1
|
Ruszova E, Vanek D, Stühmer W, Khaznadar Z, Subhashini N. The Utilization of the SaLux19-Based Loop-Mediated Isothermal Amplification (LAMP) Assay for the Rapid and Sensitive Identification of Minute Amounts of a Biological Specimen. Life (Basel) 2024; 14:579. [PMID: 38792600 PMCID: PMC11122329 DOI: 10.3390/life14050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Our research has developed a highly sensitive and simple assay to detect small amounts of animal and human biological material in less than 40 min. The handheld SaLux19 device developed at the Max Planck Institute of Experimental Medicine in Göttingen, Germany, was used to validate our concept. The proposed system uses isothermal amplification of DNA in a rapid assay format. Our results show that the assay can detect Sus scrofa nucleic acids with very high sensitivity and specificity. This detection system has potential for forensic scenarios.
Collapse
Affiliation(s)
- Ema Ruszova
- Bulovka University Hospital, 180 81 Prague, Czech Republic
- Forensic DNA Service, Budinova 2, 180 81 Prague, Czech Republic
| | - Daniel Vanek
- Bulovka University Hospital, 180 81 Prague, Czech Republic
- Forensic DNA Service, Budinova 2, 180 81 Prague, Czech Republic
- Institute for Environmental Sciences, Charles University, 110 00 Prague, Czech Republic
- Department of Forensic Medicine, Second Faculty of Medicine, Charles University, 110 00 Prague, Czech Republic
| | - Walter Stühmer
- Max Planck Institute of Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Ziad Khaznadar
- Bulovka University Hospital, 180 81 Prague, Czech Republic
| | | |
Collapse
|
2
|
Felício D, du Mérac TR, Amorim A, Martins S. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Hum Genet 2023; 142:1651-1676. [PMID: 37845370 PMCID: PMC10676324 DOI: 10.1007/s00439-023-02607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Felício
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Tanguy Rubat du Mérac
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Faculty of Science, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sandra Martins
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
3
|
Role of the TATA-box binding protein (TBP) and associated family members in transcription regulation. Gene X 2022; 833:146581. [PMID: 35597524 DOI: 10.1016/j.gene.2022.146581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The assembly of transcription complexes on eukaryotic promoters involves a series of steps, including chromatin remodeling, recruitment of TATA-binding protein (TBP)-containing complexes, the RNA polymerase II holoenzyme, and additional basal transcription factors. This review describes the transcriptional regulation by TBP and its corresponding homologs that constitute the TBP family and their interactions with promoter DNA. The C-terminal core domain of TBP is highly conserved and contains two structural repeats that fold into a saddle-like structure, essential for the interaction with the TATA-box on DNA. Based on the TBP C-terminal core domain similarity, three TBP-related factors (TRFs) or TBP-like factors (TBPLs) have been discovered in metazoans, TRF1, TBPL1, and TBPL2. TBP is autoregulated, and once bound to DNA, repressors such as Mot1 induce TBP to dissociate, while other factors such as NC2 and the NOT complex convert the active TBP/DNA complex into inactive, negatively regulating TBP. TFIIA antagonizes the TBP repressors but may be effective only in conjunction with the RNA polymerase II holoenzyme recruitment to the promoter by promoter-bound activators. TRF1 has been discovered inDrosophila melanogasterandAnophelesbut found absent in vertebrates and yeast. TBPL1 cannot bind to the TATA-box; instead, TBPL1 prefers binding to TATA-less promoters. However, TBPL1 shows a stronger association with TFIIA than TBP. The TCT core promoter element is present in most ribosomal protein genes inDrosophilaand humans, and TBPL1 is required for the transcription of these genes. TBP directly participates in the DNA repair mechanism, and TBPL1 mediates cell cycle arrest and apoptosis. TBPL2 is closely related to its TBP paralog, showing 95% sequence similarity with the TBP core domain. Like TBP, TBPL2 also binds to the TATA-box and shows interactions with TFIIA, TFIIB, and other basal transcription factors. Despite these advances, much remains to be explored in this family of transcription factors.
Collapse
|
4
|
Suzuki H, Okamoto-Katsuyama M, Suwa T, Maeda R, Tamura TA, Yamaguchi Y. TLP-mediated global transcriptional repression after double-strand DNA breaks slows down DNA repair and induces apoptosis. Sci Rep 2019; 9:4868. [PMID: 30890736 PMCID: PMC6425004 DOI: 10.1038/s41598-019-41057-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/18/2019] [Indexed: 11/16/2022] Open
Abstract
Transcription and DNA damage repair act in a coordinated manner. Recent studies have shown that double-strand DNA breaks (DSBs) are repaired in a transcription-coupled manner. Active transcription results in a faster recruitment of DSB repair factors and expedites DNA repair. On the other hand, transcription is repressed by DNA damage through multiple mechanisms. We previously reported that TLP, a TATA box-binding protein (TBP) family member that functions as a transcriptional regulator, is also involved in DNA damage-induced apoptosis. However, the mechanism by which TLP affects DNA damage response was largely unknown. Here we show that TLP-mediated global transcriptional repression after DSBs is crucial for apoptosis induction by DNA-damaging agents such as etoposide and doxorubicin. Compared to control cells, TLP-knockdown cells were resistant to etoposide-induced apoptosis and exhibited an elevated level of global transcription after etoposide exposure. DSBs were efficiently removed in transcriptionally hyperactive TLP-knockdown cells. However, forced transcriptional shutdown using transcriptional inhibitors α-amanitin and 5,6-dichloro-1-ß-D-ribofuranosylbenzimidazole (DRB) slowed down DSB repair and resensitized TLP-knockdown cells to etoposide. Taken together, these results indicate that TLP is a critical determinant as to how cells respond to DSBs and triggers apoptosis to cells that have sustained DNA damage.
Collapse
Affiliation(s)
- Hidefumi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8501, Japan
| | - Mayumi Okamoto-Katsuyama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8501, Japan
| | - Tetsufumi Suwa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8501, Japan
| | - Ryo Maeda
- Graduate School of Science, Chiba University, 1-33 Yayoicho, Chiba, 263-8522, Japan
| | - Taka-Aki Tamura
- Graduate School of Science, Chiba University, 1-33 Yayoicho, Chiba, 263-8522, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8501, Japan.
| |
Collapse
|
5
|
Narayanasamy RK, Castañón-Sanchez CA, Luna-Arias JP, García-Rivera G, Avendaño-Borromeo B, Labra-Barrios ML, Valdés J, Herrera-Aguirre ME, Orozco E. The Entamoeba histolytica TBP and TRF1 transcription factors are GAAC-box binding proteins, which display differential gene expression under different stress stimuli and during the interaction with mammalian cells. Parasit Vectors 2018. [PMID: 29514716 PMCID: PMC5842622 DOI: 10.1186/s13071-018-2698-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Entamoeba histolytica is the protozoan parasite responsible for human amebiasis. It causes up to 100,000 deaths worldwide each year. This parasite has two closely related basal transcription factors, the TATA-box binding protein (EhTBP) and the TBP-related factor 1 (EhTRF1). TBP binds to the canonical TATTTAAA-box, as well as to different TATA variants. TRF1 also binds to the TATTTAAA-box. However, their binding capacity to diverse core promoter elements, including the GAAC-element, and their role in gene regulation in this parasite remains unknown. METHODS EMSA experiments were performed to determine the binding capacity of recombinant TBP and TRF1 to TATA variants, GAAC and GAAC-like boxes. For the functional analysis under different stress stimuli (e.g. growth curve, serum depletion, heat-shock, and UV-irradiation) and during the interaction with mammalian cells (erythrocytes, MDCK cell monolayers, and hepatocytes of hamsters), RT-qPCR, and gene knockdown were performed. RESULTS Both transcription factors bound to the different TATA variants tested, as well as to the GAAC-boxes, suggesting that they are GAAC-box-binding proteins. The K D values determined for TBP and TRF1 for the different TATA variants and GAAC-box were in the range of 10-12 M to 10-11 M. During the death phase of growth or in serum depletion, Ehtbp mRNA levels significantly increased, whereas the mRNA level of Ehtrf1 did not change under these conditions. Ehtrf1 gene expression was negatively regulated by UV-irradiation and heat-shock stress, with no changes in Ehtbp gene expression. Moreover, Ehtrf1 gene also showed a negative regulation during erythrophagocytosis, liver abscess formation, and a transient expression level increase at the initial phase of MDCK cell destruction. Finally, the Ehtbp gene knockdown displayed a drastic decrease in the efficiency of erythrophagocytosis in G3 trophozoites. CONCLUSIONS To our knowledge, this study reveals that these basal transcription factors are able to bind multiple core promoter elements. However, their immediate change in gene expression level in response to different stimuli, as well as during the interaction with mammalian cells, and the diminishing of erythrophagocytosis by silencing the Ehtbp gene indicate the different physiological roles of these transcription factors in E. histolytica.
Collapse
Affiliation(s)
- Ravi Kumar Narayanasamy
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Carlos Alberto Castañón-Sanchez
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional (ENMH-IPN), Guillermo Massieu Helguera 239, Col. La Escalera, C.P, 07320, Ciudad de México, Mexico.,Laboratorio de Investigación Biomédica, Subdirección de Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Oaxaca, Aldama S/N, San Bartolo Coyotepec, C.P, 71256, Oaxaca, Mexico
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico.
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Bartolo Avendaño-Borromeo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - María Luisa Labra-Barrios
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - María Esther Herrera-Aguirre
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| |
Collapse
|
6
|
Isogai M, Suzuki H, Maeda R, Tamura TA. Ubiquitin-proteasome-dependent degradation of TBP-like protein is prevented by direct binding of TFIIA. Genes Cells 2016; 21:1223-1232. [PMID: 27696626 DOI: 10.1111/gtc.12441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/28/2016] [Indexed: 11/27/2022]
Abstract
Although the majority of gene expression is driven by TATA-binding protein (TBP)-based transcription machinery, it has been reported that TBP-related factors (TRFs) are also involved in the regulation of gene expression. TBP-like protein (TLP), which is one of the TRFs and exhibits the highest affinity to TFIIA among known proteins, has recently been showed to have significant roles in gene regulation. However, how the level of TLP is maintained in vivo has remained unknown. In this study, we explored the mechanism by which TLP protein is turned over in vivo and the factor that maintains the amount of TLP. We showed that TLP is rapidly degraded by the ubiquitin-proteasome system and that tight interaction with TFIIA results in protection of TLP from ubiquitin-proteasome-dependent degradation. The half-life of TLP was shown to be less than a few hours, and the proteasome inhibitor MG132 specifically suppressed TLP degradation. Moreover, knockdown and over-expression experiments showed that TFIIA is engaged in stabilization of TLPin vivo. Thus, we showed a novel characteristic of TLP, that is, interaction with TFIIA is essential to suppress proteasome-dependent turnover of TLP, providing a further insight into TLP-governed gene regulation.
Collapse
Affiliation(s)
- Momoko Isogai
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Hidefumi Suzuki
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Ryo Maeda
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Taka-Aki Tamura
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| |
Collapse
|
7
|
Relevance of HCN2-expressing human mesenchymal stem cells for the generation of biological pacemakers. Stem Cell Res Ther 2016; 7:67. [PMID: 27137910 PMCID: PMC4853868 DOI: 10.1186/s13287-016-0326-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The transfection of human mesenchymal stem cells (hMSCs) with the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2) gene has been demonstrated to provide biological pacing in dogs with complete heart block. The mechanism appears to be the generation of the ion current (If) by the HCN2-expressing hMSCs. However, it is not clear how the transfection process and/or the HCN2 gene affect the growth functions of the hMSCs. Therefore, we investigated survival, proliferation, cell cycle, and growth on a Kapton® scaffold of HCN2-expressing hMSCs. METHODS hMSCs were isolated from the bone marrow of healthy volunteers applying a selective cell adhesion procedure and were identified by their expression of specific surface markers. Cells from passages 2-3 were transfected by electroporation using commercial transfection kits and a pIRES2-EGFP vector carrying the pacemaker gene, mouse HCN2 (mHCN2). Transfection efficiency was confirmed by enhanced green fluorescent protein (EGFP) fluorescence, quantitative real-time polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). After hMSCs were transfected, their viability, proliferation, If generation, apoptosis, cell cycle, and expression of transcription factors were measured and compared with non-transfected cells and cells transfected with pIRES2-EGFP vector alone. RESULTS Intracellular mHCN2 expression after transfection increased from 22.14 to 62.66 ng/mg protein (p < 0.05). Transfection efficiency was 45 ± 5 %. The viability of mHCN2-transfected cells was 82 ± 5 %; they grew stably for more than 3 weeks and induced If current. mHCN2-transfected cells had low mitotic activity (10.4 ± 1.24 % in G2/M and 83.6 ± 2.5 % in G1 phases) as compared with non-transfected cells (52-53 % in G2/M and 31-35 % in G1 phases). Transfected cells showed increased activation of nine cell cycle-regulating transcription factors: the most prominent upregulation was of AMP-dependent transcription factor ATF3 (7.11-fold, p = 0.00056) which regulates the G1 phase. mHCN2-expressing hMSCs were attached and made anchorage-dependent connection with other cells without transmigration through a 12.7-μm thick Kapton® HN film with micromachined 1-3 μm diameter pores. CONCLUSIONS mHCN2-expressing hMSCs preserved the major cell functions required for the generation of biological pacemakers: high viability, functional activity, but low proliferation rate through the arrest of cell cycle in the G1 phase. mHCN2-expressing hMSCs attached and grew on a Kapton® scaffold without transmigration, confirming the relevance of these cells for the generation of biological pacemakers.
Collapse
|
8
|
Rao J, Yang L, Wang C, Zhang D, Shi J. Digital gene expression analysis of mature seeds of transgenic maize overexpressingAspergillus nigerphyA2and its non-transgenic counterpart. GM CROPS & FOOD 2014; 4:98-108. [DOI: 10.4161/gmcr.25593] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Maeda R, Suzuki H, Tanaka Y, Tamura TA. Interaction between transactivation domain of p53 and middle part of TBP-like protein (TLP) is involved in TLP-stimulated and p53-activated transcription from the p21 upstream promoter. PLoS One 2014; 9:e90190. [PMID: 24594805 PMCID: PMC3940844 DOI: 10.1371/journal.pone.0090190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/30/2014] [Indexed: 11/18/2022] Open
Abstract
TBP-like protein (TLP) is involved in transcriptional activation of an upstream promoter of the human p21 gene. TLP binds to p53 and facilitates p53-activated transcription from the upstream promoter. In this study, we clarified that in vitro affinity between TLP and p53 is about one-third of that between TBP and p53. Extensive mutation analyses revealed that the TLP-stimulated function resides in transcription activating domain 1 (TAD1) in the N-terminus of p53. Among the mutants, #22.23, which has two amino acid substitutions in TAD1, exhibited a typical mutant phenotype. Moreover, #22.23 exhibited the strongest mutant phenotype for TLP-binding ability. It is thus thought that TLP-stimulated and p53-dependent transcriptional activation is involved in TAD1 binding of TLP. #22.23 had a decreased transcriptional activation function, especially for the upstream promoter of the endogenous p21 gene, compared with wild-type p53. This mutant did not facilitate p53-dependent growth repression and etoposide-mediated cell-death as wild-type p53 does. Moreover, mutation analysis revealed that middle part of TLP, which is requited for p53 binding, is involved in TLP-stimulated and p53-dependent promoter activation and cell growth repression. These results suggest that activation of the p21 upstream promoter is mediated by interaction between specific regions of TLP and p53.
Collapse
Affiliation(s)
- Ryo Maeda
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Hidefumi Suzuki
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Yuta Tanaka
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Taka-aki Tamura
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
- * E-mail:
| |
Collapse
|
10
|
Decker KB, Hinton DM. Transcription Regulation at the Core: Similarities Among Bacterial, Archaeal, and Eukaryotic RNA Polymerases. Annu Rev Microbiol 2013; 67:113-39. [DOI: 10.1146/annurev-micro-092412-155756] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kimberly B. Decker
- Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
11
|
Simonova OB, Modestova EA, Vorontsova JE, Cherezov RO. Screening of genomic regions affecting lawc/Trf2 gene expression during Drosophila melanogaster development. Russ J Dev Biol 2012. [DOI: 10.1134/s1062360412050086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zhao M, Sun J, Zhao Z. Distinct and competitive regulatory patterns of tumor suppressor genes and oncogenes in ovarian cancer. PLoS One 2012; 7:e44175. [PMID: 22952919 PMCID: PMC3431336 DOI: 10.1371/journal.pone.0044175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/30/2012] [Indexed: 01/08/2023] Open
Abstract
Background So far, investigators have found numerous tumor suppressor genes (TSGs) and oncogenes (OCGs) that control cell proliferation and apoptosis during cancer development. Furthermore, TSGs and OCGs may act as modulators of transcription factors (TFs) to influence gene regulation. A comprehensive investigation of TSGs, OCGs, TFs, and their joint target genes at the network level may provide a deeper understanding of the post-translational modulation of TSGs and OCGs to TF gene regulation. Methodology/Principal Findings In this study, we developed a novel computational framework for identifying target genes of TSGs and OCGs using TFs as bridges through the integration of protein-protein interactions and gene expression data. We applied this pipeline to ovarian cancer and constructed a three-layer regulatory network. In the network, the top layer was comprised of modulators (TSGs and OCGs), the middle layer included TFs, and the bottom layer contained target genes. Based on regulatory relationships in the network, we compiled TSG and OCG profiles and performed clustering analyses. Interestingly, we found TSGs and OCGs formed two distinct branches. The genes in the TSG branch were significantly enriched in DNA damage and repair, regulating macromolecule metabolism, cell cycle and apoptosis, while the genes in the OCG branch were significantly enriched in the ErbB signaling pathway. Remarkably, their specific targets showed a reversed functional enrichment in terms of apoptosis and the ErbB signaling pathway: the target genes regulated by OCGs only were enriched in anti-apoptosis and the target genes regulated by TSGs only were enriched in the ErbB signaling pathway. Conclusions/Significance This study provides the first comprehensive investigation of the interplay of TSGs and OCGs in a regulatory network modulated by TFs. Our application in ovarian cancer revealed distinct regulatory patterns of TSGs and OCGs, suggesting a competitive regulatory mechanism acting upon apoptosis and the ErbB signaling pathway through their specific target genes.
Collapse
Affiliation(s)
- Min Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jingchun Sun
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
13
|
Interplay between two myogenesis-related proteins: TBP-interacting protein 120B and MyoD. Gene 2012; 504:213-9. [PMID: 22613845 DOI: 10.1016/j.gene.2012.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 11/23/2022]
Abstract
Gene expression in myogenesis is governed by multiple myogenic factors including MyoD. Previously, we demonstrated that TBP-interacting protein 120B (TIP120B) promotes in vitro myogenesis through its anti-ubiquitination ability. In this study, we investigated interplay between MyoD and TIP120B. Mouse C2C12 cells subjected to myotube differentiation contained increased amounts of TIP120B and MyoD. Dexamethasone, which inhibits myogenic signaling, decreased the amounts of those proteins. Mouse and human TIP120B promoters, which carry multiple E-box motifs, were potentiated by MyoD. In the human TIP120B, a proximal E-box binds to MyoD in vitro and exhibits MyoD-dependent transcription activation function. Expression of the endogenous TIP120B gene was correlated with the level of MyoD in different types of muscle-related cells. Furthermore, MyoD binds specifically to a proximal E-box-carrying promoter region in chromatin. Proteasome-sensitive MyoD was increased and decreased by overexpression and knockdown of TIP120B, respectively. Moreover, stability of MyoD was increased by TIP120B. The results suggest that MyoD and TIP120B potentiate each other at gene expression and post-translation levels, respectively, which may promote myogenesis cooperatively.
Collapse
|
14
|
Zimmermann M, Arachchige-Don AS, Donaldson MS, Dallapiazza RF, Cowan CE, Horne MC. Elevated cyclin G2 expression intersects with DNA damage checkpoint signaling and is required for a potent G2/M checkpoint arrest response to doxorubicin. J Biol Chem 2012; 287:22838-53. [PMID: 22589537 DOI: 10.1074/jbc.m112.376855] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To maintain genomic integrity DNA damage response (DDR), signaling pathways have evolved that restrict cellular replication and allow time for DNA repair. CCNG2 encodes an unconventional cyclin homolog, cyclin G2 (CycG2), linked to growth inhibition. Its expression is repressed by mitogens but up-regulated during cell cycle arrest responses to anti-proliferative signals. Here we investigate the potential link between elevated CycG2 expression and DDR signaling pathways. Expanding our previous finding that CycG2 overexpression induces a p53-dependent G(1)/S phase cell cycle arrest in HCT116 cells, we now demonstrate that this arrest response also requires the DDR checkpoint protein kinase Chk2. In accord with this finding we establish that ectopic CycG2 expression increases phosphorylation of Chk2 on threonine 68. We show that DNA double strand break-inducing chemotherapeutics stimulate CycG2 expression and correlate its up-regulation with checkpoint-induced cell cycle arrest and phospho-modification of proteins in the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) signaling pathways. Using pharmacological inhibitors and ATM-deficient cell lines, we delineate the DDR kinase pathway promoting CycG2 up-regulation in response to doxorubicin. Importantly, RNAi-mediated blunting of CycG2 attenuates doxorubicin-induced cell cycle checkpoint responses in multiple cell lines. Employing stable clones, we test the effect that CycG2 depletion has on DDR proteins and signals that enforce cell cycle checkpoint arrest. Our results suggest that CycG2 contributes to DNA damage-induced G(2)/M checkpoint by enforcing checkpoint inhibition of CycB1-Cdc2 complexes.
Collapse
Affiliation(s)
- Maike Zimmermann
- Department of Pharmacology, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
15
|
Suzuki H, Ito R, Ikeda K, Tamura TA. TATA-binding protein (TBP)-like protein is required for p53-dependent transcriptional activation of upstream promoter of p21Waf1/Cip1 gene. J Biol Chem 2012; 287:19792-803. [PMID: 22511763 DOI: 10.1074/jbc.m112.369629] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
TATA-binding protein-like protein (TLP) is involved in development, checkpoint, and apoptosis through potentiation of gene expression. TLP-overexpressing human cells, especially p53-containing cells, exhibited a decreased growth rate and increased proportion of G(1) phase cells. TLP stimulated expression of several growth-related genes including p21 (p21(Waf1/Cip1)). TLP-mediated activation of the p21 upstream promoter in cells was shown by a promoter-luciferase reporter assay. The p53-binding sequence located in the p21 upstream promoter and p53 itself are required for TLP-mediated transcriptional activation. TLP and p53 bound to each other and synergistically enhanced activity of the upstream promoter. TLP specifically activated transcription from the endogenous upstream promoter, and p53 was required for this activation. Etoposide treatment also resulted in activation of the upstream promoter as well as nuclear accumulation of TLP and p53. Moreover, the upstream promoter was associated with endogenous p53 and TLP, and the p53 recruitment was enhanced by TLP. The results of the present study suggest that TLP mediates p53-governed transcriptional activation of the p21 upstream promoter.
Collapse
Affiliation(s)
- Hidefumi Suzuki
- Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | |
Collapse
|
16
|
Kitamura T, Suzuki H, Tamura TA. Mouse Wee1 gene is repressed by Krüppel-like factor 3 (KLF3) via interaction with multiple upstream elements. Gene 2011; 492:361-7. [PMID: 22115574 DOI: 10.1016/j.gene.2011.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/25/2011] [Accepted: 11/02/2011] [Indexed: 11/18/2022]
Abstract
Wee1 protein kinase represses CDK1 required for G(2)/M transition. The mouse wee1 promoter contains multiple CACCC-boxes between -306 and +1 that can bind to Krüppel-like factor 3 (KLF3) transcriptional repressor. We found that increasing amounts of intracellular KLF3 decreased the amount of wee1 mRNA. A promoter reporter assay demonstrated that wee1 promoter activity was repressed by KLF3 overexpression. Elimination of the first and fourth CACCC-boxes suppressed KLF3-governed transcriptional repression. A gel-shift assay demonstrated that KLF3 binds to the first, third, and fourth CACCC-boxes with various strengths. Moreover, KLF3 was suggested to interact with the wee1 regulatory region in a physiological condition. Therefore, we concluded that KLF3 is a transcriptional repressor for wee1 gene. In a previous study, we demonstrated that TBP-like protein (TLP) inhibits wee1 promoter function. In this study, we found that the chromosomal wee1 gene is also down-regulated by KLF3. Since KLF3-repressed wee1 promoter function was further inhibited by TLP overexpression regardless of the inhibition degree of KLF3, we propose that TLP and KLF3 repress wee1 promoter independently.
Collapse
Affiliation(s)
- Takuya Kitamura
- Graduate School of Science, Chiba University, 1–33 Yayoicho, Chiba 263–8522, Japan
| | | | | |
Collapse
|
17
|
Suenaga Y, Ozaki T, Tanaka Y, Bu Y, Kamijo T, Tokuhisa T, Nakagawara A, Tamura TA. TATA-binding Protein (TBP)-like Protein Is Engaged in Etoposide-induced Apoptosis through Transcriptional Activation of Human TAp63 Gene. J Biol Chem 2010; 284:35433-40. [PMID: 19858204 DOI: 10.1074/jbc.m109.050047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Accumulating evidence indicates that TBP (TATA-binding protein)-like protein (TLP) contributes to the regulation of stress-mediated cell cycle checkpoint and apoptotic pathways, although its physiological target genes have remained elusive. In the present study, we have demonstrated that human TAp63 is one of the direct transcriptional target genes of TLP. Enforced expression of TLP results in the transcriptional induction of the endogenous TAp63, but not of the other p53 family members such as TAp73 and p53. Consistent with these results, small interference RNA-mediated knockdown led to a significant down-regulation of the endogenous TAp63. Luciferase reporter assay and chromatin immunoprecipitation analysis revealed that the genomic region located at positions -487 to -29, where +1 represents the transcriptional initiation site of TAp63, is required for TLP-dependent transcriptional activation of TAp63 and also TLP is efficiently recruited onto this region. Additionally, cells treated with anti-cancer drug etoposide underwent apoptosis in association with the transcriptional enhancement of TAp63 in a p53-independent manner, and the knockdown of the endogenous TLP reduced etoposide-induced apoptosis through repression of TAp63 expression. Taken together, our present study identifies a TLP-TAp63 pathway that is further implicated in stress-induced apoptosis.
Collapse
Affiliation(s)
- Yusuke Suenaga
- Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pitulescu ME, Teichmann M, Luo L, Kessel M. TIPT2 and geminin interact with basal transcription factors to synergize in transcriptional regulation. BMC BIOCHEMISTRY 2009; 10:16. [PMID: 19515240 PMCID: PMC2702275 DOI: 10.1186/1471-2091-10-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 06/10/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND The re-replication inhibitor Geminin binds to several transcription factors including homeodomain proteins, and to members of the polycomb and the SWI/SNF complexes. RESULTS Here we describe the TATA-binding protein-like factor-interacting protein (TIPT) isoform 2, as a strong binding partner of Geminin. TIPT2 is widely expressed in mouse embryonic and adult tissues, residing both in cyto- and nucleoplasma, and enriched in the nucleolus. Like Geminin, also TIPT2 interacts with several polycomb factors, with the general transcription factor TBP (TATA box binding protein), and with the related protein TBPL1 (TRF2). TIPT2 synergizes with geminin and TBP in the activation of TATA box-containing promoters, and with TBPL1 and geminin in the activation of the TATA-less NF1 promoter. Geminin and TIPT2 were detected in the chromatin near TBP/TBPL1 binding sites. CONCLUSION Together, our study introduces a novel transcriptional regulator and its function in cooperation with chromatin associated factors and the basal transcription machinery.
Collapse
Affiliation(s)
- Mara E Pitulescu
- Department of Molecular Cell Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
19
|
Shiraishi S, Tamamura N, Jogo M, Tanaka Y, Tamura TA. Rapid proteasomal degradation of transcription factor IIB in accordance with F9 cell differentiation. Gene 2009; 436:115-20. [PMID: 19393171 DOI: 10.1016/j.gene.2009.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 12/15/2008] [Accepted: 01/25/2009] [Indexed: 11/28/2022]
Abstract
We found that the levels of all general transcription factors (GTFs) for RNA polymerase II decreased in F9 cells when the cells were subjected to a differentiation procedure. Different from other GTFs, decrease of TFIIB during the differentiation was suppressed by addition of a proteasome inhibitor, MG132. The half-life of TFIIB in the differentiated cells was remarkably reduced compared with that in the undifferentiated cells. Moreover, it was demonstrated that TFIIB is a poly-ubiquitinated protein. Results of this study suggest that components of the transcription machinery decreased in accordance with cell differentiation and that TFIIB is specifically and rapidly degraded by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Seiji Shiraishi
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | | | | | | | | |
Collapse
|
20
|
Variations in intracellular levels of TATA binding protein can affect specific genes by different mechanisms. Mol Cell Biol 2007; 28:83-92. [PMID: 17954564 DOI: 10.1128/mcb.00809-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that reduced intracellular levels of the TATA binding protein (TBP), brought about by tbp heterozygosity in DT40 cells, resulted in a mitotic delay reflecting reduced expression of the mitotic regulator cdc25B but did not significantly affect overall transcription. Here we extend these findings in several ways. We first provide evidence that the decrease in cdc25B expression reflects reduced activity of the cdc25B core promoter in the heterozygous (TBP-het) cells. Strikingly, mutations in a previously described repressor element that overlaps the TATA box restored promoter activity in TBP-het cells, supporting the idea that the sensitivity of this promoter to TBP levels reflects a competition between TBP and the repressor for DNA binding. To determine whether cells might have mechanisms to compensate for fluctuations in TBP levels, we next examined expression of the two known vertebrate TBP homologues, TLP and TBP2. Significantly, mRNAs encoding both were significantly overexpressed relative to levels observed in wild-type cells. In the case of TLP, this was shown to reflect regulation of the core promoter by both TBP and TLP. Together, our results indicate that variations in TBP levels can affect the transcription of specific promoters in distinct ways, but overall transcription may be buffered by corresponding alterations in the expression of TBP homologues.
Collapse
|
21
|
Mabuchi T, Wakamatsu T, Nakadai T, Shimada M, Yamada K, Matsuda Y, Tamura TA. Chromosomal position, structure, expression, and requirement of genes for chicken transcription factor IIA. Gene 2007; 397:94-100. [PMID: 17544229 DOI: 10.1016/j.gene.2007.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 03/14/2007] [Accepted: 04/13/2007] [Indexed: 11/18/2022]
Abstract
Transcription factor IIA (TFIIA) is one of the general transcription factors for RNA polymerase II and composed of three subunits, TFIIAalpha, TFIIAbeta and TFIIAgamma. TFIIAalpha and TFIIAbeta are encoded by a single gene (TFIIAalphabeta) and mature through internal cleavage of TFIIAalphabeta. In this study, we found that structures of TFIIAalphabeta and TFIIAgamma are highly homologous with each mammalian counterpart. Exon-intron organizations of the human and chicken TFIIA genes were also homologous. The sequence of the cleavage region of the chicken TFIIAalphabeta precursor protein was fitted to the consensus cleavage recognition site. It was thus demonstrated that TFIIA is conserved in vertebrates. TFIIA proteins are present ubiquitously in chicken tissues. Fluorescent in situ hybridization revealed that TFIIAalphabeta and TFIIAgamma genes are located in chromosome 5 and a mini-chromosome, respectively. We generated semi-knockout chicken DT40 cells for TFIIAalphabeta and TFIIAgamma genes with high homologous recombination efficiencies, whereas we failed to establish double-knockout cells for each gene. It is thought that both genes for TFIIA are required in vertebrates. TFIIA siRNA resulted in deceleration of cell growth rate, suggesting that, consistent with those of knockout assays, TFIIA is associated with cell growth regulation.
Collapse
Affiliation(s)
- Tomoko Mabuchi
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Kopytova DV, Krasnov AN. The family of TRF (TBP-like factors) proteins. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Valdmanis PN, Meijer IA, Reynolds A, Lei A, MacLeod P, Schlesinger D, Zatz M, Reid E, Dion PA, Drapeau P, Rouleau GA. Mutations in the KIAA0196 gene at the SPG8 locus cause hereditary spastic paraplegia. Am J Hum Genet 2007; 80:152-61. [PMID: 17160902 PMCID: PMC1785307 DOI: 10.1086/510782] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 11/10/2006] [Indexed: 11/03/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a progressive upper-motor neurodegenerative disease. The eighth HSP locus, SPG8, is on chromosome 8p24.13. The three families previously linked to the SPG8 locus present with relatively severe, pure spastic paraplegia. We have identified three mutations in the KIAA0196 gene in six families that map to the SPG8 locus. One mutation, V626F, segregated in three large North American families with European ancestry and in one British family. An L619F mutation was found in a Brazilian family. The third mutation, N471D, was identified in a smaller family of European origin and lies in a spectrin domain. None of these mutations were identified in 500 control individuals. Both the L619 and V626 residues are strictly conserved across species and likely have a notable effect on the structure of the protein product strumpellin. Rescue studies with human mRNA injected in zebrafish treated with morpholino oligonucleotides to knock down the endogenous protein showed that mutations at these two residues impaired the normal function of the KIAA0196 gene. However, the function of the 1,159-aa strumpellin protein is relatively unknown. The identification and characterization of the KIAA0196 gene will enable further insight into the pathogenesis of HSP.
Collapse
|
24
|
Kopytova DV, Krasnov AN, Kopantceva MR, Nabirochkina EN, Nikolenko JV, Maksimenko O, Kurshakova MM, Lebedeva LA, Yerokhin MM, Simonova OB, Korochkin LI, Tora L, Georgiev PG, Georgieva SG. Two isoforms of Drosophila TRF2 are involved in embryonic development, premeiotic chromatin condensation, and proper differentiation of germ cells of both sexes. Mol Cell Biol 2006; 26:7492-505. [PMID: 17015475 PMCID: PMC1636870 DOI: 10.1128/mcb.00349-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila TATA box-binding protein (TBP)-related factor 2 (TRF2 or TLF) was shown to control a subset of genes different from that controlled by TBP. Here, we have investigated the structure and functions of the trf2 gene. We demonstrate that it encodes two protein isoforms: the previously described 75-kDa TRF2 and a newly identified 175-kDa version in which the same sequence is preceded by a long N-terminal domain with coiled-coil motifs. Chromatography of Drosophila embryo extracts revealed that the long TRF2 is part of a multiprotein complex also containing ISWI. Both TRF2 forms are detected at the same sites on polytene chromosomes and have the same expression patterns, suggesting that they fulfill similar functions. A study of the manifestations of the trf2 mutation suggests an essential role of TRF2 during embryonic Drosophila development. The trf2 gene is strongly expressed in germ line cells of adult flies. High levels of TRF2 are found in nuclei of primary spermatocytes and trophocytes with intense transcription. In ovaries, TRF2 is present both in actively transcribing nurse cells and in the transcriptionally inactive oocyte nuclei. Moreover, TRF2 is essential for premeiotic chromatin condensation and proper differentiation of germ cells of both sexes.
Collapse
Affiliation(s)
- Daria V Kopytova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov St. 34/5, Moscow 119334, Russian Federation
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tanaka Y, Nanba YA, Park KA, Mabuchi T, Suenaga Y, Shiraishi S, Shimada M, Nakadai T, Tamura TA. Transcriptional repression of the mouse wee1 gene by TBP-related factor 2. Biochem Biophys Res Commun 2006; 352:21-8. [PMID: 17109819 DOI: 10.1016/j.bbrc.2006.10.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 10/24/2006] [Indexed: 11/17/2022]
Abstract
TBP-related factor 2 (TRF2), one of the TBP family proteins, is involved in various cellular functions through its transcription stimulation activity. We previously reported that TRF2 is involved in reduction of wee1 mRNA in genotoxin-treated chicken cells. In this study, we investigated the role of TRF2 in wee1 gene expression. It was found that wee1 mRNA was decreased in hydroxyurea-treated NIH3T3 cells. Mouse wee1 promoter activity was repressed by TRF2 in mouse and chicken cells. Chromatin immunoprecipitation and plasmid immunoprecipitation analyses revealed that TRF2 is recruited to the wee1 promoter in accordance with the transcriptional repression. A mutant TRF2 that lacks TFIIA-binding capacity lost its repressive function. This mutant was less recruited to the wee1 promoter than was the wild-type one, and provided a decline in promoter-recruited TFIIA. Data in this study suggest that transcription repressive activity of TRF2 to wee1 promoter needs association with the promoter and TFIIA.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kopytova DV, Krasnov AN, Simonova OB, Modestova EA, Korochkin LI, Georgieva SG. Study of the lawc-trf2 gene of Drosophila melanogaster and the protein product of this gene. DOKL BIOCHEM BIOPHYS 2006; 405:380-2. [PMID: 16480132 DOI: 10.1007/s10628-005-0119-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- D V Kopytova
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 117334 Russia
| | | | | | | | | | | |
Collapse
|
27
|
DeJong J. Basic mechanisms for the control of germ cell gene expression. Gene 2006; 366:39-50. [PMID: 16326034 DOI: 10.1016/j.gene.2005.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/23/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
The patterns of gene expression in spermatocytes and oocytes are quite different from those in somatic cells. The messenger RNAs produced by these cells are not only required to support germ cell development but, in the case of oocytes, they are also used for maturation, fertilization, and early embryogenesis. Recent studies have begun to provide an explanation for how germ-cell-specific programs of gene expression are generated. Part of the answer comes from the observation that germ cells express core promoter-associated regulatory factors that are different from those expressed in somatic cells. These factors supplement or replace their somatic counterparts to direct expression during meiosis and gametogenesis. In addition, germ cell transcription involves the recognition and use of specialized core promoter sequences. Finally, transcription must occur on chromosomal DNA templates that are reorganized into new chromatin-packaging configurations using alternate histone subunits. This article will review recent advances in our understanding of the factors and mechanisms that control transcription in ovary and testis and will discuss models for germ cell gene expression.
Collapse
Affiliation(s)
- Jeff DeJong
- Department of Molecular and Cell Biology, University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75080, United States.
| |
Collapse
|
28
|
Ruan JP, Arhin GK, Ullu E, Tschudi C. Functional characterization of a Trypanosoma brucei TATA-binding protein-related factor points to a universal regulator of transcription in trypanosomes. Mol Cell Biol 2004; 24:9610-8. [PMID: 15485927 PMCID: PMC522245 DOI: 10.1128/mcb.24.21.9610-9618.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional mechanisms remain poorly understood in trypanosomatid protozoa. In particular, there is no knowledge about the function of basal transcription factors, and there is an apparent rarity of promoters for protein-coding genes transcribed by RNA polymerase (Pol) II. Here we describe a Trypanosoma brucei factor related to the TATA-binding protein (TBP). Although this TBP-related factor (TBP-related factor 4 [TRF4]) has about 31% identity to the TBP core domain, several key residues involved in TATA box binding are not conserved. Depletion of the T. brucei TRF4 (TbTRF4) by RNA interference revealed an essential role in RNA Pol I, II, and III transcription. Using chromatin immunoprecipitation, we further showed that TRF4 is recruited to the Pol I-transcribed procyclic acidic repetitive genes, Pol II-transcribed spliced leader RNA genes, and Pol III-transcribed U-snRNA and 7SL RNA genes, thus supporting a role for TbTRF4 in transcription performed by all three nuclear RNA polymerases. Finally, a search for TRF4 binding sites in the T. brucei genome led to the identification of such sites in the 3' portion of certain protein-coding genes, indicating a unique aspect of Pol II transcription in these organisms.
Collapse
Affiliation(s)
- Jia-Peng Ruan
- Department of Epidemiology and Public Health, Yale University Medical School, 295 Congress Ave., New Haven, CT 06536-0812, USA
| | | | | | | |
Collapse
|
29
|
Kieffer-Kwon P, Martianov I, Davidson I. Cell-specific nucleolar localization of TBP-related factor 2. Mol Biol Cell 2004; 15:4356-68. [PMID: 15269281 PMCID: PMC519132 DOI: 10.1091/mbc.e04-02-0138] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 06/09/2004] [Accepted: 06/30/2004] [Indexed: 01/05/2023] Open
Abstract
TATA-binding protein (TBP)-related factor 2 (TRF2) is one of four closely related RNA polymerase II transcription factors. We compared the intracellular localizations of TBP and TRF2 during the cell cycle and mitosis in HeLa cells. We show that during interphase, endogenous or exogenously expressed TRF2 is located almost exclusively in the nucleolus in HeLa or Cos cells. TRF2 localization is not affected by stress or mitotic stimuli, but TRF2 is rapidly released from the nucleolus upon inhibition of pol I transcription or treatment by RNase. These results suggest that localization of HeLa TRF2 requires a nucleolar-associated RNA species. In contrast, in 3T3 fibroblast cells, exogenously expressed TRF2 localizes to the nucleoplasm. Constitutive expression of ectopic TRF2 in 3T3 cells leads to a prolonged S phase of the cell cycle and reduced proliferation. Together with previous data, our results highlight the cell-specific localization and functions of TRF2. Furthermore, we show that during cell division, HeLa TRF2 and TBP are localized in the mitotic cytoplasm and TRF2 relocalizes into the nascent nucleoli immediately after mitosis, whereas TBP reassociates with the chromatin. Although partially contradictory results have been reported, our data are consistent with a model where only small proportion of the cellular TBP remains associated with specific promoter loci during mitosis.
Collapse
Affiliation(s)
- Philippe Kieffer-Kwon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, 67404 Illkirch Cédex, France
| | | | | |
Collapse
|
30
|
Abstract
The TATA binding protein (TBP) is a subunit of several macromolecular complexes required for transcription by the three nuclear RNA polymerases. This observation led to the idea that TBP is a "universal" transcription factor. The discovery of three TBP-related factors and a macromolecular complex which lacks TBP but can support RNA polymerase II transcription in vitro has led to a reappraisal of the universal character of TBP. Several in vivo studies have rather shown that TBP plays a specific role in the activation of a subset of cellular genes controlling the cell cycle. In mammals, the aminoterminal region of TBP plays a highly selective role in the maternal immunotolerance of pregnancy.
Collapse
Affiliation(s)
- Irwin Davidson
- Institut de génétique et de biologie moléculaire et cellulaire, 1, rue Laurent Fries, 67404 Illkirch, France.
| | | | | |
Collapse
|
31
|
Nakadai T, Shimada M, Shima D, Handa H, Tamura TA. Specific interaction with transcription factor IIA and localization of the mammalian TATA-binding protein-like protein (TLP/TRF2/TLF). J Biol Chem 2003; 279:7447-55. [PMID: 14570910 DOI: 10.1074/jbc.m305412200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TBP-like protein (TLP) is structurally similar to the TATA-binding protein (TBP) and is thought to have a transcriptional regulation function. Although TLP has been found to form a complex with transcription factor IIA (TFIIA), the in vivo functions of TFIIA for TLP are not clear. In this study, we analyzed the interaction between TLP and TFIIA. We determined the biophysical properties for the interaction of TLP with TFIIA. Dissociation constants of TFIIA versus TLP and TFIIA versus TBP were 1.5 and 10 nm, respectively. Moreover, the dissociation rate constant of TLP and TFIIA (1.2 x 10(-4)/m.s was significantly lower than that of TBP (2.1 x 10(-3)/m.s). These results indicate that TLP has a higher affinity to TFIIA than does TBP and that the TLP-TFIIA complex is much more stable than is the TBP-TFIIA complex. We found that TLP forms a dimer and a trimer and that these multimerizations are inhibited by TFIIA. Moreover, TLP mutimers were more stable than a TBP dimer. We determined the amounts of TLPs in the nucleus and cytoplasm of NIH3T3 cells and found that the molecular number of TLP in the nucleus was only 4% of that in the cytoplasm. Immunostaining of cells also revealed cytoplasmic localization of TLP. We established cells that stably express mutant TLP lacking TFIIA binding ability and identified the amino acids of TLP required for TFIIA binding (Ala-32, Leu-33, Asn-37, Arg-52, Lys-53, Lys-78, and Arg-86). Interestingly, the level of TFIIA binding defective mutant TLPs in the nucleus was much higher than that of the wild-type TLP and TFIIA-interactable mutant TLPs. Immunostaining analyses showed consistent results. These results suggest that the TFIIA binding ability of TLP is required for characteristic cytoplasmic localization of TLP. TFIIA may regulate the intracellular molecular state and the function of TLP through its property of binding to TLP.
Collapse
Affiliation(s)
- Tomoyoshi Nakadai
- Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | |
Collapse
|