1
|
Gabriel S, Czerny T, Riegel E. Repression motif in HSF1 regulated by phosphorylation. Cell Signal 2023; 110:110813. [PMID: 37468051 DOI: 10.1016/j.cellsig.2023.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The heat shock factor 1 (HSF1) is a transcription factor that itself is a sensor for stress and integrates various intrinsic or environmental stress sensing pathways. Thus HSF1 orchestrates the heat shock response (HSR) by translating these pathways into a distinct transcriptional program that aids the cells to cope with and adapt to proteotoxic stress. Although heavily researched the regulation of HSF1 activation is still not completely understood. A conserved reaction to stress is the hyperphosphorylation of the otherwise confined constitutive phosphorylated HSF1. Therefore, this stress specific phosphorylation is believed to be involved in the regulatory mechanism and hence, was and is focus of many studies, ascribing various effects to single phosphorylation sites. To gain additional insight into effects of phosphorylation, HSF1 carrying amino acid substitutions on up to 18 amino acids were tested for their transactivation potential on an HSR reporter plasmid. A pattern of eleven phosphor-mimicking and diminishing amino acid substitutions on well-known phosphorylation sites of HSF1 were introduced to produce transcriptional active [11 M(+)] or repressed [11 M(-)] phenotypes. It could be confirmed that heat activates HSF1 regardless of phosphorylation. Distinct cellular stress, obtained by chemical HSR inducers or mimicked by a constitutively active HSF1, showed clear differences in the activation potential of HSF1-11 M(+) and 11 M(-). Further refinement to the single amino acid level identified the S303/307 double-phosphorylation motif, wherein phosphorylation of S303 was sole responsible for the repressing effect. The effect could be reproduced in different cell lines and is not entirely based on degradation. A small repression motif could be dissociated from the HSF1 context, which is still capable of repressing the background transcription of a specifically designed reporter plasmid. Taken together these results indicate, that besides already described mechanisms of pS303/307 mediated repression of HSF1 activation, an additional mechanism repressing the transcriptional output of the entire HSE containing promoter is mediated by this small repressive motif.
Collapse
Affiliation(s)
- Stefan Gabriel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Favoritenstraße 222, A-1100 Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Favoritenstraße 222, A-1100 Vienna, Austria
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Favoritenstraße 222, A-1100 Vienna, Austria.
| |
Collapse
|
2
|
Joushomme A, Orlacchio R, Patrignoni L, Canovi A, Chappe YL, Poulletier De Gannes F, Hurtier A, Garenne A, Lagroye I, Moisan F, Cario M, Lévêque P, Arnaud-Cormos D, Percherancier Y. Effects of 5G-modulated 3.5 GHz radiofrequency field exposures on HSF1, RAS, ERK, and PML activation in live fibroblasts and keratinocytes cells. Sci Rep 2023; 13:8305. [PMID: 37221363 DOI: 10.1038/s41598-023-35397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/17/2023] [Indexed: 05/25/2023] Open
Abstract
The potential health risks of exposure to radiofrequency electromagnetic fields from mobile communications technologies have raised societal concerns. Guidelines have been set to protect the population (e.g. non-specific heating above 1 °C under exposure to radiofrequency fields), but questions remain regarding the potential biological effects of non-thermal exposures. With the advent of the fifth generation (5G) of mobile communication, assessing whether exposure to this new signal induces a cellular stress response is one of the mandatory steps on the roadmap for a safe deployment and health risk evaluation. Using the BRET (Bioluminescence Resonance Energy-Transfer) technique, we assessed whether continuous or intermittent (5 min ON/ 10 min OFF) exposure of live human keratinocytes and fibroblasts cells to 5G 3.5 GHz signals at specific absorption rate (SAR) up to 4 W/kg for 24 h impact basal or chemically-induced activity of Heat Shock Factor (HSF), RAt Sarcoma virus (RAS) and Extracellular signal-Regulated Kinases (ERK) kinases, and Promyelocytic Leukemia Protein (PML), that are all molecular pathways involved in environmental cell-stress responses. The main results are (i), a decrease of the HSF1 basal BRET signal when fibroblasts cells were exposed at the lower SARs tested (0.25 and 1 W/kg), but not at the highest one (4 W/kg), and (ii) a slight decrease of As2O3 maximal efficacy to trigger PML SUMOylation when fibroblasts cells, but not keratinocytes, were continuously exposed to the 5G RF-EMF signal. Nevertheless, given the inconsistency of these effects in terms of impacted cell type, effective SAR, exposure mode, and molecular cell stress response, we concluded that our study show no conclusive evidence that molecular effects can arise when skin cells are exposed to the 5G RF-EMF alone or with a chemical stressor.
Collapse
Affiliation(s)
- Alexandre Joushomme
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Rosa Orlacchio
- Limoges University, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
| | - Lorenza Patrignoni
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Anne Canovi
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Yann Loïck Chappe
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | | | - Annabelle Hurtier
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - André Garenne
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
| | - Isabelle Lagroye
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France
- Paris Sciences et Lettres Research University, F-75006, Paris, France
| | - François Moisan
- Bordeaux University, INSERM, BMGIC Laboratory, UMR1035, F-33000, Bordeaux, France
| | - Muriel Cario
- Bordeaux University, INSERM, BMGIC Laboratory, UMR1035, F-33000, Bordeaux, France
| | - Philippe Lévêque
- Limoges University, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
| | - Delia Arnaud-Cormos
- Limoges University, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Yann Percherancier
- Bordeaux University, CNRS, IMS laboratory, UMR5218, F-33400, Talence, France.
| |
Collapse
|
3
|
Szewczyk B, Günther R, Japtok J, Frech MJ, Naumann M, Lee HO, Hermann A. FUS ALS neurons activate major stress pathways and reduce translation as an early protective mechanism against neurodegeneration. Cell Rep 2023; 42:112025. [PMID: 36696267 DOI: 10.1016/j.celrep.2023.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder causing progressive loss of motor neurons. Mutations in Fused in sarcoma (FUS) leading to its cytoplasmic mislocalization cause a subset of ALS. Under stress, mutant FUS localizes to stress granules (SGs)-cytoplasmic condensates composed of RNA and various proteins. Aberrant dynamics of SGs is linked to the pathology of ALS. Here, using motor neurons (MNs) derived from human induced pluripotent stem cells, we show that, in mutant FUS, MN dynamics of SGs is disturbed. Additionally, heat-shock response (HSR) and integrated stress response (ISR) involved in the regulation of SGs are upregulated in mutant MNs. HSR activation correlates with the amount of cytoplasmic FUS mislocalization. While inhibition of SG formation, translation, or ISR does not influence survival of FUS ALS neurons, proteotoxicity that cannot be compensated with the activation of stress pathways is the main driver of neurodegeneration in early FUS ALS.
Collapse
Affiliation(s)
- Barbara Szewczyk
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Dresden, Dresden, Germany
| | - Julia Japtok
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Moritz J Frech
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany.
| |
Collapse
|
4
|
Combined Assay of rDNA and SatIII Copy Numbers as an Individual Profile of Stress Resistance, Longevity, Fertility and Disease Predisposition. J Pers Med 2022; 12:jpm12101752. [PMID: 36294891 PMCID: PMC9604575 DOI: 10.3390/jpm12101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
The ribosomal DNA and pericentromeric satellite repeats are two important types of moderately repeated sequences existing in the human genome. They are functionally involved in the universal stress response. There is accumulating evidence that the copy number variation (CNV) of the repeat units is a novel factor modulating the stress response and, thus, has phenotypic manifestations. The ribosomal repeat copy number plays a role in stress resistance, lifespan, in vitro fertilization chances, disease progression and aging, while the dynamics of the satellite copy number are a sort of indicator of the current stress state. Here, we review some facts showing that a combined assay of rDNA and SatII/III abundance can provide valuable individual data ("stress profile") indicating not only the inherited adaptive reserve but also the stress duration and acute or chronic character of the stress. Thus, the repeat count could have applications in personalized medicine in the future.
Collapse
|
5
|
Smith RS, Takagishi SR, Amici DR, Metz K, Gayatri S, Alasady MJ, Wu Y, Brockway S, Taiberg SL, Khalatyan N, Taipale M, Santagata S, Whitesell L, Lindquist S, Savas JN, Mendillo ML. HSF2 cooperates with HSF1 to drive a transcriptional program critical for the malignant state. SCIENCE ADVANCES 2022; 8:eabj6526. [PMID: 35294249 PMCID: PMC8926329 DOI: 10.1126/sciadv.abj6526] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/25/2022] [Indexed: 05/14/2023]
Abstract
Heat shock factor 1 (HSF1) is well known for its role in the heat shock response (HSR), where it drives a transcriptional program comprising heat shock protein (HSP) genes, and in tumorigenesis, where it drives a program comprising HSPs and many noncanonical target genes that support malignancy. Here, we find that HSF2, an HSF1 paralog with no substantial role in the HSR, physically and functionally interacts with HSF1 across diverse types of cancer. HSF1 and HSF2 have notably similar chromatin occupancy and regulate a common set of genes that include both HSPs and noncanonical transcriptional targets with roles critical in supporting malignancy. Loss of either HSF1 or HSF2 results in a dysregulated response to nutrient stresses in vitro and reduced tumor progression in cancer cell line xenografts. Together, these findings establish HSF2 as a critical cofactor of HSF1 in driving a cancer cell transcriptional program to support the anabolic malignant state.
Collapse
Affiliation(s)
- Roger S. Smith
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Seesha R. Takagishi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158, USA
- Tetrad Graduate Program, UCSF, San Francisco, CA 94143, USA
| | - David R. Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kyle Metz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sitaram Gayatri
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Milad J. Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yaqi Wu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Master of Biotechnology Program, Northwestern University, Evanston, IL 60208, USA
| | - Sonia Brockway
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stephanie L. Taiberg
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Natalia Khalatyan
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Molecular Architecture of Life Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| | - Sandro Santagata
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Jeffrey N. Savas
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc L. Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Kanugovi Vijayavittal A, Kumar P, Sugunan S, Joseph C, Devaki B, Paithankar K, Amere Subbarao S. Heat shock transcription factor HSF2 modulates the autophagy response through the BTG2-SOD2 axis. Biochem Biophys Res Commun 2022; 600:44-50. [PMID: 35182974 DOI: 10.1016/j.bbrc.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/06/2022] [Indexed: 11/02/2022]
Abstract
The heat shock transcription factor HSF1 regulates the inducible Hsp gene transcription, whereas HSF2 is involved in the constitutive transcription. HSFs can work for the non-heat shock genes transcription in a case-specific manner to facilitate normal cellular functions. Here, we demonstrate that HSF2 acts as an upstream regulator of heat shock-induced autophagy response in a rat histiocytoma. The heat-induced HSF2 transactivates the B-cell translocation gene-2 (BTG2) transcription, and the latter acts as a transcriptional coactivator for superoxide dismutase (SOD2). The altered HSF2 promoter occupancy on the BTG2 promoter enhances BTG2 transcription. Since SOD2 regulation is linked to mitochondrial redox sensing, HSF2 appears to act as a redox sensor in deciding the cell fate. The HSF2 shRNA or NFE2L2/BTG2 siRNA treatments have interfered with the autophagy response. We demonstrate that HSF2 is an upstream activator of autophagy response, and the HSF2-BTG2-SOD2 axis acts as a switch between the non-selective (micro/macro) and selective (chaperone-mediated) autophagy.
Collapse
Affiliation(s)
| | - Pankaj Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Sreedevi Sugunan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Chitra Joseph
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Bharath Devaki
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Khanderao Paithankar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Sreedhar Amere Subbarao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
7
|
TDP-43 pathology: from noxious assembly to therapeutic removal. Prog Neurobiol 2022; 211:102229. [DOI: 10.1016/j.pneurobio.2022.102229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
|
8
|
The Role of Human Satellite III (1q12) Copy Number Variation in the Adaptive Response during Aging, Stress, and Pathology: A Pendulum Model. Genes (Basel) 2021; 12:genes12101524. [PMID: 34680920 PMCID: PMC8535310 DOI: 10.3390/genes12101524] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
The pericentric satellite III (SatIII or Sat3) and II tandem repeats recently appeared to be transcribed under stress conditions, and the transcripts were shown to play an essential role in the universal stress response. In this paper, we review the role of human-specific SatIII copy number variation (CNV) in normal stress response, aging and pathology, with a focus on 1q12 loci. We postulate a close link between transcription of SatII/III repeats and their CNV. The accrued body of data suggests a hypothetical universal mechanism, which provides for SatIII copy gain during the stress response, alongside with another, more hypothetical reverse mechanism that might reduce the mean SatIII copy number, likely via the selection of cells with excessively large 1q12 loci. Both mechanisms, working alternatively like swings of the pendulum, may ensure the balance of SatIII copy numbers and optimum stress resistance. This model is verified on the most recent data on SatIII CNV in pathology and therapy, aging, senescence and response to genotoxic stress in vitro.
Collapse
|
9
|
Augmentation of the heat shock axis during exceptional longevity in Ames dwarf mice. GeroScience 2021; 43:1921-1934. [PMID: 33846884 PMCID: PMC8492860 DOI: 10.1007/s11357-021-00362-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/29/2021] [Indexed: 11/06/2022] Open
Abstract
How the heat shock axis, repair pathways, and proteostasis impact the rate of aging is not fully understood. Recent reports indicate that normal aging leads to a 50% change in several regulatory elements of the heat shock axis. Most notably is the age-dependent enhancement of inhibitory signals associated with accumulated heat shock proteins and hyper-acetylation associated with marked attenuation of heat shock factor 1 (HSF1)–DNA binding activity. Because exceptional longevity is associated with increased resistance to stress, this study evaluated regulatory check points of the heat shock axis in liver extracts from 12 months and 24 months long-lived Ames dwarf mice and compared these findings with aging wild-type mice. This analysis showed that 12M dwarf and wild-type mice have comparable stress responses, whereas old dwarf mice, unlike old wild-type mice, preserve and enhance activating elements of the heat shock axis. Old dwarf mice thwart negative regulation of the heat shock axis typically observed in usual aging such as noted in HSF1 phosphorylation at Ser307 residue, acetylation within its DNA binding domain, and reduction in proteins that attenuate HSF1–DNA binding. Unlike usual aging, dwarf HSF1 protein and mRNA levels increase with age and further enhance by stress. Together these observations suggest that exceptional longevity is associated with compensatory and enhanced HSF1 regulation as an adaptation to age-dependent forces that otherwise downregulate the heat shock axis.
Collapse
|
10
|
Poque E, Ruigrok HJ, Arnaud-Cormos D, Habauzit D, Chappe Y, Martin C, De Gannes FP, Hurtier A, Garenne A, Lagroye I, Le Dréan Y, Lévêque P, Percherancier Y. Effects of radiofrequency field exposure on proteotoxic-induced and heat-induced HSF1 response in live cells using the bioluminescence resonance energy transfer technique. Cell Stress Chaperones 2021; 26:241-251. [PMID: 33067759 PMCID: PMC7736596 DOI: 10.1007/s12192-020-01172-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/09/2023] Open
Abstract
As of today, only acute effects of RF fields have been confirmed to represent a potential health hazard and they are attributed to non-specific heating (≥ 1 °C) under high-level exposure. Yet, the possibility that environmental RF impact living matter in the absence of temperature elevation needs further investigation. Since HSF1 is both a thermosensor and the master regulator of heat-shock stress response in eukaryotes, it remains to assess HSF1 activation in live cells under exposure to low-level RF signals. We thus measured basal, temperature-induced, and chemically induced HSF1 trimerization, a mandatory step on the cascade of HSF1 activation, under RF exposure to continuous wave (CW), Global System for Mobile (GSM), and Wi-Fi-modulated 1800 MHz signals, using a bioluminescence resonance energy transfer technique (BRET) probe. Our results show that, as expected, HSF1 is heat-activated by acute exposure of transiently transfected HEK293T cells to a CW RF field at a specific absorption rate of 24 W/kg for 30 min. However, we found no evidence of HSF1 activation under the same RF exposure condition when the cell culture medium temperature was fixed. We also found no experimental evidence that, at a fixed temperature, chronic RF exposure for 24 h at a SAR of 1.5 and 6 W/kg altered the potency or the maximal capability of the proteasome inhibitor MG132 to activate HSF1, whatever signal used. We only found that RF exposure to CW signals (1.5 and 6 W/kg) and GSM signals (1.5 W/kg) for 24 h marginally decreased basal HSF1 activity.
Collapse
Affiliation(s)
- Emmanuelle Poque
- CNRS, Bordeaux INP, CBMN laboratory, UMR5248, Bordeaux University, F-33607, Pessac, France
| | - Hermanus J Ruigrok
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
| | - Delia Arnaud-Cormos
- CNRS, XLIM, UMR 7252, Limoges University, F-87000, Limoges, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Denis Habauzit
- Institut de Recherche en Santé, Environnement et Travail (IRSET) - UMR_S 1085, Rennes University, F-35000, Rennes, France
| | - Yann Chappe
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
| | - Catherine Martin
- Institut de Recherche en Santé, Environnement et Travail (IRSET) - UMR_S 1085, Rennes University, F-35000, Rennes, France
| | | | - Annabelle Hurtier
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
| | - André Garenne
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
| | - Isabelle Lagroye
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
- Paris Sciences et Lettres Research University, F-75006, Paris, France
| | - Yves Le Dréan
- Institut de Recherche en Santé, Environnement et Travail (IRSET) - UMR_S 1085, Rennes University, F-35000, Rennes, France
| | - Philippe Lévêque
- CNRS, XLIM, UMR 7252, Limoges University, F-87000, Limoges, France
| | - Yann Percherancier
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France.
| |
Collapse
|
11
|
Abstract
Vimentin is one of the first cytoplasmic intermediate filaments to be expressed in mammalian cells during embryogenesis, but its role in cellular fitness has long been a mystery. Vimentin is acknowledged to play a role in cell stiffness, cell motility, and cytoplasmic organization, yet it is widely considered to be dispensable for cellular function and organismal development. Here, we show that Vimentin plays a role in cellular stress response in differentiating cells, by recruiting aggregates, stress granules, and RNA-binding proteins, directing their elimination and asymmetric partitioning. In the absence of Vimentin, pluripotent embryonic stem cells fail to differentiate properly, with a pronounced deficiency in neuronal differentiation. Our results uncover a novel function for Vimentin, with important implications for development, tissue homeostasis, and in particular, stress response.
Collapse
|
12
|
Masser AE, Ciccarelli M, Andréasson C. Hsf1 on a leash - controlling the heat shock response by chaperone titration. Exp Cell Res 2020; 396:112246. [PMID: 32861670 DOI: 10.1016/j.yexcr.2020.112246] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 01/06/2023]
Abstract
Heat shock factor 1 (Hsf1) is an ancient transcription factor that monitors protein homeostasis (proteostasis) and counteracts disturbances by triggering a transcriptional programme known as the heat shock response (HSR). The HSR is transiently activated and upregulates the expression of core proteostasis genes, including chaperones. Dysregulation of Hsf1 and its target genes are associated with disease; cancer cells rely on a constitutively active Hsf1 to promote rapid growth and malignancy, whereas Hsf1 hypoactivation in neurodegenerative disorders results in formation of toxic aggregates. These central but opposing roles highlight the importance of understanding the underlying molecular mechanisms that control Hsf1 activity. According to current understanding, Hsf1 is maintained latent by chaperone interactions but proteostasis perturbations titrate chaperone availability as a result of chaperone sequestration by misfolded proteins. Liberated and activated Hsf1 triggers a negative feedback loop by inducing the expression of key chaperones. Until recently, Hsp90 has been highlighted as the central negative regulator of Hsf1 activity. In this review, we focus on recent advances regarding how the Hsp70 chaperone controls Hsf1 activity and in addition summarise several additional layers of activity control.
Collapse
Affiliation(s)
- Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden
| | - Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
13
|
Trivedi R, Jurivich DA. A molecular perspective on age-dependent changes to the heat shock axis. Exp Gerontol 2020; 137:110969. [PMID: 32407864 DOI: 10.1016/j.exger.2020.110969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022]
Abstract
Aging is a complex process associated with progressive damage that leads to cellular dysfunction often accompanied by frailty and age-related diseases. Coping with all types of physiologic stress declines with age. While representing a primordial, cross-species response in poikilo- and homeotherms, the age-dependent perturbation of the stress response is more complex than previously thought. This short review examines how age influences the stress axis at multiple levels that involve both activating and attenuating pathways.
Collapse
Affiliation(s)
- Rachana Trivedi
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, USA.
| | - Donald A Jurivich
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, USA.
| |
Collapse
|
14
|
Montibeller L, Tan LY, Kim JK, Paul P, de Belleroche J. Tissue-selective regulation of protein homeostasis and unfolded protein response signalling in sporadic ALS. J Cell Mol Med 2020; 24:6055-6069. [PMID: 32324341 PMCID: PMC7294118 DOI: 10.1111/jcmm.15170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disorder that affects motor neurons in motor cortex and spinal cord, and the degeneration of both neuronal populations is a critical feature of the disease. Abnormalities in protein homeostasis (proteostasis) are well established in ALS. However, they have been investigated mostly in spinal cord but less so in motor cortex. Herein, we monitored the unfolded protein (UPR) and heat shock response (HSR), two major proteostasis regulatory pathways, in human post‐mortem tissue derived from the motor cortex of sporadic ALS (SALS) and compared them to those occurring in spinal cord. Although the UPR was activated in both tissues, specific expression of select UPR target genes, such as PDIs, was observed in motor cortex of SALS cases strongly correlating with oligodendrocyte markers. Moreover, we found that endoplasmic reticulum‐associated degradation (ERAD) and HSR genes, which were activated predominately in spinal cord, correlated with the expression of neuronal markers. Our results indicate that proteostasis is strongly and selectively activated in SALS motor cortex and spinal cord where subsets of these genes are associated with specific cell type. This study expands our understanding of convergent molecular mechanisms occurring in motor cortex and spinal cord and highlights cell type–specific contributions.
Collapse
Affiliation(s)
- Luigi Montibeller
- Neurogenetics Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Li Yi Tan
- Neurogenetics Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Joo Kyung Kim
- Neurogenetics Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Praveen Paul
- Neurogenetics Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Jacqueline de Belleroche
- Neurogenetics Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
15
|
Tsafou K, Tiwari PB, Forman-Kay JD, Metallo SJ, Toretsky JA. Targeting Intrinsically Disordered Transcription Factors: Changing the Paradigm. J Mol Biol 2018; 430:2321-2341. [PMID: 29655986 DOI: 10.1016/j.jmb.2018.04.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/21/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022]
Abstract
Increased understanding of intrinsically disordered proteins (IDPs) and protein regions has revolutionized our view of the relationship between protein structure and function. Data now support that IDPs can be functional in the absence of a single, fixed, three-dimensional structure. Due to their dynamic morphology, IDPs have the ability to display a range of kinetics and affinity depending on what the system requires, as well as the potential for large-scale association. Although several studies have shed light on the functional properties of IDPs, the class of intrinsically disordered transcription factors (TFs) is still poorly characterized biophysically due to their combination of ordered and disordered sequences. In addition, TF modulation by small molecules has long been considered a difficult or even impossible task, limiting functional probe development. However, with evolving technology, it is becoming possible to characterize TF structure-function relationships in unprecedented detail and explore avenues not available or not considered in the past. Here we provide an introduction to the biophysical properties of intrinsically disordered TFs and we discuss recent computational and experimental efforts toward understanding the role of intrinsically disordered TFs in biology and disease. We describe a series of successful TF targeting strategies that have overcome the perception of the "undruggability" of TFs, providing new leads on drug development methodologies. Lastly, we discuss future challenges and opportunities to enhance our understanding of the structure-function relationship of intrinsically disordered TFs.
Collapse
Affiliation(s)
- K Tsafou
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - P B Tiwari
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - J D Forman-Kay
- Molecular Medicine, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto M5G 1X8, Canada
| | - S J Metallo
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - J A Toretsky
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA.
| |
Collapse
|
16
|
Varasteh S, Fink-Gremmels J, Garssen J, Braber S. α-Lipoic acid prevents the intestinal epithelial monolayer damage under heat stress conditions: model experiments in Caco-2 cells. Eur J Nutr 2017; 57:1577-1589. [PMID: 28349254 PMCID: PMC5960005 DOI: 10.1007/s00394-017-1442-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/14/2017] [Indexed: 01/18/2023]
Abstract
Purpose Under conditions of high ambient temperatures and/or strenuous exercise, humans and animals experience considerable heat stress (HS) leading among others to intestinal epithelial damage through induction of cellular oxidative stress. The aim of this study was to characterize the effects of α-Lipoic Acid (ALA) on HS-induced intestinal epithelial injury using an in vitro Caco-2 cell model. Methods A confluent monolayer of Caco-2 cells was pre-incubated with ALA (24 h) prior to control (37 °C) or HS conditions (42 °C) for 6 or 24 h and the expression of heat shock protein 70 (HSP70), heat shock factor-1 (HSF1), and the antioxidant Nrf2 were investigated. Intestinal integrity was determined by measuring transepithelial resistance, paracellular permeability, junctional complex reassembly, and E-cadherin expression and localization. Furthermore, cell proliferation was measured in an epithelial wound healing assay and the expression of the inflammatory markers cyclooxygenase-2 (COX-2) and transforming growth Factor-β (TGF-β) was evaluated. Results ALA pretreatment increased the HSP70 mRNA and protein expression under HS conditions, but did not significantly modulate the HS-induced activation of HSF1. The HS-induced increase in Nrf2 gene expression as well as the Nrf2 nuclear translocation was impeded by ALA. Moreover, ALA prevented the HS-induced impairment of intestinal integrity. Cell proliferation under HS conditions was improved by ALA supplementation as demonstrated in an epithelial wound healing assay and ALA was able to affect the HS-induced inflammatory response by decreasing the COX-2 and TGF-β mRNA expression. Conclusions ALA supplementation could prevent the disruption of intestinal epithelial integrity by enhancing epithelial cell proliferation, and reducing the inflammatory response under HS conditions in an in vitro Caco-2 cell model. Electronic supplementary material The online version of this article (doi:10.1007/s00394-017-1442-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soheil Varasteh
- Division of Veterinary Pharmacology, Pharmacotherapy and Toxicology, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands. .,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Johanna Fink-Gremmels
- Division of Veterinary Pharmacology, Pharmacotherapy and Toxicology, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Nutricia Research, 3584 CT, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
17
|
Widlak W, Vydra N. The Role of Heat Shock Factors in Mammalian Spermatogenesis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 222:45-65. [PMID: 28389750 DOI: 10.1007/978-3-319-51409-3_3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heat shock transcription factors (HSFs), as regulators of heat shock proteins (HSPs) expression, are well known for their cytoprotective functions during cellular stress. They also play important yet less recognized roles in gametogenesis. All HSF family members are expressed during mammalian spermatogenesis, mainly in spermatocytes and round spermatids which are characterized by extensive chromatin remodeling. Different HSFs could cooperate to maintain proper spermatogenesis. Cooperation of HSF1 and HSF2 is especially well established since their double knockout results in meiosis arrest, spermatocyte apoptosis, and male infertility. Both factors are also involved in the repackaging of the DNA during spermatid differentiation. They can form heterotrimers regulating the basal level of transcription of target genes. Moreover, HSF1/HSF2 interactions are lost in elevated temperatures which can impair the transcription of genes essential for spermatogenesis. In most mammals, spermatogenesis occurs a few degrees below the body temperature and spermatogenic cells are extremely heat-sensitive. Pro-survival pathways are not induced by heat stress (e.g., cryptorchidism) in meiotic and postmeiotic cells. Instead, male germ cells are actively eliminated by apoptosis, which prevents transition of the potentially damaged genetic material to the next generation. Such a response depends on the transcriptional activity of HSF1 which in contrary to most somatic cells, acts as a proapoptotic factor in spermatogenic cells. HSF1 activation could be the main trigger of impaired spermatogenesis related not only to elevated temperature but also to other stress conditions; therefore, HSF1 has been proposed to be the quality control factor in male germ cells.
Collapse
Affiliation(s)
- Wieslawa Widlak
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Natalia Vydra
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| |
Collapse
|
18
|
Effect of dietary manganese on antioxidant status and expressions of heat shock proteins and factors in tissues of laying broiler breeders under normal and high environmental temperatures. Br J Nutr 2016; 116:1851-1860. [DOI: 10.1017/s0007114516003822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractTo investigate the effect of Mn on antioxidant status and on the expressions of heat shock proteins/factors in tissues of laying broiler breeders subjected to heat challenge, we used a completely randomised design (n 6) with a factorial arrangement of 2 environmental temperatures (normal, 21±1°C, and high, 32±1°C)×3 dietary Mn treatments (a Mn-unsupplemented basal diet (CON), or a basal diet supplemented with 120 mg Mn/kg diet, either as inorganic Mn sulphate (iMn) or as organic Mn proteinate (oMn)). There were no interactions (P>0·10) between environmental temperature and dietary Mn in any of the measured indices. High temperature decreased (P<0·003) Mn content, and also tended (P=0·07) to decrease Cu Zn superoxide dismutase (CuZnSOD) activity in the liver and heart. However, an increased Mn superoxide dismutase (MnSOD) activity (P<0·05) and a slight increase in malondialdehyde level (P=0·06) were detected in breast muscle. Up-regulated (P<0·05) expressions of heat shock factor 1 (HSF1) and HSF3 mRNA and heat shock protein 70 (HSP70) mRNA and protein were found in all three tissues. Broiler breeders fed either iMn or oMn had higher tissue Mn content (P<0·0001), heart MnSOD and CuZnSOD activities (P<0·01) and breast muscle MnSOD protein levels (P<0·05), and lower (P<0·05) breast muscle HSP70 mRNA and protein levels compared with those fed CON. Broiler breeders fed oMn had higher (P<0·03) bone Mn content than those fed iMn. These results indicate that high temperature decreases Mn retention and increases HSP70, HSF1 and HSF3 expressions in the tissues of laying broiler breeders. Furthermore, dietary supplementation with Mn in either source may enhance the heart’s antioxidant ability and inhibit the expression of HSP70 in breast muscle. Finally, the organic Mn appears to be more available than inorganic Mn for bone in laying broiler breeders regardless of environmental temperatures.
Collapse
|
19
|
Ortega-Atienza S, Rubis B, McCarthy C, Zhitkovich A. Formaldehyde Is a Potent Proteotoxic Stressor Causing Rapid Heat Shock Transcription Factor 1 Activation and Lys48-Linked Polyubiquitination of Proteins. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2857-2868. [PMID: 27639166 DOI: 10.1016/j.ajpath.2016.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/24/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022]
Abstract
Endogenous and exogenous formaldehyde (FA) has been linked to cancer, neurotoxicity, and other pathophysiologic effects. Molecular and cellular mechanisms that underlie FA-induced damage are poorly understood. In this study, we investigated whether proteotoxicity is an important, unrecognized factor in cell injury caused by FA. We found that irrespective of their cell cycle phases, all FA-treated human cells rapidly accumulated large amounts of proteins with proteasome-targeting K48-linked polyubiquitin, which was comparable with levels of polyubiquitination in proteasome-inhibited MG132 controls. Both nuclear and cytoplasmic proteins were damaged and underwent K48-polyubiquitination. There were no significant changes in the nonproteolytic K63-polyubiquitination of soluble and insoluble cellular proteins. FA also rapidly induced nuclear accumulation and Ser326 phosphorylation of the main heat shock-responsive transcription factor HSF1, which was not a result of protein polyubiquitination. Consistent with the activation of the functional heat shock response, FA strongly elevated the expression of HSP70 genes. In contrast to the responsiveness of the cytoplasmic protein damage sensor HSF1, FA did not activate the unfolded protein response in either the endoplasmic reticulum or mitochondria. Inhibition of HSP90 chaperone activity increased the levels of K48-polyubiquitinated proteins and diminished cell viability after FA treatment. Overall, our results indicate that FA is a strong proteotoxic agent, which helps explain its diverse pathologic effects, including injury in nonproliferative tissues.
Collapse
Affiliation(s)
- Sara Ortega-Atienza
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Blazej Rubis
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Caitlin McCarthy
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island.
| |
Collapse
|
20
|
Effect of dietary manganese on antioxidant status and expression levels of heat-shock proteins and factors in tissues of laying broiler breeders under normal and high environmental temperatures. Br J Nutr 2015; 114:1965-74. [DOI: 10.1017/s0007114515003803] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractTo investigate the effect of Mn on antioxidant status and expression levels of heat-shock proteins/factors in tissues of laying broiler breeders subjected to heat challenge, we used a completely randomised design (n 6) with a factorial arrangement of 2 environmental temperatures (normal, 21 (sem 1)°C and high, 32 (sem 1)°C)×3 dietary Mn treatments (an Mn-unsupplemented basal diet (CON), or a basal diet supplemented with 120 mg Mn/kg diet as inorganic Mn sulphate (iMn) or organic Mn proteinate (oMn)). There were no interactions (P>0·10) between environmental temperature and dietary Mn in all of the measured indices. High temperature decreased (P<0·003) Mn content, and also tended (P=0·07) to decrease copper zinc superoxide dismutase (CuZnSOD) activity in the liver and heart. However, an increased manganese superoxide dismutase (MnSOD) activity (P<0·05) and a slight increase of malondialdehyde level (P=0·06) were detected in breast muscle. Up-regulated (P<0·05) expression levels of heat-shock factor 1 (HSF1) and HSF3 mRNA and heat-shock protein 70 (HSP70) mRNA and protein were found in all three tissues. Broiler breeders fed either iMn or oMn had higher tissue Mn content (P<0·0001), heart MnSOD and CuZnSOD activities (P<0·01) and breast muscle MnSOD protein levels (P<0·05), and lower (P<0·05) breast muscle HSP70 mRNA and protein levels than those fed CON. Broiler breeders fed oMn had higher (P<0·03) bone Mn content than those fed iMn. These results indicate that high temperature decreases Mn retention and increases HSP70 and HSF1, HSF3 expression levels in tissues of laying broiler breeders. Furthermore, dietary supplementation with Mn in either source may enhance heart antioxidant ability and inhibit the expression of HSP70 in breast muscle. Finally, the organic Mn appears to be more available than inorganic Mn for bone in laying broiler breeders regardless of environmental temperatures.
Collapse
|
21
|
Kim SS, Chang Z, Park JS. Identification, tissue distribution and characterization of two heat shock factors (HSFs) in goldfish (Carassius auratus). FISH & SHELLFISH IMMUNOLOGY 2015; 43:375-386. [PMID: 25592877 DOI: 10.1016/j.fsi.2015.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/03/2015] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Heat shock proteins (HSPs) are synthesized rapidly in response to a variety of physiological or environmental stressors, whereas the transcriptional activation of HSPs is regulated by a family of heat shock factors (HSFs). In vertebrates, multiple HSFs (HSF1-4) have been reported to have different roles in response to a range of stresses. This paper reports the cDNA cloning of two goldfish (Carassius auratus) HSF gene families, HSF1 and three isoforms of HSF2. Both HSF1 and HSF2s showed high homology to the known HSFs from other organisms, particularly the zebrafish. Different patterns of HSF1 and HSF2 mRNA expression were detected in several goldfish tissues, highlighting their distinct roles. In cadmium (Cd)-treated tissues, the responses of HSP70 showed less difference. However, the increase in HSF1 and HSF2 in these tissues differs considerable. In particular, HSF2 was induced strongly in the heart and liver. On the other hand, in heart tissue, HSF1 showed the smallest increment. These results suggest the potential role of HSF2 in assisting HSF1 in these tissues. In another in vitro experiment of hepatocyte cultures, Cd exposure caused similar patterns of goldfish HSF1 and HSF2 mRNA expression and induction of the HSP70 protein. On the other hand, an examination of the characterization of recombinant proteins showed that HSF1 undergoes a conformation change induced by heat shock above 30 °C and approaches each other in the trimer, whereas HSF2 could not sense thermal stress directly. Furthermore, immune-blot analysis of HSFs showed that both monomers and trimmers of HSF1 were observed in cadmium-induced tissues, whereas HSF2 were all in monomeric. These results show that HSF1 and HSF2 play different roles in the transcription of heat shock proteins.
Collapse
Affiliation(s)
- So-Sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Ziwei Chang
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Jang-Su Park
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
22
|
El Fatimy R, Miozzo F, Le Mouël A, Abane R, Schwendimann L, Sabéran-Djoneidi D, de Thonel A, Massaoudi I, Paslaru L, Hashimoto-Torii K, Christians E, Rakic P, Gressens P, Mezger V. Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome. EMBO Mol Med 2015; 6:1043-61. [PMID: 25027850 PMCID: PMC4154132 DOI: 10.15252/emmm.201303311] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a frequent cause of mental retardation. However, the molecular mechanisms underlying brain development defects induced by maternal alcohol consumption during pregnancy are unclear. We used normal and Hsf2-deficient mice and cell systems to uncover a pivotal role for heat shock factor 2 (HSF2) in radial neuronal migration defects in the cortex, a hallmark of fetal alcohol exposure. Upon fetal alcohol exposure, HSF2 is essential for the triggering of HSF1 activation, which is accompanied by distinctive post-translational modifications, and HSF2 steers the formation of atypical alcohol-specific HSF1-HSF2 heterocomplexes. This perturbs the in vivo binding of HSF2 to heat shock elements (HSEs) in genes that control neuronal migration in normal conditions, such as p35 or the MAPs (microtubule-associated proteins, such as Dclk1 and Dcx), and alters their expression. In the absence of HSF2, migration defects as well as alterations in gene expression are reduced. Thus, HSF2, as a sensor for alcohol stress in the fetal brain, acts as a mediator of the neuronal migration defects associated with FASD.
Collapse
Affiliation(s)
- Rachid El Fatimy
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Federico Miozzo
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Anne Le Mouël
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Ryma Abane
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Leslie Schwendimann
- INSERM U1141, Hôpital Robert Debré, Paris, France Faculté de Médecine Denis Diderot, Univ Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Délara Sabéran-Djoneidi
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Aurélie de Thonel
- INSERM UMR 866, Dijon, France Faculty of Medicine and Pharmacy, Univ Burgundy, Dijon, France
| | - Illiasse Massaoudi
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Liliana Paslaru
- Carol Davila University of Medicine and Pharmacy Fundeni Hospital, Bucharest, Romania
| | - Kazue Hashimoto-Torii
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Elisabeth Christians
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, CNRS, Villefranche-sur-mer, France Sorbonne Universités UPMC Univ Paris 06, Villefranche-sur-mer, France
| | - Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Pierre Gressens
- INSERM U1141, Hôpital Robert Debré, Paris, France Faculté de Médecine Denis Diderot, Univ Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Valérie Mezger
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| |
Collapse
|
23
|
Hsf4 counteracts Hsf1 transcription activities and increases lens epithelial cell survival in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:746-55. [DOI: 10.1016/j.bbamcr.2015.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/05/2015] [Accepted: 01/08/2015] [Indexed: 11/22/2022]
|
24
|
Ramirez VP, Stamatis M, Shmukler A, Aneskievich BJ. Basal and stress-inducible expression of HSPA6 in human keratinocytes is regulated by negative and positive promoter regions. Cell Stress Chaperones 2015; 20:95-107. [PMID: 25073946 PMCID: PMC4255259 DOI: 10.1007/s12192-014-0529-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/08/2023] Open
Abstract
Epidermal keratinocytes serve as the primary barrier between the body and environmental stressors. They are subjected to numerous stress events and are likely to respond with a repertoire of heat shock proteins (HSPs). HSPA6 (HSP70B') is described in other cell types with characteristically low to undetectable basal expression, but is highly stress induced. Despite this response in other cells, little is known about its control in keratinocytes. We examined endogenous human keratinocyte HSPA6 expression and localized some responsible transcription factor sites in a cloned HSPA6 3 kb promoter. Using promoter 5' truncations and deletions, negative and positive regulatory regions were found throughout the 3 kb promoter. A region between -346 and -217 bp was found to be crucial to HSPA6 basal expression and stress inducibility. Site-specific mutations and DNA-binding studies show that a previously uncharacterized AP1 site contributes to the basal expression and maximal stress induction of HSPA6. Additionally, a new heat shock element (HSE) within this region was defined. While this element mediates increased transcriptional response in thermally stressed HaCaT keratinocytes, it preferentially binds a stress-inducible factor other than heat shock factor (HSF)1 or HSF2. Intriguingly, this newly characterized HSPA6 HSE competes HSF1 binding a consensus HSE and binds both HSF1 and HSF2 from other epithelial cells. Taken together, our results demonstrate that the HSPA6 promoter contains essential negative and positive promoter regions and newly identified transcription factor targets, which are key to the basal and stress-inducible expression of HSPA6. Furthermore, these results suggest that an HSF-like factor may preferentially bind this newly identified HSPA6 HSE in HaCaT cells.
Collapse
Affiliation(s)
- Vincent P. Ramirez
- />Graduate Program in Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 USA
| | - Michael Stamatis
- />Doctor of Pharmacy Program, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092 USA
| | - Anastasia Shmukler
- />Doctor of Pharmacy Program, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092 USA
| | - Brian J. Aneskievich
- />Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, U-3092, 69 North Eagleville Road, Storrs, CT 06269-3092 USA
- />University of Connecticut Stem Cell Institute, Storrs, CT 06269-3092 USA
| |
Collapse
|
25
|
Korfanty J, Stokowy T, Widlak P, Gogler-Piglowska A, Handschuh L, Podkowiński J, Vydra N, Naumowicz A, Toma-Jonik A, Widlak W. Crosstalk between HSF1 and HSF2 during the heat shock response in mouse testes. Int J Biochem Cell Biol 2014; 57:76-83. [DOI: 10.1016/j.biocel.2014.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/24/2014] [Accepted: 10/06/2014] [Indexed: 11/27/2022]
|
26
|
Donnelly N, Passerini V, Dürrbaum M, Stingele S, Storchová Z. HSF1 deficiency and impaired HSP90-dependent protein folding are hallmarks of aneuploid human cells. EMBO J 2014; 33:2374-87. [PMID: 25205676 DOI: 10.15252/embj.201488648] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aneuploidy is a hallmark of cancer and is associated with malignancy and poor prognosis. Recent studies have revealed that aneuploidy inhibits proliferation, causes distinct alterations in the transcriptome and proteome and disturbs cellular proteostasis. However, the molecular mechanisms underlying the changes in gene expression and the impairment of proteostasis are not understood. Here, we report that human aneuploid cells are impaired in HSP90-mediated protein folding. We show that aneuploidy impairs induction of the heat shock response suggesting that the activity of the transcription factor heat shock factor 1 (HSF1) is compromised. Indeed, increased levels of HSF1 counteract the effects of aneuploidy on HSP90 expression and protein folding, identifying HSF1 overexpression as the first aneuploidy-tolerating mutation in human cells. Thus, impaired HSF1 activity emerges as a critical factor underlying the phenotypes linked to aneuploidy. Finally, we demonstrate that deficient protein folding capacity directly shapes gene expression in aneuploid cells. Our study provides mechanistic insight into the causes of the disturbed proteostasis in aneuploids and deepens our understanding of the role of HSF1 in cytoprotection and carcinogenesis.
Collapse
Affiliation(s)
- Neysan Donnelly
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Verena Passerini
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Milena Dürrbaum
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany Center for Integrated Protein Science Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Silvia Stingele
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Zuzana Storchová
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany Center for Integrated Protein Science Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
27
|
Zhang J, Ma Z, Wang J, Li S, Zhang Y, Wang Y, Wang M, Feng X, Liu X, Liu G, Lou Q, Cui X, Ma Y, Dong Z, Hu YZ. Regulation of Hsf4b nuclear translocation and transcription activity by phosphorylation at threonine 472. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:580-9. [PMID: 24361130 DOI: 10.1016/j.bbamcr.2013.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 11/09/2013] [Accepted: 12/10/2013] [Indexed: 12/09/2022]
Abstract
Hsf4b, a key regulator of postnatal lens development, is subjected to posttranslational modifications including phosphorylation. However, the phosphorylation sites in Hsf4b and their biological effects on the transcription activity of Hsf4b are poorly understood. Here we examined 17 potential phosphorylation residues in Hsf4b with alanine-scanning assays and found that a T472A mutation diminished Hsf4b-mediated expression of Hsp25 and alphaB-crystallin. In contrast, the phosphomimetic mutation of T472D enhanced their expression. Further investigation demonstrated that Hsf4b could interact with nuclear-transporter importin beta-1 and Hsc70 via amino acids 246-320 and 320-493, respectively. T472A mutation reduced Hsf4bs interaction with importin beta-1, while enhancing its interaction with Hsc7O, resulting in Hsf4b cytosolic re-localization, protein instability and transcription activity attenuation. At the upstream, MEK6 was found to interact with Hsf4b and enhance Hsf4b's nuclear translocation and transcription activity, probably by phosphorylation at sites such as T472. Taken together, our results suggest that phosphotylation of Hsf4b at T472 by protein kinases such as MEI(6 regulates Hsf4b interaction with the importin V I -Hsc7O complex, resulting in blockade of its nuclear translocation and transcriptional activity of Hsf4b.
Collapse
|
28
|
Rossi A, Riccio A, Coccia M, Trotta E, La Frazia S, Santoro MG. The proteasome inhibitor bortezomib is a potent inducer of zinc finger AN1-type domain 2a gene expression: role of heat shock factor 1 (HSF1)-heat shock factor 2 (HSF2) heterocomplexes. J Biol Chem 2014; 289:12705-15. [PMID: 24619424 DOI: 10.1074/jbc.m113.513242] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The zinc finger AN1-type domain 2a gene, also known as arsenite-inducible RNA-associated protein (AIRAP), was recently identified as a novel human canonical heat shock gene strictly controlled by heat shock factor (HSF) 1. Little is known about AIRAP gene regulation in human cells. Here we report that bortezomib, a proteasome inhibitor with anticancer and antiangiogenic properties used in the clinic for treatment of multiple myeloma, is a potent inducer of AIRAP expression in human cells. Using endothelial cells as a model, we unraveled the molecular mechanism regulating AIRAP expression during proteasome inhibition. Bortezomib induces AIRAP expression at the transcriptional level early after treatment, concomitantly with polyubiquitinated protein accumulation and HSF activation. AIRAP protein is detected at high levels for at least 48 h after bortezomib exposure, together with the accumulation of HSF2, a factor implicated in differentiation and development regulation. Different from heat-mediated induction, in bortezomib-treated cells, HSF1 and HSF2 interact directly, forming HSF1-HSF2 heterotrimeric complexes recruited to a specific heat shock element in the AIRAP promoter. Interestingly, whereas HSF1 has been confirmed to be critical for AIRAP gene transcription, HSF2 was found to negatively regulate AIRAP expression after bortezomib treatment, further emphasizing an important modulatory role of this transcription factor under stress conditions. AIRAP function is still not defined. However, the fact that AIRAP is expressed abundantly in primary human cells at bortezomib concentrations comparable with plasma levels in treated patients suggests that AIRAP may participate in the regulatory network controlling proteotoxic stress during bortezomib treatment.
Collapse
Affiliation(s)
- Antonio Rossi
- From the Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), 00133 Rome, Italy and
| | | | | | | | | | | |
Collapse
|
29
|
Sakurai H, Sawai M, Ishikawa Y, Ota A, Kawahara E. Heat shock transcription factor HSF1 regulates the expression of the Huntingtin-interacting protein HYPK. Biochim Biophys Acta Gen Subj 2013; 1840:1181-7. [PMID: 24361604 DOI: 10.1016/j.bbagen.2013.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/05/2013] [Accepted: 12/13/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND The Huntingtin-interacting protein HYPK possesses chaperone-like activity. We hypothesized that the expression of HYPK could be regulated by heat shock factor HSF1, a transcriptional regulator of chaperone genes. METHODS HYPK expression in HeLa cells was assessed by RT-PCR and Western blot analysis. In vivo binding of HSF1 to the HYPK promoter was analyzed by chromatin immunoprecipitation assays. The requirement for HYPK in heat-shocked cells was examined using HYPK-knockdown cells. RESULTS Levels of HYPK mRNA were slightly increased by heat treatment; however, the levels decreased in HSF1-silenced cells. The HYPK promoter was bound by HSF1 in a heat-inducible manner; however, its core promoter activity was notably suppressed upon heat shock. When cells were exposed to heat shock, silencing HYPK caused a decrease in cell viability. CONCLUSIONS HYPK is a novel target gene of HSF1. HSF1 maintains HYPK expression in heat-shocked cells. GENERAL SIGNIFICANCE The maintenance of HYPK expression by HSF1 is necessary for the survival of cells under thermal stress conditions.
Collapse
Affiliation(s)
- Hiroshi Sakurai
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| | - Maki Sawai
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Yukio Ishikawa
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Azumi Ota
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Ei Kawahara
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| |
Collapse
|
30
|
Beck IM, Drebert ZJ, Hoya-Arias R, Bahar AA, Devos M, Clarisse D, Desmet S, Bougarne N, Ruttens B, Gossye V, Denecker G, Lievens S, Bracke M, Tavernier J, Declercq W, Gevaert K, Vanden Berghe W, Haegeman G, De Bosscher K. Compound A, a selective glucocorticoid receptor modulator, enhances heat shock protein Hsp70 gene promoter activation. PLoS One 2013; 8:e69115. [PMID: 23935933 PMCID: PMC3728325 DOI: 10.1371/journal.pone.0069115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 06/06/2013] [Indexed: 12/24/2022] Open
Abstract
Compound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1), upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated IκBα degradation and NF-κB p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA’s anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells.
Collapse
Affiliation(s)
- Ilse M Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Therapy & Experimental Cancer Research, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ota A, Sawai M, Sakurai H. Stress-induced transcription of regulator of G protein signaling 2 (RGS2) by heat shock transcription factor HSF1. Biochimie 2013; 95:1432-6. [PMID: 23587726 DOI: 10.1016/j.biochi.2013.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/19/2013] [Indexed: 10/26/2022]
Abstract
Expression of the RGS2 gene modulates RGS2 activity toward G protein-coupled signaling in diverse cellular processes. In this study, RGS2 transcription was induced in HeLa and rat aorta smooth muscle cells by exposure to febrile temperatures or proteotoxic stress. The promoter region of RGS2 contained a binding sequence of HSF1, which is an activator of the heat shock protein gene, and was inducibly bound by stress-activated HSF1. A single nucleotide change identified in the RGS2 promoter of hypertensive patients abolished HSF1-regulated expression of RGS2, suggesting that activated HSF1 is involved in blood pressure regulation via modulation of RGS2 expression.
Collapse
Affiliation(s)
- Azumi Ota
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa 920-0942, Ishikawa, Japan
| | | | | |
Collapse
|
32
|
Heubeck B, Wendler O, Bumm K, Schäfer R, Müller-Vogt U, Häusler M, Meese E, Iro H, Steinhart H. Tumor-associated antigenic pattern in squamous cell carcinomas of the head and neck – Analysed by SEREX. Eur J Cancer 2013; 49:e1-7. [PMID: 16837193 DOI: 10.1016/j.ejca.2005.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 09/06/2005] [Indexed: 11/22/2022]
Abstract
Most immuno-therapeutic approaches are based on tumor-associated antigens and many newly identified proteins have led to trials exploiting their possible therapeutic applicability. So far only limited information on the antigenic profile of head and neck squamous cell carcinomas (HNSCC) exists. Serological analysis of tumor antigens by recombinant cDNA expression cloning (SEREX) was used to identify the immunogenic patterns in our HNSCC patient collective. A cDNA expression library derived from a pharynx HNSCC case was screened with autologous and heterologous sera. Thirty-seven positive clones coding for 17 immunoreactive gene products, which elicited an in vivo tumor response, were found. Results were confirmed and extended by expression analysis using RT-PCR and in situ-hybridisation. The protein-sequence of five clones exists so far only hypothetically. Of all identified proteins only KIAA0530 has previously been associated with a HNSCC related immune response. All other proteins have not yet been described in a context with HNSCC antigenic patterns. Antibodies against a heat shock transcription factor 2 (HSF2) were found in 2 out of 10 sera from HNSCC patients. In summary, using the SEREX technique, we isolated 17 immunogenic antigens in HNSCC's and confirmed the clinical relevance of KIAA0530. Further analysis concerning their feasibility as target structures for an immunotherapy approach is currently conducted.
Collapse
Affiliation(s)
- Bernd Heubeck
- Department of Otorhinolaryngology Head and Neck Surgery, University of Erlangen-Nuremberg, Waldstrasse 1, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Unraveling complex interplay between heat shock factor 1 and 2 splicing isoforms. PLoS One 2013; 8:e56085. [PMID: 23418516 PMCID: PMC3572029 DOI: 10.1371/journal.pone.0056085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 01/04/2013] [Indexed: 11/26/2022] Open
Abstract
Chaperone synthesis in response to proteotoxic stress is dependent on a family of transcription factors named heat shock factors (HSFs). The two main factors in this family, HSF1 and HSF2, are co-expressed in numerous tissues where they can interact and form heterotrimers in response to proteasome inhibition. HSF1 and HSF2 exhibit two alternative splicing isoforms, called α and β, which contribute to additional complexity in HSF transcriptional regulation, but remain poorly examined in the literature. In this work, we studied the transcriptional activity of HSF1 and HSF2 splicing isoforms transfected into immortalized Mouse Embryonic Fibroblasts (iMEFs) deleted for both Hsf1 and Hsf2, under normal conditions and after proteasome inhibition. We found that HSF1α is significantly more active than the β isoform after exposure to the proteasome inhibitor MG132. Furthermore, we clearly established that, while HSF2 had no transcriptional activity by itself, short β isoform of HSF2 exerts a negative role on HSF1β-dependent transactivation. To further assess the impact of HSF2β inhibition on HSF1 activity, we developed a mathematical modelling approach which revealed that the balance between each HSF isoform in the cell regulated the strength of the transcriptional response. Moreover, we found that cellular stress such as proteasome inhibition could regulate the splicing of Hsf2 mRNA. All together, our results suggest that relative amounts of each HSF1 and HSF2 isoforms quantitatively determine the cellular level of the proteotoxic stress response.
Collapse
|
34
|
Jiang J, Jiang L, Zhang L, Luo H, Opiyo AM, Yu Z. Changes of protein profile in fresh-cut lotus tuber before and after browning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3955-3965. [PMID: 22455495 DOI: 10.1021/jf205303y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Browning is a critical problem, which often limits the shelf life and marketability in fresh-cut lotus tuber. Proteome level changes in response to the browning metabolism were investigated using two-dimensional electrophoresis (2-DE) and MALDI-TOF-TOF. A total of 34 functional protein spots were identified by comparing 2-DE protein patterns of fresh-cut lotus tuber before and after browning. These 34 identified proteins could be classified into 7 functional groups based on the NCBI database, that is, material and energy metabolism (35%), stress response (20%), respiration metabolism (12%), cell structure (12%), signal transduction (6%), gene expression regulation (6%), and unclassified proteins (9%). The group with the greatest difference in protein expression was related to material metabolism and regulation, reactive oxygen species metabolism, and respiratory control. The distinct proteins included universal stress protein (USP), superoxide dismutase (SOD), peroxidase (POD), ferritin, and ATPase.
Collapse
Affiliation(s)
- Juan Jiang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Singh A, Mittal D, Lavania D, Agarwal M, Mishra RC, Grover A. OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice (Oryza sativa L.). Cell Stress Chaperones 2012; 17:243-54. [PMID: 22147560 PMCID: PMC3273560 DOI: 10.1007/s12192-011-0303-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 01/31/2023] Open
Abstract
ClpB-cytoplasmic (ClpB-cyt)/Hsp100 is an important chaperone protein in rice. Cellular expression of OsClpB-cyt transcript is governed by heat stress, metal stress, and developmental cues. Transgenic rice plants produced with 2 kb OsClpB-cyt promoter driving Gus reporter gene showed heat- and metal-regulated Gus expression in vegetative tissues and constitutive Gus expression in calli, flowering tissues, and embryonal half of seeds. Rice seedlings regenerated with OsClpB-cyt promoter fragment with deletion of its canonical heat shock element sequence (HSE(-273 to -280)) showed not only heat shock inducibility of Gus transcript/protein but also constitutive expression of Gus in vegetative tissues. It thus emerges that the only classical HSE present in OsClpB-cyt promoter is involved in repressing expression of OsClpB-cyt transcript under unstressed control conditions. Yeast one-hybrid assays suggested that OsHsfA2c specifically interacts with OsClpB-cyt promoter. OsHsfA2c also showed binding with OsClpB-cyt and OsHsfB4b showed binding with OsClpB-cyt; notably, interaction of OsHsfB4b was seen for all three OsClpB/Hsp100 protein isoforms (i.e., ClpB-cytoplasmic, ClpB-mitochondrial, and ClpB-chloroplastic). Furthermore, OsHsfB4b showed interaction with OsHsfA2c. This study suggests that OsHsfA2c may play a role as transcriptional activator and that OsHsfB4b is an important part of this heat shock responsive circuitry.
Collapse
Affiliation(s)
- Amanjot Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Dheeraj Mittal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Dhruv Lavania
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Manu Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
36
|
Kim SA, Yoon JH, Ahn SG. Heat shock factor 4a (HSF4a) represses HSF2 expression and HSF2-mediated transcriptional activity. J Cell Physiol 2011; 227:1-6. [PMID: 21792930 DOI: 10.1002/jcp.22948] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heat shock factors (HSFs) are the main transcriptional regulators of the stress-induced expression of heat shock protein genes. HSF2, which is one of the HSFs, is activated during differentiation and development but it is unclear how they regulate during cellular processes. Here, we examined the role of HSF4a on the regulation of HSF2 in HEK 293 cells. We found that HSF2 levels are negatively correlated with HSF4a expression and that overexpression of HSF4a reduces hemin-induced HSF2 mRNA and protein levels. Moreover, hemin-induced activation of HSF2 was also markedly inhibited in HSF4a expressed cells. Immunoprecipitation assay showed that HSF2 binds to the oligomerization domain of HSF4a. Hemin treatment inhibited their interaction and induced localization of HSF2 and HSF4a in nuclear. In addition, we found that HSF4a or HSF4a DNA binding domain (117 aa) inhibited the activity of hemin-induced HSP70 promoter. Consequently, HSF4a inhibits HSF2 expression or transcriptional activity through negative regulation of HSF2 binding to the HSP70 promoter. In summary, our findings suggest novel mechanisms of HSF2 regulation controlled by HSF4a.
Collapse
Affiliation(s)
- Soo-A Kim
- Department of Biochemistry, Oriental Medicine, Dongguk University, Gyeongju, Republic of Korea
| | | | | |
Collapse
|
37
|
Shinkawa T, Tan K, Fujimoto M, Hayashida N, Yamamoto K, Takaki E, Takii R, Prakasam R, Inouye S, Mezger V, Nakai A. Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Mol Biol Cell 2011; 22:3571-83. [PMID: 21813737 PMCID: PMC3183013 DOI: 10.1091/mbc.e11-04-0330] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
HSF2 regulates proteostasis capacity against febrile-range thermal stress, which provides temperature-dependent mechanisms of cellular adaptation to thermal stress. Furthermore, HSF2 has a strong impact on disease progression of Huntington's disease R6/2 mice, suggesting that it could be a promising therapeutic target for protein misfolding diseases. Heat shock response is characterized by the induction of heat shock proteins (HSPs), which facilitate protein folding, and non-HSP proteins with diverse functions, including protein degradation, and is regulated by heat shock factors (HSFs). HSF1 is a master regulator of HSP expression during heat shock in mammals, as is HSF3 in avians. HSF2 plays roles in development of the brain and reproductive organs. However, the fundamental roles of HSF2 in vertebrate cells have not been identified. Here we find that vertebrate HSF2 is activated during heat shock in the physiological range. HSF2 deficiency reduces threshold for chicken HSF3 or mouse HSF1 activation, resulting in increased HSP expression during mild heat shock. HSF2-null cells are more sensitive to sustained mild heat shock than wild-type cells, associated with the accumulation of ubiquitylated misfolded proteins. Furthermore, loss of HSF2 function increases the accumulation of aggregated polyglutamine protein and shortens the lifespan of R6/2 Huntington's disease mice, partly through αB-crystallin expression. These results identify HSF2 as a major regulator of proteostasis capacity against febrile-range thermal stress and suggest that HSF2 could be a promising therapeutic target for protein-misfolding diseases.
Collapse
Affiliation(s)
- Toyohide Shinkawa
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube 755-8505, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rupik W, Jasik K, Bembenek J, Widłak W. The expression patterns of heat shock genes and proteins and their role during vertebrate's development. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:349-66. [DOI: 10.1016/j.cbpa.2011.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/02/2011] [Accepted: 04/04/2011] [Indexed: 02/07/2023]
|
39
|
Systemic analysis of heat shock response induced by heat shock and a proteasome inhibitor MG132. PLoS One 2011; 6:e20252. [PMID: 21738571 PMCID: PMC3127947 DOI: 10.1371/journal.pone.0020252] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/28/2011] [Indexed: 11/19/2022] Open
Abstract
The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF- 1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins.
Collapse
|
40
|
Chen R, Liliental JE, Kowalski PE, Lu Q, Cohen SN. Regulation of transcription of hypoxia-inducible factor-1α (HIF-1α) by heat shock factors HSF2 and HSF4. Oncogene 2011; 30:2570-80. [PMID: 21258402 DOI: 10.1038/onc.2010.623] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a principal regulator of angiogenesis and other cellular responses to hypoxic stress in both normal and tumor cells. To identify novel mechanisms that regulate expression of HIF-1α, we designed a genome-wide screen for expressed sequence tags (ESTs) that when transcribed in the antisense direction increase production of the HIF-1α target, vascular endothelial growth factor (VEGF), in human breast cancer cells. We discovered that heat shock factor (HSF) proteins 2 and 4-which previously have been implicated in the control of multiple genes that modulate cell growth and differentiation and protect against effects of environmental and cellular stresses-function together to maintain a steady state level of HIF-1α transcription and VEGF production in these cells. We show both HSFs bind to discontinuous heat shock element (HSE) sequences we identified in the HIF-1α promoter region and that downregulation of either HSF activates transcription of HIF-1α. We further demonstrate that HSF2 and HSF4 displace each other from HSF/HSE complexes in the HIF-1α promoter so that HIF-1α transcription is also activated by overexpression of either HSFs. These results argue that HSF2 and HSF4 regulate transcription of HIF-1α and that a critical balance between these HSF is required to maintain HIF-α expression in a repressed state. Our findings reveal a previously unsuspected role for HSFs in control of VEGF and other genes activated by canonical HIF-1α-mediated signaling.
Collapse
Affiliation(s)
- R Chen
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | | | | | | | | |
Collapse
|
41
|
Gentilella A, Khalili K. BAG3 expression in glioblastoma cells promotes accumulation of ubiquitinated clients in an Hsp70-dependent manner. J Biol Chem 2011; 286:9205-15. [PMID: 21233200 DOI: 10.1074/jbc.m110.175836] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disposal of damaged proteins and protein aggregates is a prerequisite for the maintenance of cellular homeostasis and impairment of this disposal can lead to a broad range of pathological conditions, most notably in brain-associated disorders including Parkinson and Alzheimer diseases, and cancer. In this respect, the Protein Quality Control (PQC) pathway plays a central role in the clearance of damaged proteins. The Hsc/Hsp70-co-chaperone BAG3 has been described as a new and critical component of the PQC in several cellular contexts. For example, the expression of BAG3 in the rodent brain correlates with the engagement of protein degradation machineries in response to proteotoxic stress. Nevertheless, little is known about the molecular events assisted by BAG3. Here we show that ectopic expression of BAG3 in glioblastoma cells leads to the activation of an HSF1-driven stress response, as attested by transcriptional activation of BAG3 and Hsp70. BAG3 overexpression determines an accumulation of ubiquitinated proteins and this event requires the N-terminal region, WW domain of BAG3 and the association of BAG3 with Hsp70. The ubiquitination mainly occurs on BAG3-client proteins and the inhibition of proteasomal activity results in a further accumulation of ubiquitinated clients. At the cellular level, overexpression of BAG3 in glioblastoma cell lines, but not in non-glial cells, results in a remarkable decrease in colony formation capacity and this effect is reverted when the binding of BAG3 to Hsp70 is impaired. These observations provide the first evidence for an involvement of BAG3 in the ubiquitination and turnover of its partners.
Collapse
Affiliation(s)
- Antonio Gentilella
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
42
|
Björk JK, Sistonen L. Regulation of the members of the mammalian heat shock factor family. FEBS J 2010; 277:4126-39. [PMID: 20945529 DOI: 10.1111/j.1742-4658.2010.07828.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regulation of gene expression is fundamental in all living organisms and is facilitated by transcription factors, the single largest group of proteins in humans. For cell- and stimulus-specific gene regulation, strict control of the transcription factors themselves is crucial. Heat shock factors are a family of transcription factors best known as master regulators of induced gene expression during the heat shock response. This evolutionary conserved cellular stress response is characterized by massive production of heat shock proteins, which function as cytoprotective molecular chaperones against various proteotoxic stresses. In addition to promoting cell survival under stressful conditions, heat shock factors are involved in the regulation of life span and progression of cancer and they are also important for developmental processes such as gametogenesis, neurogenesis and maintenance of sensory organs. Here, we review the regulatory mechanisms steering the activities of the mammalian heat shock factors 1–4.
Collapse
Affiliation(s)
- Johanna K Björk
- Department of Biosciences, Åbo Akademi University, Turku, Finland
| | | |
Collapse
|
43
|
Guan JC, Yeh CH, Lin YP, Ke YT, Chen MT, You JW, Liu YH, Lu CA, Wu SJ, Lin CY. A 9 bp cis-element in the promoters of class I small heat shock protein genes on chromosome 3 in rice mediates L-azetidine-2-carboxylic acid and heat shock responses. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:4249-61. [PMID: 20643810 PMCID: PMC2955743 DOI: 10.1093/jxb/erq230] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 05/20/2010] [Accepted: 07/01/2010] [Indexed: 05/18/2023]
Abstract
In rice, the class I small heat shock protein (sHSP-CI) genes were found to be selectively induced by L-azetidine-2-carboxylic acid (AZC) on chromosome 3 but not chromosome 1. Here it is shown that a novel cis-responsive element contributed to the differential regulation. By serial deletion and computational analysis, a 9 bp putative AZC-responsive element (AZRE), GTCCTGGAC, located between nucleotides -186 and -178 relative to the transcription initiation site of Oshsp17.3 was revealed. Deletion of this putative AZRE from the promoter abolished its ability to be induced by AZC. Moreover, electrophoretic mobility shift assay (EMSA) revealed that the AZRE interacted specifically with nuclear proteins from AZC-treated rice seedlings. Two AZRE-protein complexes were detected by EMSA, one of which could be competed out by a canonical heat shock element (HSE). Deletion of the AZRE also affected the HS response. Furthermore, transient co-expression of the heat shock factor OsHsfA4b with the AZRE in the promoter of Oshsp17.3 was effective. The requirement for the putative AZRE for AZC and HS responses in transgenic Arabidopsis was also shown. Thus, AZRE represents an alternative form of heat HSE, and its interaction with canonical HSEs through heat shock factors may be required to respond to HS and AZC.
Collapse
Affiliation(s)
- Jiahn-Chou Guan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ching-Hui Yeh
- Department of Life Science, National Central University, Taoyuan, Taiwan
- Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
- To whom correspondence should be addressed. E-mail: or
| | - Ya-Ping Lin
- Department of Life Science, National Central University, Taoyuan, Taiwan
| | - Yi-Ting Ke
- Department of Life Science, National Central University, Taoyuan, Taiwan
- Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Ming-Tse Chen
- Department of Life Science, National Central University, Taoyuan, Taiwan
| | - Jia-Wen You
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsin Liu
- Department of Life Science, National Central University, Taoyuan, Taiwan
| | - Chung-An Lu
- Department of Life Science, National Central University, Taoyuan, Taiwan
| | - Shaw-Jye Wu
- Department of Life Science, National Central University, Taoyuan, Taiwan
| | - Chu-Yung Lin
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
44
|
Zhang J, Hu YZ, Xueli L, Li S, Wang M, Kong X, Li T, Shen P, Ma Y. The inhibition of CMV promoter by heat shock factor 4b is regulated by Daxx. Int J Biochem Cell Biol 2010; 42:1698-707. [PMID: 20620219 DOI: 10.1016/j.biocel.2010.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/13/2010] [Accepted: 06/30/2010] [Indexed: 11/18/2022]
Abstract
Heat shock factor 4 (Hsf4b) has been identified as a novel cataractogenic protein whose mutation has been closely associated with hereditary cataracts in humans and animals. It acts both as a transcription activator and a transcription inhibitor in the regulation of its downstream targets during lens development. However, the signaling factors that regulate Hsf4b transcription activity are still not completely defined. Here, we found that Hsf4b, not Hsf4a (another isoform of Hsf4), acts as the inhibitor of CMV promoter as well as the activator of Hsp25 in the Hsf4-/- mouse lens epithelial cell line (mLEC/hsf4-/-). Hsf4b inhibits CMV-promoter activity by directly binding to TTCC (HSE motif) at 173-176bps in the CMV promoter. The phosphorylation of Hsf4b/S299 in the PDSM motif, which is absent in Hsf4a, participates in the negative regulation of the CMV promoter. The transcriptional inhibition of Hsf4b is associated with transcriptional inhibitor Daxx. Hsf4b can interact and co-localize with Daxx in the nucleus, and their association is regulated by the phosphorylation of Hsf4b/S299. In addition, we found that Hsf4a and Hsf1 were also associated with Daxx. However, in contrast to activating Hsf1, Daxx can repress Hsf4b-induced expression of Hsp25 in the mLEC/hsf4-/- cell line. Our results demonstrate that the transcription-inhibitory function of Hsf4b is regulated by the phosphorylation of Hsf4b/S299 and phosphorylation-dependent association with Daxx.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Molecular and Cellular Immunology, Henan University School of Medicine, Kaifeng, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xing H, Hong Y, Sarge KD. PEST sequences mediate heat shock factor 2 turnover by interacting with the Cul3 subunit of the Cul3-RING ubiquitin ligase. Cell Stress Chaperones 2010; 15:301-8. [PMID: 19768582 PMCID: PMC2866995 DOI: 10.1007/s12192-009-0144-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 08/31/2009] [Indexed: 11/27/2022] Open
Abstract
Cullin-RING ubiquitin ligases promote the polyubiquitination and degradation of many important cellular proteins, which previous studies indicated can be targeted for degradation via interaction with BTB domain-containing subunits of this E3 ligase complex. PEST domains are known to promote the degradation of proteins that contain them. However, the molecular mechanism by which PEST sequences promote degradation of these proteins is not understood. Here we show that the PEST sequences of a short-lived protein called HSF2 interact with Cullin3, a subunit of a Cullin-RING E3 ubiquitin ligase, and that this interaction mediates the Cul3-dependent ubiquitination and degradation of HSF2. These results indicate how, at the molecular level, PEST sequences can promote the proteolysis of proteins that contain them. They also expand understanding of the mechanisms by which substrates can be recruited to Cullin-RING E3 ubiquitin ligases to include interactions between PEST sequences and Cul3.
Collapse
Affiliation(s)
- Hongyan Xing
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone Street, Lexington, KY 40536 USA
| | - Yiling Hong
- Department of Biology, University of Dayton, Dayton, OH 45469 USA
| | - Kevin D. Sarge
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone Street, Lexington, KY 40536 USA
| |
Collapse
|
46
|
Sonna LA, Hawkins L, Lissauer ME, Maldeis P, Towns M, Johnson SB, Moore R, Singh IS, Cowan MJ, Hasday JD. Core temperature correlates with expression of selected stress and immunomodulatory genes in febrile patients with sepsis and noninfectious SIRS. Cell Stress Chaperones 2010; 15:55-66. [PMID: 19496026 PMCID: PMC2866972 DOI: 10.1007/s12192-009-0121-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/29/2009] [Accepted: 05/01/2009] [Indexed: 12/25/2022] Open
Abstract
Environmental hyperthermia and exercise produce extensive changes in gene expression in human blood cells, but it is unknown whether this also happens during febrile-range hyperthermia. We tested the hypothesis that heat shock protein (HSP) and immunomodulatory stress gene expression correlate with fever in intensive care unit patients. Whole blood messenger RNA was obtained over consecutive days from 100 hospitalized patients suffering from sepsis or noninfectious systemic inflammatory response syndrome (SIRS) as defined by conventional criteria. The most abnormal body temperature in the preceding 24 h was recorded for each sample. Expression analysis was performed using the Affymetrix U133 chip. ANCOVA followed by correlation analysis was performed on a subset of 278 prospectively identified sequences of interest. Temperature affected expression of 60 sequences, either independently or as a function of clinical diagnosis. Forty-eight of these (representing 38 genes) were affected by temperature only, including several HSPs, transcription factors heat shock factor (HSF)-1 and HSF-4, cellular adhesion molecules such as ICAM1/CD54 and JAM3, toll receptors TLR-6 and TLR-7, ribosomal proteins, and a number of molecules involved in inflammatory pathways. Twelve sequences demonstrated temperature-dependent responses that differed significantly between patients with sepsis and noninfectious SIRS: CXCL-13; heat shock proteins DNAJB12 and DNAJC4; the F11 receptor; folate hydrolase 1; HSF-2; HSP 70 proteins HSPA1A, HSPA1B, and HSPA1L; interleukin 8; lipopolysaccharide binding protein; and prostaglandin E synthase. Febrile-range temperatures achieved during sepsis and noninfectious SIRS correlate with detectable changes in stress gene expression in vivo, suggesting that fever can activate HSP gene expression and modify innate immune responses. For some genes, it appears that clinical condition can alter temperature-sensitive gene expression. Collectively, these data underscore the potential importance of body temperature in shaping the immune response to infection and injury.
Collapse
Affiliation(s)
- Larry A Sonna
- University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Neznanov N, Gorbachev AV, Neznanova L, Komarov AP, Gurova KV, Gasparian AV, Banerjee AK, Almasan A, Fairchild RL, Gudkov AV. Anti-malaria drug blocks proteotoxic stress response: anti-cancer implications. Cell Cycle 2009; 8:3960-70. [PMID: 19901558 DOI: 10.4161/cc.8.23.10179] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The number of physical conditions and chemical agents induce accumulation of misfolded proteins creating proteotoxic stress. This leads to activation of adaptive pro-survival pathway, known as heat shock response (HSR), resulting in expression of additional chaperones. Several cancer treatment approaches, such as proteasome inhibitor Bortezomib and hsp90 inhibitor geldanamycin, involve activation of proteotoxic stress. Low efficacy of these therapies is likely due to the protective effects of HSR induced in treated cells, making this pathway an attractive target for pharmacological suppression. We found that the anti-malaria drugs quinacrine (QC) and emetine prevented HSR in cancer cells, as judged by induction of hsp70 expression. As opposed to emetine, which inhibited general translation, QC did not affect protein synthesis, but rather suppressed inducible HSF1-dependent transcription of the hsp70 gene in a relatively selective manner. The treatment of tumor cells in vitro with a combination of non-toxic concentrations of QC and proteotoxic stress inducers resulted in rapid induction of apoptosis. The effect was similar if QC was substituted by siRNA against hsp70, suggesting that the HSR inhibitory activity of QC was responsible for cell sensitization to proteotoxic stress inducers. QC was also found to enhance the antitumor efficacy of proteotoxic stress inducers in vivo: combinatorial treatment with 17-DMAG + QC resulted in suppression of tumor growth in two mouse syngeneic models. These results reveal that QC is an inhibitor of HSF1-mediated HSR. As such, this compound has significant clinical potential as an adjuvant in therapeutic strategies aimed at exploiting the cytotoxic potential of proteotoxic stress.
Collapse
Affiliation(s)
- Nickolay Neznanov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Unfolded and misfolded proteins are inherently toxic to cells and have to be quickly and efficiently eliminated before they intoxicate the intracellular environment. This is of particular importance during proteotoxic stress when, as a consequence of intrinsic or extrinsic factors, the levels of misfolded proteins are transiently or persistently elevated. To meet this demand, metazoan cells have developed specific protein quality control mechanisms that allow the identification and proper handling of non-native proteins. An important defence mechanism is the specific destruction of these proteins by the ubiquitin-proteasome system (UPS). A number of studies have shown that various proteotoxic stress conditions can cause functional impairment of the UPS resulting in cellular dysfunction and apoptosis. In this review, we will summarize our current understanding of proteotoxic stress-induced dysfunction of the UPS and some of its implications for human pathologies.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3 S-17177, Stockholm, Sweden.
| | | |
Collapse
|
49
|
Li G, Bukrinsky M, Zhao RY. HIV-1 viral protein R (Vpr) and its interactions with host cell. Curr HIV Res 2009; 7:178-83. [PMID: 19275587 DOI: 10.2174/157016209787581436] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is engaged in dynamic and antagonistic interactions with host cells. Once infected by HIV-1, host cells initiate various antiviral strategies, such as innate antiviral defense mechanisms, to counteract viral invasion. In contrast, the virus has different strategies to suppress these host responses to infection. The final balance between these interactions determines the outcome of the viral infection and disease progression. Recent findings suggest that HIV-1 viral protein R (Vpr) interacts with some of the host innate antiviral factors, such as heat shock proteins, and plays an active role as a viral pathogenic factor. Cellular heat stress response factors counteract Vpr activities and inhibit HIV replication. However, Vpr overcomes these heat-stress-like responses by preventing heat shock factor-1 (HSF-1)-mediated activation of heat shock proteins. In this review, we will focus on the virus-host interactions involving Vpr. In addition to heat stress response proteins, we will discuss interactions of Vpr with other proteins, such as EF2 and Skp1/GSK3, their involvements in cellular responses to Vpr, as well as strategies to develop novel antiviral therapies aimed at enhancing anti-Vpr responses of the host cell.
Collapse
Affiliation(s)
- Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
50
|
Cellular stress and RNA splicing. Trends Biochem Sci 2009; 34:146-53. [DOI: 10.1016/j.tibs.2008.11.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 01/02/2023]
|