1
|
Islam MS, Jesmin. Exploring the Correlation Between Hypoxia, HIF1A Variants, and Breast Cancer in Different Ethnicities, and Bangladeshi Women: Through ELISA and Integrative Multi-Omics Analysis. Biomark Insights 2024; 19:11772719241278176. [PMID: 39314258 PMCID: PMC11418304 DOI: 10.1177/11772719241278176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Background Hypoxia, a condition where there is a lack of oxygen, is known to play a role in cancer progression. Objective This study investigates the correlation between HIF1A gene-altered expression and hypoxia in Bangladeshi breast cancer (BC) cases and TCGA_BC datasets. Design This case-control study compares BC cases to healthy controls to understand the relationship between gene changes and cancer. Method This study used advanced analysis methods to examine the transcriptional landscape of BC, and quantitatively assessed its correlation using integrated multi-omics analysis. Results In Bangladeshi BC cases, the T allele of HIF1A rs1154946 correlates notably (P-value < .001) with BC incidence. ELISA results confirmed a significant association (P-value < .005) between elevated HIF1A expression and BC-related hypoxia. Bioinformatics eQTL analysis validated the correlation between increased HIF1A expression and rs11549465 T allele (P-value < .01). Structural analyses suggested that rs11549465 (P582S) mutation may decrease protein stability (ΔΔG-value: -1.24 kcal/mole), potentially affecting HIF1A function. HIF1A enrichment analysis in BC underscores strong associations with oxygen levels, hypoxia, metabolic processes, apoptosis, and programed cell death (P-value < .001). Transcriptomic data demonstrated a robust correlation (P-value < .0001) between HIF1A expression and copy-number alterations, mutations, and abnormal methylation. Altered HIF1A expression showed strong negative correlations (P-value < .00001) with methylation and the expression of the ER (ESR1), in Whites. Survival analysis revealed marked differences in overall survival linked to high and low HIF1A expression (P-value < .00001). Furthermore, HIF1A expression significantly correlated (P-value < .000001) with hypoxia, TMB, MSI, and immune infiltration by CD8+ T cells, neutrophils, dendritic, and macrophages, providing deeper insights into the BC microenvironment. Conclusion Thus, the HIF1A gene could serve as a promising biomarker for breast cancer progression, control, and survival across ethnicities, emphasizing its role in disease development and regulation.
Collapse
Affiliation(s)
- Md. Shihabul Islam
- Department of Genetic Engineering & Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Jesmin
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
2
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
3
|
Duchemin NJ, Loonawat R, Yeakle K, Rosenkranz A, Bouchard MJ. Hypoxia-inducible factor affects hepatitis B virus transcripts and genome levels as well as the expression and subcellular location of the hepatitis B virus core protein. Virology 2023; 586:76-90. [PMID: 37490813 DOI: 10.1016/j.virol.2023.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023]
Abstract
Globally, a chronic-hepatitis B virus (HBV) infection is the leading cause of hepatocellular carcinoma (HCC). The transcription factor hypoxia-inducible factor 1 (HIF1) is often elevated in HCC, including HBV-associated HCC. Previous studies have suggested that the expression of the HIF1 subunit, HIF1α, is elevated in HBV-infected hepatocytes; however, whether HIF1 activity affects the HBV lifecycle has not been fully explored. We used a liver-derived cell line and ex vivo cultured primary hepatocytes as models to determine how HIF1 affects the HBV lifecycle. We observed that HIF1 elevates HBV RNA transcript levels, core protein levels, core protein localization to the cytoplasm, and HBV genome replication. Attenuating the transcription activity of HIF1 blocked HIF1-mediated effects on the HBV lifecycle. Our studies show that HIF1 regulates various stages of the HBV lifecycle in hepatocytes and could be a therapeutic target for blocking HBV replication and the development of HBV-associated diseases.
Collapse
Affiliation(s)
- Nicholas J Duchemin
- Molecular and Cellular Biology and Genetic Graduate Program, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, USA
| | - Ronak Loonawat
- Microbiology and Immunology Graduate Program, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, USA
| | - Kyle Yeakle
- Molecular and Cellular Biology and Genetic Graduate Program, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, USA
| | - Andrea Rosenkranz
- Molecular and Cellular Biology and Genetic Graduate Program, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, USA
| | - Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
4
|
Suresh MV, Aggarwal V, Raghavendran K. The Intersection of Pulmonary Vascular Disease and Hypoxia-Inducible Factors. Interv Cardiol Clin 2023; 12:443-452. [PMID: 37290846 DOI: 10.1016/j.iccl.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hypoxia-inducible factors (HIFs) are a family of nuclear transcription factors that serve as the master regulator of the adaptive response to hypoxia. In the lung, HIFs orchestrate multiple inflammatory pathways and signaling. They have been reported to have a major role in the initiation and progression of acute lung injury, chronic obstructive pulmonary disease, pulmonary fibrosis, and pulmonary hypertension. Although there seems to be a clear mechanistic role for both HIF 1α and 2α in pulmonary vascular diseases including PH, a successful translation into a definitive therapeutic modality has not been accomplished to date.
Collapse
Affiliation(s)
| | - Vikas Aggarwal
- Division of Cardiology (Frankel Cardiovascular Center), Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Section of Cardiology, Department of Internal Medicine, Veterans Affairs Medical Center, Ann Arbor, MI, USA
| | - Krishnan Raghavendran
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
6
|
Suresh MV, Balijepalli S, Solanki S, Aktay S, Choudhary K, Shah YM, Raghavendran K. Hypoxia-Inducible Factor 1α and Its Role in Lung Injury: Adaptive or Maladaptive. Inflammation 2023; 46:491-508. [PMID: 36596930 PMCID: PMC9811056 DOI: 10.1007/s10753-022-01769-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023]
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors critical for the adaptive response to hypoxia. There is also an essential link between hypoxia and inflammation, and HIFs have been implicated in the dysregulated immune response to various insults. Despite the prevalence of hypoxia in tissue trauma, especially involving the lungs, there remains a dearth of studies investigating the role of HIFs in clinically relevant injury models. Here, we summarize the effects of HIF-1α on the vasculature, metabolism, inflammation, and apoptosis in the lungs and review the role of HIFs in direct lung injuries, including lung contusion, acid aspiration, pneumonia, and COVID-19. We present data that implicates HIF-1α in the context of arguments both in favor and against its role as adaptive or injurious in the propagation of the acute inflammatory response in lung injuries. Finally, we discuss the potential for pharmacological modulation of HIFs as a new class of therapeutics in the modern intensive care unit.
Collapse
Affiliation(s)
| | | | - Sumeet Solanki
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Sinan Aktay
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | | | - Yatrik M Shah
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
7
|
Volkova YL, Pickel C, Jucht AE, Wenger RH, Scholz CC. The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor. Antioxid Redox Signal 2022; 37:913-935. [PMID: 35166119 DOI: 10.1089/ars.2022.0003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity. FIH uniquely combines oxygen and peroxide sensitivity, serving as an oxygen and oxidant sensor. Recent Advances: FIH was first discovered in the hypoxia-inducible factor (HIF) pathway as a modulator of HIF transactivation activity. Several other FIH substrates have now been identified outside the HIF pathway. Moreover, FIH enzymatic activity is highly promiscuous and not limited to asparagine hydroxylation. This includes the FIH-mediated catalysis of an oxygen-dependent stable (likely covalent) bond formation between FIH and selected substrate proteins (called oxomers [oxygen-dependent stable protein oligomers]). Critical Issues: The (patho-)physiological function of FIH is only beginning to be understood and appears to be complex. Selective pharmacologic inhibition of FIH over other oxygen sensors is possible, opening new avenues for therapeutic targeting of hypoxia-associated diseases, increasing the interest in its (patho-)physiological relevance. Future Directions: The contribution of FIH enzymatic activity to disease development and progression should be analyzed in more detail, including the assessment of underlying molecular mechanisms and relevant FIH substrate proteins. Also, the molecular mechanism(s) involved in the physiological functions of FIH remain(s) to be determined. Furthermore, the therapeutic potential of recently developed FIH-selective pharmacologic inhibitors will need detailed assessment. Antioxid. Redox Signal. 37, 913-935.
Collapse
Affiliation(s)
- Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Mylonas KS, Karangelis D, Androutsopoulou V, Chalikias G, Tziakas D, Mikroulis D, Iliopoulos DC, Nikiteas N, Schizas D. Stem cell genes in atheromatosis: The role of
Klotho
,
HIF1α
,
OCT4
, and
BMP4. IUBMB Life 2022; 74:1003-1011. [DOI: 10.1002/iub.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023]
Affiliation(s)
- Konstantinos S. Mylonas
- Department of Cardiac Surgery Onassis Cardiac Surgery Center Athens Greece
- Laboratory of Experimental Surgery and Surgical Research “N.S. Christeas”, School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Dimos Karangelis
- Department of Cardiac Surgery, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Vasiliki Androutsopoulou
- Department of Cardiac Surgery, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - George Chalikias
- Cardiology Department, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Dimitrios Tziakas
- Cardiology Department, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Dimitrios Mikroulis
- Department of Cardiac Surgery, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Dimitrios C. Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research “N.S. Christeas”, School of Medicine National and Kapodistrian University of Athens Athens Greece
- Fourth Department of Cardiac Surgery HYGEIA Hospital Athens Greece
| | - Nikolaos Nikiteas
- Second Propaedeutic Department of Surgery, Laiko General Hospital, School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laiko General Hospital, School of Medicine National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
9
|
Rayia DA, Othman A, Harras S, Helal D, Dawood L, Soliman S. Bevacizumab: A new take on therapy of muscle phase of Trichinella spiralis infection. Acta Trop 2022; 230:106409. [PMID: 35300938 DOI: 10.1016/j.actatropica.2022.106409] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 03/13/2022] [Indexed: 11/01/2022]
Abstract
Trichinellosis is a zoonosis that causes health and economic problems worldwide. The available therapy is far from perfect as the conventional drugs used against Trichinella spiralis (T. spiralis) are active against the intestinal adult parasites but much less active against encapsulated larvae in muscles. Therefore, this work aimed to evaluate the effect of the anti-angiogenic agent, bevacizumab, on the muscle larvae of T. spiralis. For this aim, T. spiralis-infected mice were treated by two different doses of bevacizumab, thereafter larval counts as well as biochemical and pathological changes were evaluated in the muscles. The larval burden was reduced in the muscles of treated mice, denoting a detrimental effect of bevacizumab against encapsulated Trichinella larvae. Moreover, there was marked improvement of muscle inflammation with the treatment, evidenced by reduction of the proinflammatory cytokines (IL-6 and TNF-α) and regression of the inflammatory infiltrates in histological sections. Amelioration of oxidative stress in the muscle was also observed in treated animals with reduction of malondialdehyde and carbonic anhydrase III and increase in superoxide dismutase levels. Finally, the treatment induced downregulation of the expression of VEGF and CD31, denoting suppressed angiogenesis. All these beneficial effects were found to be dose dependent. In conclusion, bevacizumab exhibited anthelmintic, anti-inflammatory, antioxidant, and anti-angiogenic activities against Trichinella during the muscular phase of infection. Therefore, bevacizumab could be considered as a useful adjuvant treatment in the late stages of trichinellosis.
Collapse
|
10
|
Passirani C, Vessières A, La Regina G, Link W, Silvestri R. Modulating undruggable targets to overcome cancer therapy resistance. Drug Resist Updat 2021; 60:100788. [DOI: 10.1016/j.drup.2021.100788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/03/2022]
|
11
|
Resveratrol reduces oxidative damage and inflammation in mice infected with Trichinella spiralis. J Helminthol 2020; 94:e140. [PMID: 32238206 DOI: 10.1017/s0022149x20000206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Trichinellosis is a serious food-borne zoonotic infection of cosmopolitan distribution. Currently, treatment for trichinellosis is far from ideal. Given the important role of oxidative stress and immune-mediated inflammation in the pathogenesis of trichinellosis, this study was designed to evaluate the possible protective effects of resveratrol (RSV) during the intestinal and muscular phases of Trichinella spiralis infection in mice. The oral administration of RSV at a dose of 20 mg/kg once daily for two weeks resulted in significant reductions in both adult and larval counts; significant improvements in the redox status of the small intestine and muscles; a significant reduction in interleukin 4, pentraxin 3 and vascular endothelial growth factor expression; and the mitigation of intestinal and muscular inflammation. In conclusion, this study identifies RSV as a promising agent for the treatment of experimental trichinellosis, and more studies in experimental animals and humans are worth consideration.
Collapse
|
12
|
Abstract
Redox signalling in the gastrointestinal mucosa is held in an intricate balance. Potent microbicidal mechanisms can be used by infiltrating immune cells, such as neutrophils, to protect compromised mucosae from microbial infection through the generation of reactive oxygen species. Unchecked, collateral damage to the surrounding tissue from neutrophil-derived reactive oxygen species can be detrimental; thus, maintenance and restitution of a breached intestinal mucosal barrier are paramount to host survival. Redox reactions and redox signalling have been studied for decades with a primary focus on contributions to disease processes. Within the past decade, an upsurge of exciting findings have implicated subtoxic levels of oxidative stress in processes such as maintenance of mucosal homeostasis, the control of protective inflammation and even regulation of tissue wound healing. Resident gut microbial communities have been shown to trigger redox signalling within the mucosa, which expresses similar but distinct enzymes to phagocytes. At the fulcrum of this delicate balance is the colonic mucosal epithelium, and emerging evidence suggests that precise control of redox signalling by these barrier-forming cells may dictate the outcome of an inflammatory event. This Review will address both the spectrum and intensity of redox activity pertaining to host-immune and host-microbiota crosstalk during homeostasis and disease processes in the gastrointestinal tract.
Collapse
|
13
|
Li Z, You Q, Zhang X. Small-Molecule Modulators of the Hypoxia-Inducible Factor Pathway: Development and Therapeutic Applications. J Med Chem 2019; 62:5725-5749. [DOI: 10.1021/acs.jmedchem.8b01596] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhihong Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
14
|
Jóźwiak P, Ciesielski P, Zaczek A, Lipińska A, Pomorski L, Wieczorek M, Bryś M, Forma E, Krześlak A. Expression of hypoxia inducible factor 1α and 2α and its association with vitamin C level in thyroid lesions. J Biomed Sci 2017; 24:83. [PMID: 29084538 PMCID: PMC5663109 DOI: 10.1186/s12929-017-0388-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/14/2017] [Indexed: 12/27/2022] Open
Abstract
Background Cells adapt to hypoxia by transcriptional induction of genes that participate in regulation of angiogenesis, glucose metabolism and cell proliferation. The primary factors mediating cell response to low oxygen tension are hypoxia inducible factors (HIFs), oxygen-dependent transcription activators. The stability and activity of the α subunits of HIFs are controlled by hydroxylation reactions that require ascorbate as a cofactor. Therefore, deficiency of intracellular vitamin C could contribute to HIFs overactivation. In this study, we investigated whether vitamin C content of human thyroid lesions is associated with HIF-1α and HIF-2α protein levels. Methods Expression of HIF-1α and HIF-2α as well as vitamin C content was analyzed in thyroid lesions and cultured thyroid carcinoma cell lines (FTC-133 and 8305c) treated with hypoxia-mimetic agent (cobalt chloride) and ascorbic acid. The expression of HIFs and hypoxia–induced glucose transporters were determined by Western blots while quantitative real-time PCR (qRT-PCR) was performed to detect HIFs mRNA levels. Ascorbate and dehydroascorbate levels were measured by HPLC method. Results We found an inverse correlation between vitamin C level and HIF-1α but not HIF-2α expression in thyroid lesions. These results agree with our in vitro study showing that vitamin C induced a dose - dependent decrease of HIF-1α but not HIF-2α protein level in thyroid cancer cells FTC-133 and 8305C. The decreased HIF-1α expression was correlated with reduced expression of hypoxia-related glucose transporter 1 (GLUT1) in thyroid cancer cells. Conclusion The results demonstrate that HIF-1α activation is associated with vitamin C content in thyroid lesions. Our study suggests that high tumor tissue ascorbate level could limit the expression of HIF-1α and its targets in thyroid lesions.
Collapse
Affiliation(s)
- Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Piotr Ciesielski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Agnieszka Zaczek
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Anna Lipińska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Lech Pomorski
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Anna Krześlak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
15
|
Marzook H, Deivendran S, George B, Reshmi G, Santhoshkumar TR, Kumar R, Pillai MR. Cytoplasmic translocation of MTA1 coregulator promotes de-repression of SGK1 transcription in hypoxic cancer cells. Oncogene 2017; 36:5263-5273. [PMID: 28504714 DOI: 10.1038/onc.2017.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022]
Abstract
Chromatin remodeling factor metastatic tumor protein 1 (MTA1), one of the most upregulated oncogene in human cancer, has an important role in gene expression, cell survival and promoting hypoxic response. Successful cancer progression is dependent on the ability of cells to utilize its survival pathways for adapting to hypoxic microenvironment. Although MTA1 is a stress-responsive gene, but whether hypoxia modulates its function and its role in engaging other core stress-responsive survival pathway(s) remains unknown. Here we have discovered that MTA1 is a novel corepressor of serum and glucocorticoid-inducible kinase 1 (SGK1). Surprisingly, this regulatory corepressive function of MTA1 is lost under hypoxia, allowing upregulation of SGK1 expression and engaging the MTA1-SGK1 axis for the benefit of the cell survival. The underlying mechanism of the noticed stimulation of SGK1 expression by hypoxia includes de-repression of SGK1 transcription because of hypoxia-triggered nucleus-to-cytoplasmic translocation of MTA1. In addition, the newly recognized cytoplasmic translocation of MTA1 was dependent on the chaperoning function of heat shock protein 90 (HSP90) and co-accompanied by the formation of MTA1, HSP90 and HIF1α complex under hypoxic condition but not under normoxic condition. Hypoxia-triggered redistribution of MTA1, SGK1 upregulation and cell survival functions were compromised by a pharmacological SGK1 inhibitor. In summary, for the first time, we report MTA1 regulation of SGK1 expression, hypoxia-dependent MTA1 translocation to the cytoplasm and de-repression of SGK1 transcription. These findings illustrate how cancer cells utilize a chromatin remodeling factor to engage a core survival pathway to support its cancerous phenotypes, and reveal new facets of MTA1-SGK1 axis by a physiologic signal in cancer progression.
Collapse
Affiliation(s)
- H Marzook
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - S Deivendran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - B George
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - G Reshmi
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - T R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - R Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - M R Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
16
|
Morais M, Dias F, Teixeira AL, Medeiros R. MicroRNAs and altered metabolism of clear cell renal cell carcinoma: Potential role as aerobic glycolysis biomarkers. Biochim Biophys Acta Gen Subj 2017; 1861:2175-2185. [PMID: 28579513 DOI: 10.1016/j.bbagen.2017.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/09/2017] [Accepted: 05/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Warburg Effect is a metabolic switch that occurs in most of cancer cells but its advantages are not fully understood. This switch is known to happen in renal cell carcinoma (RCC), which is the most common solid cancer of the adult kidney. RCC carcinogenesis is related to pVHL loss and Hypoxia Inducible Factor (HIF) activation, ultimately leading to the activation of several genes related to glycolysis. MicroRNAs (miRNAs) regulate gene expression at a post-transcriptional level and are also deregulated in several cancers, including RCC. SCOPE OF REVIEW This review focuses in the miRNAs that direct target enzymes involved in glycolysis and that are deregulated in several cancers. It also reviews the possible application of miRNAs in the improvement of clinical patients' management. MAJOR CONCLUSIONS Several miRNAs that direct target enzymes involved in glycolysis are downregulated in cancer, strongly influencing the Warburg Effect. Due to this strong influence, FDG-PET can possibly benefit from measurement of these miRNAs. Restoring their levels can also bring an improvement to the current therapies. GENERAL SIGNIFICANCE Despite being known for almost a hundred years, the Warburg Effect is not fully understood. MiRNAs are now known to be intrinsically connected with this effect and present an opportunity to understand it. They also open a new door to improve current diagnosis and prognosis tests as well as to complement current therapies. This is urgent for cancers like RCC, mostly due to the lack of an efficient screening test for early relapse detection and follow-up and the development of resistance to current therapies.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Portugal; Research Department, LPCC-Portuguese League, Against Cancer (NRNorte), Porto, Portugal
| | - Ana L Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal; Research Department, LPCC-Portuguese League, Against Cancer (NRNorte), Porto, Portugal.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal; Research Department, LPCC-Portuguese League, Against Cancer (NRNorte), Porto, Portugal; CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal; FMUP, Faculty of Medicine, University of Porto, Portugal.
| |
Collapse
|
17
|
Ohyama A, Toyomura J, Tachibana T, Isonishi S, Takahashi H, Ishikawa H. Establishment and characterization of a clear cell carcinoma cell line, designated NOCC, derived from human ovary. Hum Cell 2016; 29:188-96. [PMID: 27541369 DOI: 10.1007/s13577-016-0142-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/26/2016] [Indexed: 11/25/2022]
Abstract
A cell line, designated NOCC, was established from the ascites of a patient with clear cell adenocarcinoma of the ovary. The cell line has been grown without interruption and continuously propagated by serial passaging (more than 76 times) over 7 years. The cells are spherical to polygonal-shaped, display neoplastic, and pleomorphic features, and grow in a jigsaw puzzle-like pattern while forming monolayers without contact inhibition. The cells proliferate rapidly, but are easily floated as a cell sheet. The population doubling time is about 29 h. The number of chromosomes ranges from 60 to 83. The modal number of chromosomes is 70-74 at the 30th passage. NOCC cells secreted 750.5 ng/ml of VEGF over 3 days of culture. Hypoxia inducible factor-1α (HIF-1α) is a primary regulator of VEGF under hypoxic conditions. NOCC cells were not sensitive to the anticancer drugs BEV, DOX, GEM, ETP, CDDP, or TXT. The graft of NOCC cells to a scid mouse displayed similar histological aspects to the original tumor. Both the NOCC cells and the graft of the NOCC cells gave a positive PAS reaction.
Collapse
Affiliation(s)
- Akihiro Ohyama
- Department of NDU Life Sciences, School of Life Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Junko Toyomura
- Department of NDU Life Sciences, School of Life Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Toshiaki Tachibana
- Division of Fine Morphology, Core Research Facilities, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-0082, Japan
| | - Seiji Isonishi
- Department of Obstetrics and Gynecology, Jikei Daisan Hospital, 4-11-1 Izumihoncho, Komae-shi, Tokyo, 201-8601, Japan
| | - Haruka Takahashi
- Department of NDU Life Sciences, School of Life Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-1500, Japan
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, School of Life Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| |
Collapse
|
18
|
Sun S, Xuan F, Fu H, Ge X, Zhu J, Qiao H, Jin S, Zhang W. Molecular characterization and mRNA expression of hypoxia inducible factor-1 and cognate inhibiting factor in Macrobrachium nipponense in response to hypoxia. Comp Biochem Physiol B Biochem Mol Biol 2016; 196-197:48-56. [DOI: 10.1016/j.cbpb.2016.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/02/2016] [Accepted: 02/11/2016] [Indexed: 12/13/2022]
|
19
|
Up-Regulation of ENO1 by HIF-1α in Retinal Pigment Epithelial Cells after Hypoxic Challenge Is Not Involved in the Regulation of VEGF Secretion. PLoS One 2016; 11:e0147961. [PMID: 26882120 PMCID: PMC4755565 DOI: 10.1371/journal.pone.0147961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
Purpose Alpha-enolase (ENO1), a major glycolytic enzyme, is reported to be over-expressed in various cancer tissues. It has been demonstrated to be regulated by the Hypoxia-inducible factor 1-α (HIF-1α), a crucial transcriptional factor implicated in tumor progression and cancer angiogenesis. Choroidal neovascularization (CNV), which is a leading cause of severe vision loss caused by newly formed blood vessels in the choroid, is also engendered by hypoxic stress. In this report, we investigated the expression of ENO1 and the effects of its down-regulation upon cobalt (II) chloride-induced hypoxia in retinal pigment epithelial cells, identified as the primary source of ocular angiogenic factors. Methods HIF-1α-diminished retinal pigment epithelial cells were generated by small interfering RNA (siRNA) technology in ARPE-19 cells, a human retinal pigment epithelial cell line. Both normal and HIF-1α-diminished ARPE-19 cells were then subjected to hypoxic challenge using cobalt (II) chloride (CoCl2) or anaerobic chamber. The relation between ENO1 expression and vascular endothelial growth factor (VEGF) secretion by retinal pigment epithelial cells were examined. Protein levels of HIF-1α and ENO1 were analyzed using Western Blot, while VEGF secretion was essayed by enzyme-linked immunosorbent assay (ELISA). Cytotoxicity after hypoxia was detected by Lactate Dehydrogenase (LDH) Assay. Results Upon 24 hr of CoCl2-induced hypoxia, the expression levels of ENO1 and VEGF were increased along with HIF-1α in ARPE-19 cells, both of which can in turn be down-regulated by HIF-1α siRNA application. However, knockdown of ENO1 alone or together with HIF-1α did not help suppress VEGF secretion in hypoxic ARPE-19 cells. Conclusion ENO1 was demonstrated to be up-regulated by HIF-1α in retinal pigment epithelial cells in response to hypoxia, without influencing VEGF secretion.
Collapse
|
20
|
Chen S, Sang N. Hypoxia-Inducible Factor-1: A Critical Player in the Survival Strategy of Stressed Cells. J Cell Biochem 2016; 117:267-78. [PMID: 26206147 PMCID: PMC4715696 DOI: 10.1002/jcb.25283] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/20/2015] [Indexed: 12/31/2022]
Abstract
HIF-1 activation has been well known as an adaptive strategy to hypoxia. Recently it became clear that hypoxia was often accompanied by insufficient supply of glucose or amino acids as a common result of poor circulation that frequently occurs in solid tumors and ischemic lesions, creating a mixed nutrient insufficiency. In response to nutrient insufficiency, stressed cells elicit survival strategies including activation of AMPK and HIF-1 to cope with the stress. Particularly, in solid tumors, HIF-1 promotes cell survival and migration, stimulates angiogenesis, and induces resistance to radiation and chemotherapy. Interestingly, radiation and some chemotherapeutics are reported to trigger the activation of AMPK. Here we discuss the recent advances that may potentially link the stress responsive mechanisms including AMPK activation, ATF4 activation and the enhancement of Hsp70/Hsp90 function to HIF-1 activation. Potential implication and application of the stress-facilitated HIF-1 activation in solid tumors and ischemic disorders will be discussed. A better understanding of HIF-1 activation in cells exposed to stresses is expected to facilitate the design of therapeutic approaches that specifically modulate cell survival strategy.
Collapse
Affiliation(s)
- Shuyang Chen
- Department of Biology and Graduate Program of Biological Sciences, College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania
| | - Nianli Sang
- Department of Biology and Graduate Program of Biological Sciences, College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sydney Kimmel Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Favier FB, Britto FA, Ponçon B, Begue G, Chabi B, Reboul C, Meyer G, Py G. Endurance training prevents negative effects of the hypoxia mimetic dimethyloxalylglycine on cardiac and skeletal muscle function. J Appl Physiol (1985) 2015; 120:455-63. [PMID: 26679609 DOI: 10.1152/japplphysiol.00171.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022] Open
Abstract
Hypoxic preconditioning is a promising strategy to prevent hypoxia-induced damages to several tissues. This effect is related to prior stabilization of the hypoxia-inducible factor-1α via inhibition of the prolyl-hydroxylases (PHDs), which are responsible for its degradation under normoxia. Although PHD inhibition has been shown to increase endurance performance in rodents, potential side effects of such a therapy have not been explored. Here, we investigated the effects of 1 wk of dimethyloxalylglycine (DMOG) treatment (150 mg/kg) on exercise capacity, as well as on cardiac and skeletal muscle function in sedentary and endurance-trained rats. DMOG improved maximal aerobic velocity and endurance in both sedentary and trained rats. This effect was associated with an increase in red blood cells without significant alteration of skeletal muscle contractile properties. In sedentary rats, DMOG treatment resulted in enhanced left ventricle (LV) weight together with impairment in diastolic function, LV relaxation, and pulse pressure. Moreover, DMOG decreased maximal oxygen uptake (state 3) of isolated mitochondria from skeletal muscle. Importantly, endurance training reversed the negative effects of DMOG treatment on cardiac function and restored maximal mitochondrial oxygen uptake to the level of sedentary placebo-treated rats. In conclusion, we provide here evidence that the PHD inhibitor DMOG has detrimental influence on myocardial and mitochondrial function in healthy rats. However, one may suppose that the deleterious influence of PHD inhibition would be potentiated in patients with already poor physical condition. Therefore, the present results prompt us to take into consideration the potential side effects of PHD inhibitors when administrated to patients.
Collapse
Affiliation(s)
- Francois B Favier
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier, France; Université de Montpellier, Montpellier, France;
| | - Florian A Britto
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier, France; Université de Montpellier, Montpellier, France
| | - Benjamin Ponçon
- Laboratoire de Pharm-écologie cardiovasculaire, Avignon, France; and Université d'Avignon, Avignon, France
| | - Gwenaelle Begue
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier, France; Université de Montpellier, Montpellier, France
| | - Beatrice Chabi
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier, France; Université de Montpellier, Montpellier, France
| | - Cyril Reboul
- Laboratoire de Pharm-écologie cardiovasculaire, Avignon, France; and Université d'Avignon, Avignon, France
| | - Gregory Meyer
- Laboratoire de Pharm-écologie cardiovasculaire, Avignon, France; and Université d'Avignon, Avignon, France
| | - Guillaume Py
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier, France; Université de Montpellier, Montpellier, France
| |
Collapse
|
22
|
Othman AA, Abou Rayia DM, Ashour DS, Saied EM, Zineldeen DH, El-Ebiary AA. Atorvastatin and metformin administration modulates experimental Trichinella spiralis infection. Parasitol Int 2015; 65:105-12. [PMID: 26546571 DOI: 10.1016/j.parint.2015.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/14/2015] [Accepted: 11/01/2015] [Indexed: 12/30/2022]
Abstract
The host-parasite interaction can be altered by the changes in the host environment that may be or may not be in favor of successful invasion by the nematode parasite Trichinella spiralis. Metformin and atorvastatin are applied on a wide scale, to the degree that they could be considered as part of the host biochemical environment that can affect the parasite. Therefore, this study aimed to investigate the impact of alteration of the host's biochemical environment by these commonly used drugs upon the course of T. spiralis infection. Mice were divided into three groups: (1) received atorvastatin, (2) received metformin, and (3) untreated, then after one week, animals were infected with T. spiralis. The treatment continued until the end of the experiment. From each group, small intestines and muscles were removed for histopathological, immunohistochemical, and biochemical analyses as well as total muscle larval counts. We found that the oxidative stress and the expression of vascular endothelial growth factor (VEGF) in the muscles were significantly reduced in both drug-receiving groups, while the total larval counts in muscles were only significantly reduced in atorvastatin-receiving group as compared to the infected control group. Moreover, marked reduction in the inflammatory cellular infiltration, cyclooxygenase-2 (COX-2) expression, and oxidative stress was noted in the small intestines of the treated groups as compared to the infected control group. In conclusion, this study provides many insights into the different biochemical changes in the host that the parasite has to face. Moreover, the anti-inflammatory and anti-angiogenic effects should be taken into consideration when treating infections in patients on therapy with atorvastatin or metformin.
Collapse
Affiliation(s)
- Ahmad A Othman
- Department of Medical Parasitology, Tanta Faculty of Medicine, Egypt.
| | - Dina M Abou Rayia
- Department of Medical Parasitology, Tanta Faculty of Medicine, Egypt
| | - Dalia S Ashour
- Department of Medical Parasitology, Tanta Faculty of Medicine, Egypt
| | - Eman M Saied
- Department of Pathology, Kafr El-Sheikh Faculty of Medicine, Egypt
| | | | - Ahmad A El-Ebiary
- Department of Forensic Medicine and Clinical Toxicology, Tanta Faculty of Medicine, Egypt
| |
Collapse
|
23
|
Tarhonskaya H, Hardy AP, Howe EA, Loik ND, Kramer HB, McCullagh JSO, Schofield CJ, Flashman E. Kinetic Investigations of the Role of Factor Inhibiting Hypoxia-inducible Factor (FIH) as an Oxygen Sensor. J Biol Chem 2015; 290:19726-42. [PMID: 26112411 PMCID: PMC4528135 DOI: 10.1074/jbc.m115.653014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/24/2015] [Indexed: 01/23/2023] Open
Abstract
The hypoxia-inducible factor (HIF) hydroxylases regulate hypoxia sensing in animals. In humans, they comprise three prolyl hydroxylases (PHD1-3 or EGLN1-3) and factor inhibiting HIF (FIH). FIH is an asparaginyl hydroxylase catalyzing post-translational modification of HIF-α, resulting in reduction of HIF-mediated transcription. Like the PHDs, FIH is proposed to have a hypoxia-sensing role in cells, enabling responses to changes in cellular O2 availability. PHD2, the most important human PHD isoform, is proposed to be biochemically/kinetically suited as a hypoxia sensor due to its relatively high sensitivity to changes in O2 concentration and slow reaction with O2. To ascertain whether these parameters are conserved among the HIF hydroxylases, we compared the reactions of FIH and PHD2 with O2. Consistent with previous reports, we found lower Km(app)(O2) values for FIH than for PHD2 with all HIF-derived substrates. Under pre-steady-state conditions, the O2-initiated FIH reaction is significantly faster than that of PHD2. We then investigated the kinetics with respect to O2 of the FIH reaction with ankyrin repeat domain (ARD) substrates. FIH has lower Km(app)(O2) values for the tested ARDs than HIF-α substrates, and pre-steady-state O2-initiated reactions were faster with ARDs than with HIF-α substrates. The results correlate with cellular studies showing that FIH is active at lower O2 concentrations than the PHDs and suggest that competition between HIF-α and ARDs for FIH is likely to be biologically relevant, particularly in hypoxic conditions. The overall results are consistent with the proposal that the kinetic properties of individual oxygenases reflect their biological capacity to act as hypoxia sensors.
Collapse
Affiliation(s)
- Hanna Tarhonskaya
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom and
| | - Adam P Hardy
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom and
| | - Emily A Howe
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom and
| | - Nikita D Loik
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom and
| | - Holger B Kramer
- the OXION Proteomics Facility, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | - James S O McCullagh
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom and
| | - Christopher J Schofield
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom and
| | - Emily Flashman
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom and
| |
Collapse
|
24
|
Chen S, Yin C, Lao T, Liang D, He D, Wang C, Sang N. AMPK-HDAC5 pathway facilitates nuclear accumulation of HIF-1α and functional activation of HIF-1 by deacetylating Hsp70 in the cytosol. Cell Cycle 2015; 14:2520-36. [PMID: 26061431 PMCID: PMC4614078 DOI: 10.1080/15384101.2015.1055426] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) transcriptionally promotes production of adenosine triphosphate (ATP) whereas AMPK senses and regulates cellular energy homeostasis. A histone deacetylase (HDAC) activity has been proven to be critical for HIF-1 activation but the underlying mechanism and its role in energy homesostasis remain unclear. Here, we demonstrate that HIF-1 activation depends on a cytosolic, enzymatically active HDAC5. HDAC5 knockdown impairs hypoxia-induced HIF-1α accumulation and HIF-1 transactivation, whereas HDAC5 overexpression enhances HIF-1α stabilization and nuclear translocation. Mechanistically, we show that Hsp70 is a cytosolic substrate of HDAC5; and hyperacetylation renders Hsp70 higher affinity for HIF-1α binding, which correlates with accelerated degradation and attenuated nuclear accumulation of HIF-1α. Physiologically, AMPK-triggered cytosolic shuttling of HDAC5 is critical; inhibition of either AMPK or HDAC5 impairs HIF-1α nuclear accumulation under hypoxia or low glucose conditions. Finally, we show specifically suppressing HDAC5 is sufficient to inhibit tumor cell proliferation under hypoxic conditions. Our data delineate a novel link between AMPK, the energy sensor, and HIF-1, the major driver of ATP production, indicating that specifically inhibiting HDAC5 may selectively suppress the survival and proliferation of hypoxic tumor cells.
Collapse
Affiliation(s)
- Shuyang Chen
- a Department of Biology and Graduate Program of Biological Sciences; CoAS; Department of Pathology & Laboratory Medicine; DUCOM; Drexel University ; Philadelphia , PA USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Hu T, He N, Yang Y, Yin C, Sang N, Yang Q. DEC2 expression is positively correlated with HIF-1 activation and the invasiveness of human osteosarcomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:22. [PMID: 25884381 PMCID: PMC4379712 DOI: 10.1186/s13046-015-0135-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/12/2015] [Indexed: 11/10/2022]
Abstract
Background Osteosarcoma is the most common malignancy of bone. HIF-1 (hypoxia-inducible factor 1) activation is critical for the metabolic reprogramming and progression of solid tumors, and DEC2 (differentiated embryonic chondrocyte gene 2) has been recently reported to suppress HIF-1 in human breast and endometrial cancers. However, the roles of HIF-1 and DEC2 in human osteosarcomas remain unclear. Methods We evaluated the correlation of DEC2 and HIF-1 expression to the prognosis, and studied the roles of DEC2 and HIF-1 activation in the invasiveness of osteosarcoma. Multiple approaches including immunohistochemical staining of clinical osteosarcoma tissues, siRNA-based knockdown and other molecular biology techniques were used. Particularly, by using a repetitive trans-well culture-based in vitro evolution system, we selected a more invasive subpopulation (U2OS-M) of osteosarcoma cells from U2OS and used it as a model to study the roles of DEC2 and HIF-1 in the invasiveness of osteosarcoma. Results We found that the expression of DEC2 was positively correlated with HIF-1α levels, and HIF-1α expression positively correlated with poor prognosis in osteosarcomas. DEC2 knockdown in osteosarcoma cell lines (U2OS, MNNG and 143B) attenuated HIF-1α accumulation and impaired the up-regulation of HIF-1 target genes in response to hypoxia. Compared with the low invasive parental U2OS, U2OS-M showed higher levels of DEC2 expression which were confirmed at both mRNA and protein levels. Importantly, we found that the increased DEC2 expression resulted in a more rapid accumulation of HIF-1α in U2OS-M cells in response to hypoxia. Finally, we found that HIF-1 activation is sufficient to upregulate DEC2 expression in osteosarcoma cells. Conclusion Taken together, whereas DEC2 was found to promote HIF-1α degradation in other types of tumors, our data indicate that DEC2 facilitates HIF-1α stabilization and promotes HIF-1 activation in osteosarcoma. This implies that DEC2 may contribute to the progression and metastasis of human osteosarcoma by sensitizing tumor cells to hypoxia. On the other hand, HIF-1 activation may contribute to the expression of DEC2 in osteosarcoma. This is the first demonstration of a novel DEC2-HIF-1 vicious cycle in osteosarcoma and a tumor-type specific role for DEC2. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0135-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tu Hu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China.
| | - Nengbin He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China.
| | - Yunsong Yang
- Huazhong University of Science and Technology, Wuhan, China.
| | - Chengqian Yin
- Departments of Biology, Pathology & Laboratory Medicine, Drexel University CoAS, 3245 Chestnut St, PISB 417, Philadelphia, PA, 19104, USA.
| | - Nianli Sang
- Departments of Biology, Pathology & Laboratory Medicine, Drexel University CoAS, 3245 Chestnut St, PISB 417, Philadelphia, PA, 19104, USA. .,Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
26
|
The hypoxia signaling pathway and hypoxic adaptation in fishes. SCIENCE CHINA-LIFE SCIENCES 2015; 58:148-55. [DOI: 10.1007/s11427-015-4801-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/06/2014] [Indexed: 12/17/2022]
|
27
|
Biomarkers for Renal Cell Carcinoma. KIDNEY CANCER 2015. [DOI: 10.1007/978-3-319-17903-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
The hypoxia-inducible factor pathway, prolyl hydroxylase domain protein inhibitors, and their roles in bone repair and regeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:239356. [PMID: 24895555 PMCID: PMC4034436 DOI: 10.1155/2014/239356] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/23/2014] [Accepted: 02/16/2014] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-dependent transcriptional activators that play crucial roles in angiogenesis, erythropoiesis, energy metabolism, and cell fate decisions. The group of enzymes that can catalyse the hydroxylation reaction of HIF-1 is prolyl hydroxylase domain proteins (PHDs). PHD inhibitors (PHIs) activate the HIF pathway by preventing degradation of HIF-α via inhibiting PHDs. Osteogenesis and angiogenesis are tightly coupled during bone repair and regeneration. Numerous studies suggest that HIFs and their target gene, vascular endothelial growth factor (VEGF), are critical regulators of angiogenic-osteogenic coupling. In this brief perspective, we review current studies about the HIF pathway and its role in bone repair and regeneration, as well as the cellular and molecular mechanisms involved. Additionally, we briefly discuss the therapeutic manipulation of HIFs and VEGF in bone repair and bone tumours. This review will expand our knowledge of biology of HIFs, PHDs, PHD inhibitors, and bone regeneration, and it may also aid the design of novel therapies for accelerating bone repair and regeneration or inhibiting bone tumours.
Collapse
|
29
|
Santoni M, Pantano F, Amantini C, Nabissi M, Conti A, Burattini L, Zoccoli A, Berardi R, Santoni G, Tonini G, Santini D, Cascinu S. Emerging strategies to overcome the resistance to current mTOR inhibitors in renal cell carcinoma. Biochim Biophys Acta Rev Cancer 2014; 1845:221-31. [PMID: 24480319 DOI: 10.1016/j.bbcan.2014.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 12/18/2022]
Abstract
The mammalian target of rapamycin (mTOR) has emerged as an attractive cancer therapeutic target. Treatment of metastatic renal cell carcinoma (mRCC) has improved significantly with the advent of agents targeting the mTOR pathway, such as temsirolimus and everolimus. Unfortunately, a number of potential mechanisms that may lead to resistance to mTOR inhibitors have been proposed. In this paper, we discuss the mechanisms underlying resistance to mTOR inhibitors, which include the downstream effectors of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway, the activation of hypoxia-inducible factor (HIF), the PIM kinase family, PTEN expression, elevated superoxide levels, stimulation of autophagy, immune cell response and ERK/MAPK, Notch and Aurora signaling pathways. Moreover, we present an updated analysis of clinical trials available on PubMed Central and www.clinicaltrials.gov, which were pertinent to the resistance to rapalogs. The new frontier of inhibiting the mTOR pathway is to identify agents targeting the feedback loops and cross talks with other pathways involved in the acquired resistance to mTOR inhibitors. The true goal will be to identify biomarkers predictive of sensitivity or resistance to efficiently develop novel agents with the aim to avoid toxicities and to better choose the active drug for the right patient.
Collapse
Affiliation(s)
- Matteo Santoni
- Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of the Marche Region, via Conca 71, 60126 Ancona, Italy.
| | - Francesco Pantano
- Department of Medical Oncology, Campus Bio-Medico University of Rome, via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Consuelo Amantini
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Massimo Nabissi
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Alessandro Conti
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Clinica di Urologia, Polytechnic University of the Marche Region, via Conca 71, 60126 Ancona, Italy
| | - Luciano Burattini
- Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of the Marche Region, via Conca 71, 60126 Ancona, Italy
| | - Alice Zoccoli
- Department of Medical Oncology, Campus Bio-Medico University of Rome, via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Rossana Berardi
- Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of the Marche Region, via Conca 71, 60126 Ancona, Italy
| | - Giorgio Santoni
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Daniele Santini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Stefano Cascinu
- Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of the Marche Region, via Conca 71, 60126 Ancona, Italy
| |
Collapse
|
30
|
Geng X, Feng J, Liu S, Wang Y, Arias C, Liu Z. Transcriptional regulation of hypoxia inducible factors alpha (HIF-α) and their inhibiting factor (FIH-1) of channel catfish (Ictalurus punctatus) under hypoxia. Comp Biochem Physiol B Biochem Mol Biol 2013; 169:38-50. [PMID: 24384398 DOI: 10.1016/j.cbpb.2013.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/22/2013] [Accepted: 12/27/2013] [Indexed: 12/22/2022]
Abstract
Hypoxia inducible factors (HIFs) are considered to be the master switch of oxygen-dependent gene expression with mammalian species. In most cases, regulation of HIF has been believed at posttranslational levels. However, little is known of HIF regulation in channel catfish, a species highly tolerant to low oxygen condition. Here we report the identification and characterization of HIF-1α, HIF-2αa, HIF-2αb, HIF-3α, and FIH-1 genes, and their mRNA expression under hypoxia conditions. The transcripts of the five genes were found to be regulated temporally and spatially after low oxygen challenge, suggesting regulation of HIF-α genes at pre-translational levels. In most tissues, the HIF-α mRNAs were down-regulated 1.5h but up-regulated 5h after hypoxia treatment. Of these HIF-α mRNAs, the expression of HIF-3α mRNA was induced in the most dramatic fashion, both in the speed of induction and the extent of induction, compared to HIF-1α and HIF-2α genes, suggesting its importance in responses to hypoxia.
Collapse
Affiliation(s)
- Xin Geng
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Jianbin Feng
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Yaping Wang
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Covadonga Arias
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
31
|
Ock MS, Cha HJ, Choi YH. Verifiable hypotheses for thymosin β4-dependent and -independent angiogenic induction of Trichinella spiralis-triggered nurse cell formation. Int J Mol Sci 2013; 14:23492-8. [PMID: 24351861 PMCID: PMC3876058 DOI: 10.3390/ijms141223492] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 12/13/2022] Open
Abstract
Trichinella spiralis has been reported to induce angiogenesis for nutrient supply and waste disposal by the induction of the angiogenic molecule vascular endothelial cell growth factor (VEGF) during nurse cell formation. However, the action mechanism to induce VEGF in nurse cells by T. spiralis is not known. Hypoxia in nurse cells was suggested as a possible mechanism; however, the presence of hypoxic conditions in infected muscle or nurse cells and whether hypoxia indeed induces the expression of VEGF and subsequent angiogenesis in the infected muscle are both a matter of debate. Our recent studies have shown that thymosin β4, a potent VEGF inducing protein, is expressed in the very early stages of T. spiralis muscle infection suggesting the induction of VEGF in early stage nurse cells. Nevertheless, we now show that hypoxic conditions were not detected in any nurse cell stage but were detected only in the accumulated inflammatory cells. These studies propose that induction of angiogenesis by VEGF in T. spiralis-infected nurse cells was mediated by thymosin β4 and is unrelated to hypoxic conditions.
Collapse
Affiliation(s)
- Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 602-702, Korea; E-Mail:
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 602-702, Korea; E-Mail:
- Institute for Medical Science, Kosin University College of Medicine, Busan 602-702, Korea
- Authors to whom correspondence should be addressed; E-Mails: (H.-J.C.); (Y.H.C.); Tel.: +82-51-990-6428 (H.-J.C.); +82-51-850-7413 (Y.H.C.); Fax: +82-51-990-3081 (H.-J.C.); +82-51-853-4036 (Y.H.C.)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Anti-Aging Research Center, Dongeui University, Busan 614-052, Korea
- Authors to whom correspondence should be addressed; E-Mails: (H.-J.C.); (Y.H.C.); Tel.: +82-51-990-6428 (H.-J.C.); +82-51-850-7413 (Y.H.C.); Fax: +82-51-990-3081 (H.-J.C.); +82-51-853-4036 (Y.H.C.)
| |
Collapse
|
32
|
Tsapournioti S, Mylonis I, Hatziefthimiou A, Ioannou MG, Stamatiou R, Koukoulis GK, Simos G, Molyvdas PA, Paraskeva E. TNFα induces expression of HIF-1α mRNA and protein but inhibits hypoxic stimulation of HIF-1 transcriptional activity in airway smooth muscle cells. J Cell Physiol 2013; 228:1745-53. [PMID: 23359428 DOI: 10.1002/jcp.24331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/16/2013] [Indexed: 12/28/2022]
Abstract
Airway smooth muscle cells (ASMCs) participate in tissue remodeling characteristic of airway inflammatory diseases like asthma. Inflammation and hypoxia pathways are often interconnected and the regulatory subunit of the hypoxia inducible factor, HIF-1α, has been recently shown to be induced by cytokines. Here we investigate the effect of individual or combined treatment of ASMCs with the inflammatory mediator TNFα and/or hypoxia on the expression of HIF-1α, HIF-1 targets and inflammation markers. TNFα enhances HIF-1α protein and mRNA levels, under both normoxia and hypoxia. TNFα-mediated induction of HIF-1α gene transcription is repressed by inhibition of the NF-κB pathway. Despite the up-regulation of HIF-1α protein, the transcription of HIF-1 target genes remains low in the presence of TNFα at normoxia and is even reduced at hypoxia. We show that the reduction in HIF-1 transcriptional activity by TNFα is due to inhibition of the interaction of HIF-1α with ARNT and subsequent blocking of its binding to HREs. Comparison between hypoxia and TNFα for their effects on the expression of inflammatory markers shows significant differences: hypoxia up-regulates the expression of IL-6, but not RANTES or ICAM, and reduces the induction of VCAM by TNFα. Finally, ex vivo treatment of rabbit trachea strips with TNFα increases HIF-1α protein levels, but reduces the expression of HIF-1 targets under hypoxia. Overall, TNFα induces HIF-1α mRNA synthesis via an NF-κB dependent pathway but inhibits binding of HIF-1α to ARNT and DNA, while hypoxia and TNFα have distinct effects on ASMC inflammatory gene expression.
Collapse
|
33
|
Vadlapatla RK, Vadlapudi AD, Mitra AK. Hypoxia-inducible factor-1 (HIF-1): a potential target for intervention in ocular neovascular diseases. Curr Drug Targets 2013; 14:919-35. [PMID: 23701276 DOI: 10.2174/13894501113149990015] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/20/2013] [Indexed: 12/29/2022]
Abstract
Constant oxygen supply is essential for proper tissue development, homeostasis and function of all eukaryotic organisms. Cellular response to reduced oxygen levels is mediated by the transcriptional regulator hypoxia-inducible factor-1 (HIF-1). It is a heterodimeric complex protein consisting of an oxygen dependent subunit (HIF-1α) and a constitutively expressed nuclear subunit (HIF-1β). In normoxic conditions, de novo synthesized cytoplasmic HIF-1α is degraded by 26S proteasome. Under hypoxic conditions, HIF-1α is stabilized, binds with HIF-1β and activates transcription of various target genes. These genes play a key role in regulating angiogenesis, cell survival, proliferation, chemotherapy, radiation resistance, invasion, metastasis, genetic instability, immortalization, immune evasion, metabolism and stem cell maintenance. This review highlights the importance of hypoxia signaling in development and progression of various vision threatening pathologies such as diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration and glaucoma. Further, various inhibitors of HIF-1 pathway that may have a viable potential in the treatment of oxygen-dependent ocular diseases are also discussed.
Collapse
Affiliation(s)
- Ramya Krishna Vadlapatla
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA
| | | | | |
Collapse
|
34
|
Nguyen MP, Lee S, Lee YM. Epigenetic regulation of hypoxia inducible factor in diseases and therapeutics. Arch Pharm Res 2013; 36:252-63. [DOI: 10.1007/s12272-013-0058-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 12/25/2012] [Indexed: 12/14/2022]
|
35
|
Qie S, Liang D, Yin C, Gu W, Meng M, Wang C, Sang N. Glutamine depletion and glucose depletion trigger growth inhibition via distinctive gene expression reprogramming. Cell Cycle 2012; 11:3679-90. [PMID: 22935705 DOI: 10.4161/cc.21944] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamine (Gln) and glucose (Glc) represent two important nutrients for proliferating cells, consistent with the observations that oncogenic processes are associated with enhanced glycolysis and glutaminolysis. Gln depletion and Glc depletion have been shown to trigger growth arrest and eventually cell death. Solid tumors often outgrow the blood supply, resulting in ischemia, which is associated with hypoxia and nutrient insufficiency. Whereas oxygen-sensing and adaptive mechanisms to hypoxia have been well-studied, how cells directly sense and respond to Gln and Glc insufficiency remains unclear. Using mRNA profiling techniques, we compared the gene expression profiles of acute Gln-depleted cells, Glc-depleted cells and cells adapted to Gln depletion. Here we report the global changes of the gene expression in those cells cultured under the defined nutrient conditions. Analysis of mRNA profiling data revealed that Gln and Glc depletion triggered dramatic gene expression reprogramming. Either Gln or Glc deletion leads to changes of the expression of cell cycle genes, but these conditions have distinctive effects on transcription regulators and gene expression profiles. Moreover, Gln and Glc depletion triggered distinguishable ER-stress responses. The gene expression patterns support that Gln and Glc have distinctive metabolic roles in supporting cell survival and proliferation, and cells use different mechanisms to sense and respond to Gln and Glc insufficiency. Our mRNA profiling database provides a resource for further investigating the nutrient-sensing mechanisms and potential effects of Glc and Gln abundance on the biological behaviors of cells.
Collapse
Affiliation(s)
- Shuo Qie
- Department of Biology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Ben Lassoued A, Beaufils N, Dales JP, Gabert J. Hypoxia-inducible factor-1α as prognostic marker. ACTA ACUST UNITED AC 2012; 7:53-70. [DOI: 10.1517/17530059.2012.719022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Mutoh T, Sanosaka T, Ito K, Nakashima K. Oxygen levels epigenetically regulate fate switching of neural precursor cells via hypoxia-inducible factor 1α-notch signal interaction in the developing brain. Stem Cells 2012; 30:561-9. [PMID: 22213097 DOI: 10.1002/stem.1019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxygen levels in tissues including the embryonic brain are lower than those in the atmosphere. We reported previously that Notch signal activation induces demethylation of astrocytic genes, conferring astrocyte differentiation ability on midgestational neural precursor cells (mgNPCs). Here, we show that the oxygen sensor hypoxia-inducible factor 1α (HIF1α) plays a critical role in astrocytic gene demethylation in mgNPCs by cooperating with the Notch signaling pathway. Expression of constitutively active HIF1α and a hyperoxic environment, respectively, promoted and impeded astrocyte differentiation in the developing brain. Our findings suggest that hypoxia contributes to the appropriate scheduling of mgNPC fate determination.
Collapse
Affiliation(s)
- Tetsuji Mutoh
- Laboratory of Molecular Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | |
Collapse
|
38
|
Abstract
von Hippel–Lindau (VHL) disease is a hereditary cancer syndrome caused by inherited mutations that inactivate the VHL tumour suppressor gene. The VHL locus encodes pVHL, whose best studied function is to bind to and down-regulate the hypoxia-inducible factor (HIF) family of oxygen-dependent transcription factors. Early efforts have established the fundamental role of HIF in VHL-defective tumorigenesis and in particular renal cell carcinoma. However, recent findings have revealed an alternate side to the story, the HIF-independenttumour suppressor functions of pVHL. These include pVHL's ability to regulate apoptosis and senescence as well as its role in the maintenance of primary cilium and orchestrating the deposition of the extracellular matrix. To what extent these HIF-dependent and HIF-independent functions cooperate in VHL-defective tumorigenesis remains to be determined.
Collapse
Affiliation(s)
- Mingqing Li
- Departments of Medicine and Genetics, Division of Hematology/Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
39
|
Li M, Rathmell WK. Biomarkers for Renal Cell Carcinoma. KIDNEY CANCER 2012. [DOI: 10.1007/978-3-642-21858-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Wollenick K, Hu J, Kristiansen G, Schraml P, Rehrauer H, Berchner-Pfannschmidt U, Fandrey J, Wenger RH, Stiehl DP. Synthetic transactivation screening reveals ETV4 as broad coactivator of hypoxia-inducible factor signaling. Nucleic Acids Res 2011; 40:1928-43. [PMID: 22075993 PMCID: PMC3300025 DOI: 10.1093/nar/gkr978] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human prolyl-4-hydroxylase domain (PHD) proteins 1–3 are known as cellular oxygen sensors, acting via the degradation of hypoxia-inducible factor (HIF) α-subunits. PHD2 and PHD3 genes are inducible by HIFs themselves, suggesting a negative feedback loop that involves PHD abundance. To identify novel regulators of the PHD2 gene, an expression array of 704 transcription factors was screened by a method that allows distinguishing between HIF-dependent and HIF-independent promoter regulation. Among others, the E-twenty six transcription factor ETS translocation variant 4 (ETV4) was found to contribute to PHD2 gene expression particularly under hypoxic conditions. Mechanistically, complex formation between ETV4 and HIF-1/2α was observed by mammalian two-hybrid and fluorescence resonance energy transfer analysis. HIF-1α domain mapping, CITED2 overexpression and factor inhibiting HIF depletion experiments provided evidence for cooperation between HIF-1α and p300/CBP in ETV4 binding. Chromatin immunoprecipitation confirmed ETV4 and HIF-1α corecruitment to the PHD2 promoter. Of 608 hypoxically induced transcripts found by genome-wide expression profiling, 7.7% required ETV4 for efficient hypoxic induction, suggesting a broad role of ETV4 in hypoxic gene regulation. Endogenous ETV4 highly correlated with PHD2, HIF-1/2α and several established markers of tissue hypoxia in 282 human breast cancer tissue samples, corroborating a functional interplay between the ETV4 and HIF pathways.
Collapse
Affiliation(s)
- Kristin Wollenick
- Institute of Physiology and Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, 8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li SH, Chun YS, Lim JH, Huang LE, Park JW. von Hippel-Lindau protein adjusts oxygen sensing of the FIH asparaginyl hydroxylase. Int J Biochem Cell Biol 2011; 43:795-804. [PMID: 21316481 DOI: 10.1016/j.biocel.2011.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/28/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
Hypoxia inevitably develops in rapidly growing tumors and acts as an important microenvironment that forces changes in tumor behavior. Hypoxia-inducible factor 1α (HIF-1α) is activated during hypoxia and promotes the progression of malignancy by stimulating angiogenesis and by augmenting the ability of tumors to survive. In aerobic conditions, HIF-1α is destabilized by the PHD prolyl-hydroxylases that target HIF-1α for proteolysis via the von Hippel-Lindau protein (pVHL) and further inactivated by the FIH asparaginyl-hydroxylase that precludes the recruitment of transcription coactivators. Although HIF-1α degradation is well understood, little is known about how its transcriptional activity increases gradually in response to decreasing oxygen. In particular, it has been questioned how FIH having a high affinity for oxygen regulates the HIF-1α activity in moderate hypoxia. We here found that the HIF-1α-FIH interaction is disrupted in 1-5% oxygen. Both in vitro and in vivo binding analyses revealed that pVHL acts as an adaptor for FIH to bind HIF-1α. Furthermore, because the pVHL-FIH interaction depends on oxygen tension, the FIH-mediated inactivation of HIF-1α can be exquisitely regulated according to the severity of hypoxia. Based on these findings, we propose that pVHL fine-tunes the transcriptional activity of HIF-1α in graded oxygen tensions.
Collapse
Affiliation(s)
- Shan Hua Li
- Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Republic of Korea
| | | | | | | | | |
Collapse
|
42
|
Mendonça DBS, Mendonça G, Aragão FJL, Cooper LF. NF-κB suppresses HIF-1α response by competing for P300 binding. Biochem Biophys Res Commun 2010; 404:997-1003. [PMID: 21187066 DOI: 10.1016/j.bbrc.2010.12.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/20/2010] [Indexed: 11/18/2022]
Abstract
Hypoxia has emerged as a key determinant of osteogenesis. HIF-1α is the transcription factor mediating hypoxia responses that include induction of VEGF and related bone induction. Inflammatory signals antagonize bone repair via the NF-κB pathway. The present investigation explored the functional relationship of hypoxia (HIF-1α function) and inflammatory signaling (NF-κB) in stem like and osteoprogenitor cell lines. The potential interaction between HIF-1α and NF-κB signaling was explored by co-transfection studies in hFOB with p65, HIF-1α and 9x-HRE-luc or HIF-1α target genes reporter plasmids. Nuclear cross-talk was directly tested using the mammalian Gal4/VP16 two-hybrid, and confirmed by co-immunoprecipitation/western blotting assays. The results show that inflammatory stimulation (TNF-α treatment) causes a marked inhibition of HIF-1α function at the HRE in all cell lines studied. Also, co-transfection with p65 expression vector leads to reduced hVEGFp transcription after DFO-induced hypoxia. However, TNF-α treatment had little effect on HIF-1α mRNA levels. The functional interaction of Gal4-HIF-1α and VP16-p300 fusion proteins is effectively blocked by expression of p65 in a dose dependent manner. It was concluded that NF-κB-mediated inflammatory signaling is able to block HIF-1α transactivation at HRE-encoding genes by direct competition for p300 binding at the promoter. Inflammation may influence the stem cell niche and tissue regeneration by influencing cellular responses to hypoxia.
Collapse
Affiliation(s)
- Daniela B S Mendonça
- Universidade Católica de Brasília, Pós-Graduação em Ciências Genômicas e Biotecnologia, SGAN Quadra 916, Av. W5 Norte, 70790-160 Brasília, DF, Brazil
| | | | | | | |
Collapse
|
43
|
Histone deacetylase inhibitors: the epigenetic therapeutics that repress hypoxia-inducible factors. J Biomed Biotechnol 2010; 2011:197946. [PMID: 21151670 PMCID: PMC2997513 DOI: 10.1155/2011/197946] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/25/2010] [Indexed: 11/21/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) have been actively explored as a new generation of chemotherapeutics for cancers, generally known as epigenetic therapeutics. Recent findings indicate that several types of HDACIs repress angiogenesis, a process essential for tumor metabolism and progression. Accumulating evidence supports that this repression is mediated by disrupting the function of hypoxia-inducible factors (HIF-1, HIF-2, and collectively, HIF), which are the master regulators of angiogenesis and cellular adaptation to hypoxia. Since HIF also regulate glucose metabolism, cell survival, microenvironment remodeling, and other alterations commonly required for tumor progression, they are considered as novel targets for cancer chemotherapy. Though the precise biochemical mechanism underlying the HDACI-triggered repression of HIF function remains unclear, potential cellular factors that may link the inhibition of deacetylase activity to the repression of HIF function have been proposed. Here we review published data that inhibitors of type I/II HDACs repress HIF function by either reducing functional HIF-1α levels, or repressing HIF-α transactivation activity. In addition, underlying mechanisms and potential proteins involved in the repression will be discussed. A thorough understanding of HDACI-induced repression of HIF function may facilitate the development of future therapies to either repress or promote angiogenesis for cancer or chronic ischemic disorders, respectively.
Collapse
|
44
|
Imtiyaz HZ, Simon MC. Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol 2010; 345:105-20. [PMID: 20517715 PMCID: PMC3144567 DOI: 10.1007/82_2010_74] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myeloid cells provide important functions in low oxygen (O(2)) environments created by pathophysiological conditions, including sites of infection, inflammation, tissue injury, and solid tumors. Hypoxia-inducible factors (HIFs) are principle regulators of hypoxic adaptation, regulating gene expression involved in glycolysis, erythropoiesis, angiogenesis, proliferation, and stem cell function under low O(2). Interestingly, increasing evidence accumulated over recent years suggests an additional important regulatory role for HIFs in inflammation. In macrophages, HIFs not only regulate glycolytic energy generation, but also optimize innate immunity, control pro-inflammatory gene expression, mediate bacterial killing and influence cell migration. In neutrophils, HIF-1α promotes survival under O(2)-deprived conditions and mediates blood vessel extravasation by modulating β (2) integrin expression. Additionally, HIFs contribute to inflammatory functions in various other components of innate immunity, such as dendritic cells, mast cells, and epithelial cells. This review will dissect the role of each HIF isoform in myeloid cell function and discuss their impact on acute and chronic inflammatory disorders. Currently, intensive studies are being conducted to illustrate the connection between inflammation and tumorigenesis. Detailed investigation revealing interaction between microenvironmental factors such as hypoxia and immune cells is needed. We will also discuss how hypoxia and HIFs control properties of tumor-associated macrophages and their relationship to tumor formation and progression.
Collapse
Affiliation(s)
- Hongxia Z Imtiyaz
- Abramson Family Cancer Research Institute, University of Pennsylvania, 438 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | |
Collapse
|
45
|
Baldewijns MM, van Vlodrop IJH, Vermeulen PB, Soetekouw PMMB, van Engeland M, de Bruïne AP. VHL and HIF signalling in renal cell carcinogenesis. J Pathol 2010; 221:125-38. [PMID: 20225241 DOI: 10.1002/path.2689] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia-inducible factor (HIF) plays an important role in renal tumourigenesis. In the majority of clear cell RCC (ccRCC), the most frequent and highly vascularized RCC subtype, HIF is constitutively activated by inactivation of the von Hippel-Lindau gene. Of the HIF subunits, HIF-2alpha appears to be more oncogenic than HIF-1alpha, in that HIF-2alpha activates pro-tumourigenic target genes. In addition, recent studies indicate that HIF-1alpha, more than HIF-2alpha, can undergo proteasomal degradation in VHL - /- RCC cells. A more detailed understanding of the molecular basis of hypoxia and angiogenesis in renal carcinogenesis has set the stage for the development of targeted therapies, inhibiting multiple HIF-related pathways, such as the phosphatidylinositol 3-kinase-AKT-mTOR, RAS/RAF/MAP, and VEGF signalling routes. However, despite the positive results of these targeting agents in progression-free survival, clinical resistance remains an issue. Recent pre-clinical studies have suggested new targeting approaches such as inhibition of HIF-driven key metabolic enzymes and have introduced new HIF targeting agents, such as histone deacetylase inhibitors, with successful anti-neoplastic effects. In this review, we discuss existing and novel findings about RCC carcinogenesis, with subsequent clinical implications.
Collapse
Affiliation(s)
- Marcella M Baldewijns
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Ruas JL, Berchner-Pfannschmidt U, Malik S, Gradin K, Fandrey J, Roeder RG, Pereira T, Poellinger L. Complex regulation of the transactivation function of hypoxia-inducible factor-1 alpha by direct interaction with two distinct domains of the CREB-binding protein/p300. J Biol Chem 2009; 285:2601-9. [PMID: 19880525 DOI: 10.1074/jbc.m109.021824] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Activation of transcription in response to low oxygen tension is mediated by the hypoxia-inducible factor-1 (HIF-1). HIF-1 is a heterodimer of two proteins: aryl hydrocarbon receptor nuclear translocator and the oxygen-regulated HIF-1 alpha. The C-terminal activation domain of HIF-1 alpha has been shown to interact with cysteine/histidine-rich region 1 (CH1) of the coactivator CBP/p300 in a hypoxia-dependent manner. However, HIF forms lacking C-terminal activation domain (naturally occurring or genetically engineered) are still able to activate transcription of target genes in hypoxia. Here, we demonstrate that the N-terminal activation domain (N-TAD) of HIF-1 alpha interacts with endogenous CBP and that this interaction facilitates its transactivation function. Our results show that interaction of HIF-1 alpha N-TAD with CBP/p300 is mediated by the CH3 region of CBP known to interact with, among other factors, p53. Using fluorescence resonance energy transfer experiments, we demonstrate that N-TAD interacts with CH3 in vivo. Coimmunoprecipitation assays using endogenous proteins showed that immunoprecipitation of CBP in hypoxia results in the recovery of a larger fraction of HIF-1 alpha than of p53. Chromatin immunoprecipitation demonstrated that at 1% O(2) CBP is recruited to a HIF-1 alpha but not to a p53 target gene. Upon activation of both pathways, lower levels of chromatin-associated CBP were detected at either target gene promoter. These results identify CBP as the coactivator directly interacting with HIF-1 alpha N-TAD and mediating the transactivation function of this domain. Thus, we suggest that in hypoxia HIF-1 alpha is a major CBP-interacting transcription factor that may compete with other CBP-dependent factors, including p53, for limiting amounts of this coactivator, underscoring the complexity in the regulation of gene expression by HIF-1 alpha.
Collapse
Affiliation(s)
- Jorge L Ruas
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kazi AA, Molitoris KH, Koos RD. Estrogen rapidly activates the PI3K/AKT pathway and hypoxia-inducible factor 1 and induces vascular endothelial growth factor A expression in luminal epithelial cells of the rat uterus. Biol Reprod 2009; 81:378-87. [PMID: 19420388 PMCID: PMC2849827 DOI: 10.1095/biolreprod.109.076117] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/10/2009] [Accepted: 04/29/2009] [Indexed: 11/01/2022] Open
Abstract
We have previously shown that 17beta-estradiol (E(2)) increases vascular endothelial growth factor A (Vegfa) gene expression in the rat uterus, resulting in increased microvascular permeability, and that this involves the simultaneous recruitment of hypoxia-inducible factor 1 (HIF1) and estrogen receptor alpha (ESR1) to the Vegfa gene promoter. Both events require the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. However, those studies were carried out using whole uterine tissue, and while most evidence indicates that the likely site of E(2)-induced Vegfa expression is luminal epithelial (LE) cells, other studies have identified stromal cells as the site of that expression. To address this question, the pathway regulating Vegfa expression was reexamined using LE cells rapidly isolated after E(2) treatment. In addition, we further characterized the nature of the receptor through which E(2) triggers the signaling events that lead to Vegfa expression using the specific ESR1 antagonist ICI 182,780. In agreement with previous results in the whole uterus, E(2) stimulated Vegfa mRNA expression in LE cells, peaking at 1 h (4- to 14-fold) and returning to basal levels by 4 h. Treatment with E(2) also increased phosphorylation of AKT in LE cells, as well as of the downstream mediators FRAP1 (mTOR), GSK3B, and MDM2. The alpha subunit of HIF1 (HIF1A) was present in LE cells before E(2) treatment, was unchanged 1 h after E(2), but was >2-fold higher by 4 h. Chromatin immunoprecipitation analysis showed that HIF1A was recruited to the Vegfa promoter by 1 h and was absent again by 4 h. The E(2) activation of the PI3K/AKT pathway, HIF1A recruitment to the Vegfa promoter, and Vegfa expression were all blocked by ICI 182,780. In summary, the rapid E(2)-induced signaling events that lead to the expression of Vegfa observed previously using the whole uterus occur in LE cells and appear to be initiated via a membrane form of ESR1.
Collapse
Affiliation(s)
- Armina A. Kazi
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kristin Happ Molitoris
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robert D. Koos
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
48
|
Hardy AP, Prokes I, Kelly L, Campbell ID, Schofield CJ. Asparaginyl beta-hydroxylation of proteins containing ankyrin repeat domains influences their stability and function. J Mol Biol 2009; 392:994-1006. [PMID: 19646994 DOI: 10.1016/j.jmb.2009.07.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/17/2009] [Accepted: 07/22/2009] [Indexed: 11/25/2022]
Abstract
Recent reports have provided evidence that the beta-hydroxylation of conserved asparaginyl residues in ankyrin repeat domain (ARD) proteins is a common posttranslational modification in animal cells. Here, nuclear magnetic resonance (NMR) and other biophysical techniques are used to study the effect of asparaginyl beta-hydroxylation on the structure and stability of 'consensus' ARD proteins. The NMR analyses support previous work suggesting that a single beta-hydroxylation of asparagine can stabilize the stereotypical ARD fold. A second asparaginyl beta-hydroxylation causes further stabilization. In combination with mutation studies, the biophysical analyses reveal that the stabilizing effect of beta-hydroxylation is, in part, mediated by a hydrogen bond between the asparaginyl beta-hydroxyl group and the side chain of a conserved aspartyl residue, two residues to the N-terminal side of the target asparagine. Removal of this hydrogen bond resulted in reduced stabilization by hydroxylation. Formation of the same hydrogen bond is also shown to be a factor in inhibiting binding of hydroxylated ARDs to factor-inhibiting hypoxia-inducible factor (FIH). The effects of hydroxylation appear to be predominantly localized to the target asparagine and proximal residues, at least in the consensus ARD protein. The results reveal that thermodynamic stability is a factor in determining whether a particular ARD protein is an FIH substrate; a consensus ARD protein with three ankyrin repeats is an FIH substrate, while more stable consensus ARD proteins, with four or five ankyrin repeats, are not. However, NMR studies reveal that the consensus protein with four ankyrin repeats is still able to bind to FIH, suggesting that FIH may interact in cells with natural ankyrin repeats without resulting hydroxylation. Overall, the work provides novel biophysical insights into the mechanism by which asparaginyl beta-hydroxylation stabilizes the ARD proteins and reduces their binding to FIH.
Collapse
Affiliation(s)
- Adam P Hardy
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, The Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | |
Collapse
|
49
|
Irisarri M, Lavista-Llanos S, Romero NM, Centanin L, Dekanty A, Wappner P. Central role of the oxygen-dependent degradation domain of Drosophila HIFalpha/Sima in oxygen-dependent nuclear export. Mol Biol Cell 2009; 20:3878-87. [PMID: 19587118 DOI: 10.1091/mbc.e09-01-0038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Drosophila HIFalpha homologue, Sima, is localized mainly in the cytoplasm in normoxia and accumulates in the nucleus upon hypoxic exposure. We have characterized the mechanism governing Sima oxygen-dependent subcellular localization and found that Sima shuttles continuously between the nucleus and the cytoplasm. We have previously shown that nuclear import depends on an atypical bipartite nuclear localization signal mapping next to the C-terminus of the protein. We show here that nuclear export is mediated in part by a CRM1-dependent nuclear export signal localized in the oxygen-dependent degradation domain (ODDD). CRM1-dependent nuclear export requires both oxygen-dependent hydroxylation of a specific prolyl residue (Pro850) in the ODDD, and the activity of the von Hippel Lindau tumor suppressor factor. At high oxygen tension rapid nuclear export of Sima occurs, whereas in hypoxia, Sima nuclear export is largely inhibited. HIFalpha/Sima nucleo-cytoplasmic localization is the result of a dynamic equilibrium between nuclear import and nuclear export, and nuclear export is modulated by oxygen tension.
Collapse
Affiliation(s)
- Maximiliano Irisarri
- Instituto Leloir and FCEyN, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
50
|
Moin SM, Chandra V, Arya R, Jameel S. The hepatitis E virus ORF3 protein stabilizes HIF-1alpha and enhances HIF-1-mediated transcriptional activity through p300/CBP. Cell Microbiol 2009; 11:1409-21. [PMID: 19489936 DOI: 10.1111/j.1462-5822.2009.01340.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The hepatitis E virus (HEV) causes hepatitis E and is an important human pathogen. We have previously shown that the HEV open reading frame 3 (ORF3) protein promotes survival of the host cell. Here we report finding increased expression of glycolytic pathway enzymes in ORF3-expressing cells. Promoter analysis of these genes revealed the ubiquitous presence of hypoxia inducible factor (HIF) responsive element (HRE). Dominant-negative and siRNA studies showed increased expression of glycolytic pathway genes by the ORF3 to be mediated by the HIF-1 transcription factor. Our results showed that HIF-1alpha, a highly unstable subunit of the HIF-1, was stabilized in ORF3-expressing cells. This was through phosphatidylinositol-3-kinase (PI3K) mediated activation of Akt/protein kinase B. Enhanced binding to the consensus HRE and increased transactivation activity of HIF-1 were also observed in ORF3-expressing cells. The HIF complex recruits the transcriptional adapter/histone acetyltransferase protein p300/CBP to target gene promoters and p300/CBP phosphorylation is required for this interaction. We show that ORF3-mediated extracellularly regulated kinase (Erk) activation was responsible for the observed increase in phosphorylation and transactivation activity of p300/CBP. Our results reveal a two-pronged strategy through which the ORF3 protein might modulate the energy homeostasis in HEV infected cells and thus contribute to pathogenesis.
Collapse
Affiliation(s)
- Syed M Moin
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | | |
Collapse
|