1
|
Zhong F, Chen T, Li B. Combinatorial transcriptional regulation of HEB/ZEB1/ASCL1 and MYBL2 on Ras/ErbB signaling. Biochem Biophys Res Commun 2022; 622:170-176. [DOI: 10.1016/j.bbrc.2022.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
|
2
|
MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis 2017. [PMID: 28640249 PMCID: PMC5520903 DOI: 10.1038/cddis.2017.244] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Limitless cell proliferation, evasion from apoptosis, dedifferentiation, metastatic spread and therapy resistance: all these properties of a cancer cell contribute to its malignant phenotype and affect patient outcome. MYBL2 (alias B-Myb) is a transcription factor of the MYB transcription factor family and a physiological regulator of cell cycle progression, cell survival and cell differentiation. When deregulated in cancer cells, MYBL2 mediates the deregulation of these properties. In fact, MYBL2 is overexpressed and associated with poor patient outcome in numerous cancer entities. MYBL2 and players of its downstream transcriptional network can be used as prognostic and/or predictive biomarkers as well as potential therapeutic targets to offer less toxic and more specific anti-cancer therapies in future. In this review, we summarize current knowledge on the physiological roles of MYBL2 and highlight the impact of its deregulation on cancer initiation and progression.
Collapse
|
3
|
Kim SH, Kim HS, Bahk S, An J, Yoo Y, Kim JY, Chung WS. Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic Acids Res 2017; 45:6613-6627. [PMID: 28510716 PMCID: PMC5499865 DOI: 10.1093/nar/gkx417] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
The expression of CBF (C-repeat-binding factor) genes is required for freezing tolerance in Arabidopsis thaliana. CBFs are positively regulated by INDUCER OF CBF EXPRESSION1 (ICE1) and negatively regulated by MYB15. These transcription factors directly interact with specific elements in the CBF promoters. Mitogen-activated protein kinase (MAPK/MPK) cascades function upstream to regulate CBFs. However, the mechanism by which MPKs control CBF expression during cold stress signaling remains unknown. This study showed that the activity of MYB15, a transcriptional repressor of cold signaling, is regulated by MPK6-mediated phosphorylation. MYB15 specifically interacts with MPK6, and MPK6 phosphorylates MYB15 on Ser168. MPK6-induced phosphorylation reduced the affinity of MYB15 binding to the CBF3 promoter and mutation of its phosphorylation site (MYB15S168A) enhanced the transcriptional repression of CBF3 by MYB15. Furthermore, transgenic plants overexpressing MYB15S168A showed significantly reduced CBF transcript levels in response to cold stress, compared with plants overexpressing MYB15. The MYB15S168A-overexpressing plants were also more sensitive to freezing than MYB15-overexpressing plants. These results suggest that MPK6-mediated regulation of MYB15 plays an important role in cold stress signaling in Arabidopsis.
Collapse
Affiliation(s)
- Sun Ho Kim
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sunghwa Bahk
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jonguk An
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Yeji Yoo
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Woo Sik Chung
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
4
|
Henrich SM, Usadel C, Werwein E, Burdova K, Janscak P, Ferrari S, Hess D, Klempnauer KH. Interplay with the Mre11-Rad50-Nbs1 complex and phosphorylation by GSK3β implicate human B-Myb in DNA-damage signaling. Sci Rep 2017; 7:41663. [PMID: 28128338 PMCID: PMC5269693 DOI: 10.1038/srep41663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022] Open
Abstract
B-Myb, a highly conserved member of the Myb transcription factor family, is expressed ubiquitously in proliferating cells and controls the cell cycle dependent transcription of G2/M-phase genes. Deregulation of B-Myb has been implicated in oncogenesis and loss of genomic stability. We have identified B-Myb as a novel interaction partner of the Mre11-Rad50-Nbs1 (MRN) complex, a key player in the repair of DNA double strand breaks. We show that B-Myb directly interacts with the Nbs1 subunit of the MRN complex and is recruited transiently to DNA-damage sites. In response to DNA-damage B-Myb is phosphorylated by protein kinase GSK3β and released from the MRN complex. A B-Myb mutant that cannot be phosphorylated by GSK3β disturbs the regulation of pro-mitotic B-Myb target genes and leads to inappropriate mitotic entry in response to DNA-damage. Overall, our work suggests a novel function of B-Myb in the cellular DNA-damage signalling.
Collapse
Affiliation(s)
- Sarah Marie Henrich
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
- Graduate School of Chemistry (GSC-MS), Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Clemens Usadel
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Eugen Werwein
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Kamila Burdova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 143 00 Prague, Czech Republic
| | - Pavel Janscak
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 143 00 Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstr.190, CH-8057 Zürich, Switzerland
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstr.190, CH-8057 Zürich, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, CH-4058 Basel, Switzerland
| | - Karl-Heinz Klempnauer
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| |
Collapse
|
5
|
Wong MM, Guo C, Zhang J. Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:169-187. [PMID: 25374920 PMCID: PMC4219314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Nuclear receptor corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) function as corepressors for diverse transcription factors including nuclear receptors such as estrogen receptors and androgen receptors. Deregulated functions of NCoR and SMRT have been observed in many types of cancers and leukemias. NCoR and SMRT directly bind to transcription factors and nucleate the formation of stable complexes that include histone deacetylase 3, transducin b-like protein 1/TBL1-related protein 1, and G-protein pathway suppressor 2. These NCoR/SMRT-interacting proteins also show deregulated functions in cancers. In this review, we summarize the literature on the mechanism, regulation, and function of the core components of NCoR/SMRT complexes in the context of their involvement in cancers and leukemias. While the current studies support the view that the corepressors are promising targets for cancer treatment, elucidation of the mechanisms of corepressors involved in individual types of cancers is likely required for effective therapy.
Collapse
Affiliation(s)
- Madeline M Wong
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| | - Chun Guo
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| | - Jinsong Zhang
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| |
Collapse
|
6
|
Nalini V, Segu R, Deepa PR, Khetan V, Vasudevan M, Krishnakumar S. Molecular Insights on Post-chemotherapy Retinoblastoma by Microarray Gene Expression Analysis. Bioinform Biol Insights 2013; 7:289-306. [PMID: 24092970 PMCID: PMC3785389 DOI: 10.4137/bbi.s12494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Management of Retinoblastoma (RB), a pediatric ocular cancer is limited by drug-resistance and drug-dosage related side effects during chemotherapy. Molecular de-regulation in post-chemotherapy RB tumors was investigated. MATERIALS AND METHODS cDNA microarray analysis of two post-chemotherapy and one pre-chemotherapy RB tumor tissues was performed, followed by Principle Component Analysis, Gene ontology, Pathway Enrichment analysis and Biological Analysis Network (BAN) modeling. The drug modulation role of two significantly up-regulated genes (p≤0.05) - Ect2 (Epithelial-cell-transforming-sequence-2), and PRAME (preferentially-expressed-Antigen-in-Melanoma) was assessed by qRT-PCR, immunohistochemistry and cell viability assays. RESULTS Differential up-regulation of 1672 genes and down-regulation of 2538 genes was observed in RB tissues (relative to normal adult retina), while 1419 genes were commonly de-regulated between pre-chemotherapy and post- chemotherapy RB. Twenty one key gene ontology categories, pathways, biomarkers and phenotype groups harboring 250 differentially expressed genes were dys-regulated (EZH2, NCoR1, MYBL2, RB1, STAMN1, SYK, JAK1/2, STAT1/2, PLK2/4, BIRC5, LAMN1, Ect2, PRAME and ABCC4). Differential molecular expressions of PRAME and Ect2 in RB tumors with and without chemotherapy were analyzed. There was neither up- regulation of MRP1, nor any significant shift in chemotherapeutic IC50, in PRAME over-expressed versus non-transfected RB cells. CONCLUSION Cell cycle regulatory genes were dys-regulated post-chemotherapy. Ect2 gene was expressed in response to chemotherapy-induced stress. PRAME does not contribute to drug resistance in RB, yet its nuclear localization and BAN information, points to its possible regulatory role in RB.
Collapse
Affiliation(s)
- Venkatesan Nalini
- Larsen and Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India. ; Birla Institute of Technology and Science (BITS), Pilani, India
| | | | | | | | | | | |
Collapse
|
7
|
Werwein E, Dzuganova M, Usadel C, Klempnauer KH. B-Myb switches from Cyclin/Cdk-dependent to Jnk- and p38 kinase-dependent phosphorylation and associates with SC35 bodies after UV stress. Cell Death Dis 2013; 4:e511. [PMID: 23449447 PMCID: PMC3734824 DOI: 10.1038/cddis.2013.36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
B-Myb is a highly conserved member of the Myb transcription factor family that has essential roles in cell-cycle progression. Recent work has suggested that B-Myb is also involved in the cellular DNA-damage response. Here, we have investigated the fate of B-Myb in UV-irradiated cells. UV stress leads to the appearance of phosphorylated B-Myb in nuclear SC35 speckles during transcriptional shutdown. Furthermore, we show that UV irradiation leads to a change of the phosphorylation pattern of B-Myb, which is caused by a switch from Cyclin/Cdk-dependent to Jnk and p38 kinase-dependent phosphorylation. Taken together, we have identified Jnk and p38 kinase as novel regulators of B-Myb and established the localization of phosphorylated B-Myb in SC35 speckles as a potential novel regulatory mechanism for B-Myb in UV irradiated cells.
Collapse
Affiliation(s)
- E Werwein
- Institut für Biochemie, Wilhelm-Klemm-Straße 2, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
8
|
Oka O, Waters LC, Strong SL, Dosanjh NS, Veverka V, Muskett FW, Renshaw PS, Klempnauer KH, Carr MD. Interaction of the transactivation domain of B-Myb with the TAZ2 domain of the coactivator p300: molecular features and properties of the complex. PLoS One 2012; 7:e52906. [PMID: 23300815 PMCID: PMC3534135 DOI: 10.1371/journal.pone.0052906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/23/2012] [Indexed: 01/15/2023] Open
Abstract
The transcription factor B-Myb is a key regulator of the cell cycle in vertebrates, with activation of transcription involving the recognition of specific DNA target sites and the recruitment of functional partner proteins, including the coactivators p300 and CBP. Here we report the results of detailed studies of the interaction between the transactivation domain of B-Myb (B-Myb TAD) and the TAZ2 domain of p300. The B-Myb TAD was characterized using circular dichroism, fluorescence and NMR spectroscopy, which revealed that the isolated domain exists as a random coil polypeptide. Pull-down and spectroscopic experiments clearly showed that the B-Myb TAD binds to p300 TAZ2 to form a moderately tight (K(d) ~1.0-10 µM) complex, which results in at least partial folding of the B-Myb TAD. Significant changes in NMR spectra of p300 TAZ2 suggest that the B-Myb TAD binds to a relatively large patch on the surface of the domain (~1200 Å(2)). The apparent B-Myb TAD binding site on p300 TAZ2 shows striking similarity to the surface of CBP TAZ2 involved in binding to the transactivation domain of the transcription factor signal transducer and activator of transcription 1 (STAT1), which suggests that the structure of the B-Myb TAD-p300 TAZ2 complex may share many features with that reported for STAT1 TAD-p300 TAZ2.
Collapse
Affiliation(s)
- Ojore Oka
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Lorna C. Waters
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Sarah L. Strong
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Nuvjeevan S. Dosanjh
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Vaclav Veverka
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Frederick W. Muskett
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Philip S. Renshaw
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | | | - Mark D. Carr
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| |
Collapse
|
9
|
Werwein E, Schmedt T, Hoffmann H, Usadel C, Obermann N, Singer JD, Klempnauer KH. B-Myb promotes S-phase independently of its sequence-specific DNA binding activity and interacts with polymerase delta-interacting protein 1 (Pdip1). Cell Cycle 2012; 11:4047-58. [PMID: 23032261 DOI: 10.4161/cc.22386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
B-Myb is a highly conserved member of the Myb transcription factor family, which plays an essential role in cell cycle progression by regulating the transcription of genes at the G 2/M-phase boundary. The role of B-Myb in other parts of the cell cycle is less well-understood. By employing siRNA-mediated silencing of B-Myb expression, we found that B-Myb is required for efficient entry into S-phase. Surprisingly, a B-Myb mutant that lacks sequence-specific DNA-binding activity and is unable to activate transcription of B-Myb target genes is able to rescue the S-phase defect observed after B-Myb knockdown. Moreover, we have identified polymerase delta-interacting protein 1 (Pdip1), a BTB domain protein known to bind to the DNA replication and repair factor PCNA as a novel B-Myb interaction partner. We have shown that Pdip1 is able to interact with B-Myb and PCNA simultaneously. In addition, we found that a fraction of endogenous B-Myb can be co-precipitated via PCNA, suggesting that B-Myb might be involved in processes related to DNA replication or repair. Taken together, our work suggests a novel role for B-Myb in S-phase that appears to be independent of its sequence-specific DNA-binding activity and its ability to stimulate the expression of bona fide B-Myb target genes.
Collapse
Affiliation(s)
- Eugen Werwein
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Wu J, Bao J, Wang L, Hu Y, Xu C. MicroRNA-184 downregulates nuclear receptor corepressor 2 in mouse spermatogenesis. BMC DEVELOPMENTAL BIOLOGY 2011; 11:64. [PMID: 22017809 PMCID: PMC3227627 DOI: 10.1186/1471-213x-11-64] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/24/2011] [Indexed: 05/26/2023]
Abstract
Background There have been increasing attentions on the role of small RNAs, especially microRNAs in post-transcriptional gene regulation during spermatogenesis. MicroRNA-184 (miR-184) has been shown to be mainly expressed in the testis and brain, and that its expression levels are by far the highest in the testis. However, the role of miR-184 in mammalian spermatogenesis remains unclear. Results In this study, we demonstrated that miR-184 levels were increased during mouse postnatal testis development. Specifically, miR-184 expression was restricted to the germ cells from spermatogonia to round spermatids. Overexpression of miR-184 promoted the proliferation of a germ cell line, GC-1spg. Moreover, miR-184 downregulated nuclear receptor corepressor 2 (Ncor2) by targeting its 3' untranslated region through inhibiting NCOR2 protein translation. Conclusions MiR-184 may be involved in the post-transcription regulation of mRNAs such as Ncor2 in mammalian spermatogenesis.
Collapse
Affiliation(s)
- Jingwen Wu
- Department of Histology & Embryology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
11
|
Hong W, Chen L, Li J, Yao Z. Inhibition of MAP kinase promotes the recruitment of corepressor SMRT by tamoxifen-bound estrogen receptor alpha and potentiates tamoxifen action in MCF-7 cells. Biochem Biophys Res Commun 2010; 396:299-303. [PMID: 20406620 DOI: 10.1016/j.bbrc.2010.04.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 04/10/2010] [Indexed: 02/07/2023]
Abstract
Estrogen receptor alpha (ERalpha), a ligand controlled transcription factor, plays an important role in breast cancer growth and endocrine therapy. Tamoxifen (TAM) antagonizes ERalpha activity and has been applied in breast cancer treatment. TAM-bound ERalpha associates with nuclear receptor-corepressors. Mitogen-activated protein kinase (MAPK) has been elucidated to result in cross-talk between growth factor and ERalpha mediated signaling. We show that activated MAPK represses interaction of TAM-bound ERalpha with silencing mediator for retinoid and thyroid hormone receptors (SMRT) and inhibits the recruitment of SMRT by ERalpha to certain estrogen target genes. Blockade of MAPK signaling cascade with MEK inhibitor U0126 promotes the interaction and subsequently inhibits ERalpha activity via enhanced recruitment of SMRT, leading to reduced expression of ERalpha target genes. The growth rate of MCF-7 cells was decelerated when treated with both TAM and U0126. Moreover, the growth of MCF-7 cells stably expressing SMRT showed a robust repression in the presence of TAM and U0126. These results suggest that activated MAPK signaling cascade attenuates antagonist-induced recruitment of SMRT to ERalpha, suggesting corepressor mediates inhibition of ERalpha transactivation and breast cancer cell growth by antagonist. Taken together, our finding indicates combination of antagonist and MAPK inhibitor could be a helpful approach for breast cancer therapy.
Collapse
Affiliation(s)
- Wei Hong
- Department of Immunology, Tianjin Medical University, 300070 Tianjin, China.
| | | | | | | |
Collapse
|
12
|
Morse AM, Whetten RW, Dubos C, Campbell MM. Post-translational modification of an R2R3-MYB transcription factor by a MAP Kinase during xylem development. THE NEW PHYTOLOGIST 2009; 183:1001-1013. [PMID: 19566814 DOI: 10.1111/j.1469-8137.2009.02900.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite the pivotal role played by R2R3-MYB family members in the regulation of plant gene expression, little is known about post-translational regulation of these proteins. In animals, the MYB family member, c-MYB, is post-translationally modified by a mitogen-activated protein kinase (MAPK), p42(mapk). In order to test the hypothesis that R2R3-MYB proteins may be regulated by MAPK activity, interplay between a R2R3-MYB family member expressed in differentiating pine xylem (Pinus taeda MYB4, PtMYB4) and MAPK proteins expressed in the same tissue was examined. One of the MAPK proteins expressed in pine xylem, PtMAPK6, phosphorylated PtMYB4. Recombinant PtMAPK6 phosphorylated PtMYB4 on serine-236, located in the C-terminal activation domain of this transcription factor in a context that is found in other plant MYB proteins. Modification of the PtMAPK6 target serine in PtMYB4 did not appear to alter DNA binding in vitro but did alter the ability of PtMYB4 to promote transcriptional activation in yeast. PtMAPK6 activity was detected in developing xylem cells that had ceased cell division and formed secondary walls. Together, the data support a role for PtMAPK6 during early xylem development and suggest a function for this kinase in regulating gene expression through phosphorylation of PtMYB4.
Collapse
Affiliation(s)
- Alison M Morse
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Ross W Whetten
- Department of Forestry and Environmental Resources, North Carolina State University, 5231 Jordan Hall, Box 8008, Raleigh, NC, 27695, USA
| | - Christian Dubos
- Centre for the Analysis of Genome Evolution & Function, Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| | - Malcolm M Campbell
- Centre for the Analysis of Genome Evolution & Function, Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| |
Collapse
|
13
|
Shi L, Ko S, Kim S, Echchgadda I, Oh TS, Song CS, Chatterjee B. Loss of androgen receptor in aging and oxidative stress through Myb protooncoprotein-regulated reciprocal chromatin dynamics of p53 and poly(ADP-ribose) polymerase PARP-1. J Biol Chem 2008; 283:36474-85. [PMID: 18945670 DOI: 10.1074/jbc.m805980200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribosyl)ation of transcription factors and coregulators, mediated by the poly(ADP-ribose) polymerase PARP-1, has been emerging as an important epigenetic mechanism that controls transcriptional dynamics in response to diverse intra- and extracellular signals. PARP-1 activity is also implicated in the regulation of mammalian lifespan. Herein we show that transcriptional down-regulation of androgen receptor (AR) in the aging rat liver and in oxidatively stressed hepatoma cells involves exchange of a PARP-1-associated, p/CAF-containing coactivator assembly for a p53-interacting, Groucho/TLE1-, and mSin3A-included corepressor complex at an age- and oxidant-responsive DNA element (age-dependent factor (ADF) element) in the AR promoter. The coregulator switch is mediated by B-Myb and c-Myb, which bind to the ADF element and physically associate with PARP-1 and the tumor suppressor p53. Heterogeneous nuclear ribonucleoprotein K, residing at the ADF element in association with PARP-1, may serve a platform role in stabilizing the activating complex. PARP-1 coactivated B-Myb- and c-Myb-mediated transactivation of the AR promoter, and p53 antagonized the B-Myb/c-Myb-induced AR promoter activation. PARP-1, heterogeneous nuclear ribonucleoprotein K, B-Myb, and c-Myb each serves as a positive regulator of cellular AR content, whereas p53 negatively regulates AR expression. Our results identify a shared, PARP-1-regulated sensing mechanism that coordinates transcriptional repression of AR during aging and in response to oxidative stress. This study may provide insights as to how advancing age and intracellular redox balance might influence androgen-regulated physiology.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center, San Antonio, Texas 78245, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Tarasov KV, Tarasova YS, Tam WL, Riordon DR, Elliott ST, Kania G, Li J, Yamanaka S, Crider DG, Testa G, Li RA, Lim B, Stewart CL, Liu Y, Van Eyk JE, Wersto RP, Wobus AM, Boheler KR. B-MYB is essential for normal cell cycle progression and chromosomal stability of embryonic stem cells. PLoS One 2008; 3:e2478. [PMID: 18575582 PMCID: PMC2423619 DOI: 10.1371/journal.pone.0002478] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 05/19/2008] [Indexed: 01/11/2023] Open
Abstract
Background The transcription factor B-Myb is present in all proliferating cells, and in mice engineered to remove this gene, embryos die in utero just after implantation due to inner cell mass defects. This lethal phenotype has generally been attributed to a proliferation defect in the cell cycle phase of G1. Methodology/Principal Findings In the present study, we show that the major cell cycle defect in murine embryonic stem (mES) cells occurs in G2/M. Specifically, knockdown of B-Myb by short-hairpin RNAs results in delayed transit through G2/M, severe mitotic spindle and centrosome defects, and in polyploidy. Moreover, many euploid mES cells that are transiently deficient in B-Myb become aneuploid and can no longer be considered viable. Knockdown of B-Myb in mES cells also decreases Oct4 RNA and protein abundance, while over-expression of B-MYB modestly up-regulates pou5f1 gene expression. The coordinated changes in B-Myb and Oct4 expression are due, at least partly, to the ability of B-Myb to directly modulate pou5f1 gene promoter activity in vitro. Ultimately, the loss of B-Myb and associated loss of Oct4 lead to an increase in early markers of differentiation prior to the activation of caspase-mediated programmed cell death. Conclusions/Significance Appropriate B-Myb expression is critical to the maintenance of chromosomally stable and pluripotent ES cells, but its absence promotes chromosomal instability that results in either aneuploidy or differentiation-associated cell death.
Collapse
Affiliation(s)
- Kirill V. Tarasov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yelena S. Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Wai Leong Tam
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Daniel R. Riordon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Steven T. Elliott
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gabriela Kania
- In vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Jinliang Li
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Satoshi Yamanaka
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - David G. Crider
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Gianluca Testa
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ronald A. Li
- Laboratory of Stem Cell Engineering & Bioelectricity, Stem Cell Institute, University of California Davis, Davis, California, United States of America
| | - Bing Lim
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
- Harvard Institutes of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Colin L. Stewart
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, Maryland, United States of America
| | - Yie Liu
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Jennifer E. Van Eyk
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Robert P. Wersto
- Flow Cytometry Group, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Anna M. Wobus
- In vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Kenneth R. Boheler
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Takezawa S, Yokoyama A, Okada M, Fujiki R, Iriyama A, Yanagi Y, Ito H, Takada I, Kishimoto M, Miyajima A, Takeyama KI, Umesono K, Kitagawa H, Kato S. A cell cycle-dependent co-repressor mediates photoreceptor cell-specific nuclear receptor function. EMBO J 2007; 26:764-74. [PMID: 17255935 PMCID: PMC1794400 DOI: 10.1038/sj.emboj.7601548] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 12/15/2006] [Indexed: 01/30/2023] Open
Abstract
Photoreceptor cell-specific nuclear receptor (PNR) (NR2E3) acts as a sequence-specific repressor that controls neuronal differentiation in the developing retina. We identified a novel PNR co-repressor, Ret-CoR, that is expressed in the developing retina and brain. Biochemical purification of Ret-CoR identified a multiprotein complex that included E2F/Myb-associated proteins, histone deacetylases (HDACs) and NCoR/HDAC complex-related components. Ret-CoR appeared to function as a platform protein for the complex, and interacted with PNR via two CoRNR motifs. Purified Ret-CoR complex exhibited HDAC activity, co-repressed PNR transrepression function in vitro, and co-repressed PNR function in PNR target gene promoters, presumably in the retinal progenitor cells. Notably, the appearance of Ret-CoR protein was cell-cycle-stage-dependent (from G1 to S). Therefore, Ret-CoR appears to act as a component of an HDAC co-repressor complex that supports PNR repression function in the developing retina, and may represent a co-regulator class that supports transcriptional regulator function via cell-cycle-dependent expression.
Collapse
Affiliation(s)
- Shinichiro Takezawa
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- ERATO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Atsushi Yokoyama
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Maiko Okada
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryoji Fujiki
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Aya Iriyama
- Department of Ophthalmology, University of Tokyo, School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasuo Yanagi
- Department of Ophthalmology, University of Tokyo, School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Ito
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ichiro Takada
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masahiko Kishimoto
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Miyajima
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ken-ichi Takeyama
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuhiko Umesono
- Institute for Virus Research, and Graduate School for Biostudies, Kyoto University, Kyoto, Japan
| | - Hirochika Kitagawa
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigeaki Kato
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- ERATO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| |
Collapse
|
16
|
Osterloh L, von Eyss B, Schmit F, Rein L, Hübner D, Samans B, Hauser S, Gaubatz S. The human synMuv-like protein LIN-9 is required for transcription of G2/M genes and for entry into mitosis. EMBO J 2006; 26:144-57. [PMID: 17159899 PMCID: PMC1782375 DOI: 10.1038/sj.emboj.7601478] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 11/16/2006] [Indexed: 01/06/2023] Open
Abstract
Regulated gene expression is critical for the proper timing of cell cycle transitions. Here we report that human LIN-9 has an important function in transcriptional regulation of G2/M genes. Depletion of LIN-9 by RNAi in human fibroblasts strongly impairs proliferation and delays progression from G2 to M. We identify a cluster of G2/M genes as direct targets of LIN-9. Activation of these genes is linked to an association between LIN-9 and B-MYB. Chromatin immunoprecipitation assays revealed binding of both LIN-9 and B-MYB to the promoters of G2/M regulated genes. Depletion of B-MYB recapitulated the biological outcome of LIN-9 knockdown, including impaired proliferation and reduced expression of G2/M genes. These data suggest a critical role for human LIN-9, together with B-MYB, in the activation of genes that are essential for progression into mitosis.
Collapse
Affiliation(s)
- Lisa Osterloh
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Björn von Eyss
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Fabienne Schmit
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Lena Rein
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Denise Hübner
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Birgit Samans
- Institute for Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany
| | - Stefanie Hauser
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Stefan Gaubatz
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany. Tel.: +49 931 888 4138; Fax: +49 931 888 4150; E-mail:
| |
Collapse
|
17
|
Foulk MS, Liang C, Wu N, Blitzblau HG, Smith H, Alam D, Batra M, Gerbi SA. Ecdysone induces transcription and amplification in Sciara coprophila DNA puff II/9A. Dev Biol 2006; 299:151-63. [PMID: 16938289 DOI: 10.1016/j.ydbio.2006.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 01/10/2023]
Abstract
DNA replication is normally tightly regulated to ensure the production of only one copy of the genome per cell cycle. However, DNA puffs of the salivary gland giant polytene chromosomes of Sciara coprophila undergo DNA amplification during the normal course of development, overriding this control. This developmental strategy provides more template for the production of large amounts of protein needed for pupation. We have focused on DNA puff II/9A, which amplifies approximately 17-fold over the rest of the genome. Evidence presented here suggests that DNA amplification at this locus is controlled by the steroid hormone ecdysone, the master regulator of insect development. Explanted, pre-amplification stage salivary glands undergo premature amplification when incubated with ecdysone. Injection of ecdysone into pre-amplification stage larvae induces amplification. Ecdysone also induces transcription of the II/9A genes. We report the presence of a putative ecdysone response element directly adjacent to the origin recognition complex (ORC)-binding site in the II/9A origin and demonstrate that it is efficiently bound by the Sciara ecdysone receptor. These results implicate ecdysone in the regulation of DNA amplification in Sciara and suggest the ecdysone receptor may be the elusive amplification factor. This would be a new role for this transcription factor.
Collapse
Affiliation(s)
- Michael S Foulk
- Brown University, 69 Brown St.-J.W. Wilson Laboratory, Providence, RI 02912, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sala A. B-MYB, a transcription factor implicated in regulating cell cycle, apoptosis and cancer. Eur J Cancer 2005; 41:2479-84. [PMID: 16198555 DOI: 10.1016/j.ejca.2005.08.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
B-MYB belongs to the MYB family of transcription factors that include A-MYB and c-MYB. While A-MYB and c-MYB are tissue-specific, B-MYB is broadly expressed in rapidly dividing cells of developing or adult mammals. B-MYBs liaisons with important players of the cell cycle and transcription machinery, such as E2F and retinoblastoma proteins, suggest that its essential function in stem cell formation and mammalian development could be related to its ability to directly or indirectly impinge on gene expression. Besides its role in the cell cycle, B-MYB has been shown to promote cell survival by activating antiapoptotic genes such as ApoJ/clusterin and BCL2. Here, we discuss how B-MYB could be implicated in tumourigenesis by regulating gene expression.
Collapse
Affiliation(s)
- Arturo Sala
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, WC1N 1EH London, UK.
| |
Collapse
|
19
|
Bartusel T, Schubert S, Klempnauer KH. Regulation of the cyclin D1 and cyclin A1 promoters by B-Myb is mediated by Sp1 binding sites. Gene 2005; 351:171-80. [PMID: 15922873 DOI: 10.1016/j.gene.2005.03.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/21/2005] [Accepted: 03/22/2005] [Indexed: 11/25/2022]
Abstract
B-Myb is a highly conserved member of the Myb family of transcription factors which plays an important role during the cell cycle. Previous work has shown that B-Myb is phosphorylated at several sites by cyclin A/Cdk2 in the early S-phase. These phosphorylations increase the transactivation potential of B-Myb by counteracting the repressive function of an inhibitory domain located at the carboxyl-terminus of B-Myb. As yet, only a few genes have been identified as B-Myb target genes. Previous work has suggested that the cyclin D1 gene might be regulated by B-Myb. Here, we have studied the effect of B-Myb on the promoter of the cyclin D1 gene. We show that B-Myb is a potent activator of the cyclin D1 promoter and that this activation is not mediated by Myb binding sites but rather by a group of Sp1 binding sites which have previously been shown to be crucial for cyclin D1 promoter activity. Our data show that the C-terminal domain of B-Myb is required for the activation of the cyclin D1 promoter and that this part of B-Myb interacts with Sp1. Finally, we have found that the promoter of the cyclin A1 gene is also activated by B-Myb by a Sp1 binding site-dependent mechanism. The effect of B-Myb on the promoters of the cyclin A1 and D1 genes is reminiscent of the mechanism that has been proposed for the autoregulation of the B-myb promoter by B-Myb, which also involves Sp1 binding sites. Taken together, our identification of two novel B-Myb responsive promoters whose activation by B-Myb does not involve Myb binding sites extends previous evidence for the existence of a distinct mechanism of transactivation by B-Myb which is dependent on Sp1 binding sites. The observation that this mechanism is not subject to the inhibitory effect of the C-terminal domain of B-Myb but rather requires this domain supports the notion that the Sp1 site-dependent mechanism is already active in the G1-phase prior to the phosphorylation of B-Myb by cyclin A/Cdk2.
Collapse
Affiliation(s)
- Thorsten Bartusel
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Germany
| | | | | |
Collapse
|
20
|
Kurahashi T, Nomura T, Kanei-Ishii C, Shinkai Y, Ishii S. The Wnt-NLK signaling pathway inhibits A-Myb activity by inhibiting the association with coactivator CBP and methylating histone H3. Mol Biol Cell 2005; 16:4705-13. [PMID: 16055500 PMCID: PMC1237076 DOI: 10.1091/mbc.e05-05-0470] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The c-myb proto-oncogene product (c-Myb) regulates proliferation and differentiation of hematopoietic cells. Recently we have shown that c-Myb is degraded in response to Wnt-1 stimulation via a pathway involving TAK1 (TGF-beta-activated kinase), HIPK2 (homeodomain-interacting protein kinase 2), and NLK (Nemo-like kinase). NLK and HIPK2 bind directly to c-Myb and phosphorylate c-Myb at multiple sites, inducing its ubiquitination and proteasome-dependent degradation. The mammalian myb gene family contains two members in addition to c-myb, A-myb, and B-myb. Here, we report that the Wnt-NLK pathway also inhibits A-Myb activity, but by a different mechanism. As in the case of c-Myb, both NLK and HIPK2 bound directly to A-Myb and inhibited its activity. NLK phosphorylated A-Myb, but did not induce A-Myb degradation. Overexpression of NLK inhibited the association between A-Myb and the coactivator CBP, thus, blocking A-Myb-induced trans-activation. The kinase activity of NLK is required for the efficient inhibition of the association between A-Myb and CBP, although the kinase-negative form of NLK also partly inhibits the interaction between A-Myb and CBP. Furthermore, NLK induced the methylation of histone H3 at lysine-9 at A-Myb-bound promoter regions. Thus, the Wnt-NLK pathway inhibits the activity of each Myb family member by different mechanisms.
Collapse
Affiliation(s)
- Toshihiro Kurahashi
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | |
Collapse
|
21
|
Codina A, Love JD, Li Y, Lazar MA, Neuhaus D, Schwabe JWR. Structural insights into the interaction and activation of histone deacetylase 3 by nuclear receptor corepressors. Proc Natl Acad Sci U S A 2005; 102:6009-14. [PMID: 15837933 PMCID: PMC1087922 DOI: 10.1073/pnas.0500299102] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SMRT (silencing mediator of retinoid acid and thyroid hormone receptor) and NCoR (nuclear receptor corepressor) are transcriptional corepressors that play an essential role in the regulation of development and metabolism. This role is achieved, in part, through the recruitment of a key histone deacetylase (HDAC3), which is itself indispensable for cell viability. The assembly of HDAC3 with the deacetylase activation domain (DAD) of SMRT and NCoR is required for activation of the otherwise inert deacetylase. The DAD comprises an N-terminal DAD-specific motif and a C-terminal SANT (SWI3/ADA2/NCoR/TFIIIB)-like domain. We report here the solution structure of the DAD from SMRT, which reveals a four-helical structure. The DAD differs from the SANT (and MYB) domains in that (i) it has an additional N-terminal helix and (ii) there is a notable hydrophobic groove on the surface of the domain. Structure-guided mutagenesis, combined with interaction assays, showed that residues in the vicinity of the hydrophobic groove are required for interaction with (and hence activation of) HDAC3. Importantly, one surface-exposed lysine is required for activation of HDAC3, but not for interaction. This lysine may play a uniquely important role in the mechanism of activating HDAC3.
Collapse
Affiliation(s)
- Anna Codina
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Hofmann CS, Wang X, Sullivan CP, Toselli P, Stone PJ, McLean SE, Mecham RP, Schreiber BM, Sonenshein GE. B-Myb Represses Elastin Gene Expression in Aortic Smooth Muscle Cells. J Biol Chem 2005; 280:7694-701. [PMID: 15615710 DOI: 10.1074/jbc.m412501200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
B-Myb represses collagen gene transcription in vascular smooth muscle cells (SMCs) in vitro and in vivo. Here we sought to determine whether elastin is similarly repressed by B-Myb. Levels of tropoelastin mRNA and protein were lower in aortas and isolated SMCs of adult transgenic mice expressing the human B-myb gene, driven by the basal cytomegalovirus promoter, compared with age-matched wild type (WT) animals. However, the vessel wall architecture and levels of insoluble elastin revealed no differences. Since elastin deposition occurs early in development, microarray analysis was performed using nontransgenic mice. Aortic levels of tropoelastin mRNA were low during embryonal growth and increased substantially in neonates, whereas B-myb levels varied inversely. Tropoelastin mRNA expression in aortas of 6-day-old neonatal transgenic and WT animals was comparable. Recently, we demonstrated that cyclin A-Cdk2 prevents B-Myb-mediated repression of collagen promoter activity. Cyclin A2 levels were higher in neonatal versus adult WT or transgenic mouse aortas. Ectopic cyclin A expression reversed the ability of B-Myb to repress elastin gene promoter activity in adult SMCs. These results demonstrate for the first time that B-Myb represses SMC elastin gene expression and that cyclin A plays a role in the developmental regulation of elastin gene expression in the aorta. Furthermore, the findings provide additional insight into the mechanism of B-myb-mediated resistance to femoral artery injury.
Collapse
Affiliation(s)
- Claudia S Hofmann
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jonas BA, Privalsky ML. SMRT and N-CoR corepressors are regulated by distinct kinase signaling pathways. J Biol Chem 2004; 279:54676-86. [PMID: 15491994 PMCID: PMC2653424 DOI: 10.1074/jbc.m410128200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-CoR and SMRT are corepressor paralogs that partner with and mediate transcriptional repression by a wide variety of metazoan transcription factors, including nuclear hormone receptors. Although encoded by distinct genetic loci, N-CoR and SMRT share substantial sequence interrelatedness, form analogous assemblies with histone deacetylases and auxiliary factors, can interact with overlapping sets of transcription factor partners, and exert overlapping functions in cells. SMRT is subject to negative regulation by MAPK signaling pathways operating downstream of growth factor and stress signaling pathways. We report here that whereas activation of MEKK1 leads to phosphorylation of SMRT, its dissociation from its transcription factor partners in vivo and in vitro, and its redistribution from the cell nucleus to a cytoplasmic compartment, N-CoR is refractory to all these forms of regulation. In contrast to this MAPK cascade, other signal transduction pathways operating downstream of growth factor/cytokine receptors appear able to affect both corepressor paralogs. Our results indicate that SMRT and N-CoR are embedded in distinct regulatory networks and that the two corepressors interpret growth factor, cytokine, differentiation, and prosurvival signals differently.
Collapse
Affiliation(s)
| | - Martin L. Privalsky
- To whom correspondence should be addressed: Section of Microbiology, University of California, One Shields Ave., Davis, CA 95616. Tel.: 530−752−3013; Fax: 530−752−9014; E-mail:
| |
Collapse
|
24
|
Beall EL, Bell M, Georlette D, Botchan MR. Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication. Genes Dev 2004; 18:1667-80. [PMID: 15256498 PMCID: PMC478189 DOI: 10.1101/gad.1206604] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gene amplification at the chorion loci in Drosophila ovarian follicle cells is a model for the developmental regulation of DNA replication. Previously, we showed that the Drosophila homolog of the Myb oncoprotein family (DmMyb) is tightly associated with four additional proteins and that DmMyb is required for this replication-mediated amplification. Here we used targeted mutagenesis to generate a mutant in the largest subunit of the DmMyb complex, the Aly and Lin-9 family member, Myb-interacting protein 130 (Mip130). We found that mip130 mutant females are sterile and display inappropriate bromodeoxyuridine (BrdU) incorporation throughout the follicle cell nuclei at stages undergoing gene amplification. Whereas mutations in Dm-myb are lethal, mutations in mip130 are viable. Surprisingly, Dm-myb mip130 double mutants are also viable and display the same phenotypes as mip130 mutants alone. This suggests that Mip130 activity without DmMyb counteraction may be responsible for the Dm-myb mutant lethality. RNA interference (RNAi) to selectively remove each DmMyb complex member revealed that DmMyb protein levels are dependent upon the presence of several of the complex members. Together, these data support a model in which DmMyb activates a repressive complex containing Mip130 into a complex competent to support replication at specific loci in a temporally and developmentally proscribed manner.
Collapse
Affiliation(s)
- Eileen L Beall
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
25
|
Hofmann CS, Sullivan CP, Jiang HY, Stone PJ, Toselli P, Reis ED, Chereshnev I, Schreiber BM, Sonenshein GE. B-Myb represses vascular smooth muscle cell collagen gene expression and inhibits neointima formation after arterial injury. Arterioscler Thromb Vasc Biol 2004; 24:1608-13. [PMID: 15256398 DOI: 10.1161/01.atv.0000139010.71779.f3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The function of B-Myb, a negative regulator of vascular smooth muscle cell (SMC) matrix gene transcription, was analyzed in the vasculature. METHODS AND RESULTS Mice were generated in which the human B-myb gene was driven by the basal cytomegalovirus promoter, and 3 founders were identified. Mice appeared to develop normally, and human B-myb was expressed in the aortas. Total B-Myb levels were elevated in aortas of adult transgenic versus wild-type (WT) animals and varied inversely with alpha1(I) collagen mRNA expression. However, neonatal WT and transgenic aortas displayed comparable levels of alpha1(I) collagen mRNA, likely resulting from elevated levels of cyclin A, which ablated repression by B-Myb. Aortic SMCs from adult transgenic animals displayed decreased alpha1(I) collagen mRNA levels. To examine the role of B-Myb after vascular injury, animals were subjected to femoral artery denudation, which induces SMC-rich lesion formation. A dramatic reduction in neointima formation and lumenal narrowing was observed in arteries of B-myb transgenic versus WT mice 4 weeks after injury. CONCLUSIONS Data indicate that B-Myb, which inhibits matrix gene expression in the adult vessel wall, reduces neointima formation after vascular injury. To analyze B-Myb function in the vasculature, mice overexpressing B-myb were generated. Neonates displayed normal alpha1(I) collagen mRNA levels, whereas adults expressed decreased collagen mRNA in aortas and isolated vascular SMCs. On femoral artery denudation, neointima formation was dramatically reduced in B-myb transgenic mice.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Aorta/metabolism
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Collagen/biosynthesis
- Collagen/genetics
- Cyclin A/biosynthesis
- Cyclin A/genetics
- Cytomegalovirus/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Female
- Femoral Artery/injuries
- Femoral Artery/metabolism
- Femoral Artery/pathology
- Gene Expression Regulation
- Humans
- Male
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transgenes
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Claudia S Hofmann
- Department of Biochemistry, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Nuclear receptors (also known as nuclear hormone receptors) are hormone-regulated transcription factors that control many important physiological and developmental processes in animals and humans. Defects in receptor function result in disease. The diverse biological roles of these receptors reflect their surprisingly versatile transcriptional properties, with many receptors possessing the ability to both repress and activate target gene expression. These bipolar transcriptional properties are mediated through the interactions of the receptors with two distinct classes of auxiliary proteins: corepressors and coactivators. This review focuses on how corepressors work together with nuclear receptors to repress gene transcription in the normal organism and on the aberrations in this process that lead to neoplasia and endocrine disorders. The actions of coactivators and the contributions of the same corepressors to the functions of nonreceptor transcription factors are also touched on.
Collapse
Affiliation(s)
- Martin L Privalsky
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
27
|
Schubert S, Horstmann S, Bartusel T, Klempnauer KH. The cooperation of B-Myb with the coactivator p300 is orchestrated by cyclins A and D1. Oncogene 2004; 23:1392-404. [PMID: 14973551 DOI: 10.1038/sj.onc.1207255] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B-Myb is a highly conserved member of the Myb family of transcription factors whose activity is regulated during the cell cycle. Previous work has shown that the activity of B-Myb is stimulated by cyclin A/Cdk2-dependent phosphorylation whereas interaction of B-Myb with cyclin D1 inhibits its activity. Here, we have investigated the role of p300 as a coactivator for B-Myb. We show that B-Myb-dependent transactivation is stimulated by p300 as a result of interaction between B-Myb and p300. We have mapped the sequences responsible for the interaction of B-Myb and p300 to the E1A-binding region of p300 and the transactivation domain of B-Myb, respectively. Furthermore, our data suggest that phosphorylation of B-Myb stimulates its acetylation by p300 and that the acetylation of B-Myb is necessary for the full stimulation of its transactivation potential by p300. We have also studied the effect of cyclin D1 on the cooperation of B-Myb and p300. Based on our results we propose that cyclin D1 inhibits the activity of B-Myb by interfering with the interaction of B-Myb and p300. The data reported here provide novel insight into the mechanisms by which the activity of B-Myb is regulated during the cell cycle. Taken together they suggest that the coactivator p300 plays an important role in this regulation and that the cooperation of B-Myb and p300 is orchestrated by cyclins A and D1.
Collapse
Affiliation(s)
- Stephan Schubert
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str 2, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
28
|
Abstract
B-Myb is a highly conserved member of the Myb family of transcription factors, which has been implicated in cell cycle regulation. B-Myb is expressed in most proliferating cells and its activity is highly regulated around the G1/S-phase border of the cell cycle. It is generally assumed that B-Myb regulates the expression of genes that are crucial for cell proliferation; however, the identity of these genes, the molecular mechanisms by which B-Myb stimulates their expression and the involvement of other proteins have not been sufficiently clarified. We have employed the hamster cell line ts13 as a tool to demonstrate a functional link between B-Myb and the coactivator TAF(II)250, a key component of the transcriptional machinery which itself is essential for cell proliferation. ts13 cells express a point-mutated version of TAF(II)250 whose intrinsic histone acetyl transferase activity is temperature sensitive. Transactivation of Myb-responsive reporter genes by B-Myb is temperature-dependent in ts13 cells but not in ts13 cells, which have been rescued by transfection with an expression vector for wild-type TAF(II)250. Furthermore, B-Myb and TAF(II)250 can be coprecipitated, suggesting that both proteins are present in a complex. The formation of this complex is dependent on the DNA-binding domain of B-Myb and not on its transactivation domain. Taken together, these observations provide the first evidence that the coactivator TAF(II)250 is involved in the activation of Myb responsive promoters by B-Myb. The finding that B-Myb transactivation is dependent on a key coactivator involved in cell cycle control is consistent with and strengthens the idea that B-Myb plays a crucial role as a transcription factor in proliferating cells.
Collapse
Affiliation(s)
- Thorsten Bartusel
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str 2, D-48149 Münster, Germany
| | | |
Collapse
|
29
|
Petrovas C, Jeay S, Lewis RE, Sonenshein GE. B-Myb repressor function is regulated by cyclin A phosphorylation and sequences within the C-terminal domain. Oncogene 2003; 22:2011-20. [PMID: 12673206 DOI: 10.1038/sj.onc.1206231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
B-Myb is a widely expressed member of the myb oncogene family that has been shown to act as either an activator or repressor of gene transcription in a cell-type-specific fashion. For example, in aortic smooth muscle cells B-Myb represses transcription of the alpha2(V) collagen gene. Recently, phosphorylation of B-Myb by cyclin A was shown to enhance greatly its ability to transactivate. Here, we have tested the effects of cyclin A on the ability of B-Myb to repress. We report that coexpression of cyclin A abolished repression of the alpha2(V) collagen promoter, whereas a dominant-negative cyclin-dependent kinase 2 (cdk2) enhanced repression by ectopic and endogenous B-Myb protein. Mutation of 10 of 22 putative cyclin A sites, which greatly reduces the effects of cyclin A on transactivation by B-Myb, had no effect on the ability of cyclin A to alleviate B-Myb-mediated repression of alpha2(V) collagen promoter activity. Furthermore, the stability of the mutant B-Myb protein was largely unaffected by cyclin A, although ectopic expression of cyclin A enhanced the rate of decay of wild-type B-Myb protein. Thus, the mechanisms of repression and activation appear distinct, for example, mediated by different critical phosphorylation sites or protein-protein interactions. B-Myb mutants with either deletion of aa 374-581 (B-Myb-Mut3) or C-terminal truncation beyond aa 491 (B-Myb-491) positively regulated alpha2(V) collagen promoter activity, and were not affected by cyclin A. Thus, our findings indicate that the ability of B-Myb to function as a repressor of matrix promoter activity is abolished by cyclin A, and maps the sites mediating negative regulation by B-Myb to the region between aa 491 and 582.
Collapse
|
30
|
Chang CY, Norris JD, Jansen M, Huang HJ, McDonnell DP. Application of random peptide phage display to the study of nuclear hormone receptors. Methods Enzymol 2003; 364:118-42. [PMID: 14631842 DOI: 10.1016/s0076-6879(03)64007-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ching-yi Chang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|