1
|
Zhang L, Wang R, Xing Y, Xu Y, Xiong D, Wang Y, Yao S. Separable regulation of POW1 in grain size and leaf angle development in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2517-2531. [PMID: 34343399 PMCID: PMC8633490 DOI: 10.1111/pbi.13677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/27/2023]
Abstract
Leaf angle is one of the key factors that determines rice plant architecture. However, the improvement of leaf angle erectness is often accompanied by unfavourable changes in other traits, especially grain size reduction. In this study, we identified the pow1 (put on weight 1) mutant that leads to increased grain size and leaf angle, typical brassinosteroid (BR)-related phenotypes caused by excessive cell proliferation and cell expansion. We show that modulation of the BR biosynthesis genes OsDWARF4 (D4) and D11 and the BR signalling gene D61 could rescue the phenotype of leaf angle but not grain size in the pow1 mutant. We further demonstrated that POW1 functions in grain size regulation by repressing the transactivation activity of the interacting protein TAF2, a highly conserved member of the TFIID transcription initiation complex. Down-regulation of TAF2 rescued the enlarged grain size of pow1 but had little effect on the increased leaf angle phenotype of the mutant. The separable functions of the POW1-TAF2 and POW1-BR modules in grain size and leaf angle control provide a promising strategy for designing varieties with compact plant architecture and increased grain size, thus promoting high-yield breeding in rice.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Ruci Wang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Yide Xing
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yufang Xu
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
- College of Life ScienceHenan Agricultural UniversityZhengzhouChina
| | - Dunping Xiong
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yueming Wang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Shanguo Yao
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Li CW, Chen BS. Investigating HIV-Human Interaction Networks to Unravel Pathogenic Mechanism for Drug Discovery: A Systems Biology Approach. Curr HIV Res 2019; 16:77-95. [PMID: 29468972 DOI: 10.2174/1570162x16666180219155324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/18/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Two big issues in the study of pathogens are determining how pathogens infect hosts and how the host defends itself against infection. Therefore, investigating host-pathogen interactions is important for understanding pathogenicity and host defensive mechanisms and treating infections. METHODS In this study, we used omics data, including time-course data from high-throughput sequencing, real-time polymerase chain reaction, and human microRNA (miRNA) and protein-protein interaction to construct an interspecies protein-protein and miRNA interaction (PPMI) network of human CD4+ T cells during HIV-1 infection through system modeling and identification. RESULTS By applying a functional annotation tool to the identified PPMI network at each stage of HIV infection, we found that repressions of three miRNAs, miR-140-5p, miR-320a, and miR-941, are involved in the development of autoimmune disorders, tumor proliferation, and the pathogenesis of T cells at the reverse transcription stage. Repressions of miR-331-3p and miR-320a are involved in HIV-1 replication, replicative spread, anti-apoptosis, cell proliferation, and dysregulation of cell cycle control at the integration/replication stage. Repression of miR-341-5p is involved in carcinogenesis at the late stage of HIV-1 infection. CONCLUSION By investigating the common core proteins and changes in specific proteins in the PPMI network between the stages of HIV-1 infection, we obtained pathogenic insights into the functional core modules and identified potential drug combinations for treating patients with HIV-1 infection, including thalidomide, oxaprozin, and metformin, at the reverse transcription stage; quercetin, nifedipine, and fenbendazole, at the integration/replication stage; and staurosporine, quercetin, prednisolone, and flufenamic acid, at the late stage.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
3
|
Neves A, Eisenman RN. Distinct gene-selective roles for a network of core promoter factors in Drosophila neural stem cell identity. Biol Open 2019; 8:8/4/bio042168. [PMID: 30948355 PMCID: PMC6504003 DOI: 10.1242/bio.042168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcriptional mechanisms that allow neural stem cells (NSC) to balance self-renewal with differentiation are not well understood. Employing an in vivo RNAi screen we identify here NSC-TAFs, a subset of nine TATA-binding protein associated factors (TAFs), as NSC identity genes in Drosophila We found that depletion of NSC-TAFs results in decreased NSC clone size, reduced proliferation, defective cell polarity and increased hypersensitivity to cell cycle perturbation, without affecting NSC survival. Integrated gene expression and genomic binding analyses revealed that NSC-TAFs function with both TBP and TRF2, and that NSC-TAF-TBP and NSC-TAF-TRF2 shared target genes encode different subsets of transcription factors and RNA-binding proteins with established or emerging roles in NSC identity and brain development. Taken together, our results demonstrate that core promoter factors are selectively required for NSC identity in vivo by promoting cell cycle progression and NSC cell polarity. Because pathogenic variants in a subset of TAFs have all been linked to human neurological disorders, this work may stimulate and inform future animal models of TAF-linked neurological disorders.
Collapse
Affiliation(s)
- Alexandre Neves
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| |
Collapse
|
4
|
Yoon JW, Lamm M, Iannaccone S, Higashiyama N, Leong KF, Iannaccone P, Walterhouse D. p53 modulates the activity of the GLI1 oncogene through interactions with the shared coactivator TAF9. DNA Repair (Amst) 2015; 34:9-17. [PMID: 26282181 DOI: 10.1016/j.dnarep.2015.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/11/2015] [Indexed: 01/20/2023]
Abstract
The GLI1 oncogene and p53 tumor suppressor gene function in an inhibitory loop that controls stem cell and tumor cell numbers. Since GLI1 and p53 both interact with the coactivator TATA Binding Protein Associated Factor 9 (TAF9), we hypothesized that competition between these transcription factors for TAF9 in cancer cells may contribute to the inhibitory loop and directly affect GLI1 function and cellular phenotype. We showed that TAF9 interacts with the oncogenic GLI family members GLI1 and GLI2 but not GLI3 in cell-free pull-down assays and with GLI1 in rhabdomyosarcoma and osteosarcoma cell lines. Removal of the TAF9-binding acidic alpha helical transactivation domain of GLI1 produced a significant reduction in the ability of GLI1 to transform cells. We then introduced a point mutation into GLI1 (L1052I) that eliminates TAF9 binding and a point mutation into GLI3 (I1510L) that establishes binding. Wild-type and mutant GLI proteins that bind TAF9 showed enhanced transactivating and cell transforming activity compared with those that did not. Therefore, GLI-TAF9 binding appears important for oncogenic activity. We then determined whether wild-type p53 down-regulates GLI function by sequestering TAF9. We showed that p53 binds TAF9 with greater affinity than does GLI1 and that co-expression of p53 with GLI1 or GLI2 down-regulated GLI-induced transactivation, which could be abrogated using mutant forms of GLI1 or p53. This suggests that p53 sequesters TAF9 from GLI1, which may contribute to inhibition of GLI1 activity by p53 and potentially impact therapeutic success of agents targeting GLI-TAF9 interactions in cancer.
Collapse
Affiliation(s)
- Joon Won Yoon
- Developmental Biology Program of the Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - Marilyn Lamm
- Developmental Biology Program of the Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - Stephen Iannaccone
- Developmental Biology Program of the Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - Nicole Higashiyama
- Developmental Biology Program of the Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - King Fu Leong
- Developmental Biology Program of the Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - Philip Iannaccone
- Developmental Biology Program of the Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - David Walterhouse
- Developmental Biology Program of the Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Toppino L, Kooiker M, Lindner M, Dreni L, Rotino GL, Kater MM. Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:684-92. [PMID: 20955179 DOI: 10.1111/j.1467-7652.2010.00567.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Since decades, plant male sterility is considered a powerful tool for biological containment to minimize unwanted self-pollination for hybrid seed production. Furthermore, prevention of pollen dispersal also answers to concerns regarding transgene flow via pollen from Genetically Modified (GM) crops to traditional crop fields or wild relatives. We induced male sterility by suppressing endogenous general transcription factor genes, TAFs, using anther-specific promoters combined with artificial microRNA (amiRNA) technology (Schwab et al., 2006). The system was made reversible by the ethanol inducible expression of an amiRNA-insensitive form of the target gene. We provide proof of concept in eggplant, a cultivated crop belonging to the Solanaceae family that includes many important food crops. The transgenic eggplants that we generated are completely male sterile and fertility can be fully restored by short treatments with ethanol, confirming the efficiency but also the reliability of the system in view of open field cultivation. By combining this system with induced parthenocarpy (Rotino et al., 1997), we provide a novel example of complete transgene containment in eggplant, which enables biological mitigation measures for the benefit of coexistence or biosafety purposes for GM crop cultivation.
Collapse
Affiliation(s)
- Laura Toppino
- CRA-ORL Agricultural Research Council, Research Unit for Vegetable Crops, Montanaso Lombardo (Lo) Italy DSBB, Department of Biomolecular Sciences and Biotechnology, University of Milano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Kashiwabara SI, Nakanishi T, Kimura M, Baba T. Non-canonical poly(A) polymerase in mammalian gametogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:230-8. [PMID: 18294465 DOI: 10.1016/j.bbagrm.2008.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Revised: 01/17/2008] [Accepted: 01/20/2008] [Indexed: 11/16/2022]
Abstract
Polyadenylation of mRNA precursors initially occurs in the nucleus of eukaryotic cells, and the polyadenylated mRNAs are then transported into the cytoplasm. Because the length of the poly(A) tail is implicated in various aspects of mRNA metabolism, including the transport into the cytoplasm, stability, and translational control, processing of mRNA precursors at the 3'-end is important for post-transcriptional gene regulation. In particular, the lengthening, maintenance, and shortening of poly(A) tails in the cytoplasm are all essential for modulation of gametogenesis. Here we focus on the functional roles of mouse Tpap and Gld-2 in spermatogenesis and oocyte maturation, respectively.
Collapse
Affiliation(s)
- Shin-ichi Kashiwabara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki, Japan
| | | | | | | |
Collapse
|
7
|
Li X, Niu T, Manley JL. The RNA binding protein RNPS1 alleviates ASF/SF2 depletion-induced genomic instability. RNA (NEW YORK, N.Y.) 2007; 13:2108-2115. [PMID: 17959926 PMCID: PMC2080599 DOI: 10.1261/rna.734407] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 09/11/2007] [Indexed: 05/25/2023]
Abstract
Formation of transcription-induced R-loops poses a critical threat to genomic integrity throughout evolution. We have recently shown that the SR protein ASF/SF2 prevents R-loop formation in vertebrates by cotranscriptionally binding to nascent mRNA precursors to prevent their reassociation with template DNA. Here, we identify another RNA binding protein, RNPS1, that when overexpressed strongly suppresses the high molecular weight (HMW) DNA fragmentation, hypermutation, and G2 cell cycle arrest phenotypes of ASF/SF2-depleted cells. Furthermore, ablation of RNPS1 by RNA interference in HeLa cells leads to accumulation of HMW DNA fragments. As ASF/SF2 depletion does not influence RNPS1 expression, and RNPS1 cannot compensate for ASF/SF2 function in splicing, our data suggest that RNPS1 is able to function together with ASF/SF2 to form RNP complexes on nascent transcripts, and thereby prevent formation of transcriptional R-loops.
Collapse
Affiliation(s)
- Xialu Li
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
8
|
Müller F, Demény MA, Tora L. New problems in RNA polymerase II transcription initiation: matching the diversity of core promoters with a variety of promoter recognition factors. J Biol Chem 2007; 282:14685-9. [PMID: 17395580 DOI: 10.1074/jbc.r700012200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Ferenc Müller
- Institute of Toxicology and Genetics, Forschungszentrum, Karlsruhe, D-76021 Germany.
| | | | | |
Collapse
|
9
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
10
|
Li X, Wang J, Manley JL. Loss of splicing factor ASF/SF2 induces G2 cell cycle arrest and apoptosis, but inhibits internucleosomal DNA fragmentation. Genes Dev 2005; 19:2705-14. [PMID: 16260492 PMCID: PMC1283963 DOI: 10.1101/gad.1359305] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ASF/SF2 is an SR protein splicing factor that participates in constitutive and alternative pre-mRNA splicing and is essential for cell viability. Using a genetically modified chicken B-cell line, DT40-ASF, we now show that ASF/SF2 inactivation results in a G2-phase cell cycle arrest and subsequent programmed cell death. However, although several hallmarks of apoptosis are apparent, internucleosomal DNA fragmentation was not detected. Furthermore, inactivation of ASF/SF2 also blocks DNA fragmentation normally induced by a variety of apoptotic stimuli. Notably, mRNA encoding the inhibitor of caspase-activated DNase-L (ICAD-L), which acts as an inhibitor as well as a chaperone of caspase-activated DNase (CAD), decreased in abundance, whereas the level of mRNA encoding ICAD-S, which has only inhibitory activity, increased upon ASF/SF2 depletion. Strikingly, expression of appropriate levels of exogenous human ICAD-L restored apoptotic DNA laddering in ASF/SF2-depleted cells. These results not only indicate that loss of an SR protein splicing factor can induce cell cycle arrest and apoptosis, but also illustrate the important role of ICAD and its regulation by alternative splicing in the process of apoptotic DNA fragmentation.
Collapse
Affiliation(s)
- Xialu Li
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
11
|
Li X, Manley JL. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 2005; 122:365-78. [PMID: 16096057 DOI: 10.1016/j.cell.2005.06.008] [Citation(s) in RCA: 573] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 01/18/2005] [Accepted: 06/06/2005] [Indexed: 01/10/2023]
Abstract
SR proteins constitute a family of pre-mRNA splicing factors now thought to play several roles in mRNA metabolism in metazoan cells. Here we provide evidence that a prototypical SR protein, ASF/SF2, is unexpectedly required for maintenance of genomic stability. We first show that in vivo depletion of ASF/SF2 results in a hypermutation phenotype likely due to DNA rearrangements, reflected in the rapid appearance of DNA double-strand breaks and high-molecular-weight DNA fragments. Analysis of DNA from ASF/SF2-depleted cells revealed that the nontemplate strand of a transcribed gene was single stranded due to formation of an RNA:DNA hybrid, R loop structure. Stable overexpression of RNase H suppressed the DNA-fragmentation and hypermutation phenotypes. Indicative of a direct role, ASF/SF2 prevented R loop formation in a reconstituted in vitro transcription reaction. Our results support a model by which recruitment of ASF/SF2 to nascent transcripts by RNA polymerase II prevents formation of mutagenic R loop structures.
Collapse
Affiliation(s)
- Xialu Li
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
12
|
Mengus G, Fadloun A, Kobi D, Thibault C, Perletti L, Michel I, Davidson I. TAF4 inactivation in embryonic fibroblasts activates TGF beta signalling and autocrine growth. EMBO J 2005; 24:2753-67. [PMID: 16015375 PMCID: PMC1182243 DOI: 10.1038/sj.emboj.7600748] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 06/24/2005] [Indexed: 01/04/2023] Open
Abstract
We have inactivated transcription factor TFIID subunit TBP-associated factor 4 (TAF4) in mouse embryonic fibroblasts. Mutant taf4(-/-) cells are viable and contain intact TFIID comprising the related TAF4b showing that TAF4 is not an essential protein. TAF4 inactivation deregulates more than 1000 genes indicating that TFIID complexes containing TAF4 and TAF4b have distinct target gene specificities. However, taf4(-/-) cell lines have altered morphology and exhibit serum-independent autocrine growth correlated with the induced expression of several secreted mitotic factors and activators of the transforming growth factor beta signalling pathway. In addition to TAF4 inactivation, many of these genes can also be induced by overexpression of TAF4b. A competitive equilibrium between TAF4 and TAF4b therefore regulates expression of genes controlling cell proliferation. We have further identified a set of genes that are regulated both by TAF4 and upon adaptation to serum starvation and which may be important downstream mediators of serum-independent growth. Our study also shows that TAF4 is an essential cofactor for activation by the retinoic acid receptor and CREB, but not for Sp1 and the vitamin D3 receptor.
Collapse
Affiliation(s)
- Gabrielle Mengus
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Anas Fadloun
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Dominique Kobi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Christelle Thibault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Lucia Perletti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Isabelle Michel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| |
Collapse
|
13
|
Frontini M, Soutoglou E, Argentini M, Bole-Feysot C, Jost B, Scheer E, Tora L. TAF9b (formerly TAF9L) is a bona fide TAF that has unique and overlapping roles with TAF9. Mol Cell Biol 2005; 25:4638-49. [PMID: 15899866 PMCID: PMC1140618 DOI: 10.1128/mcb.25.11.4638-4649.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
TFIID plays a key role in transcription initiation of RNA polymerase II preinitiation complex assembly. TFIID is comprised of the TATA box binding protein (TBP) and 14 TBP-associated factors (TAFs). A second set of transcriptional regulatory multiprotein complexes containing TAFs has been described (called SAGA, TFTC, STAGA, and PCAF/GCN5). Using matrix-assisted laser desorption ionization mass spectrometry, we identified a novel TFTC subunit, human TAF9Like, encoded by a TAF9 paralogue gene. We show that TAF9Like is a subunit of TFIID, and thus, it will be called TAF9b. TFIID and TFTC complexes in which both TAF9 and TAF9b are present exist. In vitro and in vivo experiments indicate that the interactions between TAF9b and TAF6 or TAF9 and TAF6 histone fold pairs are similar. We observed a differential induction of TAF9 and TAF9b during apoptosis that, together with their different ability to stabilize p53, points to distinct requirements for the two proteins in gene regulation. Small interfering RNA (siRNA) knockdown of TAF9 and TAF9b revealed that both genes are essential for cell viability. Gene expression analysis of cells treated with either TAF9 or TAF9b siRNAs indicates that the two proteins regulate different sets of genes with only a small overlap. Taken together, these data demonstrate that TAF9 and TAF9b share some of their functions, but more importantly, they have distinct roles in the transcriptional regulatory process.
Collapse
Affiliation(s)
- Mattia Frontini
- Department of Transcription, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Yamazoe M, Sonoda E, Hochegger H, Takeda S. Reverse genetic studies of the DNA damage response in the chicken B lymphocyte line DT40. DNA Repair (Amst) 2004; 3:1175-85. [PMID: 15279806 DOI: 10.1016/j.dnarep.2004.03.039] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the 'post-genome' era, reverse genetics is one of the most informative and powerful means to investigate protein function. The chicken B lymphocyte line DT40 is widely used for reverse genetics because the cells have a number of advantages, including efficient gene targeting as well as a remarkably stable phenotype. Furthermore, the absence of functional p53 in DT40 cells enables identification of DNA damage using chromosome analysis by suppressing damage-induced apoptosis during interphase. This review summarizes the contribution of DT40 cells to reverse genetic studies of DNA damage response pathways in higher eukaryotic cells.
Collapse
Affiliation(s)
- Mitsuyoshi Yamazoe
- CRESTO, The Japan Science and Technology Corporation, Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
15
|
Matangkasombut O, Auty R, Buratowski S. Structure and Function of the TFIID Complex. ADVANCES IN PROTEIN CHEMISTRY 2004; 67:67-92. [PMID: 14969724 DOI: 10.1016/s0065-3233(04)67003-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Oranart Matangkasombut
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
16
|
Chen Z, Manley JL. Core promoter elements and TAFs contribute to the diversity of transcriptional activation in vertebrates. Mol Cell Biol 2003; 23:7350-62. [PMID: 14517303 PMCID: PMC230314 DOI: 10.1128/mcb.23.20.7350-7362.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Revised: 05/27/2003] [Accepted: 07/07/2003] [Indexed: 11/20/2022] Open
Abstract
Gene-specific transcriptional activation is a multistep process that requires numerous protein factors and DNA elements, including enhancers and the core promoter. To investigate the roles of core promoter elements in transcriptional activation in vertebrates, we examined expression and factor occupancy on representative promoters in chicken DT40 cells containing a conditional TATA binding protein (TBP)-associated factor 9 allele (TAF9). Characterized core elements, including TATA box-flanking regions and the downstream promoter element, were found to play significant roles in determining promoter strength, response to activators, and factor occupancy and recruitment. The requirement for TAF9 was found to be highly promoter specific, and TAF9 dependence and promoter occupancy were not always correlated. We also describe contrasting examples of factor recruitment and activation mechanisms at different promoters, highlighted by the nearly opposite mechanisms utilized by the simian virus 40 enhancer and p53. With the core promoters analyzed, the former functions by facilitating RNA polymerase II (RNAP II) recruitment to a preassembled TBP/TFIIB-containing scaffold and p53 strongly recruits TBP and TFIIB while RNAP II levels remain modest. Taken together, our results illustrate both the important roles of core promoter elements and the remarkable diversity that characterizes transcriptional activation mechanisms in vertebrates.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
17
|
Chen Z, Manley JL. In vivo functional analysis of the histone 3-like TAF9 and a TAF9-related factor, TAF9L. J Biol Chem 2003; 278:35172-83. [PMID: 12837753 DOI: 10.1074/jbc.m304241200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The majority of the TATA-binding protein (TBP)-associated factors (TAFs) that constitute transcription factor II D (TFIID) contain histone fold motifs (HFMs). Our previous results utilizing DT40 cells containing a conditional TAF9 allele indicated that the histone 3-like TAF9 is essential for cell viability but largely dispensable for general transcription. In this study, we investigated further the role of TAF9 structural domains in TFIID integrity and cell growth and the functions of a TAF9-related factor, TAF9L. We first show that TAF9 depletion severely disrupts TFIID, indicating that the observed ongoing transcription is initiated with at least partially TAF-free TATA-binding protein. We also provide evidence for specific roles of TAF HFMs, highlighting the functional significance of HFM specificity observed in vitro and, importantly, of the TAF9-histone 3 similarity. Although we provide evidence that TAF9 and TAF9L are partly redundant, RNA interference experiments suggest that TAF9L is essential for HeLa cell growth. Strikingly, we provide evidence that TAF9L plays a role in transcriptional repression and/or silencing.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
18
|
Wu SY, Zhou T, Chiang CM. Human mediator enhances activator-facilitated recruitment of RNA polymerase II and promoter recognition by TATA-binding protein (TBP) independently of TBP-associated factors. Mol Cell Biol 2003; 23:6229-42. [PMID: 12917344 PMCID: PMC180944 DOI: 10.1128/mcb.23.17.6229-6242.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 05/29/2003] [Indexed: 12/30/2022] Open
Abstract
Mediator is a general cofactor implicated in the functions of many transcriptional activators. Although Mediator with different protein compositions has been isolated, it remains unclear how Mediator facilitates activator-dependent transcription, independent of its general stimulation of basal transcription. To define the mechanisms of Mediator function, we isolated two forms of human Mediator complexes (Mediator-P.5 and Mediator-P.85) and demonstrated that Mediator-P.5 clearly functions by enhancing activator-mediated recruitment of RNA polymerase II (pol II), whereas Mediator-P.85 works mainly by stimulating overall basal transcription. The coactivator function of Mediator-P.5 was not impaired when TATA-binding protein (TBP) was used in place of TFIID, but it was abolished when another general cofactor, PC4, was omitted from the reaction or when Mediator-P.5 was added after pol II entry into the preinitiation complex. Moreover, Mediator- P.5 is able to enhance TBP binding to the TATA box in an activator-dependent manner. Our data provides biochemical evidence that Mediator functions by facilitating activator-mediated recruitment of pol II and also promoter recognition by TBP, both of which can occur in the absence of TBP-associated factors in TFIID.
Collapse
Affiliation(s)
- Shwu-Yuan Wu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
19
|
Abstract
The prospect of specifically controlling gene activities in vivo has become a defining hallmark of many model organisms of biological research. Where once the aim was to gain control over gene activities using endogenous control elements, new technologies have emerged that owe their remarkable specificity to heterologous components derived from evolutionarily distant species. This review highlights inducible transcriptional systems and site-specific recombination. Their quantitative and qualitative characteristics are discussed, with examples of how recent developments have expanded the spectrum of cells and organisms that are now accessible to genetic dissection of unprecedented precision. Transgenesis has already converted the mouse into a prime model for mammalian genetics. Combined with the new approaches of conditional activation or inactivation of genes, this model has opened up new horizons for the analysis of gene function in mammals.
Collapse
Affiliation(s)
- Manfred Gossen
- Max Delbrück Centrum, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany.
| | | |
Collapse
|
20
|
Shen WC, Bhaumik SR, Causton HC, Simon I, Zhu X, Jennings EG, Wang TH, Young RA, Green MR. Systematic analysis of essential yeast TAFs in genome-wide transcription and preinitiation complex assembly. EMBO J 2003; 22:3395-402. [PMID: 12840001 PMCID: PMC165660 DOI: 10.1093/emboj/cdg336] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The general transcription factor TFIID is composed of the TATA box binding protein (TBP) and a set of conserved TBP-associated factors (TAFs). Here we report the completion of genome-wide expression profiling analyses of yeast strains bearing temperature-sensitive mutations in each of the 13 essential TAFs. The percentage of the yeast genome dependent on each TAF ranges from 3% (TAF2) to 59-61% (TAF9). Approximately 84% of yeast genes are dependent upon one or more TAFs and 16% of yeast genes are TAF independent. In addition, this complete analysis defines three distinct classes of yeast promoters whose transcriptional requirements for TAFs differ substantially. Using this collection of temperature-sensitive mutants, we show that in all cases the transcriptional dependence for a TAF can be explained by a requirement for TBP recruitment and assembly of the preinitiation complex (PIC). Unexpectedly, these assembly experiments reveal that TAF11 and TAF13 appear to provide the critical functional contacts with TBP during PIC assembly. Collectively, our results confirm and extend the proposal that individual TAFs have selective transcriptional roles and distinct functions.
Collapse
Affiliation(s)
- Wu-Cheng Shen
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hochheimer A, Tjian R. Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev 2003; 17:1309-20. [PMID: 12782648 DOI: 10.1101/gad.1099903] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Andreas Hochheimer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3204, USA
| | | |
Collapse
|
22
|
Brown WRA, Hubbard SJ, Tickle C, Wilson SA. The chicken as a model for large-scale analysis of vertebrate gene function. Nat Rev Genet 2003; 4:87-98. [PMID: 12560806 DOI: 10.1038/nrg998] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- William R A Brown
- Institute of Genetics, Nottingham University, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | |
Collapse
|
23
|
Kashiwabara SI, Noguchi J, Zhuang T, Ohmura K, Honda A, Sugiura S, Miyamoto K, Takahashi S, Inoue K, Ogura A, Baba T. Regulation of spermatogenesis by testis-specific, cytoplasmic poly(A) polymerase TPAP. Science 2002; 298:1999-2002. [PMID: 12471261 DOI: 10.1126/science.1074632] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Spermatogenesis is a highly specialized process of cellular differentiation to produce spermatozoa. This differentiation process accompanies morphological changes that are controlled by a number of genes expressed in a stage-specific manner during spermatogenesis. Here we show that in mice, the absence of a testis-specific, cytoplasmic polyadenylate [poly(A)] polymerase, TPAP, results in the arrest of spermiogenesis. TPAP-deficient mice display impaired expression of haploid-specific genes that are required for the morphogenesis of germ cells. The TPAP deficiency also causes incomplete elongation of poly(A) tails of particular transcription factor messenger RNAs. Although the overall cellular level of the transcription factor TAF10 is unaffected, TAF10 is insufficiently transported into the nucleus of germ cells. We propose that TPAP governs germ cell morphogenesis by modulating specific transcription factors at posttranscriptional and posttranslational levels.
Collapse
Affiliation(s)
- Shin-Ichi Kashiwabara
- Institute of Applied Biochemistry, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Martinez E. Multi-protein complexes in eukaryotic gene transcription. PLANT MOLECULAR BIOLOGY 2002; 50:925-47. [PMID: 12516863 DOI: 10.1023/a:1021258713850] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Specific transcription initiation by RNA polymerase II at eukaryotic protein-coding genes involves the cooperative assembly at the core promoter of more than 40 distinct proteins--with a total mass of over 2 MDa--including RNA polymerase II itself and general/basal transcription initiation factors, to form a stable pre-initiation complex (PIC). In vivo, PIC assembly is a major point of regulation by sequence-specific transcription regulators (activators and repressors) and is hindered by the packaging of promoter DNA into nucleosomes and higher order chromatin structures. Genetic and biochemical studies have recently identified a variety of transcription cofactors/co-regulators (coactivators and corepressors) that interact with sequence-specific regulators and/or various components of the general/basal transcription machinery and are essential for regulated transcription. An emerging view from these studies is that regulators must target two types of transcription cofactors: chromatin-modifying/remodeling cofactors and general cofactors that associate with and/or influence the activities of components of the general/basal transcription machinery. The recent biochemical identification and characterization of many different chromatin-modifying and general transcription cofactors has revealed their often complex multi-subunit nature and a previously unsuspected level of structural and functional redundancy. Another emerging theme is the multi-functional nature of chromatin-modifying cofactor complexes that appear to couple gene-specific transcription to other cellular processes.
Collapse
Affiliation(s)
- Ernest Martinez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
25
|
Thuault S, Gangloff YG, Kirchner J, Sanders S, Werten S, Romier C, Weil PA, Davidson I. Functional analysis of the TFIID-specific yeast TAF4 (yTAF(II)48) reveals an unexpected organization of its histone-fold domain. J Biol Chem 2002; 277:45510-7. [PMID: 12237303 DOI: 10.1074/jbc.m206556200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Yeast TFIID comprises the TATA binding protein and 14 TBP-associated factors (TAF(II)s), nine of which contain histone-fold domains (HFDs). The C-terminal region of the TFIID-specific yTAF4 (yTAF(II)48) containing the HFD shares strong sequence similarity with Drosophila (d)TAF4 (dTAF(II)110) and human TAF4 (hTAF(II)135). A structure/function analysis of yTAF4 demonstrates that the HFD, a short conserved C-terminal domain (CCTD), and the region separating them are all required for yTAF4 function. Temperature-sensitive mutations in the yTAF4 HFD alpha2 helix or the CCTD can be suppressed upon overexpression of yTAF12 (yTAF(II)68). Moreover, coexpression in Escherichia coli indicates direct yTAF4-yTAF12 heterodimerization optimally requires both the yTAF4 HFD and CCTD. The x-ray crystal structure of the orthologous hTAF4-hTAF12 histone-like heterodimer indicates that the alpha3 region within the predicted TAF4 HFD is unstructured and does not correspond to the bona fide alpha3 helix. Our functional and biochemical analysis of yTAF4, rather provides strong evidence that the HFD alpha3 helix of the TAF4 family lies within the CCTD. These results reveal an unexpected and novel HFD organization in which the alpha3 helix is separated from the alpha2 helix by an extended loop containing a conserved functional domain.
Collapse
Affiliation(s)
- Sylvie Thuault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Boîte Postale 163 67404 Illkirch Cédex, Communauté Urbaine de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Walker AK, Rothman JH, Shi Y, Blackwell T. Distinct requirements for C.elegans TAF(II)s in early embryonic transcription. EMBO J 2001; 20:5269-79. [PMID: 11566890 PMCID: PMC125634 DOI: 10.1093/emboj/20.18.5269] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
TAF(II)s are conserved components of the TFIID, TFTC and SAGA-related mRNA transcription complexes. In yeast (y), yTAF(II)17 is required broadly for transcription, but various other TAF(II)s appear to have more specialized functions. It is important to determine how TAF(II)s contribute to transcription in metazoans, which have larger and more diverse genomes. We have examined TAF(II) functions in early Caenorhabditis elegans embryos, which can survive without transcription for several cell generations. We show that taf-10 (yTAF(II)17) and taf-11 (yTAF(II)25) are required for a significant fraction of transcription, but apparently are not needed for expression of multiple developmental and other metazoan-specific genes. In contrast, taf-5 (yTAF(II)48; human TAF(II)130) seems to be required for essentially all early embryonic mRNA transcription. We conclude that TAF-10 and TAF-11 have modular functions in metazoans, and can be bypassed at many metazoan-specific genes. The broad involvement of TAF-5 in mRNA transcription in vivo suggests a requirement for either TFIID or a TFTC-like complex.
Collapse
Affiliation(s)
- Amy K. Walker
- Center for Blood Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 and Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA Corresponding author e-mail:
| | - Joel H. Rothman
- Center for Blood Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 and Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA Corresponding author e-mail:
| | - Yang Shi
- Center for Blood Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 and Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA Corresponding author e-mail:
| | - T.Keith Blackwell
- Center for Blood Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 and Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA Corresponding author e-mail:
| |
Collapse
|
27
|
Wu SY, Chiang CM. TATA-binding protein-associated factors enhance the recruitment of RNA polymerase II by transcriptional activators. J Biol Chem 2001; 276:34235-43. [PMID: 11457828 DOI: 10.1074/jbc.m102463200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor (TF) IID, comprised of the TATA-binding protein (TBP) and TBP-associated factors (TAFs), is a general transcription factor required for RNA polymerase II (pol II) transcription on most eukaryotic genes. Recent findings that TAFs may not be globally required for activator-dependent transcription in vivo and in vitro and that both TAF-dependent and TAF-independent promoters are found in yeast suggest that transcriptional activation can occur through at least two different pathways, depending on the presence or absence of TAFs. Using order-of-addition and template challenge assays performed in a human cell-free transcription system reconstituted with recombinant general transcription factors (TFIIB, TBP, TFIIE, TFIIF), a recombinant general cofactor (PC4), and highly purified epitope-tagged multiprotein complexes (TFIID, TFIIH, pol II), we demonstrate that when TBP is used as the TATA-binding factor transcriptional activators such as Gal4-VP16 and human papillomavirus E2 mainly function by facilitating pol II entry to the promoter region. In contrast, when TFIID is used as the TATA-binding factor, promoter recognition by TFIID appears to be the rate-limiting step facilitated by transcriptional activators during preinitiation complex assembly. Using protein-protein pull-down and far-Western analyses, we further show that the presence of TAFs in TFIID facilitates the recruitment of pol II by transcriptional activators, thereby switching the rate-limiting step from pol II entry to promoter recognition. Our findings thus provide distinct molecular mechanisms for TAF-independent and TAF-dependent activation.
Collapse
Affiliation(s)
- S Y Wu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | |
Collapse
|
28
|
Bell B, Scheer E, Tora L. Identification of hTAF(II)80 delta links apoptotic signaling pathways to transcription factor TFIID function. Mol Cell 2001; 8:591-600. [PMID: 11583621 DOI: 10.1016/s1097-2765(01)00325-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Apoptotic cell death is associated with altered levels of mRNA expression, yet the mechanisms that coordinate changes in gene expression with activation of the cell death machinery remain obscure. Here, we report the cloning and characterization of hTAF(II)80 delta, a specialized isoform of the general transcription factor TFIID subunit hTAF(II)80. Several distinct apoptotic stimuli induce the expression and caspase-dependent cleavage of hTAF(II)80 delta. hTAF(II)80 delta, unlike hTAF(II)80, forms a TFIID-like complex lacking hTAF(II)31. Elevated expression of hTAF(II)80 delta in HeLa cells is sufficient to trigger apoptotic cell death and selectively alters cellular transcription, including the induction of the target genes gadd45 and p21. These data define a signaling pathway that couples apoptotic signals to a reprogramming of RNA polymerase II transcription.
Collapse
Affiliation(s)
- B Bell
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, F-67404 ILLKIRCH Cedex, C.U. de Strasbourg, France
| | | | | |
Collapse
|
29
|
Abstract
In this issue of Molecular Cell, Bell et al. identify an isoform of hTAF(II)80 that is induced in response to several proapoptotic stimuli. The finding that extracellular signals can lead to changes in the subunit composition of TFIID provides an example of how regulated activity of the general transcription factors may contribute to inducible programs of gene expression.
Collapse
Affiliation(s)
- G Gill
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
30
|
Gangloff YG, Pointud JC, Thuault S, Carré L, Romier C, Muratoglu S, Brand M, Tora L, Couderc JL, Davidson I. The TFIID components human TAF(II)140 and Drosophila BIP2 (TAF(II)155) are novel metazoan homologues of yeast TAF(II)47 containing a histone fold and a PHD finger. Mol Cell Biol 2001; 21:5109-21. [PMID: 11438666 PMCID: PMC87236 DOI: 10.1128/mcb.21.15.5109-5121.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2001] [Accepted: 04/28/2001] [Indexed: 11/20/2022] Open
Abstract
The RNA polymerase II transcription factor TFIID comprises the TATA binding protein (TBP) and a set of TBP-associated factors (TAF(II)s). TFIID has been extensively characterized for yeast, Drosophila, and humans, demonstrating a high degree of conservation of both the amino acid sequences of the constituent TAF(II)s and overall molecular organization. In recent years, it has been assumed that all the metazoan TAF(II)s have been identified, yet no metazoan homologues of yeast TAF(II)47 (yTAF(II)47) and yTAF(II)65 are known. Both of these yTAF(II)s contain a histone fold domain (HFD) which selectively heterodimerizes with that of yTAF(II)25. We have cloned a novel mouse protein, TAF(II)140, containing an HFD and a plant homeodomain (PHD) finger, which we demonstrated by immunoprecipitation to be a mammalian TFIID component. TAF(II)140 shows extensive sequence similarity to Drosophila BIP2 (dBIP2) (dTAF(II)155), which we also show to be a component of Drosophila TFIID. These proteins are metazoan homologues of yTAF(II)47 as their HFDs selectively heterodimerize with dTAF(II)24 and human TAF(II)30, metazoan homologues of yTAF(II)25. We further show that yTAF(II)65 shares two domains with the Drosophila Prodos protein, a recently described potential dTAF(II). These conserved domains are critical for yTAF(II)65 function in vivo. Our results therefore identify metazoan homologues of yTAF(II)47 and yTAF(II)65.
Collapse
Affiliation(s)
- Y G Gangloff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch Cédex, C.U. de Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tsukihashi Y, Kawaichi M, Kokubo T. Requirement for yeast TAF145 function in transcriptional activation of the RPS5 promoter that depends on both core promoter structure and upstream activating sequences. J Biol Chem 2001; 276:25715-26. [PMID: 11337503 DOI: 10.1074/jbc.m102416200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID has been shown to be involved in both core promoter recognition and the transcriptional activation of eukaryotic genes. We recently isolated TAF145 (one of TFIID subunits) temperature-sensitive mutants in yeast, in which transcription of the TUB2 gene is impaired at restrictive temperatures due to a defect in core promoter recognition. Here, we show in these mutants that the transcription of the RPS5 gene is impaired, mostly due to a defect in transcriptional activation rather than to a defect in core promoter recognition, although the latter is slightly affected as well. Surprisingly, the RPS5 core promoter can be activated by various activation domains fused to a GAL4 DNA binding domain, but not by the original upstream activating sequence (UAS) of the RPS5 gene. In addition, a heterologous CYC1 core promoter can be activated by RPS5-UAS at normal levels even in these mutants. These observations indicate that a distinct combination of core promoters and activators may exploit alternative activation pathways that vary in their requirement for TAF145 function. In addition, a particular function of TAF145 that is deleted in our mutants appears to be involved in both core promoter recognition and transcriptional activation.
Collapse
Affiliation(s)
- Y Tsukihashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | |
Collapse
|
32
|
Gangloff YG, Romier C, Thuault S, Werten S, Davidson I. The histone fold is a key structural motif of transcription factor TFIID. Trends Biochem Sci 2001; 26:250-7. [PMID: 11295558 DOI: 10.1016/s0968-0004(00)01741-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transcription factor TFIID is a multiprotein complex composed of the TATA binding protein and its associated factors, and is required for accurate and regulated initiation of transcription by RNA polymerase II. The subunit composition of this factor is highly conserved from yeast to mammals. X-ray crystallography and biochemical experiments have shown that the histone fold motif mediates many of the subunit interactions within this complex. These results, together with electron microscopy and yeast genetics, provide insights into the overall organization of this complex.
Collapse
Affiliation(s)
- Y G Gangloff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163 67404, Illkirch Cédex, C.U. de, Strasbourg, France
| | | | | | | | | |
Collapse
|
33
|
Um M, Yamauchi J, Kato S, Manley JL. Heterozygous disruption of the TATA-binding protein gene in DT40 cells causes reduced cdc25B phosphatase expression and delayed mitosis. Mol Cell Biol 2001; 21:2435-48. [PMID: 11259592 PMCID: PMC86876 DOI: 10.1128/mcb.21.7.2435-2448.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TATA-binding protein (TBP) is a key general transcription factor required for transcription by all three nuclear RNA polymerases. Although it has been intensively analyzed in vitro and in Saccharomyces cerevisiae, in vivo studies of vertebrate TBP have been limited. We applied gene-targeting techniques using chicken DT40 cells to generate heterozygous cells with one copy of the TBP gene disrupted. Such TBP-heterozygous (TBP-Het) cells showed unexpected phenotypic abnormalities, resembling those of cells with delayed mitosis: a significantly lower growth rate, larger size, more G2/-M- than G1-phase cells, and a high proportion of sub-G1, presumably apoptotic, cells. Further evidence for delayed mitosis in TBP-Het cells was provided by the differential effects of several cell cycle-arresting drugs. To determine the cause of these defects, we first examined the status of cdc2 kinase, which regulates the G2/M transition, and unexpectedly observed more hyperphosphorylated, inactive cdc2 in TBP-Het cells. Providing an explanation for this, mRNA and protein levels of cdc25B, the trigger cdc2 phosphatase, were significantly and specifically reduced. These properties were all due to decreased TBP levels, as they could be rescued by expression of exogeneous TBP, including, in most but not all cases, a mutant form lacking the species-specific N-terminal domain. Our results indicate that small changes in TBP concentration can have profound effects on cell growth in vertebrate cells.
Collapse
Affiliation(s)
- M Um
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
34
|
Kleiman FE, Manley JL. The BARD1-CstF-50 interaction links mRNA 3' end formation to DNA damage and tumor suppression. Cell 2001; 104:743-53. [PMID: 11257228 DOI: 10.1016/s0092-8674(01)00270-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mRNA polyadenylation factor CstF interacts with the BRCA1-associated protein BARD1, and this interaction represses the nuclear mRNA polyadenylation machinery in vitro. Given the suspected role of BRCA1/BARD1 in DNA repair, we tested whether inhibition of mRNA processing is linked to DNA damage. Strikingly, we found that 3' cleavage in extracts from cells treated with hydroxyurea or ultraviolet light was strongly, but transiently, inhibited. Although no changes were detected in CstF, BARD1, and BRCA1 protein levels, increased amounts of a CstF/BARD1/BRCA1 complex were detected. Supporting the physiological significance of these results, a previously identified tumor-associated germline mutation in BARD1 (Gln564His) reduced binding to CstF and abrogated inhibition of polyadenylation. Together these results indicate a link between mRNA 3' processing and DNA repair and tumor suppression.
Collapse
Affiliation(s)
- F E Kleiman
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|