1
|
Yang L, Song T, Chen L, Soliman H, Chen J. Nucleolar repression facilitates initiation and maintenance of senescence. Cell Cycle 2016; 14:3613-23. [PMID: 26505814 DOI: 10.1080/15384101.2015.1100777] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Tumor cells with defective apoptosis pathways often respond to chemotherapy by entering irreversible cell cycle arrest with features of senescence. However, rare cells can bypass entry to senescence, or re-enter cell cycle from a senescent state. Deficiency in senescence induction and maintenance may contribute to treatment resistance and early relapse after therapy. Senescence involves epigenetic silencing of cell cycle genes and reduced rRNA transcription. We found that senescence-inducing treatments such as DNA damage and RNA polymerase I inhibition stimulate the binding between the nucleolar protein NML (nucleomethylin) and SirT1. The NML complex promotes rDNA heterochromatin formation and represses rRNA transcription. Depletion of NML reduced the levels of H3K9Me3 and H3K27Me3 heterochromatin markers on rDNA and E2F1 target promoters in senescent cells, increased rRNA transcription, and increased the frequency of cell cycle re-entry. Depletion of the nucleolar transcription repressor factor TIP5 also promoted escape from senescence. Furthermore, tumor tissue staining showed that breast tumors without detectable nucleolar NML expression had poor survival. The results suggest that efficient regulation of nucleolar rDNA transcription facilitates the maintenance of irreversible cell cycle arrest in senescent cells. Deficiency in nucleolar transcription repression may accelerate tumor relapse after chemotherapy.
Collapse
Affiliation(s)
- Leixiang Yang
- a Molecular Oncology Department ; Moffitt Cancer Center ; Tampa , FL USA
| | - Tanjing Song
- a Molecular Oncology Department ; Moffitt Cancer Center ; Tampa , FL USA
| | - Lihong Chen
- a Molecular Oncology Department ; Moffitt Cancer Center ; Tampa , FL USA
| | - Hatem Soliman
- b Women's Oncology ; Moffitt Cancer Center ; Tampa , FL USA
| | - Jiandong Chen
- a Molecular Oncology Department ; Moffitt Cancer Center ; Tampa , FL USA
| |
Collapse
|
2
|
Recruitment of Pontin/Reptin by E2f1 amplifies E2f transcriptional response during cancer progression. Nat Commun 2015; 6:10028. [PMID: 26639898 PMCID: PMC4686657 DOI: 10.1038/ncomms10028] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/28/2015] [Indexed: 12/13/2022] Open
Abstract
Changes in gene expression during tumorigenesis are often considered the consequence of de novo mutations occurring in the tumour. An alternative possibility is that the transcriptional response of oncogenic transcription factors evolves during tumorigenesis. Here we show that aberrant E2f activity, following inactivation of the Rb gene family in a mouse model of liver cancer, initially activates a robust gene expression programme associated with the cell cycle. Slowly accumulating E2f1 progressively recruits a Pontin/Reptin complex to open the chromatin conformation at E2f target genes and amplifies the E2f transcriptional response. This mechanism enhances the E2f-mediated transactivation of cell cycle genes and initiates the activation of low binding affinity E2f target genes that regulate non-cell-cycle functions, such as the Warburg effect. These data indicate that both the physiological and the oncogenic activities of E2f result in distinct transcriptional responses, which could be exploited to target E2f oncogenic activity for therapy. E2F transcription factors are primarily known for the regulation of the cell cycle and are often dysregulated in cancer. Here, the authors show that during cancer progression E2F1 recruits a Pontin/Reptin complex to E2F target genes to open chromatin and increase E2F transcriptional response.
Collapse
|
3
|
Zhen CY, Duc HN, Kokotovic M, Phiel CJ, Ren X. Cbx2 stably associates with mitotic chromosomes via a PRC2- or PRC1-independent mechanism and is needed for recruiting PRC1 complex to mitotic chromosomes. Mol Biol Cell 2014; 25:3726-39. [PMID: 25232004 PMCID: PMC4230780 DOI: 10.1091/mbc.e14-06-1109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cbx2 is immobilized at mitotic chromosomes, and the immobilization is independent of PRC1 or PRC2. Cbx2 plays important roles in recruiting PRC1 complex to mitotic chromosomes. This study provides novel insights into the PcG epigenetic memory passing down through cell divisions. Polycomb group (PcG) proteins are epigenetic transcriptional factors that repress key developmental regulators and maintain cellular identity through mitosis via a poorly understood mechanism. Using quantitative live-cell imaging in mouse ES cells and tumor cells, we demonstrate that, although Polycomb repressive complex (PRC) 1 proteins (Cbx-family proteins, Ring1b, Mel18, and Phc1) exhibit variable capacities of association with mitotic chromosomes, Cbx2 overwhelmingly binds to mitotic chromosomes. The recruitment of Cbx2 to mitotic chromosomes is independent of PRC1 or PRC2, and Cbx2 is needed to recruit PRC1 complex to mitotic chromosomes. Quantitative fluorescence recovery after photobleaching analysis indicates that PRC1 proteins rapidly exchange at interphasic chromatin. On entry into mitosis, Cbx2, Ring1b, Mel18, and Phc1 proteins become immobilized at mitotic chromosomes, whereas other Cbx-family proteins dynamically bind to mitotic chromosomes. Depletion of PRC1 or PRC2 protein has no effect on the immobilization of Cbx2 on mitotic chromosomes. We find that the N-terminus of Cbx2 is needed for its recruitment to mitotic chromosomes, whereas the C-terminus is required for its immobilization. Thus these results provide fundamental insights into the molecular mechanisms of epigenetic inheritance.
Collapse
Affiliation(s)
- Chao Yu Zhen
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| | - Huy Nguyen Duc
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| | - Marko Kokotovic
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| | - Christopher J Phiel
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217-3364
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| |
Collapse
|
4
|
Necessary and sufficient role for a mitosis skip in senescence induction. Mol Cell 2014; 55:73-84. [PMID: 24910096 DOI: 10.1016/j.molcel.2014.05.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/06/2014] [Accepted: 04/18/2014] [Indexed: 11/20/2022]
Abstract
Senescence is a state of permanent growth arrest and is a pivotal part of the antitumorigenic barrier in vivo. Although the tumor suppressor activities of p53 and pRb family proteins are essential for the induction of senescence, molecular mechanisms by which these proteins induce senescence are still not clear. Using time-lapse live-cell imaging, we demonstrate here that normal human diploid fibroblasts (HDFs) exposed to various senescence-inducing stimuli undergo a mitosis skip before entry into permanent cell-cycle arrest. This mitosis skip is mediated by both p53-dependent premature activation of APC/C(Cdh1) and pRb family protein-dependent transcriptional suppression of mitotic regulators. Importantly, mitotic skipping is necessary and sufficient for senescence induction. p16 is only required for maintenance of senescence. Analysis of human nevi also suggested the role of mitosis skip in in vivo senescence. Our findings provide decisive evidence for the molecular basis underlying the induction and maintenance of cellular senescence.
Collapse
|
5
|
Quin JE, Devlin JR, Cameron D, Hannan KM, Pearson RB, Hannan RD. Targeting the nucleolus for cancer intervention. Biochim Biophys Acta Mol Basis Dis 2014; 1842:802-16. [PMID: 24389329 DOI: 10.1016/j.bbadis.2013.12.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/17/2013] [Indexed: 12/17/2022]
Abstract
The contribution of the nucleolus to cancer is well established with respect to its traditional role in facilitating ribosome biogenesis and proliferative capacity. More contemporary studies however, infer that nucleoli contribute a much broader role in malignant transformation. Specifically, extra-ribosomal functions of the nucleolus position it as a central integrator of cellular proliferation and stress signaling, and are emerging as important mechanisms for modulating how oncogenes and tumor suppressors operate in normal and malignant cells. The dependence of certain tumor cells to co-opt nucleolar processes to maintain their cancer phenotypes has now clearly been demonstrated by the application of small molecule inhibitors of RNA Polymerase I to block ribosomal DNA transcription and disrupt nucleolar function (Bywater et al., 2012 [1]). These drugs, which selectively kill tumor cells in vivo while sparing normal cells, have now progressed to clinical trials. It is likely that we have only just begun to scratch the surface of the potential of the nucleolus as a new target for cancer therapy, with "suppression of nucleolar stress" representing an emerging "hallmark" of cancer. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Jaclyn E Quin
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer R Devlin
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Donald Cameron
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Kate M Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Richard B Pearson
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Ross D Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
6
|
Mueller F, Stasevich TJ, Mazza D, McNally JG. Quantifying transcription factor kinetics: at work or at play? Crit Rev Biochem Mol Biol 2013; 48:492-514. [PMID: 24025032 DOI: 10.3109/10409238.2013.833891] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transcription factors (TFs) interact dynamically in vivo with chromatin binding sites. Here we summarize and compare the four different techniques that are currently used to measure these kinetics in live cells, namely fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single molecule tracking (SMT) and competition ChIP (CC). We highlight the principles underlying each of these approaches as well as their advantages and disadvantages. A comparison of data from each of these techniques raises an important question: do measured transcription kinetics reflect biologically functional interactions at specific sites (i.e. working TFs) or do they reflect non-specific interactions (i.e. playing TFs)? To help resolve this dilemma we discuss five key unresolved biological questions related to the functionality of transient and prolonged binding events at both specific promoter response elements as well as non-specific sites. In support of functionality, we review data suggesting that TF residence times are tightly regulated, and that this regulation modulates transcriptional output at single genes. We argue that in addition to this site-specific regulatory role, TF residence times also determine the fraction of promoter targets occupied within a cell thereby impacting the functional status of cellular gene networks. Thus, TF residence times are key parameters that could influence transcription in multiple ways.
Collapse
Affiliation(s)
- Florian Mueller
- Institut Pasteur, Computational Imaging and Modeling Unit, CNRS , Paris , France
| | | | | | | |
Collapse
|
7
|
The RB family is required for the self-renewal and survival of human embryonic stem cells. Nat Commun 2013; 3:1244. [PMID: 23212373 DOI: 10.1038/ncomms2254] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 11/05/2012] [Indexed: 12/27/2022] Open
Abstract
The mechanisms ensuring the long-term self-renewal of human embryonic stem cells are still only partly understood, limiting their use in cellular therapies. Here we found that increased activity of the RB cell cycle inhibitor in human embryonic stem cells induces cell cycle arrest, differentiation and cell death. Conversely, inactivation of the entire RB family (RB, p107 and p130) in human embryonic stem cells triggers G2/M arrest and cell death through functional activation of the p53 pathway and the cell cycle inhibitor p21. Differences in E2F target gene activation upon loss of RB family function between human embryonic stem cells, mouse embryonic stem cells and human fibroblasts underscore key differences in the cell cycle regulatory networks of human embryonic stem cells. Finally, loss of RB family function promotes genomic instability in both human and mouse embryonic stem cells, uncoupling cell cycle defects from chromosomal instability. These experiments indicate that a homeostatic level of RB activity is essential for the self-renewal and the survival of human embryonic stem cells.
Collapse
|
8
|
Garfin PM, Min D, Bryson JL, Serwold T, Edris B, Blackburn CC, Richie ER, Weinberg KI, Manley NR, Sage J, Viatour P. Inactivation of the RB family prevents thymus involution and promotes thymic function by direct control of Foxn1 expression. ACTA ACUST UNITED AC 2013; 210:1087-97. [PMID: 23669396 PMCID: PMC3674705 DOI: 10.1084/jem.20121716] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RB family genes control T cell production and promote thymic involution through reducing Foxn1 expression in thymic epithelial cells. Thymic involution during aging is a major cause of decreased production of T cells and reduced immunity. Here we show that inactivation of Rb family genes in young mice prevents thymic involution and results in an enlarged thymus competent for increased production of naive T cells. This phenotype originates from the expansion of functional thymic epithelial cells (TECs). In RB family mutant TECs, increased activity of E2F transcription factors drives increased expression of Foxn1, a central regulator of the thymic epithelium. Increased Foxn1 expression is required for the thymic expansion observed in Rb family mutant mice. Thus, the RB family promotes thymic involution and controls T cell production via a bone marrow–independent mechanism, identifying a novel pathway to target to increase thymic function in patients.
Collapse
Affiliation(s)
- Phillip M Garfin
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pillai S, Szekeres K, Lawrence NJ, Chellappan SP, Blanck G. Regulation of interlocking gene regulatory network subcircuits by a small molecule inhibitor of retinoblastoma protein (RB) phosphorylation: cancer cell expression of HLA-DR. Gene 2012; 512:403-7. [PMID: 23041127 DOI: 10.1016/j.gene.2012.09.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/28/2012] [Accepted: 09/23/2012] [Indexed: 11/17/2022]
Abstract
The induction of the major histocompatibility (MHC), antigen-presenting class II molecules by interferon-gamma, in solid tumor cells, requires the retinoblastoma tumor suppressor protein (Rb). In the absence of Rb, a repressosome blocks the access of positive-acting, promoter binding proteins to the MHC class II promoter. However, a complete molecular linkage between Rb expression and the disassembly of the MHC class II repressosome has been lacking. By treating A549 lung carcinoma cells with a novel small molecule that prevents phosphorylation-mediated, Rb inactivation, we demonstrate that Rb represses the synthesis of an MHC class II repressosome component, YY1. The reduction in YY1 synthesis correlates with the advent of MHC class II inducibility; with loss of YY1 binding to the promoter of the HLA-DRA gene, the canonical human MHC class II gene; and with increased Rb binding to the YY1 promoter. These results support the concept that the Rb gene regulatory network (GRN) subcircuit that regulates cell proliferation is linked to a GRN subcircuit regulating a tumor cell immune function.
Collapse
Affiliation(s)
- Smitha Pillai
- Drug Discovery Program, Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
The cell nucleus is responsible for the storage, expression, propagation, and maintenance of the genetic material it contains. Highly organized macromolecular complexes are required for these processes to occur faithfully in an extremely crowded nuclear environment. In addition to chromosome territories, the nucleus is characterized by the presence of nuclear substructures, such as the nuclear envelope, the nucleolus, and other nuclear bodies. Other smaller structural entities assemble on chromatin in response to required functions including RNA transcription, DNA replication, and DNA repair. Experiments in living cells over the last decade have revealed that many DNA binding proteins have very short residence times on chromatin. These observations have led to a model in which the assembly of nuclear macromolecular complexes is based on the transient binding of their components. While indeed most nuclear proteins are highly dynamic, we found after an extensive survey of the FRAP literature that an important subset of nuclear proteins shows either very slow turnover or complete immobility. These examples provide compelling evidence for the establishment of stable protein complexes in the nucleus over significant fractions of the cell cycle. Stable interactions in the nucleus may, therefore, contribute to the maintenance of genome integrity. Based on our compilation of FRAP data, we propose an extension of the existing model for nuclear organization which now incorporates stable interactions. Our new “induced stability” model suggests that self-organization, self-assembly, and assisted assembly contribute to nuclear architecture and function.
Collapse
|
11
|
FERM domain phosphoinositide binding targets merlin to the membrane and is essential for its growth-suppressive function. Mol Cell Biol 2011; 31:1983-96. [PMID: 21402777 DOI: 10.1128/mcb.00609-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The neurofibromatosis type 2 tumor suppressor protein, merlin, is related to the ERM (ezrin, radixin, and moesin) family of plasma membrane-actin cytoskeleton linkers. For ezrin, phosphatidylinositol 4,5-bisphosphate (PIP(2)) binding to the amino-terminal FERM domain is required for its conformational activation, proper subcellular localization, and function, but less is known about the role of phosphoinositide binding for merlin. Current evidence indicates that association with the membrane is important for merlin to function as a growth regulator; however, the mechanisms by which merlin localizes to the membrane are less clear. Here, we report that merlin binds phosphoinositides, including PIP(2), via a conserved binding motif in its FERM domain. Abolition of FERM domain-mediated phosphoinositide binding of merlin displaces merlin from the membrane and releases it into the cytosol without altering the folding of merlin. Importantly, a merlin protein whose FERM domain cannot bind phosphoinositide is defective in growth suppression. Retargeting the mutant merlin into the membrane using a dual-acylated amino-terminal decapeptide from Fyn is sufficient to restore the growth-suppressive properties to the mutant merlin. Thus, FERM domain-mediated phosphoinositide binding and membrane association are critical for the growth-regulatory function of merlin.
Collapse
|
12
|
Zhou G, Doçi CL, Lingen MW. Identification and functional analysis of NOL7 nuclear and nucleolar localization signals. BMC Cell Biol 2010; 11:74. [PMID: 20875127 PMCID: PMC2957388 DOI: 10.1186/1471-2121-11-74] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 09/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NOL7 is a candidate tumor suppressor that localizes to a chromosomal region 6p23. This locus is frequently lost in a number of malignancies, and consistent loss of NOL7 through loss of heterozygosity and decreased mRNA and protein expression has been observed in tumors and cell lines. Reintroduction of NOL7 into cells resulted in significant suppression of in vivo tumor growth and modulation of the angiogenic phenotype. Further, NOL7 was observed to localize to the nucleus and nucleolus of cells. However, the mechanisms regulating its subcellular localization have not been elucidated. RESULTS An in vitro import assay demonstrated that NOL7 requires cytosolic machinery for active nuclear transport. Using sequence homology and prediction algorithms, four putative nuclear localization signals (NLSs) were identified. NOL7 deletion constructs and cytoplasmic pyruvate kinase (PK) fusion proteins confirmed the functionality of three of these NLSs. Site-directed mutagenesis of PK fusions and full-length NOL7 defined the minimal functional regions within each NLS. Further characterization revealed that NLS2 and NLS3 were critical for both the rate and efficiency of nuclear targeting. In addition, four basic clusters within NLS2 and NLS3 were independently capable of nucleolar targeting. The nucleolar occupancy of NOL7 revealed a complex balance of rapid nucleoplasmic shuttling but low nucleolar mobility, suggesting NOL7 may play functional roles in both compartments. In support, targeting to the nucleolar compartment was dependent on the presence of RNA, as depletion of total RNA or rRNA resulted in a nucleoplasmic shift of NOL7. CONCLUSIONS These results identify the minimal sequences required for the active targeting of NOL7 to the nucleus and nucleolus. Further, this work characterizes the relative contribution of each sequence to NOL7 nuclear and nucleolar dynamics, the subnuclear constituents that participate in this targeting, and suggests a functional role for NOL7 in both compartments. Taken together, these results identify the requisite protein domains for NOL7 localization, the kinetics that drive this targeting, and suggest NOL7 may function in both the nucleus and nucleolus.
Collapse
Affiliation(s)
- Guolin Zhou
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
13
|
Stengel KR, Thangavel C, Solomon DA, Angus SP, Zheng Y, Knudsen ES. Retinoblastoma/p107/p130 pocket proteins: protein dynamics and interactions with target gene promoters. J Biol Chem 2009; 284:19265-71. [PMID: 19279001 DOI: 10.1074/jbc.m808740200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoblastoma (RB) tumor suppressor and its family members, p107 and p130, function by repressing E2F transcription factor activity to limit the expression of genes required for cell cycle progression. Traditionally, it is thought that the RB family proteins repress E2F target gene expression through complexing with E2F at gene promoters. However, whereas chromatin immunoprecipitation experiments have demonstrated p107 and p130 at E2F-responsive promoters, RB chromatin association has not been reliably observed. Here we used green fluorescent protein-tagged proteins to rigorously explore the mechanism of RB-mediated transcriptional repression relative to its p107 and p130 family members. The use of live cell fluorescent imaging demonstrated that RB, p107, and p130 exhibit similar nuclear dynamics. Although these findings suggest a similar engagement with nuclear structures, chromatin immunoprecipitation approaches with multiple independent antibodies failed to detect the association of RB with target gene promoters. However, by employing antibodies directed against green fluorescent protein, we could utilize the same antibody to assess RB, p107, and p130 engagement. This approach demonstrated RB association with target gene promoters in a fashion analogous to p107 and p130. Extension of this technology demonstrated that direct RB phosphorylation disrupts promoter association to regulate transcription. Thus, RB is associated with promoters in a manner similar to p107/p130 and that association is modulated by phosphorylation during cell cycle progression.
Collapse
Affiliation(s)
- Kristy R Stengel
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
14
|
Gunawardena SR, Ruis BL, Meyer JA, Kapoor M, Conklin KF. NOM1 targets protein phosphatase I to the nucleolus. J Biol Chem 2007; 283:398-404. [PMID: 17965019 DOI: 10.1074/jbc.m706708200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Protein phosphatase I (PP1) is an essential eukaryotic serine/threonine phosphatase required for many cellular processes, including cell division, signaling, and metabolism. In mammalian cells there are three major isoforms of the PP1 catalytic subunit (PP1alpha, PP1beta, and PP1gamma) that are over 90% identical. Despite this high degree of identity, the PP1 catalytic subunits show distinct localization patterns in interphase cells; PP1alpha is primarily nuclear and largely excluded from nucleoli, whereas PP1gamma and to a lesser extent PP1beta concentrate in the nucleoli. The subcellular localization and the substrate specificity of PP1 catalytic subunits are determined by their interaction with targeting subunits, most of which bind PP1 through a so-called "RVXF" sequence. Although PP1 targeting subunits have been identified that direct PP1 to a number of subcellular locations and/or substrates, no targeting subunit has been identified that localizes PP1 to the nucleolus. Identification of nucleolar PP1 targeting subunit(s) is important because all three PP1 isoforms are included in the nucleolar proteome, enzymatically active PP1 is present in nucleoli, and PP1gamma is highly concentrated in nucleoli of interphase cells. In this study, we identify NOM1 (nucleolar protein with MIF4G domain 1) as a PP1-interacting protein and further identify the NOM1 RVXF motif required for its binding to PP1. We also define the NOM1 nucleolar localization sequence. Finally, we demonstrate that NOM1 can target PP1 to the nucleolus and show that a specific NOM1 RVXF motif and the NOM1 nucleolar localization sequence are required for this targeting activity. We therefore conclude that NOM1 is a PP1 nucleolar targeting subunit, the first identified in eukaryotic cells.
Collapse
Affiliation(s)
| | - Brian L Ruis
- Department of Genetics, Cell Biology and Development, Minneapolis, Minnesota 55455
| | - Julia A Meyer
- Department of Genetics, Cell Biology and Development, Minneapolis, Minnesota 55455
| | - Meenal Kapoor
- Department of Genetics, Cell Biology and Development, Minneapolis, Minnesota 55455
| | - Kathleen F Conklin
- Department of Genetics, Cell Biology and Development, Minneapolis, Minnesota 55455; Institute of Human Genetics, Minneapolis, Minnesota 55455; Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455.
| |
Collapse
|
15
|
Gunawardena RW, Fox SR, Siddiqui H, Knudsen ES. SWI/SNF activity is required for the repression of deoxyribonucleotide triphosphate metabolic enzymes via the recruitment of mSin3B. J Biol Chem 2007; 282:20116-23. [PMID: 17510060 DOI: 10.1074/jbc.m701406200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The SWI/SNF chromatin remodeling complex plays a critical role in the coordination of gene expression with physiological stimuli. The synthetic enzymes ribonucleotide reductase, dihydrofolate reductase, and thymidylate synthase are coordinately regulated to ensure appropriate deoxyribonucleotide triphosphate levels. Particularly, these enzymes are actively repressed as cells exit the cell cycle through the action of E2F transcription factors and the retinoblastoma tumor suppressor/p107/p130 family of pocket proteins. This process is found to be highly dependent on SWI/SNF activity as cells deficient in BRG-1 and Brm subunits fail to repress these genes with activation of pocket proteins, and this deficit in repression can be complemented, via the ectopic expression of BRG-1. The failure to repress transcription does not involve a blockade in the association of E2F or pocket proteins p107 and p130 with promoter elements. Rather, the deficit in repression is due to a failure to mediate histone deacetylation of ribonucleotide reductase, dihydrofolate reductase, and thymidylate synthase promoters in the absence of SWI/SNF activity. The basis for this is found to be a failure to recruit mSin3B and histone deacetylase proteins to promoters. Thus, the coordinate repression of deoxyribonucleotide triphosphate metabolic enzymes is dependent on the action of SWI/SNF in facilitating the assembly of repressor complexes at the promoter.
Collapse
Affiliation(s)
- Ranjaka W Gunawardena
- Department of Cell and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | |
Collapse
|
16
|
Siddiqui H, Fox SR, Gunawardena RW, Knudsen ES. Loss of RB compromises specific heterochromatin modifications and modulates HP1alpha dynamics. J Cell Physiol 2007; 211:131-7. [PMID: 17245754 DOI: 10.1002/jcp.20913] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterochromatin domains are important for gene silencing, centromere organization, and genomic stability. These genomic domains are marked with specific histone modifications, heterochromatin protein 1 (HP1) binding and DNA methylation. The retinoblastoma tumor suppressor, RB mediates transcriptional repression and functionally interacts with a number of factors that are involved in heterochromatin biology including HP1, Suv39h1, DNMT1, and components of the SWI/SNF chromatin remodeling complex. To analyze the specific influence of RB loss on chromatin modification, mouse adult fibroblasts (MAFs) derived from Rb(loxP/loxP) mice were utilized to acutely knockout RB. In this setting, target genes of RB are deregulated. Additionally, changes in histone modifications were observed. Specifically, histone H4 lysine 20 trimethylation was absent from heterochromatin domains following loss of RB and there were changes in the relative levels of histone modifications between RB-proficient and deficient cells. While RB loss significantly altered the modifications associated with heterochromatin domains, these domains were readily identified and efficiently mediated the recruitment of HP1alpha. Kinetic analyses of HP1alpha within the heterochromatin domains present in RB-deficient cells indicated that loss of RB retarded HP1alpha dynamics, indicating that HP1alpha is paradoxically more tightly associated with heterochromatin in the absence of RB function. Combined, these analyses demonstrate that loss of RB has global effects on chromatin modifications and dynamics.
Collapse
Affiliation(s)
- Hasan Siddiqui
- Department of Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA.
| | | | | | | |
Collapse
|
17
|
Jiao W, Datta J, Lin HM, Dundr M, Rane SG. Nucleocytoplasmic shuttling of the retinoblastoma tumor suppressor protein via Cdk phosphorylation-dependent nuclear export. J Biol Chem 2006; 281:38098-108. [PMID: 17043357 DOI: 10.1074/jbc.m605271200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The retinoblastoma (RB) tumor suppressor protein is a negative regulator of cell proliferation that is functionally inactivated in the majority of human tumors. Elevated Cdk activity via RB pathway mutations is observed in virtually every human cancer. Thus, Cdk inhibitors have tremendous promise as anticancer agents although detailed mechanistic knowledge of their effects on RB function is needed to harness their full potential. Here, we illustrate a novel function for Cdks in regulating the subcellular localization of RB. We present evidence of significant cytoplasmic mislocalization of ordinarily nuclear RB in cells harboring Cdk4 mutations. Our findings uncover a novel mechanism to circumvent RB-mediated growth suppression by altered nucleocytoplasmic trafficking via the Exportin1 pathway. Cytoplasmically mislocalized RB could be efficiently confined to the nucleus by inhibiting the Exportin1 pathway, reducing Cdk activity, or mutating the Cdk-dependent phosphorylation sites in RB that result in loss of RB-Exportin1 association. Thus RB-mediated tumor suppression can be subverted by phosphorylation-dependent enhancement of nuclear export. These results support the notion that tumor cells can modulate the protein transport machinery thereby making the protein transport process a viable therapeutic target.
Collapse
Affiliation(s)
- Wan Jiao
- Cell Cycle and Human Diseases Group, Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
18
|
Snopok B, Yurchenko M, Szekely L, Klein G, Kashuba E. SPR-based immunocapture approach to creating an interfacial sensing architecture: mapping of the MRS18-2 binding site on retinoblastoma protein. Anal Bioanal Chem 2006; 386:2063-73. [PMID: 17086389 DOI: 10.1007/s00216-006-0867-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 08/02/2006] [Accepted: 09/15/2006] [Indexed: 11/30/2022]
Abstract
Biosensor technologies based on optical readout are widely used in protein-protein interaction studies. Here we describe a fast and simple approach to the creation of oriented interfacial architectures for surface plasmon resonance (SPR) transducers, based on conventional biochemical procedures and custom reagents. The proposed protocol permits the oriented affinity-capture of GST fusion proteins by a specific antibody which is bound to protein A, which in turn has been immobilized on the transducer surface (after the surface has been modified by guanidine thiocyanate). The applicability of the method was demonstrated by studying the interaction between retinoblastoma tumor suppressor protein (pRb) and MRS18-2 proteins. The formation of the pRb-MRS18-2 protein complex was examined and the pRb binding site (A-box-spacer-B-box) was mapped. We have also shown that MRS18-2, which was detected as the Epstein-Barr virus-encoded EBNA-6 binding partner using the yeast two-hybrid system, binds to pRb in GST pull-down assays.
Collapse
Affiliation(s)
- Boris Snopok
- V. Lashkaryov Institute of Semiconductor Physics, NASU, Prospekt Nauki 41, 03028 Kiev-28, Ukraine
| | | | | | | | | |
Collapse
|
19
|
Oyama R, Takashima H, Yonezawa M, Doi N, Miyamoto-Sato E, Kinjo M, Yanagawa H. Protein-protein interaction analysis by C-terminally specific fluorescence labeling and fluorescence cross-correlation spectroscopy. Nucleic Acids Res 2006; 34:e102. [PMID: 16914444 PMCID: PMC1904107 DOI: 10.1093/nar/gkl477] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Here, we describe novel puromycin derivatives conjugated with iminobiotin and a fluorescent dye that can be linked covalently to the C-terminus of full-length proteins during cell-free translation. The iminobiotin-labeled proteins can be highly purified by affinity purification with streptavidin beads. We confirmed that the purified fluorescence-labeled proteins are useful for quantitative protein–protein interaction analysis based on fluorescence cross-correlation spectroscopy (FCCS). The apparent dissociation constants of model protein pairs such as proto-oncogenes c-Fos/c-Jun and archetypes of the family of Ca2+-modulated calmodulin/related binding proteins were in accordance with the reported values. Further, detailed analysis of the interactions of the components of polycomb group complex, Bmi1, M33, Ring1A and RYBP, was successfully conducted by means of interaction assay for all combinatorial pairs. The results indicate that FCCS analysis with puromycin-based labeling and purification of proteins is effective and convenient for in vitro protein–protein interaction assay, and the method should contribute to a better understanding of protein functions by using the resource of available nucleotide sequences.
Collapse
Affiliation(s)
| | | | | | | | | | - Masataka Kinjo
- Research Institute for Electronic Science, Hokkaido UniversitySapporo 060-0812, Japan
| | - Hiroshi Yanagawa
- To whom correspondence should be addressed. Tel: +81 45 566 1775; Fax: +81 45 566 1440;
| |
Collapse
|
20
|
Grinstein E, Shan Y, Karawajew L, Snijders PJF, Meijer CJLM, Royer HD, Wernet P. Cell cycle-controlled interaction of nucleolin with the retinoblastoma protein and cancerous cell transformation. J Biol Chem 2006; 281:22223-22235. [PMID: 16698799 DOI: 10.1074/jbc.m513335200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoblastoma protein (Rb) is a multifunctional tumor suppressor, frequently inactivated in certain types of human cancer. Nucleolin is an abundant multifunctional phosphoprotein of proliferating and cancerous cells, recently identified as cell cycle-regulated transcription activator, controlling expression of human papillomavirus type 18 (HPV18) oncogenes in cervical cancer. Here we find that nucleolin is associated with Rb in intact cells in the G1 phase of the cell cycle, and the complex formation is mediated by the growth-inhibitory domain of Rb. Association with Rb inhibits the DNA binding function of nucleolin and in consequence the interaction of nucleolin with the HPV18 enhancer, resulting in Rb-mediated repression of the HPV18 oncogenes. The intracellular distribution of nucleolin in epithelial cells is Rb-dependent, and an altered nucleolin localization in human cancerous tissues results from a loss of Rb. Our findings suggest that deregulated nucleolin activity due to a loss of Rb contributes to tumor development in malignant diseases, thus providing further insights into the molecular network for the Rb-mediated tumor suppression.
Collapse
Affiliation(s)
- Edgar Grinstein
- Institute of Transplantation Diagnostics and Cellular Therapeutics, Heinrich Heine University Medical Center, 40225 Düsseldorf, Germany.
| | - Ying Shan
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Institute of Molecular Pharmacology, 13125 Berlin, Germany
| | - Leonid Karawajew
- Robert-Rossle-Clinic at the HELIOS Klinikum Berlin-Buch, Charite Medical School, 13125 Berlin, Germany
| | - Peter J F Snijders
- Department of Pathology, Vrije Universiteit Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Chris J L M Meijer
- Department of Pathology, Vrije Universiteit Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Hans-Dieter Royer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Center for Advanced European Studies, 53175 Bonn, Germany
| | - Peter Wernet
- Institute of Transplantation Diagnostics and Cellular Therapeutics, Heinrich Heine University Medical Center, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Laricchia-Robbio L, Tamura T, Karpova T, Sprague BL, McNally JG, Ozato K. Partner-regulated interaction of IFN regulatory factor 8 with chromatin visualized in live macrophages. Proc Natl Acad Sci U S A 2005; 102:14368-73. [PMID: 16183743 PMCID: PMC1242294 DOI: 10.1073/pnas.0504014102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IFN regulatory factor (IRF) 8 is a transcription factor that directs macrophage differentiation. By fluorescence recovery after photobleaching, we visualized the movement of IRF8-GFP in differentiating macrophages. Recovery data fitted to mathematical models revealed two binding states for IRF8. The majority of IRF8 was highly mobile and transiently interacted with chromatin, whereas a small fraction of IRF8 bound to chromatin more stably. IRF8 mutants that did not stimulate macrophage differentiation showed a faster recovery, revealing little interaction with chromatin. A macrophage activation signal by IFN-gamma/LPS led to a global slowdown of IRF8 movement, leading to increased chromatin binding. In fibroblasts where IRF8 has no known function, WT IRF8 moved as fast as the mutants, indicating that IRF8 does not interact with chromatin in these cells. However, upon introduction of IRF8 binding partners, PU.1 and/or IRF1, the mobility of IRF8 was markedly reduced, producing a more stably bound component. Together, IRF8-chromatin interaction is dynamic in live macrophages and influenced by partner proteins and immunological stimuli.
Collapse
Affiliation(s)
- Leopoldo Laricchia-Robbio
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | | | | | | | |
Collapse
|
22
|
Barbie DA, Conlan LA, Kennedy BK. Nuclear tumor suppressors in space and time. Trends Cell Biol 2005; 15:378-85. [PMID: 15936946 DOI: 10.1016/j.tcb.2005.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Revised: 04/25/2005] [Accepted: 05/24/2005] [Indexed: 11/21/2022]
Abstract
Numerous studies have identified key binding partners and functional activities of nuclear tumor-suppressor proteins such as the retinoblastoma protein, p53 and BRCA1. Historically, less attention has been given to the subnuclear locations of these proteins. Here, we describe several recent studies that promote the view that regulated association with subcompartments of the nucleus is inherent to tumor-suppressor function.
Collapse
Affiliation(s)
- David A Barbie
- Department of Internal Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
23
|
Benevolenskaya EV, Murray HL, Branton P, Young RA, Kaelin WG. Binding of pRB to the PHD protein RBP2 promotes cellular differentiation. Mol Cell 2005; 18:623-35. [PMID: 15949438 DOI: 10.1016/j.molcel.2005.05.012] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 02/02/2005] [Accepted: 05/16/2005] [Indexed: 12/31/2022]
Abstract
pRB can enforce a G1 block by repressing E2F-responsive promoters. It also coactivates certain non-E2F transcription factors and promotes differentiation. Some pRB variants activate transcription and promote differentiation despite impaired E2F binding and transcriptional repression capabilities. We identified RBP2 in a screen for proteins that bind to such pRB variants. RBP2 resembles other chromatin-associated transcriptional regulators and RBP2 binding tracked with pRB's ability to activate transcription and promote differentiation. RBP2 and pRB colocalize and pRB/RBP2 complexes were detected in chromatin isolated from differentiating cells. RBP2 siRNA phenocopied restoration of pRB function in coactivation and differentiation assays, suggesting that pRB prevents RBP2 from repressing genes required for differentiation. In addition, two bromodomain-containing proteins were identified as RBP2 targets that are transcriptionally activated by pRB in an RBP2-dependent manner. Our results suggest that promotion of differentiation by pRB involves neutralization of free RBP2 and transcriptional activation of RBP2 targets linked to euchromatin maintenance.
Collapse
Affiliation(s)
- Elizaveta V Benevolenskaya
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
24
|
Solomon DA, Cardoso MC, Knudsen ES. Dynamic targeting of the replication machinery to sites of DNA damage. ACTA ACUST UNITED AC 2004; 166:455-63. [PMID: 15314062 PMCID: PMC2172213 DOI: 10.1083/jcb.200312048] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Components of the DNA replication machinery localize into discrete subnuclear foci after DNA damage, where they play requisite functions in repair processes. Here, we find that the replication factors proliferating cell nuclear antigen (PCNA) and RPAp34 dynamically exchange at these repair foci with discrete kinetics, and this behavior is distinct from kinetics during DNA replication. Posttranslational modification is hypothesized to target specific proteins for repair, and we find that accumulation and stability of PCNA at sites of damage requires monoubiquitination. Contrary to the popular notion that phosphorylation on the NH2 terminus of RPAp34 directs the protein for repair, we demonstrate that phosphorylation by DNA-dependent protein kinase enhances RPAp34 turnover at repair foci. Together, these findings support a dynamic exchange model in which multiple repair factors regulated by specific modifications have access to and rapidly turn over at sites of DNA damage.
Collapse
Affiliation(s)
- David A Solomon
- Department of Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, 3125 Eden Ave., Cincinnati, OH 45267, USA.
| | | | | |
Collapse
|
25
|
Gunawardena RW, Siddiqui H, Solomon DA, Mayhew CN, Held J, Angus SP, Knudsen ES. Hierarchical requirement of SWI/SNF in retinoblastoma tumor suppressor-mediated repression of Plk1. J Biol Chem 2004; 279:29278-85. [PMID: 15105433 DOI: 10.1074/jbc.m400395200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plk1 (Polo-like kinase 1) is a critical regulator of cell cycle progression that harbors oncogenic activity and exhibits aberrant expression in multiple tumors. However, the mechanism through which Plk1 expression is regulated has not been extensively studied. Here we demonstrate that Plk1 is a target of the retinoblastoma tumor suppressor (RB) pathway. Activation of RB and related pocket proteins p107/p130 mediate attenuation of Plk1. Conversely, RB loss deregulates the control of Plk1 expression. RB pathway activation resulted in the repression of Plk1 promoter activity, and this action was dependent on the SWI/SNF chromatin remodeling complex. Although SWI/SNF subunits are lost during tumorigenesis and cooperate with RB for transcriptional repression, the mechanism through which SWI/SNF impinges on RB action is unresolved. Therefore, we delineated the requirement of SWI/SNF for three critical facets of Plk1 promoter regulation: transcription factor binding, corepressor binding, and histone modification. We find that E2F4 and pocket protein association with the Plk1 promoter is independent of SWI/SNF. However, these analyses revealed that SWI/SNF is required for histone deacetylation of the Plk1 promoter. The importance of SWI/SNF-dependent histone deacetylation of the Plk1 promoter was evident, because blockade of this event restored Plk1 expression in the presence of active RB. In summary, these data demonstrate that Plk1 is a target of the RB pathway. Moreover, these findings demonstrate a hierarchical role for SWI/SNF in the control of promoter activity through histone modification.
Collapse
Affiliation(s)
- Ranjaka W Gunawardena
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Angus SP, Mayhew CN, Solomon DA, Braden WA, Markey MP, Okuno Y, Cardoso MC, Gilbert DM, Knudsen ES. RB reversibly inhibits DNA replication via two temporally distinct mechanisms. Mol Cell Biol 2004; 24:5404-20. [PMID: 15169903 PMCID: PMC419877 DOI: 10.1128/mcb.24.12.5404-5420.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Revised: 11/25/2003] [Accepted: 03/22/2004] [Indexed: 01/12/2023] Open
Abstract
The retinoblastoma (RB) tumor suppressor is a critical negative regulator of cellular proliferation. Repression of E2F-dependent transcription has been implicated as the mechanism through which RB inhibits cell cycle progression. However, recent data have suggested that the direct interaction of RB with replication factors or sites of DNA synthesis may contribute to its ability to inhibit S phase. Here we show that RB does not exert a cis-acting effect on DNA replication. Furthermore, the localization of RB was distinct from replication foci in proliferating cells. While RB activation strongly attenuated the RNA levels of multiple replication factors, their protein expression was not diminished coincident with cell cycle arrest. During the first 24 h of RB activation, components of the prereplication complex, initiation factors, and the clamp loader complex (replication factor C) remained tethered to chromatin. In contrast, the association of PCNA and downstream components of the processive replication machinery was specifically disrupted. This signaling from RB occurred in a manner dependent on E2F-mediated transcriptional repression. Following long-term activation of RB, we observed the attenuation of multiple replication factors, the complete cessation of DNA synthesis, and impaired replicative capacity in vitro. Therefore, functional distinctions exist between the "chronic" RB-mediated arrest state and the "acute" arrest state. Strikingly, attenuation of RB activity reversed both acute and chronic replication blocks. Thus, continued RB action is required for the maintenance of two kinetically and functionally distinct modes of replication inhibition.
Collapse
Affiliation(s)
- Steven P Angus
- Department of Cell Biology, University of Cincinnati College of Medicine, OH 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|