1
|
Lin CI, Merley A, Wada H, Zheng J, Jaminet SCS. Transmembrane-4 L-Six Family Member-1 Is Essential for Embryonic Blood Vessel Development. Curr Issues Mol Biol 2024; 46:13105-13118. [PMID: 39590375 PMCID: PMC11592815 DOI: 10.3390/cimb46110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Transmembrane-4 L-six family member-1 (TM4SF1) is a small cell surface glycoprotein that is highly and selectively expressed on endothelial cell and mesenchymal stem cell surfaces. TM4SF1 regulates cellular functions by forming protein complexes called TMED (TM4SF1-enriched microdomains) that either recruit growth-factor activated proteins and internalize them via microtubules to distribute the recruited molecules intracellularly or support the formation of nanopodia for intercellular interactions extracellularly. Through a genetically manipulated mouse model for global Tm4sf1 gene knockout, we demonstrate here that TM4SF1 is essential for blood vessel development. Tm4sf1-null embryos fail to develop blood vessels and experience lethality at E9.5. Tm4SF1-heterozygous embryos are smaller in body size during early embryonic development, and almost half die in utero due to intracranial hemorrhage in the intraventricular and subarachnoid space, which becomes apparent by E17.5. Surviving Tm4SF1-heterozygotes do not display overt phenotypic differences relative to wild type littermates postnatally. Together, these studies demonstrate that TM4SF1, through its molecular facilitator and nanopodia formation roles in TMED, intimately regulates blood vessel formation during embryonic development.
Collapse
Affiliation(s)
- Chi-Iou Lin
- Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (C.-I.L.); (A.M.); (H.W.); (J.Z.)
- Anesthesiology Department, Riverview Hospital, Noblesville, IN 46060, USA
| | - Anne Merley
- Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (C.-I.L.); (A.M.); (H.W.); (J.Z.)
- Center for Animal Resources and Education, Brown University, Providence, RI 02912, USA
| | - Hiromi Wada
- Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (C.-I.L.); (A.M.); (H.W.); (J.Z.)
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Jianwei Zheng
- Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (C.-I.L.); (A.M.); (H.W.); (J.Z.)
- Department of General Surgery, TianTan Hospital, Capital Medical University, Beijing 100070, China
| | - Shou-Ching S. Jaminet
- Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (C.-I.L.); (A.M.); (H.W.); (J.Z.)
- Angiex Inc., Cambridge, MA 02140, USA
| |
Collapse
|
2
|
Nour Eldine M, Alhousseini M, Nour-Eldine W, Noureldine H, Vakharia KV, Krafft PR, Noureldine MHA. The Role of Oxidative Stress in the Progression of Secondary Brain Injury Following Germinal Matrix Hemorrhage. Transl Stroke Res 2024; 15:647-658. [PMID: 36930383 DOI: 10.1007/s12975-023-01147-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Germinal matrix hemorrhage (GMH) can be a fatal condition responsible for the death of 1.7% of all neonates in the USA. The majority of GMH survivors develop long-term sequalae with debilitating comorbidities. Higher grade GMH is associated with higher mortality rates and higher prevalence of comorbidities. The pathophysiology of GMH can be broken down into two main titles: faulty hemodynamic autoregulation and structural weakness at the level of tissues and cells. Prematurity is the most significant risk factor for GMH, and it predisposes to both major pathophysiological mechanisms of the condition. Secondary brain injury is an important determinant of survival and comorbidities following GMH. Mechanisms of brain injury secondary to GMH include apoptosis, necrosis, neuroinflammation, and oxidative stress. This review will have a special focus on the mechanisms of oxidative stress following GMH, including but not limited to inflammation, mitochondrial reactive oxygen species, glutamate toxicity, and hemoglobin metabolic products. In addition, this review will explore treatment options of GMH, especially targeted therapy.
Collapse
Affiliation(s)
- Mariam Nour Eldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | | | - Wared Nour-Eldine
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hussein Noureldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Kunal V Vakharia
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Paul R Krafft
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Mohammad Hassan A Noureldine
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
3
|
Xu Z, Lu J, Gao S, Rui YN. THSD1 Suppresses Autophagy-Mediated Focal Adhesion Turnover by Modulating the FAK-Beclin 1 Pathway. Int J Mol Sci 2024; 25:2139. [PMID: 38396816 PMCID: PMC10889294 DOI: 10.3390/ijms25042139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Focal adhesions (FAs) play a crucial role in cell spreading and adhesion, and their autophagic degradation is an emerging area of interest. This study investigates the role of Thrombospondin Type 1 Domain-Containing Protein 1 (THSD1) in regulating autophagy and FA stability in brain endothelial cells, shedding light on its potential implications for cerebrovascular diseases. Our research reveals a physical interaction between THSD1 and FAs. Depletion of THSD1 significantly reduces FA numbers, impairing cell spreading and adhesion. The loss of THSD1 also induces autophagy independently of changes in mTOR and AMPK activation, implying that THSD1 primarily governs FA dynamics rather than serving as a global regulator of nutrient and energy status. Mechanistically, THSD1 negatively regulates Beclin 1, a central autophagy regulator, at FAs through interactions with focal adhesion kinase (FAK). THSD1 inactivation diminishes FAK activity and relieves its inhibitory phosphorylation on Beclin 1. This, in turn, promotes the complex formation between Beclin 1 and ATG14, a critical event for the activation of the autophagy cascade. In summary, our findings identify THSD1 as a novel regulator of autophagy that degrades FAs in brain endothelial cells. This underscores the distinctive nature of THSD1-mediated, cargo-directed autophagy and its potential relevance to vascular diseases due to the loss of endothelial FAs. Investigating the underlying mechanisms of THSD1-mediated pathways holds promise for discovering novel therapeutic targets in vascular diseases.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiayi Lu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Song Gao
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yan-Ning Rui
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
4
|
Hernandez SJ, Lim RG, Onur T, Dane MA, Smith R, Wang K, Jean GEH, Reyes-Ortiz A, Devlin K, Miramontes R, Wu J, Casale M, Kilburn D, Heiser LM, Korkola JE, Van Vactor D, Botas J, Thompson-Peer KL, Thompson LM. An altered extracellular matrix-integrin interface contributes to Huntington's disease-associated CNS dysfunction in glial and vascular cells. Hum Mol Genet 2023; 32:1483-1496. [PMID: 36547263 PMCID: PMC10117161 DOI: 10.1093/hmg/ddac303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Astrocytes and brain endothelial cells are components of the neurovascular unit that comprises the blood-brain barrier (BBB) and their dysfunction contributes to pathogenesis in Huntington's disease (HD). Defining the contribution of these cells to disease can inform cell-type-specific effects and uncover new disease-modifying therapeutic targets. These cells express integrin (ITG) adhesion receptors that anchor the cells to the extracellular matrix (ECM) to maintain the integrity of the BBB. We used HD patient-derived induced pluripotent stem cell (iPSC) modeling to study the ECM-ITG interface in astrocytes and brain microvascular endothelial cells and found ECM-ITG dysregulation in human iPSC-derived cells that may contribute to the dysfunction of the BBB in HD. This disruption has functional consequences since reducing ITG expression in glia in an HD Drosophila model suppressed disease-associated CNS dysfunction. Since ITGs can be targeted therapeutically and manipulating ITG signaling prevents neurodegeneration in other diseases, defining the role of ITGs in HD may provide a novel strategy of intervention to slow CNS pathophysiology to treat HD.
Collapse
Affiliation(s)
- Sarah J Hernandez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Ryan G Lim
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Tarik Onur
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark A Dane
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Rebecca Smith
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Keona Wang
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Grace En-Hway Jean
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Andrea Reyes-Ortiz
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Kaylyn Devlin
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Ricardo Miramontes
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Malcolm Casale
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - David Kilburn
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
- OHSU Knight Cancer Institute, Portland, OR 97239, USA
| | - James E Korkola
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
- OHSU Knight Cancer Institute, Portland, OR 97239, USA
| | - David Van Vactor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katherine L Thompson-Peer
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Reeve-Irvine Research Center, University of California, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Wälchli T, Bisschop J, Carmeliet P, Zadeh G, Monnier PP, De Bock K, Radovanovic I. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 2023; 24:271-298. [PMID: 36941369 PMCID: PMC10026800 DOI: 10.1038/s41583-023-00684-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
6
|
Coleman-Belin J, Harris A, Chen B, Zhou J, Ciulla T, Verticchio A, Antman G, Chang M, Siesky B. Aging Effects on Optic Nerve Neurodegeneration. Int J Mol Sci 2023; 24:2573. [PMID: 36768896 PMCID: PMC9917079 DOI: 10.3390/ijms24032573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Common risk factors for many ocular pathologies involve non-pathologic, age-related damage to the optic nerve. Understanding the mechanisms of age-related changes can facilitate targeted treatments for ocular pathologies that arise at any point in life. In this review, we examine these age-related, neurodegenerative changes in the optic nerve, contextualize these changes from the anatomic to the molecular level, and appreciate their relationship with ocular pathophysiology. From simple structural and mechanical changes at the optic nerve head (ONH), to epigenetic and biochemical alterations of tissue and the environment, multiple age-dependent mechanisms drive extracellular matrix (ECM) remodeling, retinal ganglion cell (RGC) loss, and lowered regenerative ability of respective axons. In conjunction, aging decreases the ability of myelin to preserve maximal conductivity, even with "successfully" regenerated axons. Glial cells, however, regeneratively overcompensate and result in a microenvironment that promotes RGC axonal death. Better elucidating optic nerve neurodegeneration remains of interest, specifically investigating human ECM, RGCs, axons, oligodendrocytes, and astrocytes; clarifying the exact processes of aged ocular connective tissue alterations and their ultrastructural impacts; and developing novel technologies and pharmacotherapies that target known genetic, biochemical, matrisome, and neuroinflammatory markers. Management models should account for age-related changes when addressing glaucoma, diabetic retinopathy, and other blinding diseases.
Collapse
Affiliation(s)
- Janet Coleman-Belin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Zhou
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Ciulla
- Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN 46290, USA
| | - Alice Verticchio
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gal Antman
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Rabin Medical Center, Petah Tikva 4941492, Israel
| | - Michael Chang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
7
|
Akindona FA, Frederico SC, Hancock JC, Gilbert MR. Exploring the origin of the cancer stem cell niche and its role in anti-angiogenic treatment for glioblastoma. Front Oncol 2022; 12:947634. [PMID: 36091174 PMCID: PMC9454306 DOI: 10.3389/fonc.2022.947634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer stem cells are thought to be the main drivers of tumorigenesis for malignancies such as glioblastoma (GBM). They are maintained through a close relationship with the tumor vasculature. Previous literature has well-characterized the components and signaling pathways for maintenance of this stem cell niche, but details on how the niche initially forms are limited. This review discusses development of the nonmalignant neural and hematopoietic stem cell niches in order to draw important parallels to the malignant environment. We then discuss what is known about the cancer stem cell niche, its relationship with angiogenesis, and provide a hypothesis for its development in GBM. A better understanding of the mechanisms of development of the tumor stem cell niche may provide new insights to potentially therapeutically exploit.
Collapse
Affiliation(s)
- Funto A. Akindona
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
| | - Stephen C. Frederico
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John C. Hancock
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark R. Gilbert,
| |
Collapse
|
8
|
Haddadi M, Ataei R. wde, calpA, if, dap160, and poe genes knock down Drosophila models exhibit neurofunctional deficit. Gene 2022; 829:146499. [PMID: 35447243 DOI: 10.1016/j.gene.2022.146499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
Intellectual disability (ID) is a heterogeneous disorder with high prevalence and remarkable social and cost burdens. Novel genetic variants of ATF7IP, CAPN9, ITGAV, ITSN1, and UBR4 genes are reported to be associated with the ID among Iranian families. However, in vivo validation is required to confirm the functional role of these variants in ID development. Drosophila melanogaster is a convenient model for such functional investigations as its genome bears ortholog of more than 75% of the disease-causing genes in human and represents numerous approaches to study defects in neuronal function. In this connection, RNAi gene silencing was applied to wde, calpA, if, dap160, and poe genes, the Drosophila ortholog of the selected human genes, and then consequent structural and functional changes in neurons were studied by means of immunohistochemistry and confocal microscopy of mushroom bodies (MBs) and validated behavioural assays including larvae and adult conditioning learning and memories, and ethanol sensitivity. Down-regulation of these genes led to neuronal loss which was evident by decline in total fluorescent signal intensity in micrographs of MBs structure. The gene silencing caused neuronal dysfunction and induction of ID-like symptoms manifested by deficits in larval preference learning, and short-term olfactory memory and courtship suppression learning in adults. Moreover, the RNAi flies showed higher sensitivity to ethanol vapour. Interestingly, the poe knock-down flies exhibited the most severe phenotypes among other genes. Altogether, we believe this study is first-of-its-kind and findings are highly applicable to confirm pathogenecity of the selected ID gene variants in Iranian population.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran.
| | - Reza Ataei
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
9
|
Nadeem T, Bommareddy A, Bolarinwa L, Cuervo H. Pericyte dynamics in the mouse germinal matrix angiogenesis. FASEB J 2022; 36:e22339. [PMID: 35506590 DOI: 10.1096/fj.202200120r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Germinal matrix-intraventricular hemorrhage (GM-IVH) is the most devastating neurological complication in premature infants. GM-IVH usually begins in the GM, a highly vascularized region of the developing brain where glial and neuronal precursors reside underneath the lateral ventricular ependyma. Previous studies using human fetal tissue have suggested increased angiogenesis and paucity of pericytes as key factors contributing to GM-IVH pathogenesis. Yet, despite its relevance, the mechanisms underlying the GM vasculature's susceptibility to hemorrhage remain poorly understood. To gain better understanding on the vascular dynamics of the GM, we performed a comprehensive analysis of the mouse GM vascular endothelium and pericytes during development. We hypothesize that vascular development of the mouse GM will provide a good model for studies of human GM vascularization and provide insights into the role of pericytes in GM-IVH pathogenesis. Our findings show that the mouse GM presents significantly greater vascular area and vascular branching compared to the developing cortex (CTX). Analysis of pericyte coverage showed abundance in PDGFRβ-positive and NG2-positive pericyte coverage in the GM similar to the developing CTX. However, we found a paucity in Desmin-positive pericyte coverage of the GM vasculature. Our results underscore the highly angiogenic nature of the GM and reveal that pericytes in the developing mouse GM exhibit distinct phenotypical and likely functional characteristics compared to other brain regions which might contribute to the high susceptibility of the GM vasculature to hemorrhage.
Collapse
Affiliation(s)
- Taliha Nadeem
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Apoorva Bommareddy
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lolade Bolarinwa
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Henar Cuervo
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
De A, Morales JE, Chen Z, Sebastian S, McCarty JH. The β8 integrin cytoplasmic domain activates extracellular matrix adhesion to promote brain neurovascular development. Development 2022; 149:274538. [PMID: 35217866 PMCID: PMC8977100 DOI: 10.1242/dev.200472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
Abstract
In the developing mammalian brain, neuroepithelial cells interact with blood vessels to regulate angiogenesis, blood-brain barrier maturation and other key neurovascular functions. Genetic studies in mice have shown that neurovascular development is controlled, in part, by Itgb8, which encodes the neuroepithelial cell-expressed integrin β8 subunit. However, these studies have involved complete loss-of-function Itgb8 mutations, and have not discerned the relative roles for the β8 integrin extracellular matrix (ECM) binding region versus the intracellular signaling tail. Here, Cre/lox strategies have been employed to selectively delete the cytoplasmic tail of murine Itgb8 without perturbing its transmembrane and extracellular domains. We report that the β8 integrin cytoplasmic domain is essential for inside-out modulation of adhesion, including activation of latent-TGFβs in the ECM. Quantitative sequencing of the brain endothelial cell transcriptome identifies TGFβ-regulated genes with putative links to blood vessel morphogenesis, including several genes linked to Wnt/β-catenin signaling. These results reveal that the β8 integrin cytoplasmic domain is essential for the regulation of TGFβ-dependent gene expression in endothelial cells and suggest that cross-talk between TGFβs and Wnt pathways is crucial for neurovascular development.
Collapse
Affiliation(s)
- Arpan De
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - John E Morales
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Zhihua Chen
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Sumod Sebastian
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Joseph H McCarty
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| |
Collapse
|
11
|
Lu J, Linares B, Xu Z, Rui YN. Mechanisms of FA-Phagy, a New Form of Selective Autophagy/Organellophagy. Front Cell Dev Biol 2021; 9:799123. [PMID: 34950664 PMCID: PMC8689057 DOI: 10.3389/fcell.2021.799123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
Focal adhesions (FAs) are adhesive organelles that attach cells to the extracellular matrix and can mediate various biological functions in response to different environmental cues. Reduced FAs are often associated with enhanced cell migration and cancer metastasis. In addition, because FAs are essential for preserving vascular integrity, the loss of FAs leads to hemorrhages and is frequently observed in many vascular diseases such as intracranial aneurysms. For these reasons, FAs are an attractive therapeutic target for treating cancer or vascular diseases, two leading causes of death world-wide. FAs are controlled by both their formation and turnover. In comparison to the large body of literature detailing FA formation, the mechanisms of FA turnover are poorly understood. Recently, autophagy has emerged as a major mechanism to degrade FAs and stabilizing FAs by inhibiting autophagy has a beneficial effect on breast cancer metastasis, suggesting autophagy-mediated FA turnover is a promising drug target. Intriguingly, autophagy-mediated FA turnover is a selective process and the cargo receptors for recognizing FAs in this process are context-dependent, which ensures the degradation of specific cargo. This paper mainly reviews the cargo recognition mechanisms of FA-phagy (selective autophagy-mediated FA turnover) and its disease relevance. We seek to outline some new points of understanding that will facilitate further study of FA-phagy and precise therapeutic strategies for related diseases associated with aberrant FA functions.
Collapse
Affiliation(s)
- Jiayi Lu
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Bernard Linares
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zhen Xu
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yan-Ning Rui
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
12
|
Catignas KK, Frick LR, Pellegatta M, Hurley E, Kolb Z, Addabbo K, McCarty JH, Hynes RO, van der Flier A, Poitelon Y, Wrabetz L, Feltri ML. α V integrins in Schwann cells promote attachment to axons, but are dispensable in vivo. Glia 2021; 69:91-108. [PMID: 32744761 PMCID: PMC8491627 DOI: 10.1002/glia.23886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
In the developing peripheral nervous system, Schwann cells (SCs) extend their processes to contact, sort, and myelinate axons. The mechanisms that contribute to the interaction between SCs and axons are just beginning to be elucidated. Using a SC-neuron coculture system, we demonstrate that Arg-Gly-Asp (RGD) peptides that inhibit αV -containing integrins delay the extension of SCs elongating on axons. αV integrins in SC localize to sites of contact with axons and are expressed early in development during radial sorting and myelination. Short interfering RNA-mediated knockdown of the αV integrin subunit also delays SC extension along axons in vitro, suggesting that αV -containing integrins participate in axo-glial interactions. However, mice lacking the αV subunit in SCs, alone or in combination with the potentially compensating α5 subunit, or the αV partners β3 or β8 , myelinate normally during development and remyelinate normally after nerve crush, indicating that overlapping or compensatory mechanisms may hide the in vivo role of RGD-binding integrins.
Collapse
Affiliation(s)
- Kathleen K. Catignas
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Luciana R. Frick
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Marta Pellegatta
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Edward Hurley
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Zachary Kolb
- Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Kathryn Addabbo
- Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Joseph H. McCarty
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Richard O. Hynes
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Boston, Massachusetts
| | - Arjan van der Flier
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Boston, Massachusetts
- Sanofi, Boston, Massachusetts
| | - Yannick Poitelon
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Maria Laura Feltri
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
13
|
Germinal Matrix-Intraventricular Hemorrhage of the Preterm Newborn and Preclinical Models: Inflammatory Considerations. Int J Mol Sci 2020; 21:ijms21218343. [PMID: 33172205 PMCID: PMC7664434 DOI: 10.3390/ijms21218343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
The germinal matrix-intraventricular hemorrhage (GM-IVH) is one of the most important complications of the preterm newborn. Since these children are born at a critical time in brain development, they can develop short and long term neurological, sensory, cognitive and motor disabilities depending on the severity of the GM-IVH. In addition, hemorrhage triggers a microglia-mediated inflammatory response that damages the tissue adjacent to the injury. Nevertheless, a neuroprotective and neuroreparative role of the microglia has also been described, suggesting that neonatal microglia may have unique functions. While the implication of the inflammatory process in GM-IVH is well established, the difficulty to access a very delicate population has lead to the development of animal models that resemble the pathological features of GM-IVH. Genetically modified models and lesions induced by local administration of glycerol, collagenase or blood have been used to study associated inflammatory mechanisms as well as therapeutic targets. In the present study we review the GM-IVH complications, with special interest in inflammatory response and the role of microglia, both in patients and animal models, and we analyze specific proteins and cytokines that are currently under study as feasible predictors of GM-IVH evolution and prognosis.
Collapse
|
14
|
Chen Z, Morales JE, Avci N, Guerrero PA, Rao G, Seo JH, McCarty JH. The vascular endothelial cell-expressed prion protein doppel promotes angiogenesis and blood-brain barrier development. Development 2020; 147:dev.193094. [PMID: 32895288 DOI: 10.1242/dev.193094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
The central nervous system (CNS) contains a complex network of blood vessels that promote normal tissue development and physiology. Abnormal control of blood vessel morphogenesis and maturation is linked to the pathogenesis of various neurodevelopmental diseases. The CNS-specific genes that regulate blood vessel morphogenesis in development and disease remain largely unknown. Here, we have characterized functions for the gene encoding prion protein 2 (Prnd) in CNS blood vessel development and physiology. Prnd encodes the glycosylphosphatidylinositol (GPI)-linked protein doppel, which is expressed on the surface of angiogenic vascular endothelial cells, but is absent in quiescent endothelial cells of the adult CNS. During CNS vascular development, doppel interacts with receptor tyrosine kinases and activates cytoplasmic signaling pathways involved in endothelial cell survival, metabolism and migration. Analysis of mice genetically null for Prnd revealed impaired CNS blood vessel morphogenesis and associated endothelial cell sprouting defects. Prnd-/- mice also displayed defects in endothelial barrier integrity. Collectively, these data reveal novel mechanisms underlying doppel control of angiogenesis in the developing CNS, and may provide new insights about dysfunctional pathways that cause vascular-related CNS disorders.
Collapse
Affiliation(s)
- Zhihua Chen
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - John E Morales
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Naze Avci
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola A Guerrero
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Je Hoon Seo
- Department of Anatomy, Chungbuk National University College of Medicine, Chungbuk 28644, Republic of Korea
| | - Joseph H McCarty
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Romantsik O, Bruschettini M, Ley D. Intraventricular Hemorrhage and White Matter Injury in Preclinical and Clinical Studies. Neoreviews 2020; 20:e636-e652. [PMID: 31676738 DOI: 10.1542/neo.20-11-e636] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Germinal matrix-intraventricular hemorrhage (IVH) occurs in nearly half of infants born at less than 26 weeks' gestation. Up to 50% of survivors with IVH develop cerebral palsy, cognitive deficits, behavioral disorders, posthemorrhagic ventricular dilatation, or a combination of these sequelae. After the initial bleeding and the primary brain injury, inflammation and secondary brain injury might lead to periventricular leukomalacia or diffuse white matter injury. Potential factors that are involved include microglia and astrocyte activation, degradation of blood components with release of "toxic" products, infiltration of the brain by systemic immune cells, death of neuronal and glial cells, and arrest of preoligodendrocyte maturation. In addition, impairment of the blood-brain barrier may play a major role in the pathophysiology. A wide range of animal models has been used to explore causes and mechanisms leading to IVH-induced brain injury. Preclinical studies have identified potential targets for enhancing brain repair. However, little has been elucidated about the effectiveness of potential interventions in clinical studies. A systematic review of available preclinical and clinical studies might help identify research gaps and which types of interventions may be prioritized. Future trials should report clinically robust and long-term outcomes after IVH.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
16
|
McCarty JH. αvβ8 integrin adhesion and signaling pathways in development, physiology and disease. J Cell Sci 2020; 133:133/12/jcs239434. [PMID: 32540905 DOI: 10.1242/jcs.239434] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells must interpret a complex milieu of extracellular cues to modulate intracellular signaling events linked to proliferation, differentiation, migration and other cellular processes. Integrins are heterodimeric transmembrane proteins that link the extracellular matrix (ECM) to the cytoskeleton and control intracellular signaling events. A great deal is known about the structural and functional properties for most integrins; however, the adhesion and signaling pathways controlled by αvβ8 integrin, which was discovered nearly 30 years ago, have only recently been characterized. αvβ8 integrin is a receptor for ECM-bound forms of latent transforming growth factor β (TGFβ) proteins and promotes the activation of TGFβ signaling pathways. Studies of the brain, lung and immune system reveal that the αvβ8 integrin-TGFβ axis mediates cell-cell contact and communication within complex multicellular structures. Perturbing components of this axis results in aberrant cell-cell adhesion and signaling leading to the initiation of various pathologies, including neurodegeneration, fibrosis and cancer. As discussed in this Review, understanding the functions for αvβ8 integrin, its ECM ligands and intracellular effector proteins is not only an important topic in cell biology, but may lead to new therapeutic strategies to treat human pathologies related to integrin dysfunction.
Collapse
Affiliation(s)
- Joseph H McCarty
- Department of Neurosurgery, Brain Tumor Center, M.D. Anderson Cancer Center, 6767 Bertner Avenue, Unit 1004, Houston, TX 77030, USA
| |
Collapse
|
17
|
Santhosh D, Sherman J, Chowdhury S, Huang Z. Harnessing region-specific neurovascular signaling to promote germinal matrix vessel maturation and hemorrhage prevention. Dis Model Mech 2019; 12:dmm.041228. [PMID: 31601549 PMCID: PMC6899033 DOI: 10.1242/dmm.041228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/06/2019] [Indexed: 12/13/2022] Open
Abstract
Germinal matrix hemorrhage (GMH), affecting about 1 in 300 births, is a major perinatal disease with lifelong neurological consequences. Yet despite advances in neonatal medicine, there is no effective intervention. GMH is characterized by localized bleeding in the germinal matrix (GM), due to inherent vessel fragility unique to this developing brain region. Studies have shown that reduced TGFβ signaling contributes to this vascular immaturity. We have previously shown that a region-specific G-protein-coupled receptor pathway in GM neural progenitor cells regulates integrin β8, a limiting activator of pro-TGFβ. In this study, we use mice to test whether this regional pathway can be harnessed for GMH intervention. We first examined the endogenous dynamics of this pathway and found that it displays specific patterns of activation. We then investigated the functional effects of altering these dynamics by chemogenetics and found that there is a narrow developmental window during which this pathway is amenable to manipulation. Although high-level activity in this time window interferes with vessel growth, moderate enhancement promotes vessel maturation without compromising growth. Furthermore, we found that enhancing the activity of this pathway in a mouse model rescues all GMH phenotypes. Altogether, these results demonstrate that enhancing neurovascular signaling through pharmacological targeting of this pathway may be a viable approach for tissue-specific GMH intervention. They also demonstrate that timing and level are likely two major factors crucial for success. These findings thus provide critical new insights into both brain neurovascular biology and the intervention of GMH.
Collapse
Affiliation(s)
- Devi Santhosh
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA.,Program in Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joe Sherman
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shafi Chowdhury
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA .,Program in Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
18
|
Li H, Miki T, Almeida GMD, Hanashima C, Matsuzaki T, Kuo CJ, Watanabe N, Noda M. RECK in Neural Precursor Cells Plays a Critical Role in Mouse Forebrain Angiogenesis. iScience 2019; 19:559-571. [PMID: 31445376 PMCID: PMC6713797 DOI: 10.1016/j.isci.2019.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/28/2019] [Accepted: 08/05/2019] [Indexed: 01/10/2023] Open
Abstract
RECK in neural precursor cells (NPCs) was previously found to support Notch-dependent neurogenesis in mice. On the other hand, recent studies implicate RECK in endothelial cells (ECs) in WNT7-triggered canonical WNT signaling essential for brain angiogenesis. Here we report that RECK in NPCs is also critical for brain angiogenesis. When Reck is inactivated in Foxg1-positive NPCs, mice die shortly after birth with hemorrhage in the forebrain, with angiogenic sprouts stalling at the periphery and forming abnormal aggregates reminiscent of those in EC-selective Reck knockout mice and Wnt7a/b-deficient mice. The hemorrhage can be pharmacologically suppressed by lithium chloride. An effect of RECK in WNT7-producing cells to enhance canonical WNT-signaling in reporter cells is detectable in mixed culture but not with conditioned medium. Our findings suggest that NPC-expressed RECK has a non-cell-autonomous function to promote forebrain angiogenesis through contact-dependent enhancement of WNT signaling in ECs, implying possible involvement of RECK in neurovascular coupling. Mice lacking RECK in Foxg1-positive neural precursor cells die shortly after birth These mice show vascular defects similar to those in mice lacking endothelial RECK The vascular phenotype can be suppressed by LiCl, an activator of WNT signaling RECK in WNT7-producing cell enhances contact-dependent WNT signaling in adjacent cells
Collapse
Affiliation(s)
- Huiping Li
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takao Miki
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Glícia Maria de Almeida
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Carina Hanashima
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tomoko Matsuzaki
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Calvin J Kuo
- Stanford University School of Medicine, Department of Medicine, Division of Hematology, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
19
|
Abstract
The vertebrate vasculature displays high organotypic specialization, with the structure and function of blood vessels catering to the specific needs of each tissue. A unique feature of the central nervous system (CNS) vasculature is the blood-brain barrier (BBB). The BBB regulates substance influx and efflux to maintain a homeostatic environment for proper brain function. Here, we review the development and cell biology of the BBB, focusing on the cellular and molecular regulation of barrier formation and the maintenance of the BBB through adulthood. We summarize unique features of CNS endothelial cells and highlight recent progress in and general principles of barrier regulation. Finally, we illustrate why a mechanistic understanding of the development and maintenance of the BBB could provide novel therapeutic opportunities for CNS drug delivery.
Collapse
Affiliation(s)
- Urs H Langen
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Swathi Ayloo
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
20
|
Cheyuo C, Aziz M, Wang P. Neurogenesis in Neurodegenerative Diseases: Role of MFG-E8. Front Neurosci 2019; 13:569. [PMID: 31213977 PMCID: PMC6558065 DOI: 10.3389/fnins.2019.00569] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are devastating medical conditions with no effective treatments. Restoration of impaired neurogenesis represents a promising therapeutic strategy for neurodegenerative diseases. Milk fat globule-epidermal growth factor-factor VIII (MFG-E8) is a secretory glycoprotein that plays a wide range of cellular functions including phagocytosis of apoptotic cells, anti-inflammation, tissue regeneration, and homeostasis. The beneficial role of MFG-E8 has been shown in cerebral ischemia (stroke), neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease, and traumatic brain injury. In stroke, MFG-E8 promotes neural stem cell proliferation and their migration toward the ischemic brain tissues. These novel functions of MFG-E8 are primarily mediated through its receptor αvβ3-integrin. Here, we focus on the pivotal role of MFG-E8 in protecting against neuronal diseases by promoting neurogenesis. We also discuss the mechanisms of MFG-E8-mediated neural stem/progenitor cell (NSPC) proliferation and migration, and the potential of MFG-E8 for neural stem cell niche maintenance via angiogenesis. We propose further investigation of the molecular pathways for MFG-E8 signaling in NSPC and effective strategies for MFG-E8 delivery across the blood–brain barrier, which will help develop MFG-E8 as a future drug candidate for the bedside management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Cletus Cheyuo
- Department of Neurosurgery, West Virginia University, Morgantown, WV, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Department of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
21
|
Cayrol F, Sterle HA, Díaz Flaqué MC, Barreiro Arcos ML, Cremaschi GA. Non-genomic Actions of Thyroid Hormones Regulate the Growth and Angiogenesis of T Cell Lymphomas. Front Endocrinol (Lausanne) 2019; 10:63. [PMID: 30814977 PMCID: PMC6381017 DOI: 10.3389/fendo.2019.00063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
T-cell lymphomas (TCL) are a heterogeneous group of aggressive clinical lymphoproliferative disorders with considerable clinical, morphological, immunophenotypic, and genetic variation, including ~10-15% of all lymphoid neoplasms. Several evidences indicate an important role of the non-neoplastic microenvironment in promoting both tumor growth and dissemination in T cell malignancies. Thus, dysregulation of integrin expression and activity is associated with TCL survival and proliferation. We found that thyroid hormones acting via the integrin αvβ3 receptor are crucial factors in tumor microenvironment (TME) affecting the pathophysiology of TCL cells. Specifically, TH-activated αvβ3 integrin signaling promoted TCL proliferation and induced and an angiogenic program via the up-regulation of the vascular endothelial growth factor (VEGF). This was observed both on different TCL cell lines representing the different subtypes of human hematological malignancy, and in preclinical models of TCL tumors xenotransplanted in immunodeficient mice as well. Moreover, development of solid tumors by inoculation of murine TCLs in syngeneic hyperthyroid mice, showed increased tumor growth along with increased expression of cell cycle regulators. The genomic or pharmacological inhibition of integrin αvβ3 decreased VEGF production, induced TCL cell death and decreased in vivo tumor growth and angiogenesis. Here, we review the non-genomic actions of THs on TCL regulation and their contribution to TCL development and evolution. These actions not only provide novel new insights on the endocrine modulation of TCL, but also provide a potential molecular target for its treatment.
Collapse
Affiliation(s)
- Florencia Cayrol
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Helena A Sterle
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Maria Celeste Díaz Flaqué
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Maria Laura Barreiro Arcos
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Graciela A Cremaschi
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Nirwane A, Yao Y. Laminins and their receptors in the CNS. Biol Rev Camb Philos Soc 2019; 94:283-306. [PMID: 30073746 DOI: 10.1111/brv.12454] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023]
Abstract
Laminin, an extracellular matrix protein, is widely expressed in the central nervous system (CNS). By interacting with integrin and non-integrin receptors, laminin exerts a large variety of important functions in the CNS in both physiological and pathological conditions. Due to the existence of many laminin isoforms and their differential expression in various cell types in the CNS, the exact functions of each individual laminin molecule in CNS development and homeostasis remain largely unclear. In this review, we first briefly introduce the structure and biochemistry of laminins and their receptors. Next, the dynamic expression of laminins and their receptors in the CNS during both development and in adulthood is summarized in a cell-type-specific manner, which allows appreciation of their functional redundancy/compensation. Furthermore, we discuss the biological functions of laminins and their receptors in CNS development, blood-brain barrier (BBB) maintenance, neurodegeneration, stroke, and neuroinflammation. Last, key challenges and potential future research directions are summarized and discussed. Our goals are to provide a synthetic review to stimulate future studies and promote the formation of new ideas/hypotheses and new lines of research in this field.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| |
Collapse
|
23
|
Takasaka N, Seed RI, Cormier A, Bondesson AJ, Lou J, Elattma A, Ito S, Yanagisawa H, Hashimoto M, Ma R, Levine MD, Publicover J, Potts R, Jespersen JM, Campbell MG, Conrad F, Marks JD, Cheng Y, Baron JL, Nishimura SL. Integrin αvβ8-expressing tumor cells evade host immunity by regulating TGF-β activation in immune cells. JCI Insight 2018; 3:122591. [PMID: 30333313 DOI: 10.1172/jci.insight.122591] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022] Open
Abstract
TGF-β is a promising immunotherapeutic target. It is expressed ubiquitously in a latent form that must be activated to function. Determination of where and how latent TGF-β (L-TGF-β) is activated in the tumor microenvironment could facilitate cell- and mechanism-specific approaches to immunotherapeutically target TGF-β. Binding of L-TGF-β to integrin αvβ8 results in activation of TGF-β. We engineered and used αvβ8 antibodies optimized for blocking or detection, which - respectively - inhibit tumor growth in syngeneic tumor models or sensitively and specifically detect β8 in human tumors. Inhibition of αvβ8 potentiates cytotoxic T cell responses and recruitment of immune cells to tumor centers - effects that are independent of PD-1/PD-L1. β8 is expressed on the cell surface at high levels by tumor cells, not immune cells, while the reverse is true of L-TGF-β, suggesting that tumor cell αvβ8 serves as a platform for activating cell-surface L-TGF-β presented by immune cells. Transcriptome analysis of tumor-associated lymphoid cells reveals macrophages as a key cell type responsive to β8 inhibition with major increases in chemokine and tumor-eliminating genes. High β8 expression in tumor cells is seen in 20%-80% of various cancers, which rarely coincides with high PD-L1 expression. These data suggest tumor cell αvβ8 is a PD-1/PD-L1-independent immunotherapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yifan Cheng
- Department of Biochemistry and Biophysics, and.,Howard Hughes Medical Institute, UCSF, San Francisco, California, USA
| | | | | |
Collapse
|
24
|
Dave JM, Mirabella T, Weatherbee SD, Greif DM. Pericyte ALK5/TIMP3 Axis Contributes to Endothelial Morphogenesis in the Developing Brain. Dev Cell 2018; 44:665-678.e6. [PMID: 29456135 DOI: 10.1016/j.devcel.2018.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 12/22/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
Abstract
The murine embryonic blood-brain barrier (BBB) consists of endothelial cells (ECs), pericytes (PCs), and basement membrane. Although PCs are critical for inducing vascular stability, signaling pathways in PCs that regulate EC morphogenesis during BBB development remain unexplored. Herein, we find that murine embryos lacking the transforming growth factor β (TGF-β) receptor activin receptor-like kinase 5 (Alk5) in brain PCs (mutants) develop gross germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH). The germinal matrix (GM) is a highly vascularized structure rich in neuronal and glial precursors. We show that GM microvessels of mutants display abnormal dilation, reduced PC coverage, EC hyperproliferation, reduced basement membrane collagen, and enhanced perivascular matrix metalloproteinase activity. Furthermore, ALK5-depleted PCs downregulate tissue inhibitor of matrix metalloproteinase 3 (TIMP3), and TIMP3 administration to mutants improves endothelial morphogenesis and attenuates GMH-IVH. Overall, our findings reveal a key role for PC ALK5 in regulating brain endothelial morphogenesis and a substantial therapeutic potential for TIMP3 during GMH-IVH.
Collapse
Affiliation(s)
- Jui M Dave
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Teodelinda Mirabella
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA
| | - Scott D Weatherbee
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Garton T, Hua Y, Xiang J, Xi G, Keep RF. Challenges for intraventricular hemorrhage research and emerging therapeutic targets. Expert Opin Ther Targets 2017; 21:1111-1122. [PMID: 29067856 PMCID: PMC6097191 DOI: 10.1080/14728222.2017.1397628] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Intraventricular hemorrhage (IVH) affects both premature infants and adults. In both demographics, it has high mortality and morbidity. There is no FDA approved therapy that improves neurological outcome in either population highlighting the need for additional focus on therapeutic targets and treatments emerging from preclinical studies. Areas covered: IVH induces both initial injury linked to the physical effects of the blood (mass effect) and secondary injury linked to the brain response to the hemorrhage. Preclinical studies have identified multiple secondary injury mechanisms following IVH, and particularly the role of blood components (e.g. hemoglobin, iron, thrombin). This review, with an emphasis on pre-clinical IVH research, highlights therapeutic targets and treatments that may be of use in prevention, acute care, or repair of damage. Expert opinion: An IVH is a potentially devastating event. Progress has been made in elucidating injury mechanisms, but this has still to translate to the clinic. Some pathways involved in injury also have beneficial effects (coagulation cascade/inflammation). A greater understanding of the downstream pathways involved in those pathways may allow therapeutic development. Iron chelation (deferoxamine) is in clinical trial for intracerebral hemorrhage and preclinical data suggest it may be a potential treatment for IVH.
Collapse
Affiliation(s)
- Thomas Garton
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Ya Hua
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Jianming Xiang
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Guohua Xi
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| | - Richard F Keep
- a Department of Neurosurgery , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
26
|
Hashimoto K, Ikeda N, Nakashima M, Ikeshima-Kataoka H, Miyamoto Y. Vitronectin Regulates the Fibrinolytic System during the Repair of Cerebral Cortex in Stab-Wounded Mice. J Neurotrauma 2017; 34:3183-3191. [DOI: 10.1089/neu.2017.5008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Kei Hashimoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
- Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
- Program for Leading Graduate Schools, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi, Chiyoda-ku, Tokyo, Japan
| | - Natsumi Ikeda
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Mari Nakashima
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
- Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Hiroko Ikeshima-Kataoka
- Faculty of Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, Japan
- Department of Pharmacology and Neuroscience, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yasunori Miyamoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
- Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
- Program for Leading Graduate Schools, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
27
|
Abstract
During vascular development, endothelial cells (ECs) and neighboring stromal cells interact and communicate through autocrine and paracrine signaling mechanisms involving extracellular matrix (ECM) proteins and their cell surface integrin adhesion receptors. Integrin-mediated adhesion and signaling pathways are crucial for normal vascular development and physiology, and alterations in integrin expression and/or function drive several vascular-related pathologies including thrombosis, autoimmune disorders, and cancer. The purpose of this chapter is to discuss integrin adhesion and signaling pathways important for EC growth, survival, and migration. Integrin-mediated paracrine links between ECs and surrounding stromal cells in the organ microenvironment will also be discussed. Lastly, we will review roles for integrins in vascular pathologies and discuss possible targets for therapeutic intervention.
Collapse
Affiliation(s)
- Paola A Guerrero
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joseph H McCarty
- University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
28
|
Neuropilin-1 modulates TGFβ signaling to drive glioblastoma growth and recurrence after anti-angiogenic therapy. PLoS One 2017; 12:e0185065. [PMID: 28938007 PMCID: PMC5609745 DOI: 10.1371/journal.pone.0185065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is a rapidly progressive brain cancer that exploits the neural microenvironment, and particularly blood vessels, for selective growth and survival. Anti-angiogenic agents such as the vascular endothelial growth factor-A (VEGF-A) blocking antibody bevacizumab yield short-term benefits to patients due to blood vessel regression and stabilization of vascular permeability. However, tumor recurrence is common, and this is associated with acquired resistance to bevacizumab. The mechanisms that drive acquired resistance and tumor recurrence in response to anti-angiogenic therapy remain largely unknown. Here, we report that Neuropilin-1 (Nrp1) regulates GBM growth and invasion by balancing tumor cell responses to VEGF-A and transforming growth factor βs (TGFβs). Nrp1 is expressed in GBM cells where it promotes TGFβ receptor internalization and signaling via Smad transcription factors. GBM that recur after bevacizumab treatment show down-regulation of Nrp1 expression, indicating that altering the balance between VEGF-A and TGFβ signaling is one mechanism that promotes resistance to anti-angiogenic agents. Collectively, these data reveal that Nrp1 plays a critical role in balancing responsiveness to VEGF-A versus TGFβ to regulate GBM growth, progression, and recurrence after anti-vascular therapy.
Collapse
|
29
|
Ma S, Santhosh D, Kumar T P, Huang Z. A Brain-Region-Specific Neural Pathway Regulating Germinal Matrix Angiogenesis. Dev Cell 2017; 41:366-381.e4. [PMID: 28535372 DOI: 10.1016/j.devcel.2017.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/28/2017] [Accepted: 04/20/2017] [Indexed: 01/05/2023]
Abstract
Intimate communication between neural and vascular cells is critical for normal brain development and function. Germinal matrix (GM), a key primordium for the brain reward circuitry, is unique among brain regions for its distinct pace of angiogenesis and selective vulnerability to hemorrhage during development. A major neonatal condition, GM hemorrhage can lead to cerebral palsy, hydrocephalus, and mental retardation. Here we identify a brain-region-specific neural progenitor-based signaling pathway dedicated to regulating GM vessel development. This pathway consists of cell-surface sphingosine-1-phosphate receptors, an intracellular cascade including Gα co-factor Ric8a and p38 MAPK, and target gene integrin β8, which in turn regulates vascular TGF-β signaling. These findings provide insights into region-specific specialization of neurovascular communication, with special implications for deciphering potent early-life endocrine, as well as potential gut microbiota impacts on brain reward circuitry. They also identify tissue-specific molecular targets for GM hemorrhage intervention.
Collapse
Affiliation(s)
- Shang Ma
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, 53705, USA; Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI53706, USA
| | - Devi Santhosh
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, 53705, USA; Program in Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI53706, USA
| | - Peeyush Kumar T
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, 53705, USA; Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI53706, USA; Program in Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI53706, USA.
| |
Collapse
|
30
|
Guerrero PA, Tchaicha JH, Chen Z, Morales JE, McCarty N, Wang Q, Sulman EP, Fuller G, Lang FF, Rao G, McCarty JH. Glioblastoma stem cells exploit the αvβ8 integrin-TGFβ1 signaling axis to drive tumor initiation and progression. Oncogene 2017; 36:6568-6580. [PMID: 28783169 DOI: 10.1038/onc.2017.248] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is a primary brain cancer that contains populations of stem-like cancer cells (GSCs) that home to specialized perivascular niches. GSC interactions with their niche influence self-renewal, differentiation and drug resistance, although the pathways underlying these events remain largely unknown. Here, we report that the integrin αvβ8 and its latent transforming growth factor β1 (TGFβ1) protein ligand have central roles in promoting niche co-option and GBM initiation. αvβ8 integrin is highly expressed in GSCs and is essential for self-renewal and lineage commitment in vitro. Fractionation of β8high cells from freshly resected human GBM samples also reveals a requirement for this integrin in tumorigenesis in vivo. Whole-transcriptome sequencing reveals that αvβ8 integrin regulates tumor development, in part, by driving TGFβ1-induced DNA replication and mitotic checkpoint progression. Collectively, these data identify the αvβ8 integrin-TGFβ1 signaling axis as crucial for exploitation of the perivascular niche and identify potential therapeutic targets for inhibiting tumor growth and progression in patients with GBM.
Collapse
Affiliation(s)
- P A Guerrero
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - J H Tchaicha
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - Z Chen
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - J E Morales
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - N McCarty
- The Brown Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Q Wang
- Department of Radiation Oncology, M. D. Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, M. D. Anderson Cancer Center, Houston, TX, USA
| | - E P Sulman
- Department of Radiation Oncology, M. D. Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, M. D. Anderson Cancer Center, Houston, TX, USA.,Department of Translational Molecular Pathology, M. D. Anderson Cancer Center, Houston, TX, USA
| | - G Fuller
- Departments of Pathology, M. D. Anderson Cancer Center, Houston, TX, USA
| | - F F Lang
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - G Rao
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| | - J H McCarty
- Department of Neurosurgery, M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
31
|
Porte B, Hardouin J, Zerdoumi Y, Derambure C, Hauchecorne M, Dupre N, Obry A, Lequerre T, Bekri S, Gonzalez B, Flaman JM, Marret S, Cosette P, Leroux P. Major remodeling of brain microvessels during neonatal period in the mouse: A proteomic and transcriptomic study. J Cereb Blood Flow Metab 2017; 37:495-513. [PMID: 26873886 PMCID: PMC5381447 DOI: 10.1177/0271678x16630557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Preterm infants born before 29 gestation weeks incur major risk of subependymal/intracerebral/intraventricular hemorrhage. In mice, neonate brain endothelial cells are more prone than adult cells to secrete proteases under glutamate challenge, and invalidation of the Serpine 1 gene is accompanied by high brain hemorrhage risk up to five days after birth. We hypothesized that the structural and functional states of microvessels might account for age-dependent vulnerability in mice up to five days after birth and might represent a pertinent paradigm to approach the hemorrhage risk window observed in extreme preterms. Mass spectrometry proteome analyses of forebrain microvessels at days 5, 10 and in adult mice revealed 899 proteins and 36 enriched pathways. Microarray transcriptomic study identified 5873 genes undergoing at least two-fold change between ages and 93 enriched pathways. Both approaches pointed towards extracellular matrix, cell adhesion and junction pathways, indicating delayed microvascular strengthening after P5. Furthermore, glutamate receptors, proteases and their inhibitors exhibited convergent evolutions towards excitatory aminoacid sensitivity and low proteolytic control likely accounting for vascular vulnerability in P5 mice. Thus, age vascular specificities must be considered in future therapeutic interventions in preterms. Data are available on ProteomeXchange (identifier PXD001718) and NCBI Gene-Expression-Omnibus repository (identification GSE67870).
Collapse
Affiliation(s)
- Baptiste Porte
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Julie Hardouin
- 2 UMR-6270, CNRS, Polymers, Biopolymers, Surfaces, Biofilm Resistance, Cell Surfaces Interactions Group (PBS), CNRS, IRIB, Normandie Université, Mont-Saint-Aignan, France.,3 Proteomic Facility PISSARO, IRIB, Normandie Université, Mont-Saint-Aignan, France
| | - Yasmine Zerdoumi
- 4 UMR-S1079, INSERM, Genetic of Cancer and Neurogenetics (GCM), IRIB, Normandie Université, Rouen, France
| | - Céline Derambure
- 5 UMR-S905, INSERM, Pathophysiology and Biotherapy of Inflammatory and Autoimmune Diseases, IRIB, Normandie Université, Rouen, France
| | - Michèle Hauchecorne
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Nicolas Dupre
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Antoine Obry
- 3 Proteomic Facility PISSARO, IRIB, Normandie Université, Mont-Saint-Aignan, France
| | - Thierry Lequerre
- 5 UMR-S905, INSERM, Pathophysiology and Biotherapy of Inflammatory and Autoimmune Diseases, IRIB, Normandie Université, Rouen, France
| | - Soumeya Bekri
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,6 Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| | - Bruno Gonzalez
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jean M Flaman
- 4 UMR-S1079, INSERM, Genetic of Cancer and Neurogenetics (GCM), IRIB, Normandie Université, Rouen, France
| | - Stéphane Marret
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France.,7 Neonatal Pediatrics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Pascal Cosette
- 2 UMR-6270, CNRS, Polymers, Biopolymers, Surfaces, Biofilm Resistance, Cell Surfaces Interactions Group (PBS), CNRS, IRIB, Normandie Université, Mont-Saint-Aignan, France.,3 Proteomic Facility PISSARO, IRIB, Normandie Université, Mont-Saint-Aignan, France
| | - Philippe Leroux
- 1 INSERM-ERI28, NeoVasc Laboratory, Microvascular Endothelium and Neonate Brain Lesions, Normandie Université, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
32
|
Gautam J, Zhang X, Yao Y. The role of pericytic laminin in blood brain barrier integrity maintenance. Sci Rep 2016; 6:36450. [PMID: 27808256 PMCID: PMC5093438 DOI: 10.1038/srep36450] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/14/2016] [Indexed: 11/09/2022] Open
Abstract
Laminin, a major component of the basement membrane, plays an important role in blood brain barrier regulation. At the neurovascular unit, brain endothelial cells, astrocytes, and pericytes synthesize and deposit different laminin isoforms into the basement membrane. It has been shown that laminin α4 (endothelial laminin) regulates vascular integrity at embryonic/neonatal stage, while astrocytic laminin maintains vascular integrity in adulthood. Here, we investigate the function of pericyte-derived laminin in vascular integrity. Using a conditional knockout mouse line, we report that loss of pericytic laminin leads to hydrocephalus and BBB breakdown in a small percentage (10.7%) of the mutants. Interestingly, BBB disruption always goes hand-in-hand with hydrocephalus in these mutants, and neither symptom is observed in the rest 89.3% of the mutants. Further mechanistic studies show that reduced tight junction proteins, diminished AQP4 expression, and decreased pericyte coverage are responsible for the BBB disruption. Together, these data suggest that pericyte-derived laminin is involved in the maintenance of BBB integrity and regulation of ventricular size/development.
Collapse
Affiliation(s)
- Jyoti Gautam
- College of Pharmacy, University of Minnesota, 1110 Kirby Drive, Duluth, MN, 55812, USA
| | - Xuanming Zhang
- College of Pharmacy, University of Minnesota, 1110 Kirby Drive, Duluth, MN, 55812, USA
| | - Yao Yao
- College of Pharmacy, University of Minnesota, 1110 Kirby Drive, Duluth, MN, 55812, USA
| |
Collapse
|
33
|
Duperret EK, Natale CA, Monteleon C, Dahal A, Ridky TW. The integrin αv-TGFβ signaling axis is necessary for epidermal proliferation during cutaneous wound healing. Cell Cycle 2016; 15:2077-86. [PMID: 27295308 DOI: 10.1080/15384101.2016.1199306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Proliferation and migration of epidermal keratinocytes are essential for proper cutaneous wound closure after injury. αv integrins and several of their ligands-vitronectin, TGFβ and thrombospondin-are up-regulated in healing wounds. However, the role of αv integrins in wound re-epithelialization is unknown. Here, we show that genetic depletion or antibody-mediated blockade of pan-integrin αv, or the specific heterodimer αvβ6, in keratinocytes limited epidermal proliferation at the wound edge and prevented re-epithelialization of wounded human organotypic skin both in vivo and in vitro. While we did not observe a migration defect upon αv blockade in vivo, αv was necessary for keratinocyte migration over longer distances in organotypic skin. Integrin αv is required for local activation of latent TGFβ, and the wound healing defect in the setting of integrin αv loss was rescued by exogenous, active TGFβ, indicating that the αv-TGFβ signaling axis is a critical component of the normal epidermal wound healing program. As chronic wounds are associated with decreased TGFβ signaling, restoration of TGFβ activity may have therapeutic utility in some clinical settings.
Collapse
Affiliation(s)
- Elizabeth K Duperret
- a Department of Dermatology , University of Pennsylvania , Philadelphia , PA , USA
| | - Christopher A Natale
- a Department of Dermatology , University of Pennsylvania , Philadelphia , PA , USA
| | - Christine Monteleon
- a Department of Dermatology , University of Pennsylvania , Philadelphia , PA , USA
| | - Ankit Dahal
- a Department of Dermatology , University of Pennsylvania , Philadelphia , PA , USA
| | - Todd W Ridky
- a Department of Dermatology , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
34
|
Davidson LM, Coward K. Molecular mechanisms of membrane interaction at implantation. ACTA ACUST UNITED AC 2016; 108:19-32. [DOI: 10.1002/bdrc.21122] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Lien M. Davidson
- Nuffield Department of Obstetrics and Gynaecology; University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital; Headington Oxford OX3 9DU United Kingdom
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology; University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital; Headington Oxford OX3 9DU United Kingdom
| |
Collapse
|
35
|
Hirota S, Clements TP, Tang LK, Morales JE, Lee HS, Oh SP, Rivera GM, Wagner DS, McCarty JH. Neuropilin 1 balances β8 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain. Development 2015; 142:4363-73. [PMID: 26586223 PMCID: PMC4689212 DOI: 10.1242/dev.113746] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
Abstract
Angiogenesis in the developing central nervous system (CNS) is regulated by neuroepithelial cells, although the genes and pathways that couple these cells to blood vessels remain largely uncharacterized. Here, we have used biochemical, cell biological and molecular genetic approaches to demonstrate that β8 integrin (Itgb8) and neuropilin 1 (Nrp1) cooperatively promote CNS angiogenesis by mediating adhesion and signaling events between neuroepithelial cells and vascular endothelial cells. β8 integrin in the neuroepithelium promotes the activation of extracellular matrix (ECM)-bound latent transforming growth factor β (TGFβ) ligands and stimulates TGFβ receptor signaling in endothelial cells. Nrp1 in endothelial cells suppresses TGFβ activation and signaling by forming intercellular protein complexes with β8 integrin. Cell type-specific ablation of β8 integrin, Nrp1, or canonical TGFβ receptors results in pathological angiogenesis caused by defective neuroepithelial cell-endothelial cell adhesion and imbalances in canonical TGFβ signaling. Collectively, these data identify a paracrine signaling pathway that links the neuroepithelium to blood vessels and precisely balances TGFβ signaling during cerebral angiogenesis. Summary: Neuropilin 1 and β8 integrin cooperatively promote cerebral angiogenesis by mediating adhesion and signaling events between neuroepithelial cells and vascular endothelial cells in the mouse brain.
Collapse
Affiliation(s)
- Shinya Hirota
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Leung K Tang
- College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - John E Morales
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hye Shin Lee
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - S Paul Oh
- Department of Physiology and Functional Genomics, University of Florida, Gainseville, FL 32610, USA
| | - Gonzalo M Rivera
- College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Daniel S Wagner
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Joseph H McCarty
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
36
|
Abstract
The developing central nervous system (CNS) is vascularised through the angiogenic invasion of blood vessels from a perineural vascular plexus, followed by continued sprouting and remodelling until a hierarchical vascular network is formed. Remarkably, vascularisation occurs without perturbing the intricate architecture of the neurogenic niches or the emerging neural networks. We discuss the mouse hindbrain, forebrain and retina as widely used models to study developmental angiogenesis in the mammalian CNS and provide an overview of key cellular and molecular mechanisms regulating the vascularisation of these organs. CNS vascularisation is initiated during embryonic development. CNS vascularisation is studied in the mouse forebrain, hindbrain and retina models. Neuroglial cells interact with endothelial cells to promote angiogenesis. Neuroglial cells produce growth factors and matrix cues to pattern vessels.
Collapse
|
37
|
Santhosh D, Huang Z. Regulation of the nascent brain vascular network by neural progenitors. Mech Dev 2015; 138 Pt 1:37-42. [PMID: 26163231 DOI: 10.1016/j.mod.2015.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 01/08/2023]
Abstract
Neural progenitors are central players in the development of the brain neural circuitry. They not only produce the diverse neuronal and glial cell types in the brain, but also guide their migration in this process. Recent evidence indicates that neural progenitors also play a critical role in the development of the brain vascular network. At an early stage, neural progenitors have been found to facilitate the ingression of blood vessels from outside the neural tube, through VEGF and canonical Wnt signaling. Subsequently, neural progenitors directly communicate with endothelial cells to stabilize nascent brain vessels, in part through down-regulating Wnt pathway activity. Furthermore, neural progenitors promote nascent brain vessel integrity, through integrin αvβ8-dependent TGFβ signaling. In this review, we will discuss the evidence for, as well as questions that remain, regarding these novel roles of neural progenitors and the underlying mechanisms in their regulation of the nascent brain vascular network.
Collapse
Affiliation(s)
- Devi Santhosh
- Departments of Neurology and Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, United States; Genetics Training Program, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Zhen Huang
- Departments of Neurology and Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
38
|
Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood 2015; 125:3769-77. [PMID: 25908104 DOI: 10.1182/blood-2014-09-603803] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/15/2015] [Indexed: 02/06/2023] Open
Abstract
Mice with a constitutive or platelet-specific deletion of the C-type-lectin-like receptor (CLEC-2) exhibit hemorrhaging in the brain at mid-gestation. We sought to investigate the basis of this defect, hypothesizing that it is mediated by the loss of CLEC-2 activation by its endogenous ligand, podoplanin, which is expressed on the developing neural tube. To induce deletion of podoplanin at the 2-cell stage, we generated a podoplanin(fl/fl) mouse crossed to a PGK-Cre mouse. Using 3-dimensional light-sheet microscopy, we observed cerebral vessels were tortuous and aberrantly patterned at embryonic (E) day 10.5 in podoplanin- and CLEC-2-deficient mice, preceding the formation of large hemorrhages throughout the fore-, mid-, and hindbrain by E11.5. Immunofluorescence and electron microscopy revealed defective pericyte recruitment and misconnections between the endothelium of developing blood vessels and surrounding pericytes and neuro-epithelial cells. Nestin-Cre-driven deletion of podoplanin on neural progenitors also caused widespread cerebral hemorrhaging. Hemorrhaging was also seen in the ventricles of embryos deficient in the platelet integrin subunit glycoprotein IIb or in embryos in which platelet α-granule and dense granule secretion is abolished. We propose a novel role for podoplanin on the neuro-epithelium, which interacts with CLEC-2 on platelets, mediating platelet adhesion, aggregation, and secretion to guide the maturation and integrity of the developing vasculature and prevent hemorrhage.
Collapse
|
39
|
Stolp HB, Molnár Z. Neurogenic niches in the brain: help and hindrance of the barrier systems. Front Neurosci 2015; 9:20. [PMID: 25691856 PMCID: PMC4315025 DOI: 10.3389/fnins.2015.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/13/2015] [Indexed: 01/24/2023] Open
Abstract
In the developing central nervous system, most neurogenesis occurs in the ventricular and subventricular proliferative zones. In the adult telencephalon, neurogenesis contracts to the subependyma zone and the dentate gyrus (subgranular zone) of the hippocampus. These restricted niches containing progenitor cells which divide to produce neurons or glia, depending on the intrinsic and environmental cues. Neurogenic niches are characterized by a comparatively high vascular density and, in many cases, interaction with the cerebrospinal fluid (CSF). Both the vasculature and the CSF represent a source of signaling molecules, which can be relatively rapidly modulated by external factors and circulated through the central nervous system. As the brain develops, there is vascular remodeling and a compartmentalization and dynamic modification of the ventricular surface which may be responsible for the change in the proliferative properties. This review will explore the relationship between progenitor cells and the developing vascular and ventricular space. In particular the signaling systems employed to control proliferation, and the consequence of abnormal vascular or ventricular development on growth of the telencephalon. It will also discuss the potential significance of the barriers at the vascular and ventricular junctions in the influence of the proliferative niches.
Collapse
Affiliation(s)
- Helen B Stolp
- Division of Biomedical Engineering and Health Sciences, Department of Perinatal Imaging and Health, King's College London London, UK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| |
Collapse
|
40
|
Arnold TD, Niaudet C, Pang MF, Siegenthaler J, Gaengel K, Jung B, Ferrero GM, Mukouyama YS, Fuxe J, Akhurst R, Betsholtz C, Sheppard D, Reichardt LF. Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking αVβ8-TGFβ signaling in the brain. Development 2014; 141:4489-99. [PMID: 25406396 DOI: 10.1242/dev.107193] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vascular development of the central nervous system and blood-brain barrier (BBB) induction are closely linked processes. The role of factors that promote endothelial sprouting and vascular leak, such as vascular endothelial growth factor A, are well described, but the factors that suppress angiogenic sprouting and their impact on the BBB are poorly understood. Here, we show that integrin αVβ8 activates angiosuppressive TGFβ gradients in the brain, which inhibit endothelial cell sprouting. Loss of αVβ8 in the brain or downstream TGFβ1-TGFBR2-ALK5-Smad3 signaling in endothelial cells increases vascular sprouting, branching and proliferation, leading to vascular dysplasia and hemorrhage. Importantly, BBB function in Itgb8 mutants is intact during early stages of vascular dysgenesis before hemorrhage. By contrast, Pdgfb(ret/ret) mice, which exhibit severe BBB disruption and vascular leak due to pericyte deficiency, have comparatively normal vascular morphogenesis and do not exhibit brain hemorrhage. Our data therefore suggest that abnormal vascular sprouting and patterning, not BBB dysfunction, underlie developmental cerebral hemorrhage.
Collapse
Affiliation(s)
- Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Colin Niaudet
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Mei-Fong Pang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Julie Siegenthaler
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Konstantin Gaengel
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Bongnam Jung
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Gina M Ferrero
- Department of Physiology and Neuroscience Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yoh-suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Jonas Fuxe
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Rosemary Akhurst
- Helen Diller Cancer Center and Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christer Betsholtz
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-177 77 Stockholm, Sweden
| | - Dean Sheppard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Louis F Reichardt
- Department of Physiology and Neuroscience Program, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
41
|
Abstract
Vertebrates have evolved a powerful vascular system that involves close interactions between blood vessels and target tissues. Vascular biology had been mostly focused on the study of blood vessels for decades, which has generated large bodies of knowledge on vascular cell development, function and pathology. We argue that the prime time has arrived for vascular research on vessel-tissue interactions, especially target tissue regulation of vessel development. The central nervous system (CNS) requires a highly efficient vascular system for oxygen and nutrient transport as well as waste disposal. Therefore, neurovascular interaction is an excellent entry point to understanding target tissue regulation of blood vessel development. In this review, we summarize signaling pathways that transmit information from neural cells to blood vessels during development and the mechanisms by which they regulate each step of CNS angiogenesis. We also review important mechanisms of neural regulation of blood-brain barrier establishment and maturation, highlighting different functions of neural progenitor cells and pericytes. Finally, we evaluate potential contribution of malfunctioning neurovascular signaling to the development of brain vascular diseases and discuss how neurovascular interactions could be involved in brain tumor angiogenesis.
Collapse
Affiliation(s)
- Shang Ma
- Departments of Neurology and Neuroscience, University of Wisconsin-Madison, Madison, WI 53706, USA ; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhen Huang
- Departments of Neurology and Neuroscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
42
|
Andrikopoulou M, Almalki A, Farzin A, Cordeiro CN, Johnston MV, Burd I. Perinatal biomarkers in prematurity: early identification of neurologic injury. Int J Dev Neurosci 2014; 36:25-31. [PMID: 24768951 DOI: 10.1016/j.ijdevneu.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 01/06/2023] Open
Abstract
Over the past few decades, biomarkers have become increasingly utilized as non-invasive tools in the early diagnosis and management of various clinical conditions. In perinatal medicine, the improved survival of extremely premature infants who are at high risk for adverse neurologic outcomes has increased the demand for the discovery of biomarkers in detecting and predicting the prognosis of infants with neonatal brain injury. By enabling the clinician to recognize potential brain damage early, biomarkers could allow clinicians to intervene at the early stages of disease, and to monitor the efficacy of those interventions. This review will first examine the potential perinatal biomarkers for neurologic complications of prematurity, specifically, intraventricular hemorrhage (IVH), periventricular leukomalacia (PVL) and posthemorrhagic hydrocephalus (PHH). It will also evaluate knowledge gained from animal models regarding the pathogenesis of perinatal brain injury in prematurity.
Collapse
Affiliation(s)
- Maria Andrikopoulou
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ahmad Almalki
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Azadeh Farzin
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christina N Cordeiro
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael V Johnston
- Department of Neuroscience, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neuroscience, Kennedy Krieger Institute, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
43
|
Lakhe-Reddy S, Li V, Arnold TD, Khan S, Schelling JR. Mesangial cell αvβ8-integrin regulates glomerular capillary integrity and repair. Am J Physiol Renal Physiol 2014; 306:F1400-9. [PMID: 24740792 DOI: 10.1152/ajprenal.00624.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
αvβ8-Integrin is most abundantly expressed in the kidney, brain, and female reproductive organs, and its cognate ligand is latent transforming growth factor (LTGF)-β. Kidney αvβ8-integrin localizes to mesangial cells, and global β8-integrin gene (Itgb8) deletion results in embryonic lethality due to impaired placentation and cerebral hemorrhage. To circumvent the lethality and better define kidney αvβ8-integrin function, Cre-lox technology was used to generate mesangial-specific Itgb8-null mice. Platelet-derived growth factor-β receptor (PDGFBR)-Cre mice crossed with a reporter strain revealed functional Cre recombinase activity in a predicted mesangial pattern. However, mating between two different PDGFBR-Cre or Ren1(d)-Cre strains with Itgb8 (flox/-) mice consistently resulted in incomplete recombination, with no renal phenotype in mosaic offspring. Induction of a renal phenotype with Habu snake venom, a reversible mesangiolytic agent, caused exaggerated glomerular capillary microaneurysms and delayed recovery in Cre(+/-) PDGFRB (flox/-) mice compared with Cre(+/-) PDGFRB (flox/+) control mice. To establish the mechanism, in vitro experiments were conducted in Itgb8-null versus Itgb8-expressing mesangial cells and fibroblasts, which revealed β8-integrin-regulated adhesion to Arg-Gly-Asp (RGD) peptides within a mesangial-conditioned matrix as well as β8-integrin-dependent migration on RGD-containing LTGF-β or vitronectin matrices. We speculate that kidney αvβ8-integrin indirectly controls glomerular capillary integrity through mechanical tension generated by binding RGD peptides in the mesangial matrix, and healing after glomerular injury may be facilitated by mesangial cell migration, which is guided by transient β8-integrin interactions with RGD ligands.
Collapse
Affiliation(s)
- Sujata Lakhe-Reddy
- Department of Medicine, Case Western Reserve University, Rammelkamp Center for Research, MetroHealth Medical Center, Cleveland, Ohio; and
| | - Vincent Li
- Department of Medicine, Case Western Reserve University, Rammelkamp Center for Research, MetroHealth Medical Center, Cleveland, Ohio; and
| | - Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, California
| | - Shenaz Khan
- Department of Medicine, Case Western Reserve University, Rammelkamp Center for Research, MetroHealth Medical Center, Cleveland, Ohio; and
| | - Jeffrey R Schelling
- Department of Medicine, Case Western Reserve University, Rammelkamp Center for Research, MetroHealth Medical Center, Cleveland, Ohio; and
| |
Collapse
|
44
|
Lee HS, McCarty JH. Inducible gene deletion in glial cells to study angiogenesis in the central nervous system. Methods Mol Biol 2014; 1135:261-74. [PMID: 24510871 DOI: 10.1007/978-1-4939-0320-7_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most organs and tissues of the vertebrate body harbor elaborate network of blood vessels with diverse functions that are determined, in part, by cues within the local environment (Warren and Iruela-Arispe, Curr Opin Hematol 17:213-218, 2010). How vascular endothelial cells decipher these cues to promote normal blood vessel development and physiology remains largely uncharacterized. In this review, we will focus on genetic strategies to analyze glial regulation of blood vessel growth and sprouting within the microenvironment of the retina, a component of the central nervous system (CNS) that contains a complex web of blood vessels with many unique features, including a blood-retinal barrier (Abbott et al., Nat Rev Neurosci 7:41-53, 2006). Blood vessels promote retinal development and homeostasis and alterations in vascular functions can lead to various developmental and adult-onset retinal pathologies (Fruttiger, Angiogenesis 10:77-88, 2007). How glial cells control retinal endothelial cell growth and sprouting remains largely uncharacterized. We will detail methodologies involving inducible Cre-lox technologies to acutely ablate genes of interest in CNS glial cells. These methods allow for precise spatial and temporal regulation of gene expression to study how glial cells in the retinal microenvironment control angiogenesis and blood-retinal barrier development.
Collapse
Affiliation(s)
- Hye Shin Lee
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
45
|
Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013; 19:1584-96. [PMID: 24309662 DOI: 10.1038/nm.3407] [Citation(s) in RCA: 1621] [Impact Index Per Article: 147.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Abstract
The interface between the blood circulation and the neural tissue features unique characteristics that are encompassed by the term 'blood-brain barrier' (BBB). The main functions of this barrier, namely maintenance of brain homeostasis, regulation of influx and efflux transport, and protection from harm, are determined by its specialized multicellular structure. Every constituent cell type makes an indispensable contribution to the BBB's integrity. But if one member of the BBB fails, and as a result the barrier breaks down, there can be dramatic consequences and neuroinflammation and neurodegeneration can occur. In this Review, we highlight recently gained mechanistic insights into the development and maintenance of the BBB. We then discuss how BBB disruption can cause or contribute to neurological disease. Finally, we examine how this knowledge can be used to explore new possibilities for BBB repair.
Collapse
Affiliation(s)
- Birgit Obermeier
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
46
|
Bertini G, Bramanti P, Constantin G, Pellitteri M, Radu BM, Radu M, Fabene PF. New players in the neurovascular unit: insights from experimental and clinical epilepsy. Neurochem Int 2013; 63:652-9. [PMID: 23962437 DOI: 10.1016/j.neuint.2013.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 01/12/2023]
Abstract
The conventional notion that neurons are exclusively responsible for brain signaling is increasingly challenged by the idea that brain function in fact depends on a complex interplay between neurons, glial cells, vascular endothelium, and immune-related blood cells. Recent data demonstrates that neuronal activity is profoundly affected by an entire cellular and extracellular 'orchestra', the so-called neurovascular unit (NVU). Among the 'musical instruments' of this orchestra, there may be molecules long-known in biomedicine as important mediators of inflammatory and immune responses in the organism, as well as non-neuronal cells, e.g., leukocytes. We here review recent evidence on the structure and function of the NVU, both in the healthy brain and in pathological conditions, such as the abnormal NVU activation observed in epilepsy. We will argue that a better understanding of NVU function will require the addition of new players to the 'orchestra'.
Collapse
Affiliation(s)
- Giuseppe Bertini
- Department of Neurological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, Verona 37134, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Chen ZL, Yao Y, Norris EH, Kruyer A, Jno-Charles O, Akhmerov A, Strickland S. Ablation of astrocytic laminin impairs vascular smooth muscle cell function and leads to hemorrhagic stroke. ACTA ACUST UNITED AC 2013; 202:381-95. [PMID: 23857767 PMCID: PMC3718965 DOI: 10.1083/jcb.201212032] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ablation of astrocytic laminin disrupted the interaction between vascular smooth muscle cells and astrocytes, down-regulated contractile protein expression, and weakened vascular integrity in deep brain regions, leading to hemorrhage. Astrocytes express laminin and assemble basement membranes (BMs) at their endfeet, which ensheath the cerebrovasculature. The function of astrocytic laminin in cerebrovascular integrity is unknown. We show that ablation of astrocytic laminin by tissue-specific Cre-mediated recombination disrupted endfeet BMs and led to hemorrhage in deep brain regions of adult mice, resembling human hypertensive hemorrhage. The lack of astrocytic laminin led to impaired function of vascular smooth muscle cells (VSMCs), where astrocytes have a closer association with VSMCs in small arterioles, and was associated with hemorrhagic vessels, which exhibited VSMC fragmentation and vascular wall disassembly. Acute disruption of astrocytic laminin in the striatum of adult mice also impaired VSMC function, indicating that laminin is necessary for VSMC maintenance. In vitro, both astrocytes and astrocytic laminin promoted brain VSMC differentiation. These results show that astrocytes regulate VSMCs and vascular integrity in small vessels of deep brain regions. Therefore, astrocytes may be a possible target for hemorrhagic stroke prevention and therapy.
Collapse
Affiliation(s)
- Zu-Lin Chen
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Schmidt K, Keller M, Bader BL, Korytář T, Finke S, Ziegler U, Groschup MH. Integrins modulate the infection efficiency of West Nile virus into cells. J Gen Virol 2013; 94:1723-1733. [PMID: 23658209 PMCID: PMC3749529 DOI: 10.1099/vir.0.052613-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The underlying mechanisms allowing West Nile virus (WNV) to replicate in a large variety of different arthropod, bird and mammal species are largely unknown but are believed to rely on highly conserved proteins relevant for viral entry and replication. Consistent with this, the integrin αvβ3 has been proposed lately to function as the cellular receptor for WNV. More recently published data, however, are not in line with this concept. Integrins are highly conserved among diverse taxa and are expressed by almost every cell type at high numbers. Our study was designed to clarify the involvement of integrins in WNV infection of cells. A cell culture model, based on wild-type and specific integrin knockout cell lines lacking the integrin subunits αv, β1 or β3, was used to investigate the susceptibility to WNV, and to evaluate binding and replication efficiencies of four distinct strains (New York 1999, Uganda 1937, Sarafend and Dakar). Though all cell lines were permissive, clear differences in replication efficiencies were observed. Rescue of the β3-integrin subunit resulted in enhanced WNV yields of up to 90 %, regardless of the virus strain used. Similar results were obtained for β1-expressing and non-expressing cells. Binding, however, was not affected by the expression of the integrins in question, and integrin blocking antibodies failed to have any effect. We conclude that integrins are involved in WNV infection but not at the level of binding to target cells.
Collapse
Affiliation(s)
- Katja Schmidt
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald - Isle of Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald - Isle of Riems, Germany
| | - Bernhard L Bader
- Nutritional Medicine Unit, Centre for Nutrition and Food Sciences, Technical University Munich, Gregor-Mendel-Straße 2, 85354 Freising, Germany
| | - Tomáš Korytář
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald - Isle of Riems, Germany
| | - Stefan Finke
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald - Isle of Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald - Isle of Riems, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald - Isle of Riems, Germany
| |
Collapse
|
49
|
Reyes SB, Narayanan AS, Lee HS, Tchaicha JH, Aldape KD, Lang FF, Tolias KF, McCarty JH. αvβ8 integrin interacts with RhoGDI1 to regulate Rac1 and Cdc42 activation and drive glioblastoma cell invasion. Mol Biol Cell 2013; 24:474-82. [PMID: 23283986 PMCID: PMC3571870 DOI: 10.1091/mbc.e12-07-0521] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Experiments with human cancer glioblastoma multiforme cell lines, primary patient samples, and preclinical mouse models are performed to show that αvβ8 integrin and RhoGDI1 are components of a signaling axis that drives brain tumor cell invasion via regulation of Rho GTPase activation. The malignant brain cancer glioblastoma multiforme (GBM) displays invasive growth behaviors that are regulated by extracellular cues within the neural microenvironment. The adhesion and signaling pathways that drive GBM cell invasion remain largely uncharacterized. Here we use human GBM cell lines, primary patient samples, and preclinical mouse models to demonstrate that integrin αvβ8 is a major driver of GBM cell invasion. β8 integrin is overexpressed in many human GBM cells, with higher integrin expression correlating with increased invasion and diminished patient survival. Silencing β8 integrin in human GBM cells leads to impaired tumor cell invasion due to hyperactivation of the Rho GTPases Rac1 and Cdc42. β8 integrin coimmunoprecipitates with Rho-GDP dissociation inhibitor 1 (RhoGDI1), an intracellular signaling effector that sequesters Rho GTPases in their inactive GDP-bound states. Silencing RhoGDI1 expression or uncoupling αvβ8 integrin–RhoGDI1 protein interactions blocks GBM cell invasion due to Rho GTPase hyperactivation. These data reveal for the first time that αvβ8 integrin, via interactions with RhoGDI1, regulates activation of Rho proteins to promote GBM cell invasiveness. Hence targeting the αvβ8 integrin–RhoGDI1 signaling axis might be an effective strategy for blocking GBM cell invasion.
Collapse
Affiliation(s)
- Steve B Reyes
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev 2013; 65:121-38. [PMID: 23026636 PMCID: PMC3565049 DOI: 10.1016/j.addr.2012.09.041] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/13/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022]
Abstract
Targeting of drugs and their carrier systems by using receptor-mediated endocytotic pathways was in its nascent stages 25 years ago. In the intervening years, an explosion of knowledge focused on design and synthesis of nanoparticulate delivery systems as well as elucidation of the cellular complexity of what was previously-termed receptor-mediated endocytosis has now created a situation when it has become possible to design and test the feasibility of delivery of highly specific nanoparticle drug carriers to specific cells and tissue. This review outlines the mechanisms governing the major modes of receptor-mediated endocytosis used in drug delivery and highlights recent approaches using these as targets for in vivo drug delivery of nanoparticles. The review also discusses some of the inherent complexity associated with the simple shift from a ligand-drug conjugate versus a ligand-nanoparticle conjugate, in terms of ligand valency and its relationship to the mode of receptor-mediated internalization.
Collapse
Affiliation(s)
- Shi Xu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Bogdan Z. Olenyuk
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| |
Collapse
|