1
|
Yao GQ, Zhu M, Insogna K. PTH-dependent stabilization of RANKL mRNA is associated with increased phosphorylation of the KH-type splicing regulatory protein. Mol Cell Endocrinol 2025; 595:112412. [PMID: 39536935 DOI: 10.1016/j.mce.2024.112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Parathyroid hormone (PTH) receptor agonists promote bone formation but also increase osteoclastogenesis, in part by increasing expression of the receptor activator of nuclear factor kappa-Β ligand (RANKL). In addition to activation of transcription, regulation of mRNA stability is another important molecular mechanism controlling mRNA abundance. PTH treatment for 6 h resulted in a 7.4-fold elevation in RANKL mRNA expression in UAMS-32P cells, despite prior inhibition of cellular transcription by thiophosphoryl (TPL). RANKL mRNA, like other TNF family members, contains AU-Rich Elements (AREs) in the 3' UTR. AU-Rich Element Binding Proteins (ABPs including KSRP, TTP, AUF1 and HuR) bind to AREs and regulate mRNA stability. There was significantly more KSRP bound to RANKL mRNA than any of the other ABPs. PTH did not increase the amount of ABPs bound to the RANKL transcript. However, the level of cellular phosphorylated KSRP was significantly increased in UAMS-32P cells pre-treated with TPL followed by PTH exposure, compared to cells treated with vehicle following TPL. The extent of phosphorylation of cellular AUF1, HuR, and TTP did not increase with PTH treatment. There were no significant changes in the cellular content of total Pin1 and phospho-Pin1 protein with PTH treatment. We conclude that increases in cellular phospho-KSRP following PTH treatment, together with fact that the total amount of the KSRP bound to the RANKL mRNA did not change with PTH-treatment, may indicate that phospho-KSRP plays some role in stabilizing the RANKL transcript.
Collapse
Affiliation(s)
- Gang-Qing Yao
- From the Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Meiling Zhu
- From the Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Karl Insogna
- From the Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
2
|
Guillen-Quispe YN, Kim SJ, Saeidi S, Choi GJ, Chelakkot C, Zhou T, Bang SB, Kim TW, Shin YK, Surh YJ. Non-canonical Function of Prolyl Hydroxylase Domain 2 in Breast Cancer Cell Growth and Progression: Role of Peptidyl-prolyl Cis-trans Isomerase NIMA-interacting 1. J Cancer Prev 2024; 29:129-139. [PMID: 39790223 PMCID: PMC11706723 DOI: 10.15430/jcp.24.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Prolyl hydroxylase domain 2 (PHD2) is the primary oxygen sensing enzyme involved in hydroxylation of hypoxia-inducible factor (HIF). Under normoxic conditions, PHD2 hydroxylates specific proline residues in HIF-1α and HIF-2α, promoting their ubiquitination and subsequent proteasomal degradation. Although PHD2 activity decreases in hypoxia, notable residual activity persists, but its function in these conditions remains unclear. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) targets proteins with phosphorylated serine/threonine-proline (pSer/Thr-Pro) motifs. As PHD2 contains several pSer/Thr-Pro motifs, it may be a potential substrate of Pin1. In the present study, we found Pin1 and PHD2 interactions in human breast cancer MDA-MB-231 cells. The breast cancer tissue array revealed higher levels of PHD2 and Pin1 in tumors compared to adjacent normal tissues. Through liquid chromatography-tandem mass spectrometry spectrometry, three phosphorylation sites (S125, T168, and S174) on PHD2 were identified, with serine 125 as the main site for Pin1 binding. As a new Pin1 binding partner, oncogenic PHD2 could be a potential therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Yanymee N. Guillen-Quispe
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Soma Saeidi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Gyo-Jin Choi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Chaithanya Chelakkot
- Department of Pharmacy, Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Tianchi Zhou
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Sang-Beom Bang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Tae-Won Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
- Department of Pharmacy, Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, Korea
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Lu KP, Zhou XZ. Pin1-catalyzed conformational regulation after phosphorylation: A distinct checkpoint in cell signaling and drug discovery. Sci Signal 2024; 17:eadi8743. [PMID: 38889227 PMCID: PMC11409840 DOI: 10.1126/scisignal.adi8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein phosphorylation is one of the most common mechanisms regulating cellular signaling pathways, and many kinases and phosphatases are proven drug targets. Upon phosphorylation, protein functions can be further regulated by the distinct isomerase Pin1 through cis-trans isomerization. Numerous protein targets and many important roles have now been elucidated for Pin1. However, no tools are available to detect or target cis and trans conformation events in cells. The development of Pin1 inhibitors and stereo- and phospho-specific antibodies has revealed that cis and trans conformations have distinct and often opposing cellular functions. Aberrant conformational changes due to the dysregulation of Pin1 can drive pathogenesis but can be effectively targeted in age-related diseases, including cancers and neurodegenerative disorders. Here, we review advances in understanding the roles of Pin1 signaling in health and disease and highlight conformational regulation as a distinct signal transduction checkpoint in disease development and treatment.
Collapse
Affiliation(s)
- Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Robarts Research Institute, Schulich School of Medicine & Dentistry
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry
- Lawson Health Research Institute, Western University, London, ON N6G 2V4, Canada
| |
Collapse
|
4
|
Ferreon JC, Ta HM, Yun H, Choi KJ, Quan MD, Tsoi PS, Kim C, Lee CW, Ferreon ACM. Stereospecific NANOG PEST Stabilization by Pin1. Biochemistry 2024; 63:1067-1074. [PMID: 38619104 DOI: 10.1021/acs.biochem.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
NANOG protein levels correlate with stem cell pluripotency. NANOG concentrations fluctuate constantly with low NANOG levels leading to spontaneous cell differentiation. Previous literature implicated Pin1, a phosphorylation-dependent prolyl isomerase, as a key player in NANOG stabilization. Here, using NMR spectroscopy, we investigate the molecular interactions of Pin1 with the NANOG unstructured N-terminal domain that contains a PEST sequence with two phosphorylation sites. Phosphorylation of NANOG PEST peptides increases affinity to Pin1. By systematically increasing the amount of cis PEST conformers, we show that the peptides bind tighter to the prolyl isomerase domain (PPIase) of Pin1. Phosphorylation and cis Pro enhancement at both PEST sites lead to a 5-10-fold increase in NANOG binding to the Pin1 WW domain and PPIase domain, respectively. The cis-populated NANOG PEST peptides can be potential inhibitors for disrupting Pin1-dependent NANOG stabilization in cancer stem cells.
Collapse
Affiliation(s)
- Josephine C Ferreon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Hai Minh Ta
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoung-Jae Choi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - My Diem Quan
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Phoebe S Tsoi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Choel Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Allan Chris M Ferreon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
5
|
Stewart R, Sharma S, Wu T, Okuda S, Xie G, Zhou XZ, Shilton B, Lu KP. The role of the master cancer regulator Pin1 in the development and treatment of cancer. Front Cell Dev Biol 2024; 12:1343938. [PMID: 38745861 PMCID: PMC11091292 DOI: 10.3389/fcell.2024.1343938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
This review examines the complex role of Pin1 in the development and treatment of cancer. Pin1 is the only peptidyl-prolyl isomerase (PPIase) that can recognize and isomerize phosphorylated Ser/Thr-Pro peptide bonds. Pin1 catalyzes a structural change in phosphorylated Ser/Thr-Pro motifs that can modulate protein function and thereby impact cell cycle regulation and tumorigenesis. The molecular mechanisms by which Pin1 contributes to oncogenesis are reviewed, including Pin1 overexpression and its correlation with poor cancer prognosis, and the contribution of Pin1 to aggressive tumor phenotypes involved in therapeutic resistance is discussed, with an emphasis on cancer stem cells, the epithelial-to-mesenchymal transition (EMT), and immunosuppression. The therapeutic potential of Pin1 inhibition in cancer is discussed, along with the promise and the difficulties in identifying potent, drug-like, small-molecule Pin1 inhibitors. The available evidence supports the efficacy of targeting Pin1 as a novel cancer therapeutic by analyzing the role of Pin1 in a complex network of cancer-driving pathways and illustrating the potential of synergistic drug combinations with Pin1 inhibitors for treating aggressive and drug-resistant tumors.
Collapse
Affiliation(s)
- Robert Stewart
- Department of Biochemistry, Western University, London, ON, Canada
| | - Shaunik Sharma
- Department of Biochemistry, Western University, London, ON, Canada
| | - Timothy Wu
- Department of Biochemistry, Western University, London, ON, Canada
| | - Sho Okuda
- Department of Biochemistry, Western University, London, ON, Canada
| | - George Xie
- Department of Biochemistry, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Brian Shilton
- Department of Biochemistry, Western University, London, ON, Canada
| | - Kun Ping Lu
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
| |
Collapse
|
6
|
Jeong J, Usman M, Li Y, Zhou XZ, Lu KP. Pin1-Catalyzed Conformation Changes Regulate Protein Ubiquitination and Degradation. Cells 2024; 13:731. [PMID: 38727267 PMCID: PMC11083468 DOI: 10.3390/cells13090731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The unique prolyl isomerase Pin1 binds to and catalyzes cis-trans conformational changes of specific Ser/Thr-Pro motifs after phosphorylation, thereby playing a pivotal role in regulating the structure and function of its protein substrates. In particular, Pin1 activity regulates the affinity of a substrate for E3 ubiquitin ligases, thereby modulating the turnover of a subset of proteins and coordinating their activities after phosphorylation in both physiological and disease states. In this review, we highlight recent advancements in Pin1-regulated ubiquitination in the context of cancer and neurodegenerative disease. Specifically, Pin1 promotes cancer progression by increasing the stabilities of numerous oncoproteins and decreasing the stabilities of many tumor suppressors. Meanwhile, Pin1 plays a critical role in different neurodegenerative disorders via the regulation of protein turnover. Finally, we propose a novel therapeutic approach wherein the ubiquitin-proteasome system can be leveraged for therapy by targeting pathogenic intracellular targets for TRIM21-dependent degradation using stereospecific antibodies.
Collapse
Affiliation(s)
- Jessica Jeong
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Muhammad Usman
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Yitong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Department of Pathology and Laboratory Medicine, and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, Western University, London, ON N6C 2R5, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; (J.J.)
- Robarts Research Institute, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
7
|
Wu S, Zou Y, Tan X, Yang S, Chen T, Zhang J, Xu X, Wang F, Li W. The molecular mechanisms of peptidyl-prolyl cis/trans isomerase Pin1 and its relevance to kidney disease. Front Pharmacol 2024; 15:1373446. [PMID: 38711994 PMCID: PMC11070514 DOI: 10.3389/fphar.2024.1373446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Pin1 is a member of the peptidyl-prolyl cis/trans isomerase subfamily and is widely expressed in various cell types and tissues. Alterations in Pin1 expression levels play pivotal roles in both physiological processes and multiple pathological conditions, especially in the onset and progression of kidney diseases. Herein, we present an overview of the role of Pin1 in the regulation of fibrosis, oxidative stress, and autophagy. It plays a significant role in various kidney diseases including Renal I/R injury, chronic kidney disease with secondary hyperparathyroidism, diabetic nephropathy, renal fibrosis, and renal cell carcinoma. The representative therapeutic agent Juglone has emerged as a potential treatment for inhibiting Pin1 activity and mitigating kidney disease. Understanding the role of Pin1 in kidney diseases is expected to provide new insights into innovative therapeutic interventions and strategies. Consequently, this review delves into the molecular mechanisms of Pin1 and its relevance in kidney disease, paving the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Shukun Wu
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yurong Zou
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Shuang Yang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Southwest Medical University, Luzhou, China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingli Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Wang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- Department of Emergency Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Qiu C, Li Z, Leigh DA, Duan B, Stucky JE, Kim N, Xie G, Lu KP, Zhou XZ. The role of the Pin1- cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia. Front Cell Dev Biol 2024; 12:1343962. [PMID: 38628595 PMCID: PMC11019028 DOI: 10.3389/fcell.2024.1343962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by deposits of abnormal Tau protein in the brain. Conventional tauopathies are often defined by a limited number of Tau epitopes, notably neurofibrillary tangles, but emerging evidence suggests structural heterogeneity among tauopathies. The prolyl isomerase Pin1 isomerizes cis P-tau to inhibit the development of oligomers, tangles and neurodegeneration in multiple neurodegenerative diseases such as Alzheimer's disease, traumatic brain injury, vascular contribution to cognitive impairment and dementia (VCID) and preeclampsia (PE). Thus, cis P-tau has emerged as an early etiological driver, blood marker and therapeutic target for multiple neurodegenerative diseases, with clinical trials ongoing. The discovery of cis P-tau and other tau pathologies in VCID and PE calls attention for simplistic classification of tauopathy in neurodegenerative diseases. These recent advances have revealed the exciting novel role of the Pin1-cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Zhixiong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - David A. Leigh
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph E. Stucky
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nami Kim
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - George Xie
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, and Lawson Health Research Institute, Western University, London, ON, Canada
| |
Collapse
|
9
|
Zhu Q, Liang P, Meng H, Li F, Miao W, Chu C, Wang W, Li D, Chen C, Shi Y, Yu X, Ping Y, Niu C, Wu HB, Zhang A, Bian XW, Zhou W. Stabilization of Pin1 by USP34 promotes Ubc9 isomerization and protein sumoylation in glioma stem cells. Nat Commun 2024; 15:40. [PMID: 38167292 PMCID: PMC10762127 DOI: 10.1038/s41467-023-44349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The peptidyl-prolyl cis-trans isomerase Pin1 is a pivotal therapeutic target in cancers, but the regulation of Pin1 protein stability is largely unknown. High Pin1 expression is associated with SUMO1-modified protein hypersumoylation in glioma stem cells (GSCs), but the underlying mechanisms remain elusive. Here we demonstrate that Pin1 is deubiquitinated and stabilized by USP34, which promotes isomerization of the sole SUMO E2 enzyme Ubc9, leading to SUMO1-modified hypersumoylation to support GSC maintenance. Pin1 interacts with USP34, a deubiquitinase with preferential expression and oncogenic function in GSCs. Such interaction is facilitated by Plk1-mediated phosphorylation of Pin1. Disruption of USP34 or inhibition of Plk1 promotes poly-ubiquitination and degradation of Pin1. Furthermore, Pin1 isomerizes Ubc9 to upregulate Ubc9 thioester formation with SUMO1, which requires CDK1-mediated phosphorylation of Ubc9. Combined inhibition of Pin1 and CDK1 with sulfopin and RO3306 most effectively suppresses orthotopic tumor growth. Our findings provide multiple molecular targets to induce Pin1 degradation and suppress hypersumoylation for cancer treatment.
Collapse
Affiliation(s)
- Qiuhong Zhu
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Panpan Liang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Meng
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fangzhen Li
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Miao
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Cuiying Chu
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongxue Li
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cong Chen
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifang Ping
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Chaoshi Niu
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hai-Bo Wu
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Aili Zhang
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei, Anhui, China.
| | - Xiu-Wu Bian
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Wenchao Zhou
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
10
|
Wang Y, Zhu W, Ma R, Tian Y, Chen X, Gao P. PIN1P1 is activated by CREB1 and promotes gastric cancer progression via interacting with YBX1 and upregulating PIN1. J Cell Mol Med 2024; 28:e18022. [PMID: 37929660 PMCID: PMC10805483 DOI: 10.1111/jcmm.18022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in the carcinogenesis and progression of cancers. However, the role and mechanism of the pseudogene lncRNA PIN1P1 in gastric carcinoma remain unclear. The expression and effects of lncRNA PIN1P1 in gastric cancer were investigated. The transcriptional regulation of CREB1 on PIN1P1 was determined by ChIP and luciferase assays. The mechanistic model of PIN1P1 in gastric cancer was further explored by RNA pull-down, RIP and western blot analysis. PIN1P1 was overexpressed in gastric cancer tissues, and upregulated PIN1P1 predicted poor prognosis in patients. CREB1 was directly combined with the promoter region of PIN1P1 to promote the transcription of PIN1P1. CREB1-mediated enhanced proliferation, migration and invasion could be partially reversed by downregulation of PIN1P1. Overexpressed PIN1P1 promoted the proliferation, migration and invasion of gastric cancer cells, whereas decreased PIN1P1 showed the opposite effects. PIN1P1 directly interacted with YBX1 and promoted YBX1 protein expression, leading to upregulation of PIN1, in which E2F1 may be involved. Silencing of YBX1 during PIN1P1 overexpression could partially rescue PIN1 upregulation. PIN1, the parental gene of PIN1P1, was elevated in gastric cancer tissues, and its upregulation was correlated with poor patient outcomes. PIN1 facilitated gastric cancer cell proliferation, migration and invasion. To sum up, CREB1-activated PIN1P1 could promote gastric cancer progression through YBX1 and upregulating PIN1, suggesting that it is a potential target for gastric cancer.
Collapse
Affiliation(s)
- Ya‐Wen Wang
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| | - Wen‐Jie Zhu
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| | - Ran‐Ran Ma
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| | - Ya‐Ru Tian
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical ScienceJinanShandongChina
| | - Xu Chen
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| | - Peng Gao
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| |
Collapse
|
11
|
Guillen-Quispe YN, Kim SJ, Saeidi S, Zhou T, Zheng J, Kim SH, Fang X, Chelakkot C, Rios-Castillo ME, Shin YK, Surh YJ. Oxygen-independent stabilization of HIF-2α in breast cancer through direct interaction with peptidyl-prolyl cis-trans isomerase NIMA-interacting 1. Free Radic Biol Med 2023; 207:296-307. [PMID: 37473874 DOI: 10.1016/j.freeradbiomed.2023.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) isomerizes the nearby proline (Pro) residue when it detects phosphorylated serine (Ser) or threonine (Thr) of target proteins, altering their structure, stability, function, and interaction with other proteins. Hypoxia-inducible factor 2α (HIF-2α), a transcription factor that transactivates many oncogenic genes under hypoxic conditions, harbours the pSer/Thr-Pro motif. We found for the first time that Pin1 binds to HIF-2α physically in normoxic as well as hypoxic conditions in human breast cancer cells. The level of ubiquitinated HIF-2α was significantly raised by Pin1 knockdown, while expression of its mRNA transcript was unaffected. In agreement with this observation, the cycloheximide chase assay demonstrated that Pin1 prolonged the stability of HIF-2α. Serine 672, 696, and 790 of HIF-2α were found to undergo phosphorylation. Of these, the main amino acid involved in the Pin1 binding and HIF-2α stabilization was identified as serine 790, located in the nuclear export signal region of HIF-2α. The tissue array with human breast cancer specimens showed elevated expression of HIF-2α as well as Pin1 compared to adjacent normal tissues. Knockdown of Pin1 or HIF-2α diminished breast cancer cell migration and colony formation. In conclusion, Pin1 stabilizes HIF-2α through direct interaction, which contributes to the growth of breast cancer.
Collapse
Affiliation(s)
- Yanymee N Guillen-Quispe
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Soma Saeidi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Tianchi Zhou
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom; MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jie Zheng
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Xizhu Fang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Chaithanya Chelakkot
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Milton E Rios-Castillo
- School of Electronic Engineering, Faculty of Electronic and Electrical Engineering, National University of San Marcos, Lima, Peru
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, 41566, South Korea.
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
12
|
Torres-Montaner A. Interactions between the DNA Damage Response and the Telomere Complex in Carcinogenesis: A Hypothesis. Curr Issues Mol Biol 2023; 45:7582-7616. [PMID: 37754262 PMCID: PMC10527771 DOI: 10.3390/cimb45090478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Contrary to what was once thought, direct cancer originating from normal stem cells seems to be extremely rare. This is consistent with a preneoplastic period of telomere length reduction/damage in committed cells that becomes stabilized in transformation. Multiple observations suggest that telomere damage is an obligatory step preceding its stabilization. During tissue turnover, the telomeres of cells undergoing differentiation can be damaged as a consequence of defective DNA repair caused by endogenous or exogenous agents. This may result in the emergence of new mechanism of telomere maintenance which is the final outcome of DNA damage and the initial signal that triggers malignant transformation. Instead, transformation of stem cells is directly induced by primary derangement of telomere maintenance mechanisms. The newly modified telomere complex may promote survival of cancer stem cells, independently of telomere maintenance. An inherent resistance of stem cells to transformation may be linked to specific, robust mechanisms that help maintain telomere integrity.
Collapse
Affiliation(s)
- Antonio Torres-Montaner
- Department of Pathology, Queen’s Hospital, Rom Valley Way, Romford, London RM7 OAG, UK;
- Departamento de Bioquímica y Biologia Molecular, Universidad de Cadiz, Puerto Real, 11510 Cadiz, Spain
| |
Collapse
|
13
|
Temizci B, Kucukvardar S, Karabay A. Spastin Promotes the Migration and Invasion Capability of T98G Glioblastoma Cells by Interacting with Pin1 through Its Microtubule-Binding Domain. Cells 2023; 12:cells12030427. [PMID: 36766769 PMCID: PMC9913556 DOI: 10.3390/cells12030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/31/2023] Open
Abstract
Microtubule-severing protein Spastin has been shown to co-localize with actin in migratory glioblastoma cells and is linked to glioblastomas' migration and invasion capacity. However, the effectiveness of Spastin in glioblastoma migration and the molecular mechanism underpinning the orientation of Spastin towards actin filaments remain unknown. Here, we demonstrated that Spastin plays an active role in glioblastoma migration by showing a reduced migratory potential of T98G glioblastoma cells using real-time cell analysis (RTCA) in Spastin-depleted cells. Pull-down assays revealed that a cis-trans isomerase Pin1 interacts with Spastin through binding to the phosphorylated Pin1 recognition motifs in the microtubule-binding domain (MBD), and immunocytochemistry analysis showed that interaction with Pin1 directs Spastin to actin filaments in extended cell regions. Consequently, by utilizing RTCA, we proved that the migration and invasion capacity of T98G glioblastoma cells significantly increased with the overexpression of Spastin, of which the Pin1 recognition motifs in MBD are constitutively phosphorylated, while the overexpression of phospho-mutant form did not have a significant effect on migration and invasion of T98G glioblastoma cells. These findings demonstrate that Pin1 is a novel interaction partner of Spastin, and their interaction drives Spastin to actin filaments, allowing Spastin to contribute to the glioblastomas' migration and invasion abilities.
Collapse
Affiliation(s)
- Benan Temizci
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, 34469 Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Seren Kucukvardar
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Arzu Karabay
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, 34469 Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, 34469 Istanbul, Turkey
- Correspondence: ; Tel.: +90-212-285-7257
| |
Collapse
|
14
|
Zhang L, Luo B, Lu Y, Chen Y. Targeting Death-Associated Protein Kinases for Treatment of Human Diseases: Recent Advances and Future Directions. J Med Chem 2023; 66:1112-1136. [PMID: 36645394 DOI: 10.1021/acs.jmedchem.2c01606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The death-associated protein kinase (DAPK) family is a member of the calcium/calmodulin-regulated serine/threonine protein kinase family, and studies have shown that its role, as its name suggests, is mainly to regulate cell death. The DAPK family comprises five members, including DAPK1, DAPK2, DAPK3, DRAK1 and DRAK2, which show high homology in the common N-terminal kinase domain but differ in the extra-catalytic domain. Notably, previous research has suggested that the DAPK family plays an essential role in both the development and regulation of human diseases. However, only a few small-molecule inhibitors have been reported. In this Perspective, we mainly discuss the structure, biological function, and role of DAPKs in diseases and the currently discovered small-molecule inhibitors, providing valuable information for the development of the DAPK field.
Collapse
Affiliation(s)
- Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Boqin Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
15
|
Ke S, Dang F, Wang L, Chen JY, Naik MT, Thavamani A, Liu Y, Li W, Kim N, Naik NM, Sui H, Tang W, Qiu C, Koikawa K, Batalini F, Wang X, Clohessy JG, Heng YJ, Lahav G, Gray NS, Zho XZ, Wei W, Wulf GM, Lu KP. Reciprocal inhibition of PIN1 and APC/C CDH1 controls timely G1/S transition and creates therapeutic vulnerability. RESEARCH SQUARE 2023:rs.3.rs-2447544. [PMID: 36711754 PMCID: PMC9882653 DOI: 10.21203/rs.3.rs-2447544/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cyclin-dependent kinases (CDKs) mediated phosphorylation inactivates the anaphase-promoting complex (APC/CCDH1), an E3 ubiquitin ligase that contains the co-activator CDH1, to promote G1/S transition. PIN1 is a phosphorylation-directed proline isomerase and a master cancer signaling regulator. However, little are known about APC/CCDH1 regulation after phosphorylation and about PIN1 ubiquitin ligases. Here we uncover a domain-oriented reciprocal inhibition that controls the timely G1/S transition: The non-phosphorylated APC/CCDH1 E3 ligase targets PIN1 for degradation in G1 phase, restraining G1/S transition; APC/CCDH1 itself, after phosphorylation by CDKs, is inactivated by PIN1-catalyzed isomerization, promoting G1/S transition. In cancer, PIN1 overexpression and APC/CCDH1 inactivation reinforce each other to promote uncontrolled proliferation and tumorigenesis. Importantly, combined PIN1- and CDK4/6-inhibition reactivates APC/CCDH1 resulting in PIN1 degradation and an insurmountable G1 arrest that translates into synergistic anti-tumor activity against triple-negative breast cancer in vivo. Reciprocal inhibition of PIN1 and APC/CCDH1 is a novel mechanism to control timely G1/S transition that can be harnessed for synergistic anti-cancer therapy.
Collapse
Affiliation(s)
- Shizhong Ke
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- These authors contributed equally to this work
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center and Cancer Research Institute, Harvard Medical School, Boston, MA 02215, USA
- These authors contributed equally to this work
| | - Lin Wang
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- These authors contributed equally to this work
| | - Jia-Yun Chen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02215, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- These authors contributed equally to this work
| | - Mandar T Naik
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Abhishek Thavamani
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| | - Wenxue Li
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Nami Kim
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nandita M Naik
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Huaxiu Sui
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, China
| | - Wei Tang
- Data Science & Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, USA
| | - Chenxi Qiu
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kazuhiro Koikawa
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Felipe Batalini
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Division of Medical Oncology, Mayo Clinic, Arizona, USA
| | - Xiaodong Wang
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - John G Clohessy
- Preclinical Murine Pharmacogenetics Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yujing Jan Heng
- Department of Pathology, Beth Israel Deaconess Medical Center and Cancer Research Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiao Zhen Zho
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Departments of Biochemistry & Oncology, Schulich School of Medicine and Dentistry, and Robarts Research Institute, Western University, London, ON N6A 3K7, Canada
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center and Cancer Research Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Gerburg M Wulf
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kun Ping Lu
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Departments of Biochemistry & Oncology, Schulich School of Medicine and Dentistry, and Robarts Research Institute, Western University, London, ON N6A 3K7, Canada
- Lead Contact
| |
Collapse
|
16
|
Targeting prolyl isomerase Pin1 as a promising strategy to overcome resistance to cancer therapies. Pharmacol Res 2022; 184:106456. [PMID: 36116709 DOI: 10.1016/j.phrs.2022.106456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022]
Abstract
The development of tumor therapeutic resistance is one of the important reasons for the failure of antitumor therapy. Starting with multiple targets and multiple signaling pathways is helpful in understanding the mechanism of tumor resistance. The overexpression of prolyl isomerase Pin1 is highly correlated with the malignancy of cancer, since Pin1 controls many oncogenes and tumor suppressors, as well as a variety of cancer-driving signaling pathways. Strikingly, numerous studies have shown that Pin1 is directly involved in therapeutic resistance. In this review, we mainly summarize the functions and mechanisms of Pin1 in therapeutic resistance of multifarious cancers, such as breast, liver, and pancreatic carcinomas. Furtherly, from the perspective of Pin1-driven cancer signaling pathways including Raf/MEK/ERK, PI3K/Akt, Wnt/β-catenin, NF-κB, as well as Pin1 inhibitors containing juglone, epigallocatechin-3-gallate (EGCG), all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), it is better to demonstrate the important potential role and mechanism of Pin1 in resistance and sensitization to cancer therapies. It will provide new therapeutic approaches for clinical reversal and prevention of tumor resistance by employing synergistic administration of Pin1 inhibitors and chemotherapeutics, implementing combination therapy of Pin1-related cancer signaling pathway inhibitors and Pin1 inhibitors, and exploiting novel Pin1-specific inhibitors.
Collapse
|
17
|
Lee YM, Teoh DEJ, Yeung K, Liou YC. The kingdom of the prolyl-isomerase Pin1: The structural and functional convergence and divergence of Pin1. Front Cell Dev Biol 2022; 10:956071. [PMID: 36111342 PMCID: PMC9468764 DOI: 10.3389/fcell.2022.956071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
More than 20 years since its discovery, our understanding of Pin1 function in various diseases continues to improve. Pin1 plays a crucial role in pathogenesis and has been implicated in metabolic disorders, cardiovascular diseases, inflammatory diseases, viral infection, cancer and neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease. In particular, the role of Pin1 in neurodegenerative diseases and cancer has been extensively studied. Our understanding of Pin1 in cancer also led to the development of cancer therapeutic drugs targeting Pin1, with some currently in clinical trial phases. However, identifying a Pin1-specific drug with good cancer therapeutic effect remains elusive, thus leading to the continued efforts in Pin1 research. The importance of Pin1 is highlighted by the presence of Pin1 orthologs across various species: from vertebrates to invertebrates and Kingdom Animalia to Plantae. Among these Pin1 orthologs, their sequence and structural similarity demonstrate the presence of conservation. Moreover, their similar functionality between species further highlights the conservancy of Pin1. As researchers continue to unlock the mysteries of Pin1 in various diseases, using different Pin1 models might shed light on how to better target Pin1 for disease therapeutics. This review aims to highlight the various Pin1 orthologs in numerous species and their divergent functional roles. We will examine their sequence and structural similarities and discuss their functional similarities and uniqueness to demonstrate the interconnectivity of Pin1 orthologs in multiple diseases.
Collapse
|
18
|
Saeidi S, Kim SJ, Guillen-Quispe YN, Jagadeesh ASV, Han HJ, Kim SH, Zhong X, Piao JY, Kim SJ, Jeong J, Shin YJ, Cha YJ, Lee HB, Han W, Min SH, Tian W, Kitamura H, Surh YJ. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 directly binds and stabilizes Nrf2 in breast cancer. FASEB J 2022; 36:e22068. [PMID: 34918396 DOI: 10.1096/fj.202100776rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 06/28/2024]
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) has been frequently overexpressed in many types of malignancy, suggesting its oncogenic function. It recognizes phosphorylated serine or threonine (pSer/Thr) of a target protein and isomerizes the adjacent proline (Pro) residue, thereby altering folding, subcellular localization, stability, and function of target proteins. The oncogenic transcription factor, Nrf2 harbors the pSer/Thr-Pro motif. This prompted us to investigate whether Pin1 could bind to Nrf2 and influence its stability and function in the context of implications for breast cancer development and progression. The correlation between Pin1 and Nrf2 in the triple-negative breast cancer cells was validated by RNASeq analysis as well as immunofluorescence staining. Interaction between Pin1 and Nrf2 was assessed by co-immunoprecipitation and an in situ proximity ligation assay. We found that mRNA and protein levels of Pin1 were highly increased in the tumor tissues of triple-negative breast cancer patients and the human breast cancer cell line. Genetic or pharmacologic inhibition of Pin1 enhanced the ubiquitination and degradation of Nrf2. In contrast, the overexpression of Pin1 resulted in the accumulation of Nrf2 in the nucleus, without affecting its transcription. Notably, the phosphorylation of Nrf2 at serine 215, 408, and 577 is essential for its interaction with Pin1. We also identified phosphorylated Ser104 and Thr277 residues in Keap1, a negative regulator of Nrf2, for Pin1 binding. Pin1 plays a role in breast cancer progression through stabilization and constitutive activation of Nrf2 by competing with Keap1 for Nrf2 binding.
Collapse
Affiliation(s)
- Soma Saeidi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yanymee N Guillen-Quispe
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | | | - Hyeong-Jun Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Seung Hyeon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Xiancai Zhong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Juan-Yu Piao
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Jin Shin
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Han-Byoel Lee
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Sang-Hyun Min
- New Drug Development Center DGMIF, Daegu, South Korea
- School of Life Science, Kyungpook National University, Daegu, South Korea
| | - Wang Tian
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Hiroshi Kitamura
- Department of Gene Expression Regulation, Division of Aging Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
19
|
Lepore A, Choy PM, Lee NCW, Carella MA, Favicchio R, Briones-Orta MA, Glaser SS, Alpini G, D'Santos C, Tooze RM, Lorger M, Syn WK, Papakyriakou A, Giamas G, Bubici C, Papa S. Phosphorylation and Stabilization of PIN1 by JNK Promote Intrahepatic Cholangiocarcinoma Growth. Hepatology 2021; 74:2561-2579. [PMID: 34048060 DOI: 10.1002/hep.31983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive type of liver cancer in urgent need of treatment options. Aberrant activation of the c-Jun N-terminal kinase (JNK) pathway is a key feature in ICC and an attractive candidate target for its treatment. However, the mechanisms by which constitutive JNK activation promotes ICC growth, and therefore the key downstream effectors of this pathway, remain unknown for their applicability as therapeutic targets. Our aim was to obtain a better mechanistic understanding of the role of JNK signaling in ICC that could open up therapeutic opportunities. APPROACH AND RESULTS Using loss-of-function and gain-of-function studies in vitro and in vivo, we show that activation of the JNK pathway promotes ICC cell proliferation by affecting the protein stability of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), a key driver of tumorigenesis. PIN1 is highly expressed in ICC primary tumors, and its expression positively correlates with active JNK. Mechanistically, the JNK kinases directly bind to and phosphorylate PIN1 at Ser115, and this phosphorylation prevents PIN1 mono-ubiquitination at Lys117 and its proteasomal degradation. Moreover, pharmacological inhibition of PIN1 through all-trans retinoic acid, a Food and Drug Administration-approved drug, impairs the growth of both cultured and xenografted ICC cells. CONCLUSIONS Our findings implicate the JNK-PIN1 regulatory axis as a functionally important determinant for ICC growth, and provide a rationale for therapeutic targeting of JNK activation through PIN1 inhibition.
Collapse
Affiliation(s)
- Alessio Lepore
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
| | - Pui Man Choy
- Institute of Hepatology, Foundation for Liver Research and Birkbeck University of London, London, United Kingdom
| | - Nathan C W Lee
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
| | - Maria Annunziata Carella
- Center for Genome Engineering and Maintenance, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Rosy Favicchio
- Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Marco A Briones-Orta
- Institute of Hepatology, Foundation for Liver Research and Birkbeck University of London, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Shannon S Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, TX
| | - Gianfranco Alpini
- Division of Gastroenterology, Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University, Indianapolis, IN
| | - Clive D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Reuben M Tooze
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
| | - Mihaela Lorger
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
| | - Wing-Kin Syn
- Institute of Hepatology, Foundation for Liver Research and Birkbeck University of London, London, United Kingdom
- Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Leioa, Spain
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Center for Scientific Research, Athens, Greece
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Concetta Bubici
- Center for Genome Engineering and Maintenance, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Salvatore Papa
- Leeds Institute of Medical Research at St. James', Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, United Kingdom
- Institute of Hepatology, Foundation for Liver Research and Birkbeck University of London, London, United Kingdom
| |
Collapse
|
20
|
da Costa KS, Galúcio JM, de Jesus DA, Gomes GC, Lima E Lima AH, Taube PS, Dos Santos AM, Lameira J. Targeting Peptidyl-prolyl Cis-trans Isomerase NIMA-interacting 1: A Structure-based Virtual Screening Approach to Find Novel Inhibitors. Curr Comput Aided Drug Des 2021; 16:605-617. [PMID: 31654518 DOI: 10.2174/1573409915666191025114009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is an enzyme that isomerizes phosphorylated serine or threonine motifs adjacent to proline residues. Pin1 has important roles in several cellular signaling pathways, consequently impacting the development of multiple types of cancers. METHODS Based on the previously reported inhibitory activity of pentacyclic triterpenoids isolated from the gum resin of Boswellia genus against Pin1, we designed a computational experiment using molecular docking, pharmacophore filtering, and structural clustering allied to molecular dynamics (MD) simulations and binding free energy calculations to explore the inhibitory activity of new triterpenoids against Pin1 structure. RESULTS Here, we report different computational evidence that triterpenoids from neem (Azadirachta indica A. Juss), such as 6-deacetylnimbinene, 6-Oacetylnimbandiol, and nimbolide, replicate the binding mode of the Pin1 substrate peptide, interacting with high affinity with the binding site and thus destabilizing the Pin1 structure. CONCLUSIONS Our results are supported by experimental data, and provide interesting structural insights into their molecular mechanism of action, indicating that their structural scaffolds could be used as a start point to develop new inhibitors against Pin1.
Collapse
Affiliation(s)
- Kauê Santana da Costa
- Institute of Biodiversity, Federal University of Western Para, Santarem, Para, Brazil
| | - João M Galúcio
- Institute of Biodiversity, Federal University of Western Para, Santarem, Para, Brazil
| | | | - Guelber Cardoso Gomes
- Institute of Pharmaceutical Sciences, Federal University of Para, 66075-110, Belem, Para, Brazil
| | | | - Paulo S Taube
- Institute of Biodiversity, Federal University of Western Para, Santarem, Para, Brazil
| | - Alberto M Dos Santos
- Institute of Biodiversity, Federal University of Western Para, Santarem, Para, Brazil
| | - Jerônimo Lameira
- Institute of Biological Sciences. Federal University of Para, 66075-110, Belem, Para, Brazil
| |
Collapse
|
21
|
Qiu C, Albayram O, Kondo A, Wang B, Kim N, Arai K, Tsai CY, Bassal MA, Herbert MK, Washida K, Angeli P, Kozono S, Stucky JE, Baxley S, Lin YM, Sun Y, Rotenberg A, Caldarone BJ, Bigio EH, Chen X, Tenen DG, Zeidel M, Lo EH, Zhou XZ, Lu KP. Cis P-tau underlies vascular contribution to cognitive impairment and dementia and can be effectively targeted by immunotherapy in mice. Sci Transl Med 2021; 13:13/596/eaaz7615. [PMID: 34078745 DOI: 10.1126/scitranslmed.aaz7615] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 08/14/2020] [Accepted: 03/26/2021] [Indexed: 01/02/2023]
Abstract
Compelling evidence supports vascular contributions to cognitive impairment and dementia (VCID) including Alzheimer's disease (AD), but the underlying pathogenic mechanisms and treatments are not fully understood. Cis P-tau is an early driver of neurodegeneration resulting from traumatic brain injury, but its role in VCID remains unclear. Here, we found robust cis P-tau despite no tau tangles in patients with VCID and in mice modeling key aspects of clinical VCID, likely because of the inhibition of its isomerase Pin1 by DAPK1. Elimination of cis P-tau in VCID mice using cis-targeted immunotherapy, brain-specific Pin1 overexpression, or DAPK1 knockout effectively rescues VCID-like neurodegeneration and cognitive impairment in executive function. Cis mAb also prevents and ameliorates progression of AD-like neurodegeneration and memory loss in mice. Furthermore, single-cell RNA sequencing revealed that young VCID mice display diverse cortical cell type-specific transcriptomic changes resembling old patients with AD, and the vast majority of these global changes were recovered by cis-targeted immunotherapy. Moreover, purified soluble cis P-tau was sufficient to induce progressive neurodegeneration and brain dysfunction by causing axonopathy and conserved transcriptomic signature found in VCID mice and patients with AD with early pathology. Thus, cis P-tau might play a major role in mediating VCID and AD, and antibody targeting it may be useful for early diagnosis, prevention, and treatment of cognitive impairment and dementia after neurovascular insults and in AD.
Collapse
Affiliation(s)
- Chenxi Qiu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Onder Albayram
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Asami Kondo
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bin Wang
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nami Kim
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ken Arai
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Cheng-Yu Tsai
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mahmoud A Bassal
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Megan K Herbert
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kazuo Washida
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Angeli
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shingo Kozono
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph E Stucky
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sean Baxley
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yu-Min Lin
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yan Sun
- Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Rotenberg
- Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Barbara J Caldarone
- NeuroBehavior Laboratory, Harvard NeuroDiscovery Center, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen H Bigio
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiaochun Chen
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Daniel G Tenen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eng H Lo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. .,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. .,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Targeting Pin1 for Modulation of Cell Motility and Cancer Therapy. Biomedicines 2021; 9:biomedicines9040359. [PMID: 33807199 PMCID: PMC8065645 DOI: 10.3390/biomedicines9040359] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/09/2023] Open
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) specifically binds and isomerizes the phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif, which leads to changes in protein conformation and function. Pin1 is widely overexpressed in cancers and plays an important role in tumorigenesis. Mounting evidence has revealed that targeting Pin1 is a potential therapeutic approach for various cancers by inhibiting cell proliferation, reducing metastasis, and maintaining genome stability. In this review, we summarize the underlying mechanisms of Pin1-mediated upregulation of oncogenes and downregulation of tumor suppressors in cancer development. Furthermore, we also discuss the multiple roles of Pin1 in cancer hallmarks and examine Pin1 as a desirable pharmaceutical target for cancer therapy. We also summarize the recent progress of Pin1-targeted small-molecule compounds for anticancer activity.
Collapse
|
23
|
Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer's disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol Psychiatry 2021; 26:280-295. [PMID: 32382138 DOI: 10.1038/s41380-020-0760-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Several epidemiological studies show an inverse association between cancer and Alzheimer's disease (AD). It is debated whether this association is the consequence of biological mechanisms shared by both these conditions or may be related to the pharmacological treatments carried out on the patients. The latter hypothesis, however, is not sustained by the available evidence. Hence, the focus of this review is to analyze common biological mechanisms for both cancer and AD and to build up a biological theory useful to explain the inverse correlation between AD and cancer. The review proposes a hypothesis, according to which several molecular players, prominently PIN1 and p53, have been investigated and considered involved in complex molecular interactions putatively associated with the inverse correlation. On the other hand, p53 involvement in both diseases seems to be a consequence of the aberrant activation of other proteins. Instead, PIN1 may be identified as a novel key regulator at the crossroad between cancer and AD. PIN1 is a peptidyl-prolyl cis-trans isomerase that catalyzes the cis-trans isomerization, thus regulating the conformation of different protein substrates after phosphorylation and modulating protein function. In particular, trans-conformations of Amyloid Precursor Protein (APP) and tau are functional and "healthy", while cis-conformations, triggered after phosphorylation, are pathogenic. As an example, PIN1 accelerates APP cis-to-trans isomerization thus favoring the non-amyloidogenic pathway, while, in the absence of PIN1, APP is processed through the amyloidogenic pathway, thus predisposing to neurodegeneration. Furthermore, a link between PIN1 and tau regulation has been found, since when PIN1 function is inhibited, tau is hyperphosphorylated. Data from brain specimens of subjects affected by mild cognitive impairment and AD have revealed a very low PIN1 expression. Moreover, polymorphisms in PIN1 promoter correlated with an increased PIN1 expression are associated with a delay of sporadic AD age of onset, while a polymorphism related to a reduced PIN1 expression is associated with a decreased risk of multiple cancers. In the case of dementias, in particular of Alzheimer's disease, new biological markers and targets based on the discussed players can be developed based on a theoretical approach relying on different grounds compared to the past. An unbiased expansion of the rationale and of the targets may help to achieve in the field of neurodegenerative dementias similar advances to those attained in the case of cancer treatment.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.
| |
Collapse
|
24
|
Saeidi S, Joo S, Kim SJ, Jagadeesh ASV, Surh YJ. Interaction between Peptidyl-prolyl Cis- trans Isomerase NIMA-interacting 1 and GTP-H-Ras: Implications for Aggressiveness of Human Mammary Epithelial Cells and Drug Resistance. J Cancer Prev 2020; 25:234-243. [PMID: 33409256 PMCID: PMC7783236 DOI: 10.15430/jcp.2020.25.4.234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of Ras has been implicated in aggressiveness of breast cancer. Among Ras isoforms (H-, K-, and N-), H-Ras has been known to be primarily responsible for invasion and metastasis of breast cancer cells. Phosphorylation of serine (Ser) or threonine (Thr) is a key regulatory mechanism responsible for controlling activities and functions of various proteins involved in intracellular signal transduction. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1, Pin1 changes the conformation of a subset of proteins phosphorylated on Ser/Thr that precedes proline (Pro). In this study we have found that Pin1 is highly overexpressed in human breast tumor tissues and H-Ras transformed human mammary epithelial (H-Ras MCF10A) and MDA-MB-231 breast cancer cells. Notably, Pin1 directly bound to the activated form of H-Ras harbouring a Ser/Thr-Pro motif. Pharmacologic inhibition of Pin1 reduced clonogenicity of MDA-MB-231 human breast cancer cells. Paclitaxel accelerates apoptosis in Pin1 silenced H-Ras MCF10A cells. MDR genes (MDR1 and MRP4) were significantly downregulated in MDA-MB-231 cells stably silenced for Pin1. We speculate that Pin1 interacts with GTP-H-Ras, thereby upregulating the expression of drug resistance genes, which confers survival advantage and aggressiveness of breast cancer cells under chemotherapy.
Collapse
Affiliation(s)
- Soma Saeidi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sihyung Joo
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Su-Jung Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Achanta Sri Venkata Jagadeesh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Young-Joon Surh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea.,College of Pharmacy, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
25
|
Saeidi S, Kim SJ, Han HJ, Kim SH, Zheng J, Lee HB, Han W, Noh DY, Na HK, Surh YJ. H-Ras induces Nrf2-Pin1 interaction: Implications for breast cancer progression. Toxicol Appl Pharmacol 2020; 402:115121. [PMID: 32621833 DOI: 10.1016/j.taap.2020.115121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
Aberrant activation of H-Ras is often associated with tumor aggressiveness in breast cancer. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is a unique enzyme that interacts with phosphorylated serine or threonine of a target protein and isomerizes the adjacent proline residue. Pin1 is prevalently overexpressed in human cancers, and its overexpression correlates with poor prognosis. Nuclear factor E2-related factor 2 (Nrf2) is a master regulator of cellular redox homeostasis. The sustained activation/accumulation of Nrf2 has been observed in many different types of human malignancies, conferring an advantage for growth and survival of cancer cells. The activated form of H-Ras (GTP-H-Ras) is highly overexpressed in human breast cancer tissues. In our present study, silencing of H-Ras decreased the invasiveness of MDA-MB-231 human breast cancer cells and abrogated the interaction between Pin1 and Nrf2 in these cells. Pin1 knockdown blocked the accumulation of Nrf2, thereby suppressing proliferation and clonogenicity of MCF10A-Ras human mammary epithelial cells. We found that Pin1 binds to Nrf2 which stabilizes this transcription factor by hampering proteasomal degradation. In conclusion, H-Ras activation in cooperation with the Pin1-Nrf2 complex represents a novel mechanism underlying breast cancer progression and constitutive activation of Nrf2 and can be exploited as a therapeutic target.
Collapse
Affiliation(s)
- Soma Saeidi
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine, Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Su-Jung Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyeong-Jun Han
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Seong Hoon Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jie Zheng
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Han-Byoel Lee
- Cancer Research Institute, Seoul National University, Seoul, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, Seoul, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong-Young Noh
- Cancer Research Institute, Seoul National University, Seoul, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine, Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
26
|
Nakatsu Y, Matsunaga Y, Ueda K, Yamamotoya T, Inoue Y, Inoue MK, Mizuno Y, Kushiyama A, Ono H, Fujishiro M, Ito H, Okabe T, Asano T. Development of Pin1 Inhibitors and their Potential as Therapeutic Agents. Curr Med Chem 2020; 27:3314-3329. [PMID: 30394205 DOI: 10.2174/0929867325666181105120911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022]
Abstract
The prolyl isomerase Pin1 is a unique enzyme, which isomerizes the cis-trans conformation between pSer/pThr and proline and thereby regulates the function, stability and/or subcellular distribution of its target proteins. Such regulations by Pin1 are involved in numerous physiological functions as well as the pathogenic mechanisms underlying various diseases. Notably, Pin1 deficiency or inactivation is a potential cause of Alzheimer's disease, since Pin1 induces the degradation of Tau. In contrast, Pin1 overexpression is highly correlated with the degree of malignancy of cancers, as Pin1 controls a number of oncogenes and tumor suppressors. Accordingly, Pin1 inhibitors as anti-cancer drugs have been developed. Interestingly, recent intensive studies have demonstrated Pin1 to be responsible for the onset or development of nonalcoholic steatosis, obesity, atherosclerosis, lung fibrosis, heart failure and so on, all of which have been experimentally induced in Pin1 deficient mice. In this review, we discuss the possible applications of Pin1 inhibitors to a variety of diseases including malignant tumors and also introduce the recent advances in Pin1 inhibitor research, which have been reported.
Collapse
Affiliation(s)
- Yusuke Nakatsu
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yasuka Matsunaga
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Koji Ueda
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Takeshi Yamamotoya
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yuki Inoue
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Masa-Ki Inoue
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yu Mizuno
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| | - Akifumi Kushiyama
- The Division of Diabetes and Metabolism, Institute for Adult Diseases, Asahi Life Foundation, Chuo-ku, Tokyo 103-0002, Japan
| | - Hiraku Ono
- Department of Clinical Cell Biology, Chiba University Graduate School of Medicine, Chiba City, Chiba 260-8677, Japan
| | - Midori Fujishiro
- The Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Hisanaka Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| |
Collapse
|
27
|
Deficiency of microRNA-628-5p promotes the progression of gastric cancer by upregulating PIN1. Cell Death Dis 2020; 11:559. [PMID: 32703934 PMCID: PMC7378826 DOI: 10.1038/s41419-020-02766-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023]
Abstract
Gastric cancer is one of the most common cancer and is the second leading cause of cancer-related mortality in the world. PIN1, belonging to peptidyl-prolyl cis-trans isomerase family, uniquely catalyzes the structural transformation of phosphorylated Ser/Thr-Pro motif. It's high expressed in most cancers and promotes their progression. However, the mechanism of PIN1 high expression and its function in gastric cancer progression are still unclear. In this research, we revealed that PIN1 not only promotes the proliferation and colony formation of gastric cancer, but also increases its migration and invasion. The PIN1 expression in metastasis lesion is usually higher than the corresponding primary site. Inhibiting PIN1 by shRNA suppresses the progression of gastric cancer significantly. Besides, we demonstrated that miR-628-5p is a novel PIN1-targeted microRNA, and the expression of miR-628-5p is negatively correlated with PIN1 in gastric cancer. Exogenous expression of miR-628-5p inhibits the progression of gastric cancer that revered by restoring PIN1 expression. However, miR-628-5p is downregulated in majority of gastric cancer tissue especially in metastasis lesion. The lower miR-628-5p level indicates poorer prognosis. In summary, our study demonstrated that deficient miR-628-5p expression facilitates the expression of PIN1, and consequently promotes the progression of gastric cancer.
Collapse
|
28
|
Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci 2020; 77:2659-2680. [PMID: 31884567 PMCID: PMC7326806 DOI: 10.1007/s00018-019-03428-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jiyeon Seo
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
29
|
Schütz M, Thomas M, Wangen C, Wagner S, Rauschert L, Errerd T, Kießling M, Sticht H, Milbradt J, Marschall M. The peptidyl-prolyl cis/trans isomerase Pin1 interacts with three early regulatory proteins of human cytomegalovirus. Virus Res 2020; 285:198023. [PMID: 32428517 DOI: 10.1016/j.virusres.2020.198023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen of high clinical relevance. Despite intensive research of virus-host interaction, crucial details still remain unknown. In this study, the role of the cellular peptidyl-prolyl cis/trans isomerase Pin1 during HCMV infection was investigated. Pin1 is able to recognize phosphorylated serine/threonine-proline motifs and regulates the structural conformation, stability and function of its substrates. Concerning HCMV replication, our recent studies revealed that Pin1 plays an important role in viral nuclear egress by contributing to the depletion of the nuclear lamina at distinct sites through the cis/trans conversion of lamin proteins. Here, novel data illustrate the HCMV-induced upregulation of Pin1 including various cell types being permissive, semi-permissive or non-permissive for productive HCMV replication. Addressing the question of functional impact, Pin1 knock-out (KO) did not show a measurable effect on viral protein expression, at least when assessed by Western blot analysis. Applying highly sensitive methods of qPCR and plaque titration, a pharmacological inhibition of Pin1 activity, however, led to a significant decrease of viral genome equivalents and production of infectious virus, respectively. When focusing on the identification of viral proteins interacting with Pin1 by various coimmunoprecipitation (CoIP) settings, we obtained positive signals for (i) the core nuclear egress complex protein pUL50, (ii) the viral mRNA export factor pUL69 and (iii) the viral DNA polymerase processivity factor pUL44. Confocal immunofluorescence analysis focusing on partial colocalization between Pin1 and the coexpressed viral proteins pUL50, pUL69 or pUL44, respectively, was consistent with the CoIP experiments. Mapping experiments, using transient expression constructs for a series of truncated protein versions and specific replacement mutants, revealed a complex pattern of Pin1 interaction with these three early regulatory HCMV proteins. Data suggest a combination of different modes of Pin1 interactions, involving both classical phosphorylation-dependent Pin1 binding motifs and additional phosphorylation-independent binding sites. Combined, these results support the concept that Pin1 may play an important role in several stages of HCMV infection, thus determining viral replicative efficiency.
Collapse
Affiliation(s)
- Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Marco Thomas
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Luisa Rauschert
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Theresa Errerd
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Melissa Kießling
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, FAU, Erlangen, Germany.
| | - Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen- Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
30
|
Sun Q, Fan G, Zhuo Q, Dai W, Ye Z, Ji S, Xu W, Liu W, Hu Q, Zhang Z, Liu M, Yu X, Xu X, Qin Y. Pin1 promotes pancreatic cancer progression and metastasis by activation of NF-κB-IL-18 feedback loop. Cell Prolif 2020; 53:e12816. [PMID: 32347623 PMCID: PMC7260075 DOI: 10.1111/cpr.12816] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/16/2020] [Accepted: 02/29/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives Accumulated evidence suggests that Pin1 contributes to oncogenesis of diverse cancers. However, the underlying mechanism of oncogenic function of Pin1 in PDAC requires further exploration. Materials and Methods IHC was performed using PDAC tissues. Western blot, PCR, immunofluorescence and transwell were performed using cell lines. GSEA were applied for possible downstream pathways. ChIP assay and dual luciferase were used for assessment of transcriptional activity. Results Both Pin1 and IL‐18 levels are increased in primary PDAC tissues and that their levels are positively correlated. High expression of IL‐18 is a predictor of poor prognoses. Pin1 promoted pancreatic cancer cell proliferation and motility by increasing IL‐18 expression, while Pin1 knockdown also inhibited the tumour‐promoting effect of IL‐18. Both Pin1 and IL‐18 could enhance the NFκB activity in pancreatic cancer cells. When bound to the p65 protein, Pin1 promoted p65 phosphorylation and its nuclear translocation. In the nucleus, Pin1 and p65 simultaneously bound to the IL‐18 promoter and enhanced IL‐18 transcription. In addition, recruitment of p65 to the IL‐18 promoter was decreased in Pin1‐silenced cells. Conclusions Our study improves the understanding of Pin1 in tumour‐promoting inflammation in PDAC, which is a hallmark of cancer; Pin1 interacted with p65 in PDAC and enhanced NF‐κB signalling and downstream transcriptional activation of IL‐18, with increased IL‐18 continuously activating NF‐κB signalling, which then forms a positive feedback loop.
Collapse
Affiliation(s)
- Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Weixing Dai
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| |
Collapse
|
31
|
Torres F, Ghosh D, Strotz D, Chi CN, Davis B, Orts J. Protein-fragment complex structures derived by NMR molecular replacement. RSC Med Chem 2020; 11:591-596. [PMID: 33479661 PMCID: PMC7649837 DOI: 10.1039/d0md00068j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 01/16/2023] Open
Abstract
Recently we have established an NMR molecular replacement method, which is capable of solving the structure of the interaction site of protein-ligand complexes in a fully automated manner. While the method was successfully applied for ligands with strong and weak binding affinities, including small molecules and peptides, its applicability on ligand fragments remains to be shown. Structures of fragment-protein complexes are more challenging for the method since fragments contain only few protons. Here we show a successful application of the NMR molecular replacement method in solving structures of complexes between three derivatives of a ligand fragment and the protein receptor PIN1. We anticipate that this approach will find a broad application in fragment-based lead discovery.
Collapse
Affiliation(s)
- Felix Torres
- Laboratory of Physical Chemistry , ETH , Swiss Federal Institute of Technology , HCI F217, Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland .
| | - Dhiman Ghosh
- Laboratory of Physical Chemistry , ETH , Swiss Federal Institute of Technology , HCI F217, Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland .
| | - Dean Strotz
- Laboratory of Physical Chemistry , ETH , Swiss Federal Institute of Technology , HCI F217, Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland .
| | - Celestine N Chi
- Laboratory of Physical Chemistry , ETH , Swiss Federal Institute of Technology , HCI F217, Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland .
| | - Ben Davis
- Vernalis , Granta Park , Cambridge , UK
| | - Julien Orts
- Laboratory of Physical Chemistry , ETH , Swiss Federal Institute of Technology , HCI F217, Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland .
| |
Collapse
|
32
|
Cohn GM, Liefwalker DF, Langer EM, Sears RC. PIN1 Provides Dynamic Control of MYC in Response to Extrinsic Signals. Front Cell Dev Biol 2020; 8:224. [PMID: 32300594 PMCID: PMC7142217 DOI: 10.3389/fcell.2020.00224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/16/2020] [Indexed: 01/05/2023] Open
Abstract
PIN1 is a phosphorylation-directed member of the peptidyl-prolyl cis/trans isomerase (PPIase) family that facilitates conformational changes in phosphorylated targets such as c-MYC (MYC). Following signaling events that mediate phosphorylation of MYC at Serine 62, PIN1 establishes structurally distinct pools of MYC through its trans-cis and cis-trans isomerization activity at Proline 63. Through these isomerization steps, PIN1 functionally regulates MYC's stability, the molecular timing of its DNA binding and transcriptional activity, and its subnuclear localization. Recently, our group showed that Serine 62 phosphorylated MYC can associate with the inner basket of the nuclear pore (NP) in a PIN1-dependent manner. The poised euchromatin at the NP basket enables rapid cellular response to environmental signals and cell stress, and PIN1-mediated trafficking of MYC calibrates this response. In this perspective, we describe the molecular aspects of PIN1 target recognition and PIN1's function in the context of its temporal and spatial regulation of MYC.
Collapse
Affiliation(s)
- Gabriel M Cohn
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Daniel F Liefwalker
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Ellen M Langer
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, United States.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, United States.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States.,Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
33
|
Pu W, Zheng Y, Peng Y. Prolyl Isomerase Pin1 in Human Cancer: Function, Mechanism, and Significance. Front Cell Dev Biol 2020; 8:168. [PMID: 32296699 PMCID: PMC7136398 DOI: 10.3389/fcell.2020.00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/29/2020] [Indexed: 02/05/2023] Open
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is an evolutionally conserved and unique enzyme that specifically catalyzes the cis-trans isomerization of phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif and, subsequently, induces the conformational change of its substrates. Mounting evidence has demonstrated that Pin1 is widely overexpressed and/or overactivated in cancer, exerting a critical influence on tumor initiation and progression via regulation of the biological activity, protein degradation, or nucleus-cytoplasmic distribution of its substrates. Moreover, Pin1 participates in the cancer hallmarks through activating some oncogenes and growth enhancers, or inactivating some tumor suppressors and growth inhibitors, suggesting that Pin1 could be an attractive target for cancer therapy. In this review, we summarize the findings on the dysregulation, mechanisms, and biological functions of Pin1 in cancer cells, and also discuss the significance and potential applications of Pin1 dysregulation in human cancer.
Collapse
Affiliation(s)
- Wenchen Pu
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuanyuan Zheng
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
34
|
Yu JH, Im CY, Min SH. Function of PIN1 in Cancer Development and Its Inhibitors as Cancer Therapeutics. Front Cell Dev Biol 2020; 8:120. [PMID: 32258027 PMCID: PMC7089927 DOI: 10.3389/fcell.2020.00120] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Peptidyl-prolyl isomerase (PIN1) specifically binds and isomerizes the phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif, which results in the alteration of protein structure, function, and stability. The altered structure and function of these phosphorylated proteins regulated by PIN1 are closely related to cancer development. PIN1 is highly expressed in human cancers and promotes cancer as well as cancer stem cells by breaking the balance of oncogenes and tumor suppressors. In this review, we discuss the roles of PIN1 in cancer and PIN1-targeted small-molecule compounds.
Collapse
Affiliation(s)
- Ji Hoon Yu
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| | - Chun Young Im
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| | - Sang-Hyun Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| |
Collapse
|
35
|
Tretina K, Haidar M, Madsen-Bouterse SA, Sakura T, Mfarrej S, Fry L, Chaussepied M, Pain A, Knowles DP, Nene VM, Ginsberg D, Daubenberger CA, Bishop RP, Langsley G, Silva JC. Theileria parasites subvert E2F signaling to stimulate leukocyte proliferation. Sci Rep 2020; 10:3982. [PMID: 32132598 PMCID: PMC7055300 DOI: 10.1038/s41598-020-60939-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/18/2020] [Indexed: 01/22/2023] Open
Abstract
Intracellular pathogens have evolved intricate mechanisms to subvert host cell signaling pathways and ensure their own propagation. A lineage of the protozoan parasite genus Theileria infects bovine leukocytes and induces their uncontrolled proliferation causing a leukemia-like disease. Given the importance of E2F transcription factors in mammalian cell cycle regulation, we investigated the role of E2F signaling in Theileria-induced host cell proliferation. Using comparative genomics and surface plasmon resonance, we identified parasite-derived peptides that have the sequence-specific ability to increase E2F signaling by binding E2F negative regulator Retinoblastoma-1 (RB). Using these peptides as a tool to probe host E2F signaling, we show that the disruption of RB complexes ex vivo leads to activation of E2F-driven transcription and increased leukocyte proliferation in an infection-dependent manner. This result is consistent with existing models and, together, they support a critical role of E2F signaling for Theileria-induced host cell proliferation, and its potential direct manipulation by one or more parasite proteins.
Collapse
Affiliation(s)
- Kyle Tretina
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program in Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Malak Haidar
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Sorbonne, Paris Cité, France
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France
| | - Sally A Madsen-Bouterse
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | - Takaya Sakura
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Sorbonne, Paris Cité, France
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France
| | - Sara Mfarrej
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lindsay Fry
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA, 99164-7030, USA
| | - Marie Chaussepied
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Sorbonne, Paris Cité, France
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France
- Weizmann Institute of Science, Molecular Cell Biology Department, PO Box 26, Rehovot, 76100, Israel
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Donald P Knowles
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | | | - Doron Ginsberg
- Weizmann Institute of Science, Molecular Cell Biology Department, PO Box 26, Rehovot, 76100, Israel
- The Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Claudia A Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Richard P Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Sorbonne, Paris Cité, France
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
36
|
Chen D, Wang L, Lee TH. Post-translational Modifications of the Peptidyl-Prolyl Isomerase Pin1. Front Cell Dev Biol 2020; 8:129. [PMID: 32195254 PMCID: PMC7064559 DOI: 10.3389/fcell.2020.00129] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
The peptidyl-prolyl cis/trans isomerase (PPIase) Pin1 is a unique enzyme that only binds to Ser/Thr-Pro peptide motifs after phosphorylation and regulates the conformational changes of the bond. The Pin1-catalyzed isomerization upon phosphorylation can have profound effects on substrate biological functions, including their activity, stability, assembly, and subcellular localization, affecting its role in intracellular signaling, transcription, and cell cycle progression. The functions of Pin1 are regulated by post-translational modifications (PTMs) in many biological processes, which include phosphorylation, ubiquitination, SUMOylation and oxidation. Phosphorylation of different Pin1 sites regulates Pin1 enzymatic activity, binding ability, localization, and ubiquitination by different kinases under various cellular contexts. Moreover, SUMOylation and oxidation have been shown to downregulate Pin1 activity. Although Pin1 is tightly regulated under physiological conditions, deregulation of Pin1 PTMs contributes to the development of human diseases including cancer and Alzheimer's disease (AD). Therefore, manipulating the PTMs of Pin1 may be a promising therapeutic option for treating various human diseases. In this review, we focus on the molecular mechanisms of Pin1 regulation by PTMs and the major impact of Pin1 PTMs on the progression of cancer and AD.
Collapse
Affiliation(s)
- Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
37
|
Chen D, Zhou XZ, Lee TH. Death-Associated Protein Kinase 1 as a Promising Drug Target in Cancer and Alzheimer's Disease. Recent Pat Anticancer Drug Discov 2020; 14:144-157. [PMID: 30569876 PMCID: PMC6751350 DOI: 10.2174/1574892814666181218170257] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/23/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
Abstract
Background: Death-Associated Protein Kinase 1 (DAPK1) plays an important role in apopto-sis, tumor suppression and neurodegeneration including Alzheimer’s Disease (AD). Objective: This review will describe the diverse roles of DAPK1 in the development of cancer and AD, and the current status of drug development targeting DAPK1-based therapies. Methods: Reports of DAPK1 regulation, function and substrates were analyzed using genetic DAPK1 manipulation and chemical DAPK1 modulators. Results: DAPK1 expression and activity are deregulated in cancer and AD. It is down-regulated and/or inactivated by multiple mechanisms in many human cancers, and elicits a protective effect to counteract numerous death stimuli in cancer, including activation of the master regulator Pin1. Moreover, loss of DAPK1 expression has correlated strongly with tumor recurrence and metastasis, suggesting that lack of sufficient functional DAPK1 might contribute to cancer. In contrast, DAPK1 is highly expressed in the brains of most human AD patients and has been identified as one of the genetic factors affecting suscepti-bility to late-onset AD. The absence of DAPK1 promotes efficient learning and better memory in mice and prevents the development of AD by acting on many key proteins including Pin1 and its downstream tar-gets tau and APP. Recent patents show that DAPK1 modulation might be used to treat both cancer and AD. Conclusion: DAPK1 plays a critical role in diverse physiological processes and importantly, its deregula-tion is implicated in the pathogenesis of either cancer or AD. Therefore, manipulating DAPK1 activity and/or expression may be a promising therapeutic option for cancer or AD.
Collapse
Affiliation(s)
- Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Xiao Z Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Tae H Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| |
Collapse
|
38
|
Guo YT, Lu Y, Jia YY, Qu HN, Qi D, Wang XQ, Song PY, Jin XS, Xu WH, Dong Y, Liang YY, Quan CS. Predictive Value of Pin1 in Cervical Low-Grade Squamous Intraepithelial Lesions and Inhibition of Pin1 Exerts Potent Anticancer Activity against Human Cervical Cancer. Aging Dis 2020; 11:44-59. [PMID: 32010480 PMCID: PMC6961766 DOI: 10.14336/ad.2019.0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022] Open
Abstract
Many oncogenes are involved in the progression from low-grade squamous intraepithelial lesions (LSILs) to high-grade squamous intraepithelial lesions (HSILs); which greatly increases the risk of cervical cancer (CC). Thus, a reliable biomarker for risk classification of LSILs is urgently needed. The prolyl isomerase Pin1 is overexpressed in many cancers and contributes significantly to tumour initiation and progression. Therefore, it is important to assess the effects of cancer therapies that target Pin1. In our study, we demonstrated that Pin1 may serve as a biomarker for LSIL disease progression and may constitute a novel therapeutic target for CC. We used a the novel Pin1 inhibitor KPT-6566, which is able to covalently bind to Pin1 and selectively target it for degradation. The results of our investigation revealed that the downregulation of Pin1 by shRNA or KPT-6566 inhibited the growth of human cervical cancer cells (CCCs). We also discovered that the use of KPT-6566 is a novel approach to enhance the therapeutic efficacy of cisplatin (DDP) against CCCs in vitro and in vivo. We showed that KPT-6566-mediated inhibition of Pin1 blocked multiple cancer-driving pathways simultaneously in CCCs. Furthermore, targeted Pin1 treatment suppressed the metastasis and invasion of human CCCs, and downregulation of Pin1 reversed the epithelial-mesenchymal transition (EMT) of CCCs via the c-Jun/slug pathway. Collectively, we showed that Pin1 may be a marker for the risk of progression to HSIL and that inhibition of Pin1 has anticancer effects against CC.
Collapse
Affiliation(s)
- Yan-Tong Guo
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yan Lu
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yi-Yang Jia
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hui-Nan Qu
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Da Qi
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xin-Qi Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pei-Ye Song
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiang-Shu Jin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wen-Hong Xu
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuan Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ying-Ying Liang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Cheng-Shi Quan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
39
|
Cheng CW, Tse E. Targeting PIN1 as a Therapeutic Approach for Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 7:369. [PMID: 32010690 PMCID: PMC6974617 DOI: 10.3389/fcell.2019.00369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
PIN1 is a peptidyl-prolyl cis/trans isomerase that specifically binds and catalyzes the cis/trans isomerization of the phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif of its interacting proteins. Through this phosphorylation-dependent prolyl isomerization, PIN1 is involved in the regulation of various important cellular processes including cell cycle progression, cell proliferation, apoptosis and microRNAs biogenesis; hence its dysregulation contributes to malignant transformation. PIN1 is highly expressed in hepatocellular carcinoma (HCC). By fine-tuning the functions of its interacting proteins such as cyclin D1, x-protein of hepatitis B virus and exportin 5, PIN1 plays an important role in hepatocarcinogenesis. Growing evidence supports that targeting PIN1 is a potential therapeutic approach for HCC by inhibiting cell proliferation, inducing cellular apoptosis, and restoring microRNAs biogenesis. Novel formulation of PIN1 inhibitors that increases in vivo bioavailability of PIN1 inhibitors represents a promising future direction for the therapeutic strategy of HCC treatment. In this review, the mechanisms underlying PIN1 over-expression in HCC are explored. Furthermore, we also discuss the roles of PIN1 in HCC tumorigenesis and metastasis through its interaction with various phosphoproteins. Finally, recent progress in the therapeutic options targeting PIN1 for HCC treatment is examined and summarized.
Collapse
Affiliation(s)
- Chi-Wai Cheng
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Eric Tse
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
40
|
Chuang HH, Hsu JF, Chang HL, Wang PH, Wei PJ, Wu DW, Huang MS, Hsiao M, Yang CJ. Pin1 coordinates HDAC6 upregulation with cell migration in lung cancer cells. Int J Med Sci 2020; 17:2635-2643. [PMID: 33162791 PMCID: PMC7645340 DOI: 10.7150/ijms.50097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) controls many cellular processes via its catalyzing deacetylation of downstream substrates or interacting with its partner proteins. Dysregulation of HDAC6 signaling links to many diseases. Our previous study has been reported peptidyl-prolyl cis/trans isomerase, and NIMA-interacting 1 (Pin1) involving in HDAC6-mediated cell motility. To gain insight into precisely coordination of HDAC6 and Pin1 in cell migration, shRNA-mediated gene silencing and ectopic expression were applied to manipulate protein expression level to evaluate relationship between HDAC6 and Pin1 expression. Quantitative RT-PCR and the cycloheximide (CHX) chase assay resulted in HDAC6 expression is correlated with Pin1 level in H1299 cells. It hints that the Pin1 increases HDAC6 expression through increased transcripts and posttranslational stabilization. Furthermore, wound healing assay and transwell invasion assay evidenced the contribution of Pin1 on cell motility in H1299 cells. Our data suggest that Pin1 acts as an important regulator to manage HDAC6 expression for cell motility in lung cancer cells.
Collapse
Affiliation(s)
- Hsiang-Hao Chuang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jui-Feng Hsu
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsu-Liang Chang
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Hui Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Ju Wei
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-DA Cancer Hospital, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Jen Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
41
|
Strategies for Delivery of siRNAs to Ovarian Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11100547. [PMID: 31652539 PMCID: PMC6835428 DOI: 10.3390/pharmaceutics11100547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
The unmet need for novel therapeutic options for ovarian cancer (OC) deserves further investigation. Among the different novel drugs, small interfering RNAs (siRNAs) are particularly attractive because of their specificity of action and efficacy, as documented in many experimental setups. However, the fragility of these molecules in the biological environment necessitates the use of delivery materials able to protect them and possibly target them to the cancer cells. Among the different delivery materials, those based on polymers and lipids are considered very interesting because of their biocompatibility and ability to carry/deliver siRNAs. Despite these features, polymers and lipids need to be engineered to optimize their delivery properties for OC. In this review, we concentrated on the description of the therapeutic potential of siRNAs and polymer-/lipid-based delivery systems for OC. After a brief description of OC and siRNA features, we summarized the strategies employed to minimize siRNA delivery problems, the targeting strategies to OC, and the preclinical models available. Finally, we discussed the most interesting works published in the last three years about polymer-/lipid-based materials for siRNA delivery.
Collapse
|
42
|
Synthesis of novel S-linked dihydroartemisinin derivatives and evaluation of their anticancer activity. Eur J Med Chem 2019; 178:552-570. [DOI: 10.1016/j.ejmech.2019.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/24/2019] [Accepted: 06/05/2019] [Indexed: 11/19/2022]
|
43
|
Zannini A, Rustighi A, Campaner E, Del Sal G. Oncogenic Hijacking of the PIN1 Signaling Network. Front Oncol 2019; 9:94. [PMID: 30873382 PMCID: PMC6401644 DOI: 10.3389/fonc.2019.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular choices are determined by developmental and environmental stimuli through integrated signal transduction pathways. These critically depend on attainment of proper activation levels that in turn rely on post-translational modifications (PTMs) of single pathway members. Among these PTMs, post-phosphorylation prolyl-isomerization mediated by PIN1 represents a unique mechanism of spatial, temporal and quantitative control of signal transduction. Indeed PIN1 was shown to be crucial for determining activation levels of several pathways and biological outcomes downstream to a plethora of stimuli. Of note, studies performed in different model organisms and humans have shown that hormonal, nutrient, and oncogenic stimuli simultaneously affect both PIN1 activity and the pathways that depend on PIN1-mediated prolyl-isomerization, suggesting the existence of evolutionarily conserved molecular circuitries centered on this isomerase. This review focuses on molecular mechanisms and cellular processes like proliferation, metabolism, and stem cell fate, that are regulated by PIN1 in physiological conditions, discussing how these are subverted in and hijacked by cancer cells. Current status and open questions regarding the use of PIN1 as biomarker and target for cancer therapy as well as clinical development of PIN1 inhibitors are also addressed.
Collapse
Affiliation(s)
- Alessandro Zannini
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandra Rustighi
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Giannino Del Sal
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy.,IFOM - Istituto FIRC Oncologia Molecolare, Milan, Italy
| |
Collapse
|
44
|
Kim G, Bhattarai PY, Choi HS. Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 as a molecular target in breast cancer: a therapeutic perspective of gynecological cancer. Arch Pharm Res 2019; 42:128-139. [PMID: 30684192 DOI: 10.1007/s12272-019-01122-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (PIN1) induces conformational and functional changes to numerous key signaling molecules following proline-directed phosphorylation and its deregulation contributes to disease, particularly cancer. PIN1 is overexpressed in breast cancer, promoting cell proliferation and transformation in collaboration with several oncogenic signaling pathways, and is correlated with a poor clinical outcome. PIN1 level is also increased in certain gynecological cancers such as cervical, ovarian, and endometrial cancers. Although women with breast cancer are at risk of developing a second primary gynecological malignancy, particularly of the endometrium and ovary, the common oncogenic signaling pathway mediated by PIN1 has not been noted to date. This review discusses the roles of PIN1 in breast tumorigenesis and gynecological cancer progression, as well as the clinical effect of targeting this enzyme in breast and gynecological cancers.
Collapse
Affiliation(s)
- Garam Kim
- College of Pharmacy, Chosun University, 309 Philmundaero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Poshan Yugal Bhattarai
- College of Pharmacy, Chosun University, 309 Philmundaero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Hong Seok Choi
- College of Pharmacy, Chosun University, 309 Philmundaero, Dong-gu, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
45
|
El Boustani M, De Stefano L, Caligiuri I, Mouawad N, Granchi C, Canzonieri V, Tuccinardi T, Giordano A, Rizzolio F. A Guide to PIN1 Function and Mutations Across Cancers. Front Pharmacol 2019; 9:1477. [PMID: 30723410 PMCID: PMC6349750 DOI: 10.3389/fphar.2018.01477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022] Open
Abstract
PIN1 is a member of a family of peptidylprolyl isomerases that bind phosphoproteins and catalyze the rapid cis-trans isomerization of proline peptidyl bonds, resulting in an alteration of protein structure, function, and stability. PIN1 is overexpressed in human cancers, suggesting it promotes tumorigenesis, but depending on the cellular context, it also acts as a tumor suppressor. Here, we review the role of PIN1 in cancer and the regulation of PIN1 expression, and catalog the single nucleotide polymorphisms, and mutations in PIN1 gene associated with cancer. In addition, we provide a 3D model of the protein to localize the mutated residues.
Collapse
Affiliation(s)
- Maguie El Boustani
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy.,Doctoral School in Molecular Biomedicine, University of Trieste, Trieste, Italy
| | - Lucia De Stefano
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy.,Doctoral School in Chemistry, University of Trieste, Trieste, Italy
| | - Isabella Caligiuri
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy
| | - Nayla Mouawad
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy.,Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Flavio Rizzolio
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy.,Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| |
Collapse
|
46
|
Tornillo G, Knowlson C, Kendrick H, Cooke J, Mirza H, Aurrekoetxea-Rodríguez I, Vivanco MDM, Buckley NE, Grigoriadis A, Smalley MJ. Dual Mechanisms of LYN Kinase Dysregulation Drive Aggressive Behavior in Breast Cancer Cells. Cell Rep 2018; 25:3674-3692.e10. [PMID: 30590041 PMCID: PMC6315108 DOI: 10.1016/j.celrep.2018.11.103] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/27/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
The SRC-family kinase LYN is highly expressed in triple-negative/basal-like breast cancer (TNBC) and in the cell of origin of these tumors, c-KIT-positive luminal progenitors. Here, we demonstrate LYN is a downstream effector of c-KIT in normal mammary cells and protective of apoptosis upon genotoxic stress. LYN activity is modulated by PIN1, a prolyl isomerase, and in BRCA1 mutant TNBC PIN1 upregulation activates LYN independently of c-KIT. Furthermore, the full-length LYN splice isoform (as opposed to the Δaa25-45 variant) drives migration and invasion of aggressive TNBC cells, while the ratio of splice variants is informative for breast cancer-specific survival across all breast cancers. Thus, dual mechanisms-uncoupling from upstream signals and splice isoform ratios-drive the activity of LYN in aggressive breast cancers.
Collapse
Affiliation(s)
- Giusy Tornillo
- European Cancer Stem Cell Research Institute, School of Biosciences, Hadyn Ellis Building, Cardiff University, Cardiff CF24 4HQ, UK
| | - Catherine Knowlson
- Centre for Cancer Research and Cell Biology, Queens University Belfast, 97 Lisburn Rd, Belfast BT9 7AE, UK
| | - Howard Kendrick
- European Cancer Stem Cell Research Institute, School of Biosciences, Hadyn Ellis Building, Cardiff University, Cardiff CF24 4HQ, UK
| | - Joe Cooke
- European Cancer Stem Cell Research Institute, School of Biosciences, Hadyn Ellis Building, Cardiff University, Cardiff CF24 4HQ, UK
| | - Hasan Mirza
- School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | | | - Maria D M Vivanco
- Center for Cooperative Research in Biosciences, CIC bioGUNE, 48160 Derio, Spain
| | - Niamh E Buckley
- School of Pharmacy and Centre for Cancer Research and Cell Biology, Queens University Belfast, 97 Lisburn Rd, Belfast BT9 7AE, UK
| | - Anita Grigoriadis
- School of Cancer & Pharmaceutical Sciences, CRUK King's Health Partners Centre, King's College London, Innovation Hub, Comprehensive Cancer Centre at Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute, School of Biosciences, Hadyn Ellis Building, Cardiff University, Cardiff CF24 4HQ, UK.
| |
Collapse
|
47
|
Abstract
Cell cycle progression is tightly controlled by many cell cycle-regulatory proteins that are in turn regulated by a family of cyclin-dependent kinases (CDKs) through protein phosphorylation. The peptidyl-prolyl cis/trans isomerase PIN1 provides a further post-phosphorylation modification and functional regulation of these CDK-phosphorylated proteins. PIN1 specifically binds the phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif of its target proteins and catalyzes the cis/trans isomerization on the pSer/Thr-Pro peptide bonds. Through this phosphorylation-dependent prolyl isomerization, PIN1 fine-tunes the functions of various cell cycle-regulatory proteins including retinoblastoma protein (Rb), cyclin D1, cyclin E, p27, Cdc25C, and Wee1. In this review, we discussed the essential roles of PIN1 in regulating cell cycle progression through modulating the functions of these cell cycle-regulatory proteins. Furthermore, the mechanisms underlying PIN1 overexpression in cancers were also explored. Finally, we examined and summarized the therapeutic potential of PIN1 inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Chi-Wai Cheng
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Eric Tse
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
48
|
Xue L, Liu X, Wang Q, Liu CQ, Chen Y, Jia W, Hsie R, Chen Y, Luh F, Zheng S, Yen Y. Ribonucleotide reductase subunit M2B deficiency leads to mitochondrial permeability transition pore opening and is associated with aggressive clinicopathologic manifestations of breast cancer. Am J Transl Res 2018; 10:3635-3649. [PMID: 30662615 PMCID: PMC6291710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Ribonucleotide reductase small subunit M2B (RRM2B) plays an essential role in maintaining mitochondrial homeostasis. Mitochondrial permeability transition pore (MPTP) is a key regulator of mitochondrial homeostasis. MPTP contributes to cell death and is crucial in cancer progression. RRM2B's relation to MPTP is not well known, and the role of RRM2B in cancer progression is controversial. Here, our aim was to study the role of RRM2B in regulating MPTP and the association between RRM2B and clinicopathological manifestations in breast cancer. Analysis of Rrm2b-/- mice cells found changes consistent with MPTP opening, including mitochondrial swelling and upregulation of cyclophilin D (CypD), a protein that activates MPTP opening. Silencing of RRM2B gene expression in MCF7 and KB cell lines led to MPTP opening. Accordingly, dysfunctional oxidative phosphorylation and elevated superoxide levels were also detected in RRM2B-silenced MCF7 and KB cell lines, which was consistent with the findings by gene set enrichment analysis of 159 breast cancer cases that genes involving respiratory electron transport were enriched in high-RRM2B breast cancer, and genes involving biologic oxidation were enriched in low-RRM2B breast cancers. A metabolomic study revealed that spermine levels in RRM2B-silenced MCF7 and KB cells were only 5% and 8% of control levels, respectively. Addition of exogenous spermine to RRM2B-silenced MCF7 and KB cells was able to reverse the MPTP opening induced by RRM2B deficiency. These results suggest that RRM2B may induce MPTP opening through reducing spermine levels. Immunohistochemical analysis of 148 breast cancer cases showed that RRM2B and CypD protein levels were inversely correlated in breast cancer specimens (P<0.05), so were their associated clinicopathologic parameters that high-level RRM2B expression was associated with better clinicopathological features. We conclude that RRM2B deficiency leads to MPTP opening mediated by spermine. Coupling of low RRM2B and high CypD expression is associated with aggressive manifestations of breast cancer.
Collapse
Affiliation(s)
- Lijun Xue
- Department of Pathology, Loma Linda University Medical CenterLoma Linda, CA 92354, USA
| | - Xiyong Liu
- Sino-American Cancer Foundation, California Cancer InstituteTemple, CA 91780, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei, Taiwan, ROC
| | - Qinchuan Wang
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope Comprehensive Cancer CenterDuarte, CA 91010, USA
- Surgical Oncology, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Charlie Q Liu
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope Comprehensive Cancer CenterDuarte, CA 91010, USA
| | - Yunru Chen
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope Comprehensive Cancer CenterDuarte, CA 91010, USA
| | - Wei Jia
- Cancer Epidemiology Program, University of Hawaii Cancer CenterHonolulu, HI 96813, USA
| | - Ronhong Hsie
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei, Taiwan, ROC
| | - Yifan Chen
- PhD Program of Cancer Biology and Drug Discovery, Taipei Medical UniversityTaipei, Taiwan, ROC
| | - Frank Luh
- Sino-American Cancer Foundation, California Cancer InstituteTemple, CA 91780, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei, Taiwan, ROC
| | - Shu Zheng
- Cancer Institute, Zhejiang UniversityHangzhou 310009, Zhejiang, China
| | - Yun Yen
- Sino-American Cancer Foundation, California Cancer InstituteTemple, CA 91780, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical UniversityTaipei, Taiwan, ROC
- PhD Program of Cancer Biology and Drug Discovery, Taipei Medical UniversityTaipei, Taiwan, ROC
| |
Collapse
|
49
|
Chen X, Liu X, Deng B, Martinka M, Zhou Y, Lan X, Cheng Y. Cytoplasmic Pin1 expression is increased in human cutaneous melanoma and predicts poor prognosis. Sci Rep 2018; 8:16867. [PMID: 30442923 PMCID: PMC6238011 DOI: 10.1038/s41598-018-34906-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/26/2018] [Indexed: 01/25/2023] Open
Abstract
The prolyl isomerase Pin1 is widely over-expressed or over-activated in cancers and promotes tumorigenesis. The authors investigated the expression level of Pin1 and analyzed the prognostic value of Pin1 expression using a large-scale melanoma tissue microarray study. Two independent sets of tissue microarrays were employed, including 114 melanoma cases in the discovery set and 424 in the validation set (538 cases in total), 32 normal nevi and 86 dysplastic nevi 118 cases of nevi. The subcellular Pin1 expression in different stages of melanocytic lesions and its prognostic significance were studied. High expression (IRS 0-8) of cytoplasmic Pin1 was observed in 3.13%, 8.33%, 16.49% and 22.76% of the biopsies in normal nevi, dysplastic nevi, primary melanoma and metastatic melanoma, respectively. Significant differences for cytoplasmic Pin1 staining were observed between normal nevi and metastatic melanoma (P = 0.011, χ2 test), between dysplastic nevi and primary melanoma (P = 0.046, χ2 test) and between dysplastic nevi and metastatic melanoma (P = 0.016, χ2 test). Kaplan-Meier survival analysis showed that increased cytoplasmic Pin1 expression was associated with a worse 5-year melanoma-specific survival of melanoma (P < 0.001) and metastatic melanoma patients (P = 0.004). Multivariate Cox regression analysis showed that cytoplasmic Pin1 expression is an independent prognostic factor in melanoma. Our data indicate that cytoplasmic Pin1 plays an important role in melanoma pathogenesis and progression, and serve as a potential prognostic marker for melanoma.
Collapse
Affiliation(s)
- Xin Chen
- Institute for laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian, China
- Department of General Dentistry, The 174th Hospital of Chinese PLA (Chenggong Hospital affiliated to Medical School of Xiamen University), Xiamen, Fujian, China
| | - Xiaosong Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research and Center for Stress Signaling Networks, Xiamen University, Xiamen, Fujian, China
| | - Bin Deng
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, Fujian, China
| | - Magdalena Martinka
- Department of Pathology, Vancouver General Hospital, Vancouver, BC, Canada
| | - Youwen Zhou
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Xiaopeng Lan
- Institute for laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian, China.
| | - Yabin Cheng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research and Center for Stress Signaling Networks, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
50
|
Lee YM, Liou YC. Gears-In-Motion: The Interplay of WW and PPIase Domains in Pin1. Front Oncol 2018; 8:469. [PMID: 30460195 PMCID: PMC6232885 DOI: 10.3389/fonc.2018.00469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/04/2018] [Indexed: 01/22/2023] Open
Abstract
Pin1 belongs to the family of the peptidyl-prolyl cis-trans isomerase (PPIase), which is a class of enzymes that catalyze the cis/trans isomerization of the Proline residue. Pin1 is unique and only catalyzes the phosphorylated Serine/Threonine-Proline (S/T-P) motifs of a subset of proteins. Since the discovery of Pin1 as a key protein in cell cycle regulation, it has been implicated in numerous diseases, ranging from cancer to neurodegenerative diseases. The main features of Pin1 lies in its two main domains: the WW (two conserved tryptophan) domain and the PPIase domain. Despite extensive studies trying to understand the mechanisms of Pin1 functions, how these two domains contribute to the biological roles of Pin1 in cellular signaling requires more investigations. The WW domain of Pin1 is known to have a higher affinity to its substrate than that of the PPIase domain. Yet, the WW domain seems to prefer the trans configuration of phosphorylated S/T-P motif, while the PPIase catalyzes the cis to trans isomerasion. Such contradicting information has generated much confusion as to the actual mechanism of Pin1 function. In addition, dynamic allostery has been suggested to be important for Pin1 function. Henceforth, in this review, we will be looking at the progress made in understanding the function of Pin1, and how these understandings can aid us in overcoming the diseases implicated by Pin1 such as cancer during drug development.
Collapse
Affiliation(s)
- Yew Mun Lee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|