1
|
Akpolat M, Oz ZS, Gulle K, Hamamcioglu AC, Bakkal BH, Kececi M. X irradiation induced colonic mucosal injury and the detection of apoptosis through PARP-1/p53 regulatory pathway. Biomed Pharmacother 2020; 127:110134. [PMID: 32361637 DOI: 10.1016/j.biopha.2020.110134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to explore whether PARP-1 regulatory pathway mediated X irradiation induced cell cycle arrest and apoptosis or not. In this regard, colonic mucosal injury caused by whole-body X-irradiation induced apoptosis through PARP-1, caspase 3 and p53 regulatory pathway were evaluated in experimental rat models. Eighteen Wistar albino rats were divided into three groups. Two radiation groups received 8.3 Gy dose of whole-body X-irradiation as a single dose and the control group received physiological saline intraperitoneally. Radiation groups were sacrificed after 6 h and 4 days of irradiation. PARP-1 and caspase 3 expression in the nuclei of colonic crypt cells significantly increased 6 h after irradiation, and declined 4 days after irradiation. In conflict with other studies that reported p53 as not being expressed widely in colonic mucosa, in our study the expressions of p53 were elevated both in the cytoplasm and in the nucleus of the crypt cells, especially 6 h after irradiation. In the radiation groups, colonic mucosal injury score was significantly elevated compared with that of the control group. Our data demonstrated that PARP-1, caspase-3 and p53 expression increased in colonic mucosa 6 h after irradiation.
Collapse
Affiliation(s)
- Meryem Akpolat
- Zonguldak Bulent Ecevit University, Faculty of Medicine, Department of Histology and Embryology, Zonguldak, Turkey.
| | - Zehra Safi Oz
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Medical Biology, Zonguldak, Turkey.
| | - Kanat Gulle
- Suleyman Demirel University, Faculty of Medicine, Department of Histology and Embryology, Isparta, Turkey.
| | - Ayse C Hamamcioglu
- Zonguldak Bulent Ecevit University, Faculty of Pharmacy, Department of Biochemistry, Zonguldak, Turkey.
| | - Bekir H Bakkal
- Zonguldak Bulent Ecevit University, Faculty of Medicine, Department of Radiation Oncology, Zonguldak, Turkey.
| | - Mete Kececi
- Zonguldak Bulent Ecevit University, Faculty of Medicine, Department of Histology and Embryology, Zonguldak, Turkey
| |
Collapse
|
2
|
Ganapathy S, Fagman JB, Shen L, Yu T, Zhou X, Dai W, Makriyannis A, Chen C. Ral A, via activating the mitotic checkpoint, sensitizes cells lacking a functional Nf1 to apoptosis in the absence of protein kinase C. Oncotarget 2016; 7:84326-84337. [PMID: 27741517 PMCID: PMC5356664 DOI: 10.18632/oncotarget.12607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/04/2016] [Indexed: 01/08/2023] Open
Abstract
Nf1 mutations or deletions are suggested to underlie the tumor predisposition of NF1 (neurofibromatosis type 1) and few treatments are available for treating NF1 patients with advanced malignant tumors. Aberrant activation of Ras in Nf1-deficient conditions is responsible for the promotion of tumorigenesis in NF1. PKC is proven to be an important factor in supporting the viability of Nf1-defected cells, but the molecular mechanisms are not fully understood. In this study, we demonstrate that the inhibition of protein kinase C (PKC) by 1-O-Hexadecyl-2-O-methyl-rac-glycerol (HMG, a PKC inhibitor) preferentially sensitizes Nf1-defected cells to apoptosis, via triggering a persistent mitotic arrest. In this process, Ral A is activated. Subsequently, Chk1 is phosphorylated and translocated to the nucleus. Silencing Ral A significantly blocks Chk1 nuclear translocation and releases HMG-treated Nf1-deficient cells from mitotic arrest, resulting in the reduction of the magnitude of apoptosis. Thus, our study reveals that PKC is able to maintain the homeostasis or viability of Nf1-defected cells and may serve as a potential target for developing new therapeutic strategies.
Collapse
Affiliation(s)
| | - Johan B Fagman
- The Institute of Clinic Sciences, Sahlgrenska Academy, Gothenburg, SE
| | - Ling Shen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Tianqi Yu
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Xiaodong Zhou
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Dai
- Department of Environmental Medicine, New York University, Tuxedo, NY, USA
| | | | - Changyan Chen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| |
Collapse
|
3
|
Peng B, Ganapathy S, Shen L, Huang J, Yi B, Zhou X, Dai W, Chen C. Targeting Bcl-2 stability to sensitize cells harboring oncogenic ras. Oncotarget 2016; 6:22328-37. [PMID: 26041886 PMCID: PMC4673166 DOI: 10.18632/oncotarget.4084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/13/2015] [Indexed: 11/29/2022] Open
Abstract
The pro-survival factor Bcl-2 and its family members are critical determinants of the threshold of the susceptibility of cells to apoptosis. Studies are shown that cells harboring an oncogenic ras were extremely sensitive to the inhibition of protein kinase C (PKC) and Bcl-2 could antagonize this apoptotic process. However, it remains unrevealed how Bcl-2 is being regulated in this apoptotic process. In this study, we investigate the role of Bcl-2 stability in sensitizing the cells harboring oncogenic K-ras to apoptosis triggered by PKC inhibitor GO6976. We demonstrated that Bcl-2 in Swiss3T3 cells ectopically expressing or murine lung cancer LKR cells harboring K-ras rapidly underwent ubiquitin-dependent proteasome pathway after the treatment of GO6976, accompanied with induction of apoptosis. In this process, Bcl-2 formed the complex with Keap-1 and Cul3. The mutation of serine-17 and deletion of BH-2 or 4 was required for Bcl-2 ubiquitination and degradation, which elevate the signal threshold for the induction of apoptosis in the cells following PKC inhibition. Thus, Bcl-2 appears an attractive target for the induction of apoptosis by PKC inhibition in cancer cells expressing oncogenic K-ras.
Collapse
Affiliation(s)
- Bo Peng
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | | | - Ling Shen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Junchi Huang
- Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg, Sweden
| | - Bo Yi
- Center for Drug Discovery, Northeastern University, Boston, MA, USA.,The Jiangxi Province Tumor Hospital, Nanchang, China
| | - Xiaodong Zhou
- Center for Drug Discovery, Northeastern University, Boston, MA, USA.,The First Affiliated Hospital of Nanchang University, Nanchang University School of Medicine, Nanchang, China
| | - Wei Dai
- Department of Environmental Medicine, New York University, Tuxedo, NY, USA
| | - Changyan Chen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA.,Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg, Sweden.,The First Affiliated Hospital of Nanchang University, Nanchang University School of Medicine, Nanchang, China
| |
Collapse
|
4
|
Chen Z, Forman LW, Miller KA, English B, Takashima A, Bohacek RA, Williams RM, Faller DV. Protein kinase Cδ inactivation inhibits cellular proliferation and decreases survival in human neuroendocrine tumors. Endocr Relat Cancer 2011; 18:759-71. [PMID: 21990324 PMCID: PMC3527126 DOI: 10.1530/erc-10-0224] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The concept of targeting cancer therapeutics toward specific mutations or abnormalities in tumor cells, which are not found in normal tissues, has the potential advantages of high selectivity for the tumor and correspondingly low secondary toxicities. Many human malignancies display activating mutations in the Ras family of signal-transducing genes or over-activity of p21(Ras)-signaling pathways. Carcinoid and other neuroendocrine tumors have been similarly demonstrated to have activation of Ras signaling directly by mutations in Ras, indirectly by loss of Ras-regulatory proteins, or via constitutive activation of upstream or downstream effector pathways of Ras, such as growth factor receptors or PI(3)-kinase and Raf/mitogen-activated protein kinases. We previously reported that aberrant activation of Ras signaling sensitizes cells to apoptosis when the activity of the PKCδ isozyme is suppressed and that PKCδ suppression is not toxic to cells with normal levels of p21(Ras) signaling. We demonstrate here that inhibition of PKCδ by a number of independent means, including genetic mechanisms (shRNA) or small-molecule inhibitors, is able to efficiently and selectively repress the growth of human neuroendocrine cell lines derived from bronchopulmonary, foregut, or hindgut tumors. PKCδ inhibition in these tumors also efficiently induced apoptosis. Exposure to small-molecule inhibitors of PKCδ over a period of 24 h is sufficient to significantly suppress cell growth and clonogenic capacity of these tumor cell lines. Neuroendocrine tumors are typically refractory to conventional therapeutic approaches. This Ras-targeted therapeutic approach, mediated through PKCδ suppression, which selectively takes advantage of the very oncogenic mutations that contribute to the malignancy of the tumor, may hold potential as a novel therapeutic modality.
Collapse
Affiliation(s)
- Zhihong Chen
- Cancer Center, 72 East Concord St., Boston University School of Medicine, Boston, MA 02118
| | - Lora W. Forman
- Cancer Center, 72 East Concord St., Boston University School of Medicine, Boston, MA 02118
| | - Kenneth A. Miller
- Department of Chemistry, Colorado State University, 115 Centre St., Fort Collins, CO
| | - Brandon English
- Department of Chemistry, Colorado State University, 115 Centre St., Fort Collins, CO
| | - Asami Takashima
- Cancer Center, 72 East Concord St., Boston University School of Medicine, Boston, MA 02118
| | | | - Robert M. Williams
- Department of Chemistry, Colorado State University, 115 Centre St., Fort Collins, CO
| | - Douglas V. Faller
- Cancer Center, 72 East Concord St., Boston University School of Medicine, Boston, MA 02118
- Departments of Medicine, Pediatrics, Biochemistry, Microbiology, Pathology and Laboratory Medicine, 72 East Concord St., Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
5
|
Paban V, Chambon C, Manrique C, Touzet C, Alescio-Lautier B. Neurotrophic signaling molecules associated with cholinergic damage in young and aged rats: Environmental enrichment as potential therapeutic agent. Neurobiol Aging 2011; 32:470-85. [DOI: 10.1016/j.neurobiolaging.2009.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
|
6
|
Guo J, Zhu T, Luo LY, Huang Y, Sunkavalli RG, Chen CY. PI3K Acts in synergy with loss of PKC to elicit apoptosis via the UPR. J Cell Biochem 2009; 107:76-85. [PMID: 19241442 DOI: 10.1002/jcb.22102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is known that Ras mutations, together with loss of PKC, are apoptotic in various types of mammalian cells. The mechanism of how aberrant Ras transmits this apoptotic signaling remains unclear. Using three V12-Ha-ras loop mutants that preferentially bind to and activate one of Ras effectors, we tested the role of Ras downstream pathways in the induction of apoptosis in rat lung epithelia, human lung or prostate cancer cells. After PKC inhibition, the activation of PI3K/Akt renders the susceptibility of cells to apoptosis. We also demonstrate that the amount of ROS is moderately increased in the cells ectopically expressing V12C40 and dramatically elevated by suppression of PKC, which leads to apoptosis through the activation of UPR. Thus, our study suggests that after PKC abrogation, PI3K functions downstream of Ras to perturb the state of cellular redox and signals to ER stress-regulated apoptotic machinery.
Collapse
Affiliation(s)
- Jinjin Guo
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
7
|
Guo J, Zhu T, Xiao ZXJ, Chen CY. Modulation of intracellular signaling pathways to induce apoptosis in prostate cancer cells. J Biol Chem 2007; 282:24364-72. [PMID: 17573344 DOI: 10.1074/jbc.m702938200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An understanding of the molecular pathways defining the susceptibility of prostate cancer, especially refractory prostate cancer, to apoptosis is the key for developing a cure for this disease. We previously demonstrated that up-regulating Ras signaling, together with suppression of protein kinase C (PKC), induces apoptosis. Dysregulation of various intracellular signaling pathways, including those governed by Ras, is the important element in the development of prostate cancer. In this study, we tested whether it is possible to modulate the activities of these pathways and induce an apoptotic crash among them in prostate cancer cells. Our data showed that DU145 cells express a high amount of JNK1 that is phosphorylated after endogenous PKC is suppressed, which initiates caspase 8 cleavage and cytochrome c release, leading to apoptosis. PC3 and LNCaP cells contain an activated Akt. The inhibition of PKC further augments Akt activity, which in turn induces ROS production and the accumulation of unfolded proteins in the endoplasmic reticulum, resulting in cell death. However, the concurrent activation of JNK1 and Akt, under the condition of PKC abrogation, dramatically augment the magnitude of apoptosis in the cells. Thus, our study suggests that Akt, JNK1, and PKC act in concert to signal the intracellular apoptotic machinery for a full execution of apoptosis in prostate cancer cells.
Collapse
Affiliation(s)
- Jinjin Guo
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
8
|
Guo J, Zhu T, Collins L, Xiao ZXJ, Kim SH, Chen CY. Modulation of lung cancer growth arrest and apoptosis by Phellinus Linteus. Mol Carcinog 2007; 46:144-54. [PMID: 17131292 DOI: 10.1002/mc.20275] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Phellinus Linteus (PL) mushroom has been shown to possess anti-tumor properties. Through influencing lymphocytes, PL indirectly augments the host's immune system against cancer cells. PL has also been demonstrated to reduce tumor proliferation. However, the mechanisms of PL against malignant growth have not yet been fully explored. In this study, we report that PL mediates the following two activities in mouse and human lung cancer cells: cell-cycle arrest at a low concentration of PL and apoptosis in response to a high dose of PL. After exposure to a low dose of PL, G(1) growth arrest occurred in the lung cancer cells. The negative growth control mediated by PL is evidenced by the decrease of the activities of cyclin-dependent kinases CDK2, 4, and 6. In contrast, at high doses, PL-induced lung cancer cells to undergo apoptosis in a dose-dependent fashion. This was evidenced by DNA fragmentation, caspase activation, and loss of clonogenecity in the lung cancer cells, all of which were lacking in the lung cancer cells treated with low concentrations of PL as well as the normal mouse lung epithelial cells exposed to either low or high concentrations of PL. The addition of the caspase inhibitor Z-VADfmk completely suppressed PL-induced apoptosis. Furthermore, the low dose of PL was able to synergize with doxorubicin to induce apoptosis in the lung cancer cells. Thus, our findings suggest that PL regulates two responses in the lung cancer cells: cell-cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Jinjin Guo
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
9
|
Mathur R, Choi WS, Eldstrom J, Wang Z, Kim J, Steele DF, Fedida D. A specific N-terminal residue in Kv1.5 is required for upregulation of the channel by SAP97. Biochem Biophys Res Commun 2006; 342:1-8. [PMID: 16466689 DOI: 10.1016/j.bbrc.2006.01.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 11/20/2022]
Abstract
We have previously reported that SAP97 enhancement of hKv1.5 currents requires an intact Kv1.5 N-terminus and is independent of the PDZ-binding motif at the C-terminus of the channel [J. Eldstrom, W.S. Choi, D.F. Steele, D. Fedida, SAP97 increases Kv1.5 currents through an indirect N-terminal mechanism, FEBS Lett. 547 (2003) 205-211]. Here, we report that an interaction between the two proteins can be detected under certain conditions but their interaction is irrelevant to the enhancement of channel expression. Instead, a threonine residue at position 15 in the hKv1.5 N-terminus is critically important. Mutation of this residue, which lies within a consensus site for phosphorylation by protein kinase C, to an alanine, completely abrogated the effect of SAP97 on channel expression. Although we were unable to detect phosphorylation of this residue, specific inhibition of kinase C by Calphostin C eliminated the increase in wild-type hKv1.5 currents associated with SAP97 overexpression suggesting a role for this kinase in the response.
Collapse
Affiliation(s)
- Rajesh Mathur
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
10
|
Guo J, Chu M, Abbeyquaye T, Chen CY. Persistent nicotine treatment potentiates amplification of the dihydrofolate reductase gene in rat lung epithelial cells as a consequence of Ras activation. J Biol Chem 2005; 280:30422-31. [PMID: 15983034 DOI: 10.1074/jbc.m504688200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although nicotine has been suggested to promote lung carcinogenesis, the mechanism of its action in this process remains unknown. The present investigation demonstrates that the treatment of rat lung epithelial cells with nicotine for various periods differentially mobilizes multiple intracellular pathways. Protein kinase C and phosphoinositide 3-OH-kinase are transiently activated after the treatment. Also, Ras and its downstream effector ERK1/2 are activated after long term exposure to nicotine. The activation of Ras by nicotine treatment is responsible for the subsequent perturbation of the methotrexate (MTX)-mediated G1 cell cycle restriction as well as an increase in production of reactive oxygen species. When p53 expression is suppressed by introducing E6, persistent exposure to nicotine enables dihydrofolate reductase gene amplification in the presence of methotrexate (MTX) and the formation of the MTX-resistant colonies. Altering the activity of phosphoinositide 3-OH-kinase has no effect on dihydrofolate reductase amplification. However, the suppression of protein kinase C dramatically affects the colony formation in soft agar. Thus, our data suggest that persistent exposure to nicotine perturbs the G1 checkpoint and causes DNA damage through the increase of the production of reactive oxygen species. However, a third element rendered by loss of p53 is required for the initiation of the process of gene amplification. Under p53-deficient conditions, the establishment of a full oncogenic transformation, in response to long term nicotine exposure, is achieved through the cooperation of multiple signaling pathways.
Collapse
Affiliation(s)
- Jinjin Guo
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
11
|
Chu M, Guo J, Chen CY. Long-term exposure to nicotine, via ras pathway, induces cyclin D1 to stimulate G1 cell cycle transition. J Biol Chem 2004; 280:6369-79. [PMID: 15574422 DOI: 10.1074/jbc.m408947200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotine, a major component in tobacco, has been implicated as a potential factor that promotes the development of lung cancer. However, the molecular mechanism of its action is still unclear. In this study, we have shown that, via nicotinic acetylcholine receptors, persistent exposure of mouse epithelial cells to nicotine elicits Ras signaling and subsequent Raf/MAP kinase activity, accompanied by a significant increase in cyclin D1 promoter activity and its protein expression. AP-1 is required for activation of the cyclin D1 promoter. The induction of cyclin D1 expression and its promoter activity by nicotine is abolished by the suppression of Raf/MAP kinase signaling. Furthermore, upon nicotine treatment, the cells do not arrest in the G(1) phase of the cell cycle following serum starvation. The perturbation of the G(1) cell cycle checkpoint is caused by the deregulation of retinoblastoma/E2F activity. Therefore, our data indicated that by targeting the Ras pathway, long-term exposure to nicotine disrupts cell cycle restriction machinery and thus potentiates tumor development.
Collapse
Affiliation(s)
- Michelle Chu
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
12
|
Abstract
This meeting brought together some of the world's leading scientists in the field of stress signaling, apoptosis, and cancer. This resulted in a productive interaction that updated our current knowledge on "Stress Signaling in Cancer." It comes out that subtle disturbances in cell signaling can be associated with and even lead to cancer. As a corollary, it appears that correcting the signaling defects associated with cancer constitutes a new approach to the treatment and control of neoplastic diseases. The meeting also raised several questions that should be addressed. In particular, it is of the utmost importance to better understand the mechanisms that underlie the specificity of the cellular response with regard to different ligands. For example, why does Gadd45b prevent apoptotic cell death in response to tumor necrosis factor alpha, whereas it favors apoptosis after transforming growth factor beta (E. De Smaele et al.). Other questions concern the understanding of the cross-talk mechanisms between different stress and apoptotic pathways and how the strength and the position and timing of a signal may affect different pathways. The next few years of research in this field should be enlightening and fruitful.
Collapse
Affiliation(s)
- Chantale I Morin
- Centre de recherche en cancérologie de l'Université Laval, Québec, Canada
| | | |
Collapse
|
13
|
Abstract
The retinoblastoma protein (Rb) controls cell proliferation, differentiation, and senescence and provides an essential tumor suppressive function that cells must eliminate to attain unlimited proliferative potential. Elimination of the Rb pathway also results in apoptosis, however, thereby providing an efficient surveillance mechanism to sense the loss of Rb. To become tumorigenic cells must thus overcome not only Rb function but also the apoptotic response caused by the loss of Rb function. We show that oncogenic Ras (RasV12) potently blocks cell death in Rb family member knockout mouse embryo fibroblasts (TKO cells). Activation of phosphatidylinositol 3-kinase and Raf by oncogenic Ras mediated this protection, implying that multiple Ras effector pathways are required, in concert, for this pro-survival signal. Although activation of Raf by selective Ras mutants protected TKO cells from cell death, pharmacologic inhibition of MEK had little effect on RasV12 protection, suggesting that a Raf-dependent, MEK-independent pathway was important for this effect. We show that this Raf-dependent protection occurred through activation of c-Jun and thus AP-1 activation. These observations could account for the dependence of Ras transformation on c-Jun activity and for the roles of AP-1 in oncogenesis. Our results support the concept of two oncogenic events cooperating to achieve a balance between immortalization and survival.
Collapse
Affiliation(s)
- Arthur P Young
- Departments of Medicine and Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
14
|
Guo F, Zheng Y. Involvement of Rho family GTPases in p19Arf- and p53-mediated proliferation of primary mouse embryonic fibroblasts. Mol Cell Biol 2004; 24:1426-38. [PMID: 14729984 PMCID: PMC321455 DOI: 10.1128/mcb.24.3.1426-1438.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rho family GTPases Rac1, RhoA, and Cdc42 function as molecular switches that transduce intracellular signals regulating gene expression and cell proliferation as well as cell migration. p19(Arf) and p53, on the other hand, are tumor suppressors that act both independently and sequentially to regulate cell proliferation. To investigate the functional interaction and cooperativeness of Rho GTPases with the p19(Arf)-p53 pathway, we examined the contribution of Rho GTPases to the gene transcription and cell proliferation unleashed by deletion of p19Arf or p53 in primary mouse embryo fibroblasts. We found that (i) p19(Arf) or p53 deficiency led to a significant increase in PI 3-kinase activity, which in turn upregulated RhoA and Rac1 activities; (ii) deletion of p19Arf or p53 led to an increase in cell growth rate that was in part dependent on RhoA, Rac1, and Cdc42 activities; (iii) p19(Arf) or p53 deficiency caused an enhancement of the growth-related transcription factor NF-kappa B and cyclin D1 activities that are partly dependent on RhoA or Cdc42 but not on Rac1; (iv) forced expression of the activating mutants of Rac1, RhoA, or Cdc42 caused a hyperproliferative phenotype of the p19Arf(-/-) and p53(-/-) cells and promoted transformation of both cells; (v) RhoA appeared to contribute to p53-regulated cell proliferation by modulating cell cycle machinery, while hyperactivation of RhoA further suppressed a p53-independent apoptotic signal; and (vi) multiple pathways regulated by RhoA, including that of Rho-kinase, were required for RhoA to fully promote the transformation of p53(-/-) cells. Taken together, these results provide strong evidence indicating that signals through the Rho family GTPases can both contribute to cell growth regulation by p19Arf and p53 and cooperate with p19Arf or p53 deficiency to promote primary cell transformation.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
15
|
Liou JS, Chen JS, Faller DV. Characterization of p21Ras-mediated apoptosis induced by protein kinase C inhibition and application to human tumor cell lines. J Cell Physiol 2003; 198:277-94. [PMID: 14603530 DOI: 10.1002/jcp.10409] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Suppression of PKC activity can selectively induce apoptosis in cells expressing a constitutively activated p21Ras protein. We demonstrate that continued expression of p21Ras activity is required in PKC-mediated apoptosis because farnesyltransferase inhibitors abrogated the loss of viability in p21Ras-transformed cells occurring following PKC inhibition. Studies utilizing gene transfer or viral vectors demonstrate that transient expression of oncogenic p21Ras activity is sufficient for induction of apoptosis by PKC inhibition, whereas physiologic activation of p21Ras by growth factor is not sufficient to induce apoptosis. Mechanistically, the p21Ras-mediated apoptosis induced by PKC inhibition is dependent upon mitochondrial dysregulation, with a concurrent loss of mitochondrial membrane potential (psim). Cyclosporine A, which prevented the loss of psim, also inhibited HMG-induced DNA fragmentation in cells expressing an activated p21Ras. Induction of apoptosis by PKC inhibition in human tumors with oncogenic p21Ras mutations was demonstrated. Inhibition of PKC caused increased apoptosis in MIA-PaCa-2, a human pancreatic tumor line containing a mutated Ki-ras allele, when compared to HS766T, a human pancreatic tumor line with normal Ki-ras alleles. Furthermore, PKC inhibition induced apoptosis in HCT116, a human colorectal tumor line containing an oncogenic Ki-ras allele but not in a subline (Hke3) in which the mutated Ki-ras allele had been disrupted. The PKC inhibitor 1-O-hexadecyl-2-O-methyl-rac-glycerol (HMG), significantly reduced p21Ras-mediated tumor growth in vivo in a nude mouse MIA-PaCa-2 xenograft model. Collectively these studies suggest the therapeutic feasibility of targeting PKC activity in tumors expressing an activated p21Ras oncoprotein.
Collapse
Affiliation(s)
- James S Liou
- Boston University School of Medicine, Cancer Research Center, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
16
|
Abstract
Autonomous cell proliferation is one of the hallmarks of cancer cells, driven by activated growth-promoting oncogenes. However, deregulated activation of these oncogenes also triggers apoptosis via multiple pathways. Among them, the ARF-p53 pathway appears to play a major role in mediating oncogene-induced apoptosis. Consequently, suppression of apoptosis by inactivation of p53 and other tumor suppressors is central to tumor development. These findings have broad implications in understanding cancer genetics and therapy. They help define the roles for oncogenes and tumor suppressor genes in tumorigenesis. Furthermore, the notion that cancer cells often carry specific defects in apoptotic pathways but are inherently sensitive to apoptosis as a result of deregulated proliferation, offers numerous opportunities for manipulating apoptosis in directions of clinical application.
Collapse
Affiliation(s)
- Han-Fei Ding
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo, OH, USA
| | | |
Collapse
|