1
|
Arends T, Bennett SR, Tapscott SJ. DUX4-induced HSATII RNA accumulation drives protein aggregation impacting RNA processing pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.17.628988. [PMID: 39764024 PMCID: PMC11702838 DOI: 10.1101/2024.12.17.628988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
RNA-driven protein aggregation leads to cellular dysregulation, disrupting normal cellular processes, and contributing to the development of diseases and tumorigenesis. Here, we show that double homeobox 4 (DUX4), an early embryonic transcription factor and causative gene of facioscapulohumeral muscular dystrophy (FSHD), induces the accumulation of stable intranuclear RNAs, including nucleolar RNA and human satellite II (HSATII) RNA. Stable intranuclear RNAs drive protein aggregation in DUX4-expressing muscle cells. Specifically, HSATII RNA sequesters RNA methylation factors. HSATII-YBX1 ribonucleoprotein (RNP) complex formation is mediated by HSATII double-stranded RNA and NSUN2 activity. Aberrant HSATII-RNP complexes affect RNA processing pathways, including RNA splicing. Differential splicing of genes mediated by HSATII-RNP complexes are associated with pathways known to be dysregulated by DUX4 expression. These findings highlight the broader influence of DUX4 on nuclear RNA dynamics and suggest that HSATII RNA could be a critical mediator of RNA processing regulation. Understanding the impact of HSATII-RNP formation on RNA processing provides insight into the molecular mechanisms underlying FSHD.
Collapse
Affiliation(s)
- Tessa Arends
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Sean R. Bennett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Neurology, University of Washington, Seattle, WA 98105
| |
Collapse
|
2
|
Girke P, Seufert W. Targeting of Hmo1 to subcompartments of the budding yeast nucleolus. Mol Biol Cell 2023; 34:ar22. [PMID: 36696177 PMCID: PMC10011721 DOI: 10.1091/mbc.e22-07-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The nucleolus is a multilayered, membraneless organelle made up of liquidlike biogenesis compartments surrounding an array of ribosomal RNA genes (rDNA). Biogenesis factors accumulate in the outer compartments through RNA binding and phase separation promoted by intrinsically disordered protein regions. In contrast, the nucleolar localization of rDNA-binding proteins, which reside in the central chromatin compartment, is less well characterized. To gain mechanistic insight, we analyzed the localization, mitotic segregation, nucleic acid binding, and nuclear dynamics of the budding yeast rDNA-binding protein Hmo1. Deletion of the main DNA-binding domain, the HMG boxB, compromised Hmo1 transfer to daughter cells in mitosis and transcription-independent rDNA association but still allowed nucleolar localization. The C-terminal lysine-rich region turned out to be a combined nuclear and nucleolar localization sequence (NLS-NoLS). Its integrity was required for maximal enrichment and efficient retention of Hmo1 in the nucleolus and nucleolar localization of the ΔboxB construct. Moreover, the NLS-NoLS region was sufficient to promote nucleolar accumulation and bound nucleic acids in vitro with some preference for RNA. Bleaching experiments indicated mobility of Hmo1 inside the nucleolus but little exchange with the nucleoplasm. Thus, a bilayered targeting mechanism secures proper localization of Hmo1 to the nucleolus.
Collapse
Affiliation(s)
- Philipp Girke
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| | - Wolfgang Seufert
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
3
|
Zhao Y, Rai J, Xu C, He H, Li H. Artificial intelligence-assisted cryoEM structure of Bfr2-Lcp5 complex observed in the yeast small subunit processome. Commun Biol 2022; 5:523. [PMID: 35650250 PMCID: PMC9160021 DOI: 10.1038/s42003-022-03500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic ribosome is maturated through an elaborate process that includes modification, processing and folding of pre-ribosomal RNA (pre-rRNAs) by a series of ribosome assembly intermediates. More than 70 factors participate in the dynamic assembly and disassembly of the small subunit processome (90S) inside nucleolus, leading to the early maturation of small subunit. The 5' domain of the 18S rRNA is the last to be incorporated into the stable 90S prior to the cleavage of pre-rRNA at the A1 site. This step is facilitated by the Kre33-Enp2-Bfr2-Lcp5 protein module with the participation of the DEAD-box protein Dbp4. Though structures of Kre33 and Enp2 have been modeled in previously observed 90S structures, that of Bfr2-Lcp5 complex remains unavailable. Here, we report an AlphaFold-assisted structure determination of the Bfr2-Lcp5 complex captured in a 3.99 Å - 7.24 Å cryoEM structure of 90S isolated from yeast cells depleted of Pih1, a chaperone protein of the 90S core assembly. The structure model is consistent with the protein-protein interaction results and the secondary structures of recombinant Bfr2 and Bfr2-Lcp5 complex obtained by Circular Dichroism. The Bfr2-Lcp5 complex interaction mimics that of exosome factors Rrp6-Rrp47 and acts to regulate 90S transitions.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Jay Rai
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Chong Xu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Huan He
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA.
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
4
|
Tjahjono E, Revtovich AV, Kirienko NV. Box C/D small nucleolar ribonucleoproteins regulate mitochondrial surveillance and innate immunity. PLoS Genet 2022; 18:e1010103. [PMID: 35275914 PMCID: PMC8942280 DOI: 10.1371/journal.pgen.1010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/23/2022] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Monitoring mitochondrial function is crucial for organismal survival. This task is performed by mitochondrial surveillance or quality control pathways, which are activated by signals originating from mitochondria and relayed to the nucleus (retrograde response) to start transcription of protective genes. In Caenorhabditis elegans, several systems are known to play this role, including the UPRmt, MAPKmt, and the ESRE pathways. These pathways are highly conserved and their loss compromises survival following mitochondrial stress. In this study, we found a novel interaction between the box C/D snoRNA core proteins (snoRNPs) and mitochondrial surveillance and innate immune pathways. We showed that box C/D, but not box H/ACA, snoRNPs are required for the full function of UPRmt and ESRE upon stress. The loss of box C/D snoRNPs reduced mitochondrial mass, mitochondrial membrane potential, and oxygen consumption rate, indicating overall degradation of mitochondrial function. Concomitantly, the loss of C/D snoRNPs increased immune response and reduced host intestinal colonization by infectious bacteria, improving host resistance to pathogenesis. Our data may indicate a model wherein box C/D snoRNP machinery regulates a "switch" of the cell's activity between mitochondrial surveillance and innate immune activation. Understanding this mechanism is likely to be important for understanding multifactorial processes, including responses to infection and aging.
Collapse
Affiliation(s)
- Elissa Tjahjono
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Alexey V. Revtovich
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Natalia V. Kirienko
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
5
|
Aquino GRR, Krogh N, Hackert P, Martin R, Gallesio JD, van Nues RW, Schneider C, Watkins NJ, Nielsen H, Bohnsack KE, Bohnsack MT. RNA helicase-mediated regulation of snoRNP dynamics on pre-ribosomes and rRNA 2'-O-methylation. Nucleic Acids Res 2021; 49:4066-4084. [PMID: 33721027 PMCID: PMC8053091 DOI: 10.1093/nar/gkab159] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
RNA helicases play important roles in diverse aspects of RNA metabolism through their functions in remodelling ribonucleoprotein complexes (RNPs), such as pre-ribosomes. Here, we show that the DEAD box helicase Dbp3 is required for efficient processing of the U18 and U24 intron-encoded snoRNAs and 2′-O-methylation of various sites within the 25S ribosomal RNA (rRNA) sequence. Furthermore, numerous box C/D snoRNPs accumulate on pre-ribosomes in the absence of Dbp3. Many snoRNAs guiding Dbp3-dependent rRNA modifications have overlapping pre-rRNA basepairing sites and therefore form mutually exclusive interactions with pre-ribosomes. Analysis of the distribution of these snoRNAs between pre-ribosome-associated and ‘free’ pools demonstrated that many are almost exclusively associated with pre-ribosomal complexes. Our data suggest that retention of such snoRNPs on pre-ribosomes when Dbp3 is lacking may impede rRNA 2′-O-methylation by reducing the recycling efficiency of snoRNPs and by inhibiting snoRNP access to proximal target sites. The observation of substoichiometric rRNA modification at adjacent sites suggests that the snoRNPs guiding such modifications likely interact stochastically rather than hierarchically with their pre-rRNA target sites. Together, our data provide new insights into the dynamics of snoRNPs on pre-ribosomal complexes and the remodelling events occurring during the early stages of ribosome assembly.
Collapse
Affiliation(s)
- Gerald Ryan R Aquino
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, 3B Blegdamsvej, 2200N Copenhagen, Denmark
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Roman Martin
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Robert W van Nues
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Claudia Schneider
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nicholas J Watkins
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 3B Blegdamsvej, 2200N Copenhagen, Denmark.,Genomics group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Liu J, Li C, Xue H, Li L, Liu Q, Wang H, Wen T, Qian H. Cancer metastasis-associated protein 1 localizes to the nucleolus and regulates pre-rRNA synthesis in cancer cells. J Cell Biochem 2021; 122:180-188. [PMID: 32786109 DOI: 10.1002/jcb.29837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 04/07/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Metastasis-associated protein 1 (MTA1) is a critical component of the nucleosome remodeling and histone deacetylase (NuRD) complex. MTA1 has several biological functions, and it is closely associated with the malignant properties of human cancers; however, the mechanisms and subcellular localization of MTA1 in cells remain unclear. Some initial studies indicated that MTA1 was absent from the nucleolus; however, several NuRD components were recently found to be present in the nucleolus, where they regulate preribosomal RNA (pre-rRNA) transcription. In this study, we demonstrated that MTA1 is definitely localized to the nucleolus and regulates pre-rRNA transcription, which is consistent with the recent reports on NuRD. To determine if MTA1 was present in the nucleolus, we utilized the following complementary molecular approaches: immunofluorescence, GFP-tag tracking, immunoelectron microscopy, and immunoprecipitation (IP). To examine the role of MTA1 in rRNA synthesis, we performed quantitative polymerase chain reaction analysis. We revealed that both endogenous and exogenous MTA1 showed apparent granule-like nucleolar subcellular localization. MTA1 interacts with two major resident nucleolar proteins, nucleolin and nucleophosmin. Immunofluorescent colocalization analyses showed that MTA1 localizes to the fibrillarin-deficient regions of the nucleolus, and Co-IP experiments indicated that there was no interaction between MTA1 and fibrillarin; further, fibrillarin was not identified in the MTA1 interactome. Loss- and gain-of-function studies indicated that MTA1 promotes pre-rRNA transcription in cancer cells. Collectively, our data identify MTA1 as a novel nucleolar protein, and activation of pre-rRNA transcription in cancer cells may be an alternative mechanism by which MTA1 promotes malignancies.
Collapse
Affiliation(s)
- Jian Liu
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hongsheng Xue
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Lina Li
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qun Liu
- Department of Gynaecology and Obstetrics, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haijuan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tao Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Vos TJ, Kothe U. snR30/U17 Small Nucleolar Ribonucleoprotein: A Critical Player during Ribosome Biogenesis. Cells 2020; 9:cells9102195. [PMID: 33003357 PMCID: PMC7601244 DOI: 10.3390/cells9102195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022] Open
Abstract
The small nucleolar RNA snR30 (U17 in humans) plays a unique role during ribosome synthesis. Unlike most members of the H/ACA class of guide RNAs, the small nucleolar ribonucleoprotein (snoRNP) complex assembled on snR30 does not direct pseudouridylation of ribosomal RNA (rRNA), but instead snR30 is critical for 18S rRNA processing during formation of the small subunit (SSU) of the ribosome. Specifically, snR30 is essential for three pre-rRNA cleavages at the A0/01, A1/1, and A2/2a sites in yeast and humans, respectively. Accordingly, snR30 is the only essential H/ACA guide RNA in yeast. Here, we summarize our current knowledge about the interactions and functions of snR30, discuss what remains to be elucidated, and present two non-exclusive hypotheses on the possible molecular function of snR30 during ribosome biogenesis. First, snR30 might be responsible for recruiting other proteins including endonucleases to the SSU processome. Second, snR30 may contribute to the refolding of pre-rRNA into a required conformation that serves as a checkpoint during ribosome biogenesis facilitating pre-rRNA cleavage. In both scenarios, the snR30 snoRNP may have scaffolding and RNA chaperoning activity. In conclusion, the snR30 snoRNP is a crucial player with an unknown molecular mechanism during ribosome synthesis, posing many interesting future research questions.
Collapse
Affiliation(s)
| | - Ute Kothe
- Correspondence: ; Tel.: +1-403-332-5274
| |
Collapse
|
8
|
Cell trapping microfluidic chip made of Cyclo olefin polymer enabling two concurrent cell biology experiments with long term durability. Biomed Microdevices 2020; 22:20. [DOI: 10.1007/s10544-020-0474-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
The chemical diversity of RNA modifications. Biochem J 2019; 476:1227-1245. [PMID: 31028151 DOI: 10.1042/bcj20180445] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/16/2022]
Abstract
Nucleic acid modifications in DNA and RNA ubiquitously exist among all the three kingdoms of life. This trait significantly broadens the genome diversity and works as an important means of gene transcription regulation. Although mammalian systems have limited types of DNA modifications, over 150 different RNA modification types have been identified, with a wide variety of chemical diversities. Most modifications occur on transfer RNA and ribosomal RNA, however many of the modifications also occur on other types of RNA species including mammalian mRNA and small nuclear RNA, where they are essential for many biological roles, including developmental processes and stem cell differentiation. These post-transcriptional modifications are enzymatically installed and removed in a site-specific manner by writer and eraser proteins respectively, while reader proteins can interpret modifications and transduce the signal for downstream functions. Dysregulation of mRNA modifications manifests as disease states, including multiple types of human cancer. In this review, we will introduce the chemical features and biological functions of these modifications in the coding and non-coding RNA species.
Collapse
|
10
|
The yeast C/D box snoRNA U14 adopts a "weak" K-turn like conformation recognized by the Snu13 core protein in solution. Biochimie 2019; 164:70-82. [PMID: 30914254 DOI: 10.1016/j.biochi.2019.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/20/2019] [Indexed: 01/09/2023]
Abstract
Non-coding RNAs associate with proteins to form ribonucleoproteins (RNPs), such as ribosome, box C/D snoRNPs, H/ACA snoRNPs, ribonuclease P, telomerase and spliceosome to ensure cell viability. The assembly of these RNA-protein complexes relies on the ability of the RNA to adopt the correct bound conformation. K-turn motifs represent ubiquitous binding platform for proteins found in several cellular environment. This structural motif has an internal three-nucleotide bulge flanked on its 3' side by a G•A/A•G tandem pairs followed by one or two non-Watson-Crick pairs, and on its 5' side by a classical RNA helix. This peculiar arrangement induces a strong curvature of the phosphodiester backbone, which makes it conducive to multiple tertiary interactions. SNU13/Snu13p (Human/Yeast) binds specifically the U14 C/D box snoRNA K-turn sequence motif. This event is the prerequisite to promote the assembly of the RNP, which contains NOP58/Nop58 and NOP56/Nop56 core proteins and the 2'-O-methyl-transferase, Fibrillarin/Nop1p. The U14 small nucleolar RNA is a conserved non-coding RNA found in yeast and vertebrates required for the pre-rRNA maturation and ribose methylation. Here, we report the solution structure of the free U14 snoRNA K-turn motif (kt-U14) as determined by Nuclear Magnetic Resonance. We demonstrate that a major fraction of free kt-U14 adopts a pre-folded conformation similar to protein bound K-turn, even in the absence of divalent ions. In contrast to the kt-U4 or tyrS RNA, kt-U14 displays a sharp bent in the phosphodiester backbone. The U•U and G•A tandem base pairs are formed through weak hydrogen bonds. Finally, we show that the structure of kt-U14 is stabilized upon Snu13p binding. The structure of the free U14 RNA is the first reference example for the canonical motifs of the C/D box snoRNA family.
Collapse
|
11
|
Girke P, Seufert W. Compositional reorganization of the nucleolus in budding yeast mitosis. Mol Biol Cell 2019; 30:591-606. [PMID: 30625028 PMCID: PMC6589692 DOI: 10.1091/mbc.e18-08-0524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 11/26/2022] Open
Abstract
The nucleolus is a membraneless organelle of the nucleus and the site of rRNA synthesis, maturation, and assembly into preribosomal particles. The nucleolus, organized around arrays of rRNA genes (rDNA), dissolves during prophase of mitosis in metazoans, when rDNA transcription ceases, and reforms in telophase, when rDNA transcription resumes. No such dissolution and reformation cycle exists in budding yeast, and the precise course of nucleolar segregation remains unclear. By quantitative live-cell imaging, we observed that the yeast nucleolus is reorganized in its protein composition during mitosis. Daughter cells received equal shares of preinitiation factors, which bind the RNA polymerase I promoter and the rDNA binding barrier protein Fob1, but only about one-third of RNA polymerase I and the processing factors Nop56 and Nsr1. The distribution bias was diminished in nonpolar chromosome segregation events observable in dyn1 mutants. Unequal distribution, however, was enhanced by defects in RNA polymerase I, suggesting that rDNA transcription supports nucleolar segregation. Indeed, quantification of pre-rRNA levels indicated ongoing rDNA transcription in yeast mitosis. These data, together with photobleaching experiments to measure nucleolar protein dynamics in anaphase, consolidate a model that explains the differential partitioning of nucleolar components in budding yeast mitosis.
Collapse
Affiliation(s)
- Philipp Girke
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| | - Wolfgang Seufert
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
12
|
Nucleolar Division in the Promastigote Stage of Leishmania major Parasite: A Nop56 Point of View. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1641839. [PMID: 30406129 PMCID: PMC6199852 DOI: 10.1155/2018/1641839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/14/2018] [Accepted: 09/13/2018] [Indexed: 11/23/2022]
Abstract
Nucleogenesis is the cellular event responsible for the formation of the new nucleoli at the end of mitosis. This process depends on the synthesis and processing of ribosomal RNA (rRNA) and, in some eukaryotes, the transfer of nucleolar material contained in prenucleolar bodies (PNBs) to active transcription sites. The lack of a comprehensive description of the nucleolus throughout the cell cycle of the human pathogen Leishmania major prompted us to analyze the distribution of nucleolar protein 56 (Nop56) during interphase and mitosis in the promastigote stage of the parasite. By in silico analysis we show that the orthologue of Nop56 in L. major (LmNop56) contains the three characteristic Nop56 domains and that its predicted three-dimensional structure is also conserved. Fluorescence microscopy observations indicate that the nucleolar localization of LmNop56 is similar, but not identical, to that of the nucleolar protein Elp3b. Notably, unlike other nucleolar proteins, LmNop56 remains associated with the nucleolus in nonproliferative cells. Moreover, epifluorescent images indicate the preservation of the nucleolar structure throughout the closed nuclear division. Experiments performed with the related parasite Trypanosoma brucei show that nucleolar division is carried out by an analogous mechanism.
Collapse
|
13
|
Alkaissi H, Havarinasab S, Nielsen JB, Söderkvist P, Hultman P. Bank1 and NF-kappaB as key regulators in anti-nucleolar antibody development. PLoS One 2018; 13:e0199979. [PMID: 30016332 PMCID: PMC6049909 DOI: 10.1371/journal.pone.0199979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/29/2018] [Indexed: 12/31/2022] Open
Abstract
Systemic autoimmune rheumatic disorders (SARD) represent important causes of morbidity and mortality in humans. The mechanisms triggering autoimmune responses are complex and involve a network of genetic factors. Mercury-induced autoimmunity (HgIA) in mice is an established model to study the mechanisms of the development of antinuclear antibodies (ANA), which is a hallmark in the diagnosis of SARD. A.SW mice with HgIA show a significantly higher titer of antinucleolar antibodies (ANoA) than the B10.S mice, although both share the same MHC class II (H-2). We applied a genome-wide association study (GWAS) to their Hg-exposed F2 offspring to investigate the non-MHC genes involved in the development of ANoA. Quantitative trait locus (QTL) analysis showed a peak logarithm of odds ratio (LOD) score of 3.05 on chromosome 3. Microsatellites were used for haplotyping, and fine mapping was conducted with next generation sequencing. The candidate genes Bank1 (B-cell scaffold protein with ankyrin repeats 1) and Nfkb1 (nuclear factor kappa B subunit 1) were identified by additional QTL analysis. Expression of the Bank1 and Nfkb1 genes and their downstream target genes involved in the intracellular pathway (Tlr9, Il6, Tnf) was investigated in mercury-exposed A.SW and B10.S mice by real-time PCR. Bank1 showed significantly lower gene expression in the A.SW strain after Hg-exposure, whereas the B10.S strain showed no significant difference. Nfkb1, Tlr9, Il6 and Tnf had significantly higher gene expression in the A.SW strain after Hg-exposure, while the B10.S strain showed no difference. This study supports the roles of Bank1 (produced mainly in B-cells) and Nfkb1 (produced in most immune cells) as key regulators of ANoA development in HgIA.
Collapse
Affiliation(s)
- Hammoudi Alkaissi
- Molecular and Immunological Pathology, Department of Clinical Pathology and Clinical Genetics, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| | - Said Havarinasab
- Molecular and Immunological Pathology, Department of Clinical Pathology and Clinical Genetics, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jesper Bo Nielsen
- Institute of Public Health, Research Unit for General Practice, University of Southern Denmark, Odense C, Denmark
| | - Peter Söderkvist
- Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Per Hultman
- Molecular and Immunological Pathology, Department of Clinical Pathology and Clinical Genetics, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Terns MP, Terns RM. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr 2018; 10:17-39. [PMID: 11868985 PMCID: PMC5977530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The small nucleolar RNAs (snoRNAs) are an abundant class of trans-acting RNAs that function in ribosome biogenesis in the eukaryotic nucleolus. Elegant work has revealed that most known snoRNAs guide modification of pre-ribosomal RNA (pre-rRNA) by base pairing near target sites. Other snoRNAs are involved in cleavage of pre-rRNA by mechanisms that have not yet been detailed. Moreover, our appreciation of the cellular roles of the snoRNAs is expanding with new evidence that snoRNAs also target modification of small nuclear RNAs and messenger RNAs. Many snoRNAs are produced by unorthodox modes of biogenesis including salvage from introns of pre-mRNAs. The recent discovery that homologs of snoRNAs as well as associated proteins exist in the domain Archaea indicates that the RNA-guided RNA modification system is of ancient evolutionary origin. In addition, it has become clear that the RNA component of vertebrate telomerase (an enzyme implicated in cancer and cellular senescence) is related to snoRNAs. During its evolution, vertebrate telomerase RNA appears to have co-opted a snoRNA domain that is essential for the function of telomerase RNA in vivo. The unique properties of snoRNAs are now being harnessed for basic research and therapeutic applications.
Collapse
MESH Headings
- Animals
- Base Pairing
- Biological Transport
- Cell Nucleolus/metabolism
- Cell Nucleus/metabolism
- Eukaryotic Cells/metabolism
- Evolution, Molecular
- Methylation
- Prokaryotic Cells/metabolism
- Pseudouridine/metabolism
- RNA/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Archaeal/genetics
- RNA, Archaeal/physiology
- RNA, Catalytic/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal/biosynthesis
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Small Nucleolar/physiology
- Ribonucleoproteins, Small Nucleolar/metabolism
- Ribosomes/metabolism
- Species Specificity
- Structure-Activity Relationship
- Telomerase/metabolism
Collapse
Affiliation(s)
- Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA.
| | | |
Collapse
|
15
|
A Screen for Candidate Targets of Lysine Polyphosphorylation Uncovers a Conserved Network Implicated in Ribosome Biogenesis. Cell Rep 2018; 22:3427-3439. [DOI: 10.1016/j.celrep.2018.02.104] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/12/2018] [Accepted: 02/27/2018] [Indexed: 11/22/2022] Open
|
16
|
Rothé B, Manival X, Rolland N, Charron C, Senty-Ségault V, Branlant C, Charpentier B. Implication of the box C/D snoRNP assembly factor Rsa1p in U3 snoRNP assembly. Nucleic Acids Res 2017; 45:7455-7473. [PMID: 28505348 PMCID: PMC5499572 DOI: 10.1093/nar/gkx424] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/02/2017] [Indexed: 01/23/2023] Open
Abstract
The U3 box C/D snoRNA is one key element of 90S pre-ribosome. It contains a 5΄ domain pairing with pre-rRNA and the U3B/C and U3C΄/D motifs for U3 packaging into a unique small nucleolar ribonucleoprotein particle (snoRNP). The RNA-binding protein Snu13/SNU13 nucleates on U3B/C the assembly of box C/D proteins Nop1p/FBL and Nop56p/NOP56, and the U3-specific protein Rrp9p/U3-55K. Snu13p/SNU13 has a much lower affinity for U3C΄/D but nevertheless forms on this motif an RNP with box C/D proteins Nop1p/FBL and Nop58p/NOP58. In this study, we characterized the influence of the RNP assembly protein Rsa1 in the early steps of U3 snoRNP biogenesis in yeast and we propose a refined model of U3 snoRNP biogenesis. While recombinant Snu13p enhances the binding of Rrp9p to U3B/C, we observed that Rsa1p has no effect on this activity but forms with Snu13p and Rrp9p a U3B/C pre-RNP. In contrast, we found that Rsa1p enhances Snu13p binding on U3C΄/D. RNA footprinting experiments indicate that this positive effect most likely occurs by direct contacts of Rsa1p with the U3 snoRNA 5΄ domain. In light of the recent U3 snoRNP cryo-EM structures, our data suggest that Rsa1p has a dual role by also preventing formation of a pre-mature functional U3 RNP.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Nicolas Rolland
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Christophe Charron
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Véronique Senty-Ségault
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 20199, 54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
17
|
The Nucleoporin Nup2 Contains a Meiotic-Autonomous Region that Promotes the Dynamic Chromosome Events of Meiosis. Genetics 2017; 206:1319-1337. [PMID: 28455351 DOI: 10.1534/genetics.116.194555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/17/2017] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a specialized cellular program required to create haploid gametes from diploid parent cells. Homologous chromosomes pair, synapse, and recombine in a dynamic environment that accommodates gross chromosome reorganization and significant chromosome motion, which are critical for normal chromosome segregation. In Saccharomyces cerevisiae, Ndj1 is a meiotic telomere-associated protein required for physically attaching telomeres to proteins embedded in the nuclear envelope. In this study, we identified additional proteins that act at the nuclear periphery from meiotic cell extracts, including Nup2, a nonessential nucleoporin with a known role in tethering interstitial chromosomal loci to the nuclear pore complex. We found that deleting NUP2 affects meiotic progression and spore viability, and gives increased levels of recombination intermediates and products. We identified a previously uncharacterized 125 aa region of Nup2 that is necessary and sufficient for its meiotic function, thus behaving as a meiotic autonomous region (MAR). Nup2-MAR forms distinct foci on spread meiotic chromosomes, with a subset overlapping with Ndj1 foci. Localization of Nup2-MAR to meiotic chromosomes does not require Ndj1, nor does Ndj1 localization require Nup2, suggesting these proteins function in different pathways, and their interaction is weak or indirect. Instead, several severe synthetic phenotypes are associated with the nup2Δ ndj1Δ double mutant, including delayed turnover of recombination joint molecules, and a failure to undergo nuclear divisions without also arresting the meiotic program. These data suggest Nup2 and Ndj1 support partially overlapping functions that promote two different levels of meiotic chromosome organization necessary to withstand a dynamic stage of the eukaryotic life cycle.
Collapse
|
18
|
Abstract
Box C/D RNAs guide site-specific 2'-O-methylation of RNAs in archaea and eukaryotes. The spacer regions between boxes C to D' and boxes C' to D contain the guide sequence that can form a stretch of base pairs with substrate RNAs. The lengths of spacer regions and guide-substrate duplexes are variable among C/D RNAs. In a previously determined structure of C/D ribonucleoprotein (RNP), a 12-nt-long spacer forms 10 bp with the substrate. How spacers and guide-substrate duplexes of other lengths are accommodated remains unknown. Here we analyze how the lengths of spacers and guide-substrate duplexes affect the modification activity and determine three structures of C/D RNPs assembled with different spacers and substrates. We show that the guide can only form a duplex of a maximum of 10 bp with the substrate during modification. Slightly shorter duplexes are tolerated, but longer duplexes must be unwound to fit into a capped protein channel for modification. Spacers with <12 nucleotides are defective, mainly because they cannot load the substrate in the active conformation. For spacers with >12 nucleotides, the excessive unpaired sequences near the box C/C' side are looped out. Our results provide insight into the substrate recognition mechanism of C/D RNA and refute the RNA-swapped model for dimeric C/D RNP.
Collapse
Affiliation(s)
- Zuxiao Yang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; National Institute of Biological Sciences, Beijing 102206, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinzhong Lin
- National Institute of Biological Sciences, Beijing 102206, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Prieto MB, Georg RC, Gonzales-Zubiate FA, Luz JS, Oliveira CC. Nop17 is a key R2TP factor for the assembly and maturation of box C/D snoRNP complex. BMC Mol Biol 2015; 16:7. [PMID: 25888478 PMCID: PMC4377001 DOI: 10.1186/s12867-015-0037-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/24/2015] [Indexed: 11/24/2022] Open
Abstract
Background Box C/D snoRNPs are responsible for rRNA methylation and processing, and are formed by snoRNAs and four conserved proteins, Nop1, Nop56, Nop58 and Snu13. The snoRNP assembly is a stepwise process, involving other protein complexes, among which the R2TP and Hsp90 chaperone. Nop17, also known as Pih1, has been shown to be a constituent of the R2TP (Rvb1, Rvb2, Tah1, Pih1) and to participate in box C/D snoRNP assembly by its interaction with Nop58. The molecular function of Nop17, however, has not yet been described. Results To shed light on the role played by Nop17 in the maturation of snoRNP, here we analyzed the interactions domains of Nop58 – Nop17 – Tah1 and the importance of ATP to the interaction between Nop17 and the ATPase Rvb1/2. Conclusions Based on the results shown here, we propose a model for the assembly of box C/D snoRNP, according to which R2TP complex is important for reducing the affinity of Nop58 for snoRNA, and for the binding of the other snoRNP subunits. Electronic supplementary material The online version of this article (doi:10.1186/s12867-015-0037-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcela B Prieto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil.
| | - Raphaela C Georg
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil. .,Present address: Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil.
| | - Fernando A Gonzales-Zubiate
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil.
| | - Juliana S Luz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil. .,Present address: Department of Biological Sciences, School of Pharmacy, São Paulo State University, Araraquara, Brazil.
| | - Carla C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
20
|
Mo D, Raabe CA, Reinhardt R, Brosius J, Rozhdestvensky TS. Alternative processing as evolutionary mechanism for the origin of novel nonprotein coding RNAs. Genome Biol Evol 2014; 5:2061-71. [PMID: 24132753 PMCID: PMC3845636 DOI: 10.1093/gbe/evt155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The evolution of new genes can ensue through either gene duplication and the neofunctionalization of one of the copies or the formation of a de novo gene from hitherto nonfunctional, neutrally evolving intergenic or intronic genomic sequences. Only very rarely are entire genes created de novo. Mostly, nonfunctional sequences are coopted as novel parts of existing genes, such as in the process of exonization whereby introns become exons through changes in splicing. Here, we report a case in which a novel nonprotein coding RNA evolved by intron-sequence recruitment into its structure. cDNAs derived from rat brain small RNAs, revealed a novel small nucleolar RNA (snoRNA) originating from one of the Snord115 copies in the rat Prader–Willi syndrome locus. We suggest that a single-point substitution in the Snord115 region led to the expression of a longer snoRNA variant, designated as L-Snord115. Cell culture and footprinting experiments confirmed that a single nucleotide substitution at Snord115 position 67 destabilized the kink-turn motif within the canonical snoRNA, while distal intronic sequences provided an alternate D-box region. The exapted sequence displays putative base pairing to 28S rRNA and mRNA targets.
Collapse
Affiliation(s)
- Dingding Mo
- Institute of Experimental Pathology, ZMBE, University of Muenster, Muenster, Germany
| | | | | | | | | |
Collapse
|
21
|
Rothé B, Saliou JM, Quinternet M, Back R, Tiotiu D, Jacquemin C, Loegler C, Schlotter F, Peña V, Eckert K, Moréra S, Dorsselaer AV, Branlant C, Massenet S, Sanglier-Cianférani S, Manival X, Charpentier B. Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction. Nucleic Acids Res 2014; 42:10731-47. [PMID: 25170085 PMCID: PMC4176330 DOI: 10.1093/nar/gku612] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/09/2023] Open
Abstract
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Jean-Michel Saliou
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg. CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Marc Quinternet
- FR CNRS-3209 Bioingénierie Moléculaire, Cellulaire et Thérapeutique (BMCT), CNRS, Université de Lorraine, Biopôle, Campus Biologie Santé, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Régis Back
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Decebal Tiotiu
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Clémence Jacquemin
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Christine Loegler
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Florence Schlotter
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Vlad Peña
- Max-Planck-Institut für biophysikalische Chemie, Abtl. Röntgenkristallographie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kelvin Eckert
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, 1 Avenue de Terrasse, 91198 Gif-sur Yvette, France
| | - Solange Moréra
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, 1 Avenue de Terrasse, 91198 Gif-sur Yvette, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg. CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg. CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
22
|
Kakihara Y, Makhnevych T, Zhao L, Tang W, Houry WA. Nutritional status modulates box C/D snoRNP biogenesis by regulated subcellular relocalization of the R2TP complex. Genome Biol 2014; 15:404. [PMID: 25060708 PMCID: PMC4165372 DOI: 10.1186/s13059-014-0404-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Box C/D snoRNPs, which are typically composed of box C/D snoRNA and the four core protein components Nop1, Nop56, Nop58, and Snu13, play an essential role in the modification and processing of pre-ribosomal RNA. The highly conserved R2TP complex, comprising the proteins Rvb1, Rvb2, Tah1, and Pih1, has been shown to be required for box C/D snoRNP biogenesis and assembly; however, the molecular basis of R2TP chaperone-like activity is not yet known. RESULTS Here, we describe an unexpected finding in which the activity of the R2TP complex is required for Nop58 protein stability and is controlled by the dynamic subcellular redistribution of the complex in response to growth conditions and nutrient availability. In growing cells, the complex localizes to the nucleus and interacts with box C/D snoRNPs. This interaction is significantly reduced in poorly growing cells as R2TP predominantly relocalizes to the cytoplasm. The R2TP-snoRNP interaction is mainly mediated by Pih1. CONCLUSIONS The R2TP complex exerts a novel regulation on box C/D snoRNP biogenesis that affects their assembly and consequently pre-rRNA maturation in response to different growth conditions.
Collapse
|
23
|
Assembly and nuclear export of pre-ribosomal particles in budding yeast. Chromosoma 2014; 123:327-44. [PMID: 24817020 DOI: 10.1007/s00412-014-0463-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/18/2014] [Accepted: 04/07/2014] [Indexed: 11/27/2022]
Abstract
The ribosome is responsible for the final step of decoding genetic information into proteins. Therefore, correct assembly of ribosomes is a fundamental task for all living cells. In eukaryotes, the construction of the ribosome which begins in the nucleolus requires coordinated efforts of >350 specialized factors that associate with pre-ribosomal particles at distinct stages to perform specific assembly steps. On their way through the nucleus, diverse energy-consuming enzymes are thought to release assembly factors from maturing pre-ribosomal particles after accomplishing their task(s). Subsequently, recruitment of export factors prepares pre-ribosomal particles for transport through nuclear pore complexes. Pre-ribosomes are exported into the cytoplasm in a functionally inactive state, where they undergo final maturation before initiating translation. Accumulating evidence indicates a tight coupling between nuclear export, cytoplasmic maturation, and final proofreading of the ribosome. In this review, we summarize our current understanding of nuclear export of pre-ribosomal subunits and cytoplasmic maturation steps that render pre-ribosomal subunits translation-competent.
Collapse
|
24
|
Ye W, Yang J, Yu Q, Wang W, Hancy J, Luo R, Chen HF. Kink turn sRNA folding upon L7Ae binding using molecular dynamics simulations. Phys Chem Chem Phys 2014; 15:18510-22. [PMID: 24072031 DOI: 10.1039/c3cp53145g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kink-turn sRNA motif in archaea, whose combination with protein L7Ae initializes the assembly of small ribonucleoprotein particles (sRNPs), plays a key role in ribosome maturation and the translation process. Although many studies have been reported on this motif, the mechanism of sRNA folding coupled with protein binding is still poorly understood. Here, room and high temperature molecular dynamics (MD) simulations were performed on the complex of 25-nt kink-turn sRNA and L7Ae. The average RMSD values between the bound and corresponding apo structures and Kolmogorov-Smirnov P test analysis indicate that sRNA may follow an induced fit mechanism upon binding with L7Ae, both locally and globally. These conclusions are further supported by high-temperature unfolding kinetic analysis. Principal component analysis (PCA) found both closing and opening motions of the kink-turn sRNA. This might play a key role in the sRNP assembly and methylation catalysis. These combined computational methods can be used to study the specific recognition of other sRNAs and proteins.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013; 195:643-81. [PMID: 24190922 PMCID: PMC3813855 DOI: 10.1534/genetics.113.153197] [Citation(s) in RCA: 574] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.
Collapse
Affiliation(s)
- John L. Woolford
- Department of Biological Sciences, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Susan J. Baserga
- Molecular Biophysics and Biochemistry, Genetics and Therapeutic Radiology, Yale University, New Haven, Connecticut 06520-8024
| |
Collapse
|
26
|
Sugihara K, Maruyama H, Morino H, Miyamoto R, Ueno H, Matsumoto M, Kaji R, Kitaguchi H, Yukitake M, Higashi Y, Nishinaka K, Oda M, Izumi Y, Kawakami H. The clinical characteristics of spinocerebellar ataxia 36: a study of 2121 Japanese ataxia patients. Mov Disord 2012; 27:1158-63. [PMID: 22753339 DOI: 10.1002/mds.25092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/08/2012] [Accepted: 05/28/2012] [Indexed: 11/06/2022] Open
Abstract
Spinocerebellar ataxia 36 is caused by the expansion of the intronic GGCCTG hexanucleotide repeat in NOP56. The original article describing this condition demonstrated that patients with spinocerebellar ataxia 36 present with tongue atrophy, a finding that had not been seen in previous types of spinocerebellar ataxias. A total of 2121 patients with clinically diagnosed spinocerebellar ataxia participated in the study. We screened our patient samples for spinocerebellar ataxia 36 using the repeat-primed polymerase chain reaction method and also determined the clinical features of spinocerebellar ataxia 36. Of the ataxia cases examined, 12 were identified as spinocerebellar ataxia 36. Of these, 7 cases (6 families) were autosomal dominant, 4 cases (three families) had a positive family history but were not autosomal dominant, and 1 case was sporadic. The average age of onset was 51.7 years, and disease progression was slow. The main symptoms and signs of disease included ataxia, dysarthria, and hyperreflexia. Approximately half the affected patients demonstrated nystagmus, bulging eyes, and a positive pathological reflex, although dysphagia, tongue atrophy, and hearing loss were rare. Moreover, the observed atrophy of the cerebellum and brain stem was not severe. The patients identified in this study were concentrated in western Japan. The frequency of spinocerebellar ataxia 36 was approximately 1.2% in the autosomal dominant group, and the age of onset for this condition was later in comparison with other spinocerebellar ataxia subtypes.
Collapse
Affiliation(s)
- Katsunobu Sugihara
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Berndt H, Harnisch C, Rammelt C, Stöhr N, Zirkel A, Dohm JC, Himmelbauer H, Tavanez JP, Hüttelmaier S, Wahle E. Maturation of mammalian H/ACA box snoRNAs: PAPD5-dependent adenylation and PARN-dependent trimming. RNA (NEW YORK, N.Y.) 2012; 18:958-72. [PMID: 22442037 PMCID: PMC3334704 DOI: 10.1261/rna.032292.112] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/14/2012] [Indexed: 05/17/2023]
Abstract
Small nucleolar and small Cajal body RNAs (snoRNAs and scaRNAs) of the H/ACA box and C/D box type are generated by exonucleolytic shortening of longer precursors. Removal of the last few nucleotides at the 3' end is known to be a distinct step. We report that, in human cells, knock-down of the poly(A) specific ribonuclease (PARN), previously implicated only in mRNA metabolism, causes the accumulation of oligoadenylated processing intermediates of H/ACA box but not C/D box RNAs. In agreement with a role of PARN in snoRNA and scaRNA processing, the enzyme is concentrated in nucleoli and Cajal bodies. Oligo(A) tails are attached to a short stub of intron sequence remaining beyond the mature 3' end of the snoRNAs. The noncanonical poly(A) polymerase PAPD5 is responsible for addition of the oligo(A) tails. We suggest that deadenylation is coupled to clean 3' end trimming, which might serve to enhance snoRNA stability.
Collapse
Affiliation(s)
- Heike Berndt
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christiane Harnisch
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Nadine Stöhr
- Section for Molecular Cell Biology, Department of Medicine, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Anne Zirkel
- Section for Molecular Cell Biology, Department of Medicine, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Juliane C. Dohm
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | | | - Joao-Paulo Tavanez
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Department of Medicine, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
- Corresponding author.E-mail .
| |
Collapse
|
28
|
Phipps KR, Charette JM, Baserga SJ. The small subunit processome in ribosome biogenesis—progress and prospects. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:1-21. [PMID: 21318072 DOI: 10.1002/wrna.57] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The small subunit (SSU) processome is a 2.2-MDa ribonucleoprotein complex involved in the processing, assembly, and maturation of the SSU of eukaryotic ribosomes. The identities of many of the factors involved in SSU biogenesis have been elucidated over the past 40 years. However, as our understanding increases, so do the number of questions about the nature of this complicated process. Cataloging the components is the first step toward understanding the molecular workings of a system. This review will focus on how identifying components of ribosome biogenesis has led to the knowledge of how these factors, protein and RNA alike, associate with one another into subcomplexes, with a concentration on the small ribosomal subunit. We will also explore how this knowledge of subcomplex assembly has informed our understanding of the workings of the ribosome synthesis system as a whole.
Collapse
Affiliation(s)
- Kathleen R Phipps
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
29
|
Jamonnak N, Creamer TJ, Darby MM, Schaughency P, Wheelan SJ, Corden JL. Yeast Nrd1, Nab3, and Sen1 transcriptome-wide binding maps suggest multiple roles in post-transcriptional RNA processing. RNA (NEW YORK, N.Y.) 2011; 17:2011-2025. [PMID: 21954178 PMCID: PMC3198594 DOI: 10.1261/rna.2840711] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 08/16/2011] [Indexed: 05/29/2023]
Abstract
RNA polymerase II transcribes both coding and noncoding genes, and termination of these different classes of transcripts is facilitated by different sets of termination factors. Pre-mRNAs are terminated through a process that is coupled to the cleavage/polyadenylation machinery, and noncoding RNAs in the yeast Saccharomyces cerevisiae are terminated through a pathway directed by the RNA-binding proteins Nrd1, Nab3, and the RNA helicase Sen1. We have used an in vivo cross-linking approach to map the binding sites of components of the yeast non-poly(A) termination pathway. We show here that Nrd1, Nab3, and Sen1 bind to a number of noncoding RNAs in an unexpected manner. Sen1 shows a preference for H/ACA over box C/D snoRNAs. Nrd1, which binds to snoRNA terminators, also binds to the upstream region of some snoRNA transcripts and to snoRNAs embedded in introns. We present results showing that several RNAs, including the telomerase RNA TLC1, require Nrd1 for proper processing. Binding of Nrd1 to transcripts from tRNA genes is another unexpected observation. We also observe RNA polymerase II binding to transcripts from RNA polymerase III genes, indicating a possible role for the Nrd1 pathway in surveillance of transcripts synthesized by the wrong polymerase. The binding targets of Nrd1 pathway components change in the absence of glucose, with Nrd1 and Nab3 showing a preference for binding to sites in the mature snoRNA and tRNAs. This suggests a novel role for Nrd1 and Nab3 in destruction of ncRNAs in response to nutrient limitation.
Collapse
Affiliation(s)
- Nuttara Jamonnak
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tyler J. Creamer
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Miranda M. Darby
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Paul Schaughency
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Sarah J. Wheelan
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Biostatistics, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Jeffry L. Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
30
|
Rakitina DV, Taliansky M, Brown JWS, Kalinina NO. Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates. Nucleic Acids Res 2011; 39:8869-80. [PMID: 21785141 PMCID: PMC3203579 DOI: 10.1093/nar/gkr594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fibrillarin, one of the major proteins of the nucleolus, plays several essential roles in ribosome biogenesis including pre-rRNA processing and 2′-O-ribose methylation of rRNA and snRNAs. Recently, it has been shown that fibrillarin plays a role in virus infections and is associated with viral RNPs. Here, we demonstrate the ability of recombinant fibrillarin 2 from Arabidopsis thaliana (AtFib2) to interact with RNAs of different lengths and types including rRNA, snoRNA, snRNA, siRNA and viral RNAs in vitro. Our data also indicate that AtFib2 possesses two RNA-binding sites in the central (138–179 amino acids) and C-terminal (225–281 amino acids) parts of the protein, respectively. The conserved GCVYAVEF octamer does not bind RNA directly as suggested earlier, but may assist with the proper folding of the central RNA-binding site.
Collapse
Affiliation(s)
- D. V. Rakitina
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| | - Michael Taliansky
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
- *To whom correspondence should be addressed. Tel: +44(0)1382562731; Fax: +44 (0)1382 562426;
| | - J. W. S. Brown
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| | - N. O. Kalinina
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| |
Collapse
|
31
|
Biswas S, Buhrman G, Gagnon K, Mattos C, Brown BA, Maxwell ES. Comparative analysis of the 15.5kD box C/D snoRNP core protein in the primitive eukaryote Giardia lamblia reveals unique structural and functional features. Biochemistry 2011; 50:2907-18. [PMID: 21366326 DOI: 10.1021/bi1020474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Box C/D ribonucleoproteins (RNP) guide the 2'-O-methylation of targeted nucleotides in archaeal and eukaryotic rRNAs. The archaeal L7Ae and eukaryotic 15.5kD box C/D RNP core protein homologues initiate RNP assembly by recognizing kink-turn (K-turn) motifs. The crystal structure of the 15.5kD core protein from the primitive eukaryote Giardia lamblia is described here to a resolution of 1.8 Å. The Giardia 15.5kD protein exhibits the typical α-β-α sandwich fold exhibited by both archaeal L7Ae and eukaryotic 15.5kD proteins. Characteristic of eukaryotic homologues, the Giardia 15.5kD protein binds the K-turn motif but not the variant K-loop motif. The highly conserved residues of loop 9, critical for RNA binding, also exhibit conformations similar to those of the human 15.5kD protein when bound to the K-turn motif. However, comparative sequence analysis indicated a distinct evolutionary position between Archaea and Eukarya. Indeed, assessment of the Giardia 15.5kD protein in denaturing experiments demonstrated an intermediate stability in protein structure when compared with that of the eukaryotic mouse 15.5kD and archaeal Methanocaldococcus jannaschii L7Ae proteins. Most notable was the ability of the Giardia 15.5kD protein to assemble in vitro a catalytically active chimeric box C/D RNP utilizing the archaeal M. jannaschii Nop56/58 and fibrillarin core proteins. In contrast, a catalytically competent chimeric RNP could not be assembled using the mouse 15.5kD protein. Collectively, these analyses suggest that the G. lamblia 15.5kD protein occupies a unique position in the evolution of this box C/D RNP core protein retaining structural and functional features characteristic of both archaeal L7Ae and higher eukaryotic 15.5kD homologues.
Collapse
Affiliation(s)
- Shyamasri Biswas
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | | | | | | | | |
Collapse
|
32
|
Scharf A, Grozdanov PN, Veith R, Kubitscheck U, Meier UT, von Mikecz A. Distant positioning of proteasomal proteolysis relative to actively transcribed genes. Nucleic Acids Res 2011; 39:4612-27. [PMID: 21306993 PMCID: PMC3113580 DOI: 10.1093/nar/gkr069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While it is widely acknowledged that the ubiquitin–proteasome system plays an important role in transcription, little is known concerning the mechanistic basis, in particular the spatial organization of proteasome-dependent proteolysis at the transcription site. Here, we show that proteasomal activity and tetraubiquitinated proteins concentrate to nucleoplasmic microenvironments in the euchromatin. Such proteolytic domains are immobile and distinctly positioned in relation to transcriptional processes. Analysis of gene arrays and early genes in Caenorhabditis elegans embryos reveals that proteasomes and proteasomal activity are distantly located relative to transcriptionally active genes. In contrast, transcriptional inhibition generally induces local overlap of proteolytic microdomains with components of the transcription machinery and degradation of RNA polymerase II. The results establish that spatial organization of proteasomal activity differs with respect to distinct phases of the transcription cycle in at least some genes, and thus might contribute to the plasticity of gene expression in response to environmental stimuli.
Collapse
Affiliation(s)
- Andrea Scharf
- IUF - Leibniz Research Institute for Environmental Medicine at Heinrich-Heine University Duesseldorf, D-40225 Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Ribonucleoproteins (RNPs) play key roles in many cellular processes and often function as RNP enzymes. Similar to proteins, some of these RNPs exist and function as multimers, either homomeric or heteromeric. While in some cases the mechanistic function of multimerization is well understood, the functional consequences of multimerization of other RNPs remain enigmatic. In this review we will discuss the function and organization of small RNPs that exist as stable multimers, including RNPs catalyzing RNA chemical modifications, telomerase RNP, and RNPs involved in pre-mRNA splicing.
Collapse
|
34
|
Abstract
RNA-guided RNA 2'-O-methylation and pseudouridylation are naturally occurring processes, in which guide RNAs specifically direct modifications to rRNAs or spliceosomal snRNAs in the nucleus of eukaryotic cells. Modifications can profoundly alter the properties of an RNA, thus influencing the contributions of the RNA to the cellular process in which it participates. Recently, it has been shown that, by expressing artificial guide RNAs (derived from naturally occurring guide RNAs), modifications can also be specifically introduced into other RNAs, thus offering an opportunity to study RNAs in vivo. Here, we present strategies for constructing guide RNAs and manipulating RNA modifications in the nucleus.
Collapse
|
35
|
Costello JL, Stead JA, Feigenbutz M, Jones RM, Mitchell P. The C-terminal region of the exosome-associated protein Rrp47 is specifically required for box C/D small nucleolar RNA 3'-maturation. J Biol Chem 2010; 286:4535-43. [PMID: 21135092 PMCID: PMC3039359 DOI: 10.1074/jbc.m110.162826] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cells lacking the exosome-associated protein Rrp47 show similar defects in stable RNA processing to those observed in the absence of the catalytic subunit Rrp6, but the precise mechanism(s) by which Rrp47 functions together with Rrp6 remains unclear. Deletion complementation analyses defined an N-terminal region of Rrp47, largely coincident with the bioinformatically defined Sas10/C1D domain, which was sufficient for protein function in vivo. In vitro protein interaction studies demonstrated that this domain of Rrp47 binds the PMC2NT domain of Rrp6. Expression of the N-terminal domain of Rrp47 in yeast complemented most RNA-processing defects associated with the rrp47Δ mutant but failed to complement the defect observed in 3′-end maturation of box C/D small nucleolar RNAs. Consistent with these results, protein capture assays revealed an interaction between the C-terminal region of Rrp47 and the small nucleolar ribonucleoproteins Nop56 and Nop58. Filter binding assays demonstrated that deletion of the lysine-rich sequence at the C terminus of Rrp47 blocked RNA binding in vitro. Furthermore, a protein mutated both at the C terminus and within the N-terminal domain showed a synergistic defect in RNA binding without impacting on its ability to interact with Rrp6. These studies provide evidence for a role of Rrp47 in registering a small nucleolar ribonucleoprotein particle assembly, functionally characterize the Sas10/C1D domain of Rrp47, and show that both the C terminus of Rrp47 and the N-terminal domain contribute to its RNA-binding activity.
Collapse
Affiliation(s)
- Joe L Costello
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Abstract
Small nucleolar and Cajal body ribonucleoprotein particles (RNPs) are required for the maturation of ribosomes and spliceosomes. They consist of small nucleolar RNA or Cajal body RNA combined with partner proteins and represent the most complex RNA modification enzymes. Recent advances in structure and function studies have revealed detailed information regarding ribonucleoprotein assembly and substrate binding. These enzymes form intertwined RNA-protein assemblies that facilitate reversible binding of the large ribosomal RNA or small nuclear RNA. These revelations explain the specificity among the components in enzyme assembly and substrate modification. The multiple conformations of individual components and those of complete RNPs suggest a dynamic assembly process and justify the requirement of many assembly factors in vivo.
Collapse
|
37
|
Xue S, Wang R, Yang F, Terns RM, Terns MP, Zhang X, Maxwell ES, Li H. Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle. Mol Cell 2010; 39:939-49. [PMID: 20864039 PMCID: PMC3572848 DOI: 10.1016/j.molcel.2010.08.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/20/2010] [Accepted: 07/16/2010] [Indexed: 01/07/2023]
Abstract
Box C/D small nucleolar and Cajal body ribonucleoprotein particles (sno/scaRNPs) direct site-specific 2'-O-methylation of ribosomal and spliceosomal RNAs and are critical for gene expression. Here we report crystal structures of an archaeal box C/D RNP containing three core proteins (fibrillarin, Nop56/58, and L7Ae) and a half-mer box C/D guide RNA paired with a substrate RNA. The structure reveals a guide-substrate RNA duplex orientation imposed by a composite protein surface and the conserved GAEK motif of Nop56/58. Molecular modeling supports a dual C/D RNP structure that closely mimics that recently visualized by electron microscopy. The substrate-bound dual RNP model predicts an asymmetric protein distribution between the RNP that binds and methylates the substrate RNA. The predicted asymmetric nature of the holoenzyme is consistent with previous biochemical data on RNP assembly and provides a simple solution for accommodating base-pairing between the C/D guide RNA and large ribosomal and spliceosomal substrate RNAs.
Collapse
Affiliation(s)
- Song Xue
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Ruiying Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Fangping Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Rebecca M. Terns
- Departments of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Athens, GA 30602, USA
| | - Michael P. Terns
- Departments of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Athens, GA 30602, USA
| | - Xinxin Zhang
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - E. Stuart Maxwell
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
38
|
Soeno Y, Taya Y, Stasyk T, Huber LA, Aoba T, Hüttenhofer A. Identification of novel ribonucleo-protein complexes from the brain-specific snoRNA MBII-52. RNA (NEW YORK, N.Y.) 2010; 16:1293-1300. [PMID: 20484469 PMCID: PMC2885678 DOI: 10.1261/rna.2109710] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 04/14/2010] [Indexed: 05/29/2023]
Abstract
Small nucleolar RNAs (snoRNAs) guide nucleotide modifications within ribosomal RNAs or spliceosomal RNAs by base-pairing to complementary regions within their RNA targets. The brain-specific snoRNA MBII-52 lacks such a complementarity to rRNAs or snRNAs, but instead has been reported to target the serotonin receptor 2C pre-mRNA, thereby regulating pre-mRNA editing and/or alternative splicing. To understand how the MBII-52 snoRNA might be involved in these regulatory processes, we isolated the MBII-52 snoRNP from total mouse brain by an antisense RNA affinity purification approach. Surprisingly, by mass spectrometry we identified 17 novel candidates for MBII-52 snoRNA binding proteins, which previously had not been reported to be associated with canonical snoRNAs. Among these, Nucleolin and ELAVL1 proteins were confirmed to independently and directly interact with the MBII-52 snoRNA by coimmunoprecipitation. Our findings suggest that the MBII-52 snoRNA assembles into novel RNA-protein complexes, distinct from canonical snoRNPs.
Collapse
|
39
|
Abstract
Spliceosomal snRNAs are extensively 2'-O-methylated and pseudouridylated. The modified nucleotides are relatively highly conserved across species, and are often clustered in regions of functional importance in pre-mRNA splicing. Over the past decade, the study of the mechanisms and functions of spliceosomal snRNA modifications has intensified. Two independent mechanisms behind these modifications, RNA-independent (protein-only) and RNA-dependent (RNA-guided), have been discovered. The role of spliceosomal snRNA modifications in snRNP biogenesis and spliceosome assembly has also been verified.
Collapse
Affiliation(s)
- John Karijolich
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
40
|
Huen J, Kakihara Y, Ugwu F, Cheung KLY, Ortega J, Houry WA. Rvb1–Rvb2: essential ATP-dependent helicases for critical complexesThis paper is one of a selection of papers published in this special issue entitled 8th International Conference on AAA Proteins and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:29-40. [DOI: 10.1139/o09-122] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rvb1 and Rvb2 are highly conserved, essential AAA+ helicases found in a wide range of eukaryotes. The versatility of these helicases and their central role in the biology of the cell is evident from their involvement in a wide array of critical cellular complexes. Rvb1 and Rvb2 are components of the chromatin-remodeling complexes INO80, Swr-C, and BAF. They are also members of the histone acetyltransferase Tip60 complex, and the recently identified R2TP complex present in Saccharomyces cerevisiae and Homo sapiens; a complex that is involved in small nucleolar ribonucleoprotein (snoRNP) assembly. Furthermore, in humans, Rvb1 and Rvb2 have been identified in the URI prefoldin-like complex. In Drosophila, the Polycomb Repressive complex 1 contains Rvb2, but not Rvb1, and the Brahma complex contains Rvb1 and not Rvb2. Both of these complexes are involved in the regulation of growth and development genes in Drosophila. Rvbs are therefore crucial factors in various cellular processes. Their importance in chromatin remodeling, transcription regulation, DNA damage repair, telomerase assembly, mitotic spindle formation, and snoRNP biogenesis is discussed in this review.
Collapse
Affiliation(s)
- Jennifer Huen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Yoshito Kakihara
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Francisca Ugwu
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Kevin L. Y. Cheung
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Joaquin Ortega
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
41
|
Romanova L, Kellner S, Katoku-Kikyo N, Kikyo N. Novel role of nucleostemin in the maintenance of nucleolar architecture and integrity of small nucleolar ribonucleoproteins and the telomerase complex. J Biol Chem 2009; 284:26685-94. [PMID: 19648109 DOI: 10.1074/jbc.m109.013342] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleostemin (NS) is a nucleolar protein involved in the regulation of cell proliferation. Both overexpression and knockdown of NS increase the activity of the tumor suppressor protein p53, resulting in cell cycle arrest. In addition, NS regulates processing of pre-rRNA and consequently the level of total protein synthesis. Here, we describe a previously uncharacterized function of NS in the maintenance of the tripartite nucleolar structure as well as the integrity of small nucleolar ribonucleoproteins (snoRNPs). NS is also necessary to maintain the telomerase complex which shares common protein subunits with the H/ACA box snoRNPs. First, immunofluorescence microscopy and electron microscopy demonstrated that knockdown of NS disorganized the nucleolar architecture, in particular, the dense fibrillar component where snoRNPs are localized. Second, gel filtration chromatography and immunoprecipitation indicated that NS depletion leads to dissociation of the components of snoRNPs and the telomerase complex. Third, NS depletion reduced both telomerase activity and the cellular level of pseudouridine, an H/ACA snoRNP-mediated modification of rRNA and other RNAs that are important for their folding and stability. These morphological, biochemical and functional studies demonstrate that NS plays an important role to maintain nucleolar structure and function on a more fundamental level than previously thought.
Collapse
Affiliation(s)
- Liudmila Romanova
- Division of Hematology, Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
42
|
Song BS, Lee SH, Kim SU, Kim JS, Park JS, Kim CH, Chang KT, Han YM, Lee KK, Lee DS, Koo DB. Nucleologenesis and embryonic genome activation are defective in interspecies cloned embryos between bovine ooplasm and rhesus monkey somatic cells. BMC DEVELOPMENTAL BIOLOGY 2009; 9:44. [PMID: 19635167 PMCID: PMC2734572 DOI: 10.1186/1471-213x-9-44] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 07/28/2009] [Indexed: 01/29/2023]
Abstract
Background Interspecies somatic cell nuclear transfer (iSCNT) has been proposed as a tool to address basic developmental questions and to improve the feasibility of cell therapy. However, the low efficiency of iSCNT embryonic development is a crucial problem when compared to in vitro fertilization (IVF) and intraspecies SCNT. Thus, we examined the effect of donor cell species on the early development of SCNT embryos after reconstruction with bovine ooplasm. Results No apparent difference in cleavage rate was found among IVF, monkey-bovine (MB)-iSCNT, and bovine-bovine (BB)-SCNT embryos. However, MB-iSCNT embryos failed to develop beyond the 8- or 16-cell stages and lacked expression of the genes involved in embryonic genome activation (EGA) at the 8-cell stage. From ultrastructural observations made during the peri-EGA period using transmission electron microscopy (TEM), we found that the nucleoli of MB-iSCNT embryos were morphologically abnormal or arrested at the primary stage of nucleologenesis. Consistent with the TEM analysis, nucleolar component proteins, such as upstream binding transcription factor, fibrillarin, nucleolin, and nucleophosmin, showed decreased expression and were structurally disorganized in MB-iSCNT embryos compared to IVF and BB-SCNT embryos, as revealed by real-time PCR and immunofluorescence confocal laser scanning microscopy, respectively. Conclusion The down-regulation of housekeeping and imprinting genes, abnormal nucleolar morphology, and aberrant patterns of nucleolar proteins during EGA resulted in developmental failure in MB-iSCNT embryos. These results provide insight into the unresolved problems of early embryonic development in iSCNT embryos.
Collapse
Affiliation(s)
- Bong-Seok Song
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahangno, Yuseong-gu, Daejeon, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Evidence that the AAA+ proteins TIP48 and TIP49 bridge interactions between 15.5K and the related NOP56 and NOP58 proteins during box C/D snoRNP biogenesis. Mol Cell Biol 2009; 29:4971-81. [PMID: 19620283 DOI: 10.1128/mcb.00752-09] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The box C/D small nucleolar RNPs (snoRNPs) are essential for the processing and modification of rRNA. TIP48 and TIP49 are two related AAA(+) proteins that are essential for the formation of box C/D snoRNPs. These proteins are key components of the pre-snoRNP complexes, but their exact role in box C/D snoRNP biogenesis is largely uncharacterized. Here we report that TIP48 and TIP49 interact with one another in vitro, and only the TIP48/TIP49 complex, but not the individual proteins, possesses significant ATPase activity. Loss of TIP48 and TIP49 results in a change in pre-snoRNA levels and a loss of U3 snoRNA signal in the Cajal body. We show that TIP48 and TIP49 make multiple interactions with core snoRNP proteins and biogenesis factors and that these interactions are often regulated by the presence of ATP. Furthermore, we demonstrate that TIP48 and TIP49 efficiently bridge interactions between the core box C/D proteins NOP56 or NOP58 and 15.5K. Our data imply that the snoRNP assembly factor NUFIP can regulate the interactions between TIP48 and TIP49 and the core box C/D proteins. We suggest that snoRNP assembly involves an intricate series of interactions that are mediated/regulated by bridging factors and chaperones.
Collapse
|
44
|
Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc Natl Acad Sci U S A 2009; 106:9613-8. [PMID: 19482942 DOI: 10.1073/pnas.0901997106] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The U3 small nucleolar ribonucleoprotein (snoRNP) plays an essential role in ribosome biogenesis but, like many RNA-protein complexes, its architecture is poorly understood. To address this problem, binding sites for the snoRNP proteins Nop1, Nop56, Nop58, and Rrp9 were mapped by UV cross-linking and analysis of cDNAs. Cross-linked protein-RNA complexes were purified under highly-denaturing conditions, ensuring that only direct interactions were detected. Recovered RNA fragments were amplified after linker ligation and cDNA synthesis. Cross-linking was successfully performed either in vitro on purified complexes or in vivo in living cells. Cross-linking sites were precisely mapped either by Sanger sequencing of multiple cloned fragments or direct, high-throughput Solexa sequencing. Analysis of RNAs associated with the snoRNP proteins revealed remarkably high signal-to-noise ratios and identified specific binding sites for each of these proteins on the U3 RNA. The results were consistent with previous data, demonstrating the reliability of the method, but also provided insights into the architecture of the U3 snoRNP. The snoRNP proteins were also cross-linked to pre-rRNA fragments, with preferential association at known sites of box C/D snoRNA function. This finding demonstrates that the snoRNP proteins directly contact the pre-rRNA substrate, suggesting roles in snoRNA recruitment. The techniques reported here should be widely applicable to analyses of RNA-protein interactions.
Collapse
|
45
|
Lechertier T, Grob A, Hernandez-Verdun D, Roussel P. Fibrillarin and Nop56 interact before being co-assembled in box C/D snoRNPs. Exp Cell Res 2009; 315:928-42. [PMID: 19331828 DOI: 10.1016/j.yexcr.2009.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 12/12/2008] [Accepted: 01/16/2009] [Indexed: 11/16/2022]
Abstract
Small nucleolar RNAs play crucial roles in ribosome biogenesis. They guide folding, site-specific nucleotide modifications and participate in cleavage of precursor ribosomal RNAs. To better understand how the biogenesis of the box C/D small nucleolar RNPs (snoRNPs) occur in a cellular context, we used a new approach based on the possibility of relocalizing a given nuclear complex by adding an affinity tag for B23 to one component of this complex. We selectively delocalized each core box C/D protein, namely 15.5kD, Nop56, Nop58 and fibrillarin, and analyzed the effect of such changes on other components of the box C/D snoRNPs. We show that modifying the localization and the mobility of core box C/D proteins impairs their association with box C/D snoRNPs. In addition, we demonstrate that fibrillarin and Nop56 directly interact in vivo. This interaction, indispensable for the association of both proteins with the box C/D snoRNPs, does not involve the glycine- and arginine-rich domain or the RNA-binding domain but the alpha-helix domain of fibrillarin. In addition, no RNA seems required to maintain fibrillarin-Nop56 interaction.
Collapse
Affiliation(s)
- Tanguy Lechertier
- Institut Jacques Monod, UMR 7592 CNRS/Universités Paris 6 et 7, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | |
Collapse
|
46
|
Grzechnik P, Kufel J. Polyadenylation linked to transcription termination directs the processing of snoRNA precursors in yeast. Mol Cell 2008; 32:247-58. [PMID: 18951092 PMCID: PMC2593888 DOI: 10.1016/j.molcel.2008.10.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 06/20/2008] [Accepted: 10/06/2008] [Indexed: 11/04/2022]
Abstract
Transcription termination by RNA polymerase II is coupled to transcript 3′ end formation. A large cleavage and polyadenylation complex containing the major poly(A) polymerase Pap1 produces mRNA 3′ ends, whereas those of nonpolyadenylated snoRNAs in yeast are formed either by endonucleolytic cleavage or by termination, followed by trimming by the nuclear exosome. We show that synthesis of independently transcribed snoRNAs involves default polyadenylation of two classes of precursors derived from termination at a main Nrd1/Nab3-dependent site or a “fail-safe” mRNA-like signal. Poly(A) tails are added by Pap1 to both forms, whereas the alternative poly(A) polymerase Tfr4 adenylates major precursors and processing intermediates to facilitate further polyadenylation by Pap1 and maturation by the exosome/Rrp6. A more important role of Trf4/TRAMP, however, is to enhance Nrd1 association with snoRNA genes. We propose a model in which polyadenylation of pre-snoRNAs is a key event linking their transcription termination, 3′ end processing, and degradation.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | |
Collapse
|
47
|
Kim DW, Lee JH, Seo SB. Identification of Differentially Expressed Genes by Proto-oncogene Protein DEK using Annealing Control Primers. Biomol Ther (Seoul) 2008. [DOI: 10.4062/biomolther.2008.16.3.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
48
|
Aftab MN, He H, Skogerbø G, Chen R. Microarray analysis of ncRNA expression patterns in Caenorhabditis elegans after RNAi against snoRNA associated proteins. BMC Genomics 2008; 9:278. [PMID: 18547420 PMCID: PMC2442092 DOI: 10.1186/1471-2164-9-278] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 06/11/2008] [Indexed: 11/30/2022] Open
Abstract
Background Short non-coding RNAs (ncRNAs) perform their cellular functions in ribonucleoprotein (RNP) complexes, which are also essential for maintaining the stability of the ncRNAs. Depletion of individual protein components of non-coding ribonucleoprotein (ncRNP) particles by RNA interference (RNAi) may therefore affect expression levels of the corresponding ncRNA, and depletion of candidate associated proteins may constitute an alternative strategy when investigating ncRNA-protein interactions and ncRNA functions. Therefore, we carried out a pilot study in which the effects of RNAi against protein components of small nucleolar RNPs (snoRNPs) in Caenorhabditis elegans were observed on an ncRNA microarray. Results RNAi against individual C. elegans protein components of snoRNPs produced strongly reduced mRNA levels and distinct phenotypes for all targeted proteins. For each type of snoRNP, individual depletion of at least three of the four protein components produced significant (P ≦ 1.2 × 10-5) reductions in the expression levels of the corresponding small nucleolar RNAs (snoRNAs), whereas the expression levels of other ncRNAs were largely unaffected. The effects of depletion of individual proteins were in accordance with snoRNP structure analyses obtained in other species for all but two of the eight targeted proteins. Variations in snoRNA size, sequence and secondary structure characteristics were not systematically reflected in the affinity for individual protein component of snoRNPs. The data supported the classification of nearly all annotated snoRNAs and suggested the presence of several novel snoRNAs among unclassified short ncRNA transcripts. A number of transcripts containing canonical Sm binding element sequences (Sm Y RNAs) also showed reduced expression after depletion of protein components of C/D box snoRNPs, whereas the expression of some stem-bulge RNAs (sbRNAs) was increased after depletion of the same proteins. Conclusion The study confirms observations made for other organisms, where reduced ncRNA levels after depletion of protein components of ncRNPs were noted, and shows that such reductions in expression levels occur across entire sets of ncRNA. Thereby, the study also demonstrates the feasibility of combining RNAi against candidate proteins with ncRNA microarray analysis to investigate ncRNA-protein interactions and hence ncRNA cellular functions.
Collapse
Affiliation(s)
- Muhammad Nauman Aftab
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences Beijing 100101, PR China.
| | | | | | | |
Collapse
|
49
|
Ishitani R, Yokoyama S, Nureki O. Structure, dynamics, and function of RNA modification enzymes. Curr Opin Struct Biol 2008; 18:330-9. [DOI: 10.1016/j.sbi.2008.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 05/04/2008] [Indexed: 01/20/2023]
|
50
|
Zhao R, Kakihara Y, Gribun A, Huen J, Yang G, Khanna M, Costanzo M, Brost RL, Boone C, Hughes TR, Yip CM, Houry WA. Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. ACTA ACUST UNITED AC 2008; 180:563-78. [PMID: 18268103 PMCID: PMC2234237 DOI: 10.1083/jcb.200709061] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hsp90 is a highly conserved molecular chaperone that is involved in modulating a multitude of cellular processes. In this study, we identify a function for the chaperone in RNA processing and maintenance. This functionality of Hsp90 involves two recently identified interactors of the chaperone: Tah1 and Pih1/Nop17. Tah1 is a small protein containing tetratricopeptide repeats, whereas Pih1 is found to be an unstable protein. Tah1 and Pih1 bind to the essential helicases Rvb1 and Rvb2 to form the R2TP complex, which we demonstrate is required for the correct accumulation of box C/D small nucleolar ribonucleoproteins. Together with the Tah1 cofactor, Hsp90 functions to stabilize Pih1. As a consequence, the chaperone is shown to affect box C/D accumulation and maintenance, especially under stress conditions. Hsp90 and R2TP proteins are also involved in the proper accumulation of box H/ACA small nucleolar RNAs.
Collapse
Affiliation(s)
- Rongmin Zhao
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|