal variations or candidate genes for obesity and T2DM via analysis of expression quantitative trait loci (eQTL) within a single tissue. T2DM and obesity are affected by comprehensive sets of genes in multiple tissues. In the current study, gene expression levels in multiple human tissues from GEO datasets were analyzed, and 21 candidate genes displaying high percentages of differential expression were filtered out. Specifically, DENND1B, LYN, MRPL30, POC1B, PRKCB, RP4-655J12.3, HIBADH, and TMBIM4 were identified from the T2DM-control study, and BCAT1, BMP2K, CSRNP2, MYNN, NCKAP5L, SAP30BP, SLC35B4, SP1, BAP1, GRB14, HSP90AB1, ITGA5, and TOMM5 were identified from the obesity-control study. The majority of these genes are known to be involved in T2DM and obesity. Therefore, analysis of gene expression in various tissues using GEO datasets may be an effective and feasible method to determine novel or causal genes associated with T2DM and obesity.
Collapse
Affiliation(s)
- Junhui Chen
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yuhuan Meng
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
- Chinese PLA General Hospital, Beijing 100853, China
| | - Jinghui Zhou
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Min Zhuo
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Fei Ling
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yu Zhang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510555, China
| | - Hongli Du
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
- *Hongli Du:
| | - Xiaoning Wang
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
- Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
9
|
Gupta A, Bisht B, Dey CS. Focal adhesion kinase negatively regulates neuronal insulin resistance. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1030-7. [DOI: 10.1016/j.bbadis.2012.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 12/13/2022]
|
10
|
Saporito MS, Ochman AR, Lipinski CA, Handler JA, Reaume AG. MLR-1023 is a potent and selective allosteric activator of Lyn kinase in vitro that improves glucose tolerance in vivo. J Pharmacol Exp Ther 2012; 342:15-22. [PMID: 22473614 DOI: 10.1124/jpet.112.192096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
2(1H)-pyrimidinone,5-(3-methylphenoxy) (MLR-1023) is a candidate for the treatment of type 2 diabetes. The current studies were aimed at determining the mechanism by which MLR-1023 mediates glycemic control. In these studies, we showed that MLR-1023 reduced blood glucose levels without increasing insulin secretion in vivo. We have further determined that MLR-1023 did not activate peroxisome proliferator-activated α, δ, and γ receptors or glucagon-like peptide-1 receptors or inhibit dipeptidyl peptidase-4 or α-glucosidase enzyme activity. However, in an in vitro broad kinase screen MLR-1023 activated the nonreceptor-linked Src-related tyrosine kinase Lyn. MLR-1023 increased the V(max) of Lyn with an EC(50) of 63 nM. This Lyn kinase activation was ATP binding site independent, indicating that MLR-1023 regulated the kinase through an allosteric mechanism. We have established a link between Lyn activation and blood glucose lowering with studies showing that the glucose-lowering effects of MLR-1023 were abolished in Lyn knockout mice, consistent with existing literature linking Lyn kinase and the insulin-signaling pathway. In summary, these studies describe MLR-1023 as a unique blood glucose-lowering agent and show that MLR-1023-mediated blood glucose lowering depends on Lyn kinase activity. These results, coupled with other results (J Pharmacol Exp Ther 342:23-32, 2012), suggest that MLR-1023 and Lyn kinase activation may be a new treatment modality for type 2 diabetes.
Collapse
|
11
|
Ochman AR, Lipinski CA, Handler JA, Reaume AG, Saporito MS. The Lyn Kinase Activator MLR-1023 Is a Novel Insulin Receptor Potentiator that Elicits a Rapid-Onset and Durable Improvement in Glucose Homeostasis in Animal Models of Type 2 Diabetes. J Pharmacol Exp Ther 2012; 342:23-32. [DOI: 10.1124/jpet.112.192187] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
12
|
Larner J, Brautigan DL, Thorner MO. D-chiro-inositol glycans in insulin signaling and insulin resistance. Mol Med 2010; 16:543-52. [PMID: 20811656 DOI: 10.2119/molmed.2010.00107] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 08/26/2010] [Indexed: 11/06/2022] Open
Abstract
Classical actions of insulin involve increased glucose uptake from the bloodstream and its metabolism in peripheral tissues, the most important and relevant effects for human health. However, nonoxidative and oxidative glucose disposal by activation of glycogen synthase (GS) and mitochondrial pyruvate dehydrogenase (PDH) remain incompletely explained by current models for insulin action. Since the discovery of insulin receptor Tyr kinase activity about 25 years ago, the dominant paradigm for intracellular signaling by insulin invokes protein phosphorylation downstream of the receptor and its primary Tyr phosphorylated substrates-the insulin receptor substrate family of proteins. This scheme accounts for most, but not all, intracellular actions of insulin. Essentially forgotten is the previous literature and continuing work on second messengers generated in cells in response to insulin. Treatment and even prevention of diabetes and metabolic syndrome will benefit from a more complete elucidation of cellular-signaling events activated by insulin, to include the actions of second messengers such as glycan molecules that contain D-chiro-inositol (DCI). The metabolism of DCI is associated with insulin sensitivity and resistance, supporting the concept that second messengers have a role in responses to and resistance to insulin.
Collapse
Affiliation(s)
- Joseph Larner
- Allomed Pharmaceuticals, Charlottesville, Virginia, United States of America.
| | | | | |
Collapse
|
13
|
Vatish M, Yamada E, Pessin JE, Bastie CC. Fyn kinase function in lipid utilization: a new upstream regulator of AMPK activity? Arch Physiol Biochem 2009; 115:191-8. [PMID: 19728795 PMCID: PMC4324608 DOI: 10.1080/13813450903164348] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The balance of cellular energy levels in response to changes of nutrient availability, stress stimuli or exercise is a critical step in maintaining tissue and whole body homeostasis. Disruption of this balance is associated with various pathologies, including the metabolic syndrome. Recently, accumulating evidence has demonstrated that the AMP-activated protein kinase (AMPK) plays a central role in sensing changes in energy levels. The regulation of AMPK activity is currently the subject of significant investigation since this enzyme is a potential therapeutic target in both metabolic disorders and tumorigenesis. In this review, we present novel evidence of crosstalk between Fyn, one member of the Src kinase family, and AMPK.
Collapse
Affiliation(s)
- Manu Vatish
- Albert Einstein College of Medicine, Diabetes Research and Training Center, Department of Medicine, Bronx, NY USA
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, UK
| | - Eijiro Yamada
- Albert Einstein College of Medicine, Diabetes Research and Training Center, Department of Medicine, Bronx, NY USA
| | - Jeffrey E. Pessin
- Albert Einstein College of Medicine, Diabetes Research and Training Center, Department of Medicine, Bronx, NY USA
| | - Claire C. Bastie
- Albert Einstein College of Medicine, Diabetes Research and Training Center, Department of Medicine, Bronx, NY USA
| |
Collapse
|
14
|
Torio-Padron N, Borges J, Momeni A, Mueller MC, Tegtmeier FT, Stark GB. Implantation of VEGF transfected preadipocytes improves vascularization of fibrin implants on the cylinder chorioallantoic membrane (CAM) model. MINIM INVASIV THER 2009; 16:155-62. [PMID: 17573620 DOI: 10.1080/13645700701384116] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The successful substitution or augmentation of soft tissues by implantation of three dimensional cell constructs, consisting of human preadipocytes and fibrin glue as a carrier matrix, requires a rapid and homogeneous vascularization of the whole implant in order to provide a sufficient blood supply of centrally situated cells. Previous investigations have shown that under in vivo conditions primary human preadipocytes induce vascularization of fibrin matrices by secretion of several growth factors, such as VEGF and bFGF. The current study investigates whether vascularization of implants can be improved by transplantation of preadipocytes following transfection with a VEGF-vector. Transfection was performed by electroporation with an pCMX-GFP and pCMX-VEGF165 vector. Transfection efficiency (GFP expression) and VEGF expression were determined in vitro by FACS analysis and VEGF immunoassay, respectively. In vivo investigations to determine the vascularization of the implants were performed on the cylinder chorioallantoic membrane (CAM). Four million VEGF transfected cells were transferred within a fibrin matrix onto the CAM on the 7(th) day of incubation and after 8 days the vascularization of the implant was histologically examined and evaluated by means of a computer-assisted image analysis program. Transfection of preadipocytes with the GFP vector by electroporation yielded transfection efficiencies between 12% and 41% of surviving cells. Results of the VEGF immunoassay demonstrated that VEGF expression was significantly higher following transfection. Investigations on the CAM outlined a significantly higher rate of vascularization in the transfected vs. control population. Our investigations demonstrate that primary human preadipocytes can be successfully transfected by electroporation with a VEGF vector. The enhanced VEGF expression on transfected cells results in an increase of vascularization of the cell constructs on the CAM.
Collapse
Affiliation(s)
- Nestor Torio-Padron
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Bisht B, Goel HL, Dey CS. Focal adhesion kinase regulates insulin resistance in skeletal muscle. Diabetologia 2007; 50:1058-69. [PMID: 17333113 DOI: 10.1007/s00125-007-0591-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/15/2006] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS On the basis of our previous studies, we investigated the possible role of focal adhesion kinase (FAK) in the development of insulin resistance in skeletal muscle, a major organ responsible for insulin-stimulated glucose uptake. MATERIALS AND METHODS Insulin-resistant C2C12 skeletal muscle cells were transfected with FAK wild-type or FAK mutant plasmids, knocked down using small interfering RNA (siRNA), and their effects on the levels and activities of insulin-signalling molecules and on glucose uptake were determined. RESULTS A significant decrease in tyrosine phosphorylation of FAK in insulin-resistant C2C12 cells was observed. A similar decrease was observed in skeletal muscle obtained from insulin-resistant Sprague-Dawley rats fed a high-fat diet. Increased levels of FAK in insulin-resistant C2C12 skeletal muscle cells increased insulin sensitivity and glucose uptake. These effects were reversed by an increase in the level of kinase activity mutant FAK or suppression of endogenous FAK by siRNA. FAK was also found to interact downstream with insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase C and glycogen synthase kinase 3beta, leading to translocation of glucose transporter 4 and resulting in the regulation of glucose uptake. CONCLUSIONS/INTERPRETATION The present study provides strong evidence that the modulation of FAK level regulates the insulin sensitivity of skeletal muscle cells. The results demonstrate a direct role of FAK in insulin-resistant skeletal muscle cells for the first time.
Collapse
Affiliation(s)
- B Bisht
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Chandigarh 160062, India
| | | | | |
Collapse
|
16
|
Li JJ, Xie D. Cleavage of focal adhesion kinase (FAK) is essential in adipocyte differentiation. Biochem Biophys Res Commun 2007; 357:648-54. [PMID: 17442274 DOI: 10.1016/j.bbrc.2007.03.184] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 03/29/2007] [Indexed: 12/26/2022]
Abstract
During adipocyte differentiation, the cells experience dramatic alterations in morphology, motility and cell-ECM contact. Focal adhesion kinase (pp125FAK), a widely expressed non-receptor tyrosine kinase in integrin signaling, has been reported to participate in these events in various cells. Utilizing 3T3-L1 cells and primary rat preadipocytes, we explored the role of FAK in adipocyte differentiation. Gradual cleavage of FAK was demonstrated during adipcoyte differentiation, both in vitro and in vivo. This cleavage of FAK was mediated by calpain. Inhibition of calpain activity resulted in the rescue of FAK degradation, accompanied with the disturbance of final maturation of adipocyte. Our study revealed that FAK participated in adipocyte differentiation, and its cleavage by calpain was required to fulfill the final maturation of adipocytes.
Collapse
Affiliation(s)
- Jing-Jing Li
- Laboratory of Molecular Oncology, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, 294 Tai-Yuan Rd., Shanghai 200031, China
| | | |
Collapse
|
17
|
Goutzanis L, Vairaktaris E, Yapijakis C, Kavantzas N, Nkenke E, Derka S, Vassiliou S, Acil Y, Kessler P, Stavrianeas N, Perrea D, Donta I, Skandalakis P, Patsouris E. Diabetes may increase risk for oral cancer through the insulin receptor substrate-1 and focal adhesion kinase pathway. Oral Oncol 2007; 43:165-73. [PMID: 16860589 DOI: 10.1016/j.oraloncology.2006.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 02/06/2006] [Indexed: 11/20/2022]
Abstract
In light of recent epidemiological studies that associate diabetes mellitus with increased risk for oral cancer, we investigated in diabetic (type I) and normal rats with induced oral squamous cell carcinoma whether the molecular basis for that putative association involves insulin receptor substrate-1 (IRS-1) and focal adhesion kinase (FAK). Fourteen diabetic and 12 normal rats developed cancer after 4-nitroquinoline-N-oxide treatment, while six diabetic and six normal animals were used as controls. Oral sections were studied using monoclonal antibodies against IRS-1 and FAK proteins. Expression of IRS-1 was significantly higher in diabetic than normal rats, but it decreased in diabetic animals with tumor, especially in more advanced stages. FAK expression was significantly higher in rats with cancer in comparison to the ones without it, regardless the diabetes status. These data suggest that the IRS-1/FAK pathway is altered by diabetes resulting in reduced cell adhesion and possibly increasing risk for oral cancer.
Collapse
Affiliation(s)
- L Goutzanis
- Department of Oral and Maxillofacial Surgery, University of Athens Medical School, Vas. Sofias 93 & Dim. Soutsou 1, Athens 11521, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Specific protein kinase C isoforms as transducers and modulators of insulin signaling. Mol Genet Metab 2006; 89:32-47. [PMID: 16798038 DOI: 10.1016/j.ymgme.2006.04.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 04/23/2006] [Accepted: 04/23/2006] [Indexed: 12/14/2022]
Abstract
Recent studies implicate specific PKC isoforms in the insulin-signaling cascade. Insulin activates PKCs alpha, betaII, delta and zeta in several cell types. In addition, as will be documented in this review, certain members of the PKC family may also be activated and act upstream of PI3 and MAP kinases. Each of these isoforms has been shown one way or another either to mimic or to modify insulin-stimulated effects in one or all of the insulin-responsive tissues. Moreover, each of the isoforms has been shown to be activated by insulin stimulation or conditions important for effective insulin stimulation. Studies attempting to demonstrate a definitive role for any of the isoforms have been performed on different cells, ranging from appropriate model systems for skeletal muscle, liver and fat, such as primary cultures, and cell lines and even in vivo studies, including transgenic mice with selective deletion of specific PKC isoforms. In addition, studies have been done on certain expression systems such as CHO or HEK293 cells, which are far removed from the tissues themselves and serve mainly as vessels for potential protein-protein interactions. Thus, a clear picture for many of the isoforms remains elusive in spite of over two decades of intensive research. The recent intrusion of transgenic and precise molecular biology technologies into the research armamentarium has opened a wide range of additional possibilities for direct involvement of individual isoforms in the insulin signaling cascade. As we hope to discuss within the context of this review, whereas many of the long sought-after answers to specific questions are not yet clear, major advances have been made in our understanding of precise roles for individual PKC isoforms in mediation of insulin effects. In this review, in which we shall focus our attention on isoforms in the conventional and novel categories, a clear case will be made to show that these isoforms are not only expressed but are importantly involved in regulation of insulin metabolic effects.
Collapse
|
19
|
Funaki M, DiFransico L, Janmey PA. PI 4,5-P2 stimulates glucose transport activity of GLUT4 in the plasma membrane of 3T3-L1 adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:889-99. [PMID: 16828894 PMCID: PMC3118463 DOI: 10.1016/j.bbamcr.2006.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/08/2006] [Accepted: 05/09/2006] [Indexed: 12/16/2022]
Abstract
Insulin-stimulated glucose uptake through GLUT4 plays a pivotal role in maintaining normal blood glucose levels. Glucose transport through GLUT4 requires both GLUT4 translocation to the plasma membrane and GLUT4 activation at the plasma membrane. Here we report that a cell-permeable phosphoinositide-binding peptide, which induces GLUT4 translocation without activation, sequestered PI 4,5-P2 in the plasma membrane from its binding partners. Restoring PI 4,5-P2 to the plasma membrane after the peptide treatment increased glucose uptake. No additional glucose transporters were recruited to the plasma membrane, suggesting that the increased glucose uptake was attributable to GLUT4 activation. Cells overexpressing phosphatidylinositol-4-phosphate 5-kinase treated with the peptide followed by its removal exhibited a higher level of glucose transport than cells stimulated with a submaximal level of insulin. However, only cells treated with submaximal insulin exhibited translocation of the PH-domains of the general receptor for phosphoinositides (GRP1) to the plasma membrane. Thus, PI 4,5-P2, but not PI 3,4,5-P3 converted from PI 4,5-P2, induced GLUT4 activation. Inhibiting F-actin remodeling after the peptide treatment significantly impaired GLUT4 activation induced either by PI 4,5-P2 or by insulin. These results suggest that PI 4,5-P2 in the plasma membrane acts as a second messenger to activate GLUT4, possibly through F-actin remodeling.
Collapse
Affiliation(s)
- Makoto Funaki
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, 1080 Vagelos Research Laboratories, 3340 Smith Walk, Philadelphia, 19104, USA.
| | | | | |
Collapse
|
20
|
Müller G, Schulz A, Wied S, Frick W. Regulation of lipid raft proteins by glimepiride- and insulin-induced glycosylphosphatidylinositol-specific phospholipase C in rat adipocytes. Biochem Pharmacol 2005; 69:761-80. [PMID: 15710354 DOI: 10.1016/j.bcp.2004.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 11/25/2004] [Indexed: 11/18/2022]
Abstract
The insulin receptor-independent insulin-mimetic signalling provoked by the antidiabetic sulfonylurea drug, glimepiride, is accompanied by the redistribution and concomitant activation of lipid raft-associated signalling components, such as the acylated tyrosine kinase, pp59(Lyn), and some glycosylphosphatidylinositol-anchored proteins (GPI-proteins). We now found that impairment of glimepiride-induced lipolytic cleavage of GPI-proteins in rat adipocytes by the novel inhibitor of glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC), GPI-2350, caused almost complete blockade of (i) dissociation from caveolin-1 of pp59(Lyn) and GPI-proteins, (ii) their redistribution from high cholesterol- (hcDIGs) to low cholesterol-containing (lcDIGs) lipid rafts, (iii) tyrosine phosphorylation of pp59(Lyn) and insulin receptor substrate-1 protein (IRS-1) and (iv) stimulation of glucose transport as well as (v) inhibition of isoproterenol-induced lipolysis in response to glimepiride. In contrast, blockade of the moderate insulin activation of the GPI-PLC and of lipid raft protein redistribution by GPI-2350 slightly reduced insulin signalling and metabolic action, only. Importantly, in response to both insulin and glimepiride, lipolytically cleaved hydrophilic GPI-proteins remain associated with hcDIGs rather than redistribute to lcDIGs as do their uncleaved amphiphilic versions. In conclusion, GPI-PLC controls the localization within lipid rafts and thereby the activity of certain GPI-anchored and acylated signalling proteins. Its stimulation is required and may even be sufficient for insulin-mimetic cross-talking to IRS-1 in response to glimepiride via redistributed and activated pp59(Lyn).
Collapse
Affiliation(s)
- Günter Müller
- Sanofi-Aventis, TD Metabolism, Industrial Park Frankfurt-Höchst, 65926 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
21
|
Johnson SA, Denton RM. Insulin stimulation of pyruvate dehydrogenase in adipocytes involves two distinct signalling pathways. Biochem J 2003; 369:351-6. [PMID: 12374570 PMCID: PMC1223089 DOI: 10.1042/bj20020920] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 09/05/2002] [Accepted: 10/09/2002] [Indexed: 11/17/2022]
Abstract
In isolated rat adipocytes, the insulin stimulation of pyruvate dehydrogenase can be partially inhibited by inhibitors of PI3K (phosphoinositide 3-kinase) and MEK1/2 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase). In combination, U0126 and wortmannin completely block the insulin stimulation of pyruvate dehydrogenase. It is concluded that the effect of insulin on pyruvate dehydrogenase in rat adipocytes involves two distinct signalling pathways: one is sensitive to wortmannin and the other to U0126. The synthetic phosphoinositolglycan PIG41 can activate pyruvate dehydrogenase but the activation is only approx. 30% of the maximal effect of insulin. This modest activation can be completely blocked by wortmannin alone, suggesting that PIG41 acts through only one of the pathways leading to the activation of pyruvate dehydrogenase.
Collapse
Affiliation(s)
- Sam A Johnson
- Department of Biochemistry, University of Bristol, University Walk, Clifton, Bristol BS8 1TD, U.K
| | | |
Collapse
|
22
|
Müller G, Hanekop N, Kramer W, Bandlow W, Frick W. Interaction of phosphoinositolglycan(-peptides) with plasma membrane lipid rafts of rat adipocytes. Arch Biochem Biophys 2002; 408:17-32. [PMID: 12485599 DOI: 10.1016/s0003-9861(02)00451-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Insulin receptor-independent activation of the insulin signal transduction cascade in insulin-responsive target cells by phosphoinositolglycans (PIG) and PIG-peptides (PIG-P) is accompanied by redistribution of glycosylphosphatidylinositol (GPI)-anchored plasma membrane proteins (GPI proteins) and dually acylated nonreceptor tyrosine kinases from detergent/carbonate-resistant glycolipid-enriched plasma membrane raft domains of high-cholesterol content (hcDIGs) to rafts of lower cholesterol content (lcDIGs). Here we studied the nature and localization of the primary target of PIG(-P) in isolated rat adipocytes. Radiolabeled PIG-P (Tyr-Cys-Asn-NH-(CH(2))(2)-O-PO(OH)O-6Manalpha1(Manalpha1-2)-2Manalpha1-6Manalpha1-4GluN1-6Ino-1,2-(cyclic)-phosphate) prepared by chemical synthesis or a radiolabeled lipolytically cleaved GPI protein from Saccharomyces cerevisiae, which harbors the PIG-P moiety, bind to isolated hcDIGs but not to lcDIGs. Binding is saturable and abolished by pretreatment of intact adipocytes with trypsin followed by NaCl or with N-ethylmaleimide, indicating specific interaction of PIG-P with a cell surface protein. A 115-kDa polypeptide released from the cell surface by the trypsin/NaCl-treatment is labeled by [(14)C]N-ethylmaleimide. The labeling is diminished upon incubation of adipocytes with PIG-P which can be explained by direct binding of PIG-P to the 115-kDa protein and concomitant loss of its accessibility to N-ethylmaleimide. Binding of PIG-P to hcDIGs is considerably increased after pretreatment of adipocytes with (glycosyl)phosphatidylinositol-specific phospholipases compatible with lipolytic removal of endogenous ligands, such as GPI proteins/lipids. These data demonstrate that in rat adipocytes synthetic PIG(-P) as well as lipolytically cleaved GPI proteins interact specifically with hcDIGs. The interaction depends on the presence of a trypsin/NaCl/NEM-sensitive 115-kDa protein located at hcDIGs which thus represents a candidate for a binding protein for exogenous insulin-mimetic PIG(-P) and possibly endogenous GPI proteins/lipids.
Collapse
Affiliation(s)
- Günter Müller
- Aventis Pharma Germany, DG Metabolic Diseases, Industrial Park Höchst, Bldg. H825, 65926, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
23
|
Müller G, Jung C, Frick W, Bandlow W, Kramer W. Interaction of phosphatidylinositolglycan(-peptides) with plasma membrane lipid rafts triggers insulin-mimetic signaling in rat adipocytes. Arch Biochem Biophys 2002; 408:7-16. [PMID: 12485598 DOI: 10.1016/s0003-9861(02)00450-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The phosphoinositolglycan(-peptide) (PIG-P) portion of glycosylphosphatidylinositol-anchored plasma membrane (GPI) proteins or synthetic PIG(-P) molecules interact with proteinaceous binding sites which are located in high-cholesterol-containing detergent/carbonate-insoluble glycolipid-enriched raft domains (hcDIGs) of the plasma membrane. In isolated rat adipocytes, PIG(-P) induce the redistribution of GPI proteins from hcDIGs to low-cholesterol-containing DIGs (lcDIGs) and concomitantly provoke insulin-mimetic signaling and metabolic action. Using a set of synthetic PIG(-P) derivatives we demonstrate here that their specific binding to hcDIGs and their insulin-mimetic signaling/metabolic activity strictly correlate with respect to (i) translocation of the GPI proteins, Gce1 and 5(')-nucleotidase, from hcDIGs to lcDIGs, (ii) dissociation of the nonreceptor tyrosine kinase, pp59(Lyn), from caveolin residing at hcDIGs, (iii) translocation of pp59(Lyn) from hcDIGs to lcDIGs, (iv) activation of pp59(Lyn), (v) tyrosine phosphorylation of insulin receptor substrate proteins-1/2, and finally (vi) stimulation of glucose transport. The natural PIG(-P) derived from the carboxy-terminal tripeptide of Gce1, YCN-PIG, exhibits the highest potency followed by a combination of the separate peptidylethanolamidyl and PIG constituents. We conclude that efficient positive cross-talk of PIG(-P) to the insulin signaling cascade requires their interaction with hcDIGs. We suggest that PIG(-P) thereby displace GPI proteins from binding to hcDIGs leading to their release from hcDIGs for lateral movement to lcDIGs which initiates signal transduction from DIGs via caveolin and pp59(Lyn) to the insulin receptor substrate proteins of the insulin signaling pathway.
Collapse
Affiliation(s)
- Günter Müller
- Aventis Pharma Germany, DG Metabolic Diseases, Industrial Park Höchst, Bldg. H825, 65926, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
24
|
Abstract
The critical role of the heterogeneous nature of cellular plasma membranes in transmembrane signal transduction has become increasingly appreciated during the past decade. Areas of relatively disordered, loosely packed phospholipids are disrupted by hydrophobic detergent/carbonate-insoluble glycolipid-enriched raft microdomains (DIGs) of highly ordered (glyco)sphingolipids and cholesterol. DIGs exhibit low buoyant density and are often enriched in glycosylphosphatidylinositol-anchored plasma membrane proteins (GPI proteins), dually acylated signalling proteins, such as non-receptor tyrosine kinases (NRTKs), and caveolin. At least two types of DIGs, hcDIGs and lcDIGs, can be discriminated on basis of higher and lower content, respectively, of these typical DIGs components. In quiescent differentiated cells, GPI proteins and NRTKs are mainly associated with hcDIGs, however, in adipose cells certain insulin-mimetic stimuli trigger redistribution of subsets of GPI proteins and NRTKs from hcDIGs to lcDIGs. Presumably, these stimuli induce displacement of GPI proteins from a GPI receptor located at hcDIGs whereas simultaneously NRTKs dissociate from a complex with caveolin located at hcDIGs, too. NRTKs are thereby activated and, in turn, modulate intracellular signalling pathways, such as stimulation of metabolic insulin signalling in insulin-sensitive cells. The apparent dynamics of DIGs may provide a target mechanism for regulating the activity of lipid-modified signalling proteins by small drug molecules, as exemplified by the sulfonylurea, glimepiride, which lowers blood glucose in an insulin-independent fashion, in part.
Collapse
Affiliation(s)
- Günter Müller
- Aventis Pharma Germany, DG Metabolic Diseases, Industrial Park Höchst, Bldg. H825, 65926, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Anderwald C, Müller G, Koca G, Fürnsinn C, Waldhäusl W, Roden M. Short-term leptin-dependent inhibition of hepatic gluconeogenesis is mediated by insulin receptor substrate-2. Mol Endocrinol 2002; 16:1612-28. [PMID: 12089355 DOI: 10.1210/mend.16.7.0867] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Leptin has both insulin-like and insulin-antagonistic effects on glucose metabolism. To test whether leptin interferes directly with insulin signaling, we perfused isolated rat livers with leptin (0.1, 0.5, 5, and 25 nmol/liter), leptin + insulin (5 nmol/liter + 10 nmol/liter), insulin (10 nmol/liter), or vehicle (control). Leptin reduced L-lactate-(10 mmol/liter)-stimulated glucose production by 39-66% (P < 0.006 vs. control) and phosphoenolpyruvate carboxykinase (PEPCK) activity by 22-52% (P < 0.001). Physiological leptin concentrations (0.1-5 nmol/liter) stimulated the tyrosine phosphorylation (pY) of insulin receptor substrate-2 (IRS-2) (280-954%; P < 0.05) and its associated phosphatidylinositol-3 kinase activity (122-621%; P < 0.003). Leptin (0.5-25 nmol/liter) inhibited IRS-1 pY and its associated phosphatidylinositol-3 kinase activity (20-89%; P < 0.03) but stimulated janus kinase-2 pY (272-342%; P < 0.001). Leptin also down-regulated its short receptor isoform in a time- and concentration-dependent manner (28-54%; P < 0.05). Exposure to leptin + insulin additively reduced glucose production and PEPCK activity (approximately 50%; P < 0.001 vs. control) and doubled IRS-2 pY (P < 0.01 vs. insulin). However, leptin + insulin decreased IRS-1 pY by 57% (P < 0.01 vs. insulin). Insulin alone (P < 0.01), but not leptin, increased autophosphorylation of nonreceptor tyrosine kinases (pp59(Lyn) + pp125(Fak)). In conclusion, leptin both alone and in combination with insulin reduces hepatic glucose production by decreasing the synthesis of the key enzyme of gluconeogenesis, PEPCK, which results mainly from the stimulation of the IRS-2 pathway.
Collapse
Affiliation(s)
- Christian Anderwald
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, University of Vienna, Austria A-1090
| | | | | | | | | | | |
Collapse
|
26
|
Cholesterol Depletion Blocks Redistribution of Lipid Raft Components and Insulin-Mimetic Signaling by Glimepiride and Phosphoinositolglycans in Rat Adipocytes. Mol Med 2002. [DOI: 10.1007/bf03402005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
27
|
Shashkin PN, Wasner HK, Ortmeyer HK, Hansen BC. Prostaglandylinositol cyclic phosphate (cPIP): a novel second messenger of insulin action. Comparative analysis of two kinds of "insulin mediators". Diabetes Metab Res Rev 2001; 17:273-84. [PMID: 11544611 DOI: 10.1002/dmrr.218] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Insulin induces a broad spectrum of effects over a wide time interval. It also stimulates the phosphorylation of some cellular proteins, while decreasing the state of phosphorylation of others. These observations indicate the presence of different, but not necessarily mutually exclusive, pathways of insulin action. One well-known pathway represents a phosphorylation cascade initiated by the tyrosine kinase activity of the insulin receptor followed by involvement of different MAP-kinases. Another pathway suggests the existence of low molecular weight insulin mediators whose synthesis and/or release is initiated by insulin. Comparable analysis of two kinds of insulin mediators, namely inositolphosphoglycans and prostaglandylinositol cyclic phosphate (cPIP), has been carried out. It has been shown that the expression of a number of enzymes, such as phospholipase A(2), phospholipase C, cyclo-oxygenase and IRS-1-like enzyme, could regulate the biosynthesis of cPIP in both normal and diabetes-related conditions. Data on the activity of a key enzyme of cPIP biosynthesis termed cPIP synthase (IRS-1-like enzyme) in various monkey tissues before and twice during an euglycemic hyperinsulinemic clamp have been presented. It has been concluded that in vivo insulin increases cPIP synthase activity in both liver and subcutaneous adipose tissue of lean normal monkeys. It has been also suggested that abnormal production of cPIP could be related to several pathologies including glucocorticoid-induced insulin resistance and diabetic embryopathy. Further studies on cPIP and other types of insulin mediators are necessary to aid our understanding of insulin action.
Collapse
Affiliation(s)
- P N Shashkin
- Obesity and Diabetes Research Center, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
28
|
Müller G, Jung C, Wied S, Welte S, Jordan H, Frick W. Redistribution of glycolipid raft domain components induces insulin-mimetic signaling in rat adipocytes. Mol Cell Biol 2001; 21:4553-67. [PMID: 11416134 PMCID: PMC87114 DOI: 10.1128/mcb.21.14.4553-4567.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caveolae and caveolin-containing detergent-insoluble glycolipid-enriched rafts (DIG) have been implicated to function as plasma membrane microcompartments or domains for the preassembly of signaling complexes, keeping them in the basal inactive state. So far, only limited in vivo evidence is available for the regulation of the interaction between caveolae-DIG and signaling components in response to extracellular stimuli. Here, we demonstrate that in isolated rat adipocytes, synthetic intracellular caveolin binding domain (CBD) peptide derived from caveolin-associated pp59(Lyn) (10 to 100 microM) or exogenous phosphoinositolglycan derived from glycosyl-phosphatidylinositol (GPI) membrane protein anchor (PIG; 1 to 10 microM) triggers the concentration-dependent release of caveolar components and the GPI-anchored protein Gce1, as well as the nonreceptor tyrosine kinases pp59(Lyn) and pp125(Fak), from interaction with caveolin (up to 45 to 85%). This dissociation, which parallels redistribution of the components from DIG to non-DIG areas of the adipocyte plasma membrane (up to 30 to 75%), is accompanied by tyrosine phosphorylation and activation of pp59(Lyn) and pp125(Fak) (up to 8- and 11-fold) but not of the insulin receptor. This correlates well to increased tyrosine phosphorylation of caveolin and the insulin receptor substrate protein 1 (up to 6- and 15-fold), as well as elevated phosphatidylinositol-3' kinase activity and glucose transport (to up to 7- and 13-fold). Insulin-mimetic signaling by both CBD peptide and PIG as well as redistribution induced by CBD peptide, but not by PIG, was blocked by synthetic intracellular caveolin scaffolding domain (CSD) peptide. These data suggest that in adipocytes a subset of signaling components is concentrated at caveolae-DIG via the interaction between their CBD and the CSD of caveolin. These inhibitory interactions are relieved by PIG. Thus, caveolae-DIG may operate as signalosomes for insulin-independent positive cross talk to metabolic insulin signaling downstream of the insulin receptor based on redistribution and accompanying activation of nonreceptor tyrosine kinases.
Collapse
Affiliation(s)
- G Müller
- Aventis Pharma Germany, 65926 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Müller G. The Molecular Mechanism of the Insulin-mimetic/sensitizing Activity of the Antidiabetic Sulfonylurea Drug Amaryl. Mol Med 2000. [DOI: 10.1007/bf03401827] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|