1
|
Tomar R, Ghodke PP, Patra A, Smyth E, Pontarelli A, Copp W, Guengerich FP, Chaput JC, Wilds CJ, Stone MP, Egli M. DNA Replication across α-l-(3'-2')-Threofuranosyl Nucleotides Mediated by Human DNA Polymerase η. Biochemistry 2024; 63:2425-2439. [PMID: 39259676 PMCID: PMC11447838 DOI: 10.1021/acs.biochem.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
α-l-(3'-2')-Threofuranosyl nucleic acid (TNA) pairs with itself, cross-pairs with DNA and RNA, and shows promise as a tool in synthetic genetics, diagnostics, and oligonucleotide therapeutics. We studied in vitro primer insertion and extension reactions catalyzed by human trans-lesion synthesis (TLS) DNA polymerase η (hPol η) opposite a TNA-modified template strand without and in combination with O4-alkyl thymine lesions. Across TNA-T (tT), hPol η inserted mostly dAMP and dGMP, dTMP and dCMP with lower efficiencies, followed by extension of the primer to a full-length product. hPol η inserted dAMP opposite O4-methyl and -ethyl analogs of tT, albeit with reduced efficiencies relative to tT. Crystal structures of ternary hPol η complexes with template tT and O4-methyl tT at the insertion and extension stages demonstrated that the shorter backbone and different connectivity of TNA compared to DNA (3' → 2' versus 5' → 3', respectively) result in local differences in sugar orientations, adjacent phosphate spacings, and directions of glycosidic bonds. The 3'-OH of the primer's terminal thymine was positioned at 3.4 Å on average from the α-phosphate of the incoming dNTP, consistent with insertion opposite and extension past the TNA residue by hPol η. Conversely, the crystal structure of a ternary hPol η·DNA·tTTP complex revealed that the primer's terminal 3'-OH was too distant from the tTTP α-phosphate, consistent with the inability of the polymerase to incorporate TNA. Overall, our study provides a better understanding of the tolerance of a TLS DNA polymerase vis-à-vis unnatural nucleotides in the template and as the incoming nucleoside triphosphate.
Collapse
Affiliation(s)
- Rachana Tomar
- Department
of Chemistry, Vanderbilt Ingram Cancer Center, and Vanderbilt Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Pratibha P. Ghodke
- Department
of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center,
and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Amritraj Patra
- Department
of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center,
and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Elizabeth Smyth
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| | - Alexander Pontarelli
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| | - William Copp
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| | - F. Peter Guengerich
- Department
of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center,
and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - John C. Chaput
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Christopher J. Wilds
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| | - Michael P. Stone
- Department
of Chemistry, Vanderbilt Ingram Cancer Center, and Vanderbilt Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Martin Egli
- Department
of Biochemistry, School of Medicine, Vanderbilt Ingram Cancer Center,
and Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
Tsegay PS, Hernandez D, Brache C, Chatgilialoglu C, Krokidis MG, Chapagain P, Liu Y. Incorporation of 5',8-cyclo-2'deoxyadenosines by DNA repair polymerases via base excision repair. DNA Repair (Amst) 2022; 109:103258. [PMID: 34871863 PMCID: PMC9884144 DOI: 10.1016/j.dnarep.2021.103258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 01/31/2023]
Abstract
5',8-cyclo-2-deoxy nucleosides (cdPus) are the smallest tandem purine lesions including 5',8-cyclo-2'-deoxyadenosine (cdA) and 5',8-cyclo-2'-deoxyguanosine (cdG). They can inhibit DNA and RNA polymerases causing mutations, DNA strand breaks, and termination of DNA replication and gene transcription. cdPus can be removed by nucleotide excision repair with low efficiency allowing them to accumulate in the genome. Recent studies suggest that cdPus can be induced in damaged nucleotide pools and incorporated into the genome by DNA polymerases. However, it remains unknown if and how DNA polymerases can incorporate cdPus. In this study, we examined the incorporation of cdAs by human DNA repair polymerases, DNA polymerases β (pol β), and pol η during base excision repair. We then determined the efficiency of cdA incorporation by the polymerases using steady-state kinetics. We found that pol β and pol η incorporated cdAs opposite dT and dC with low efficiency, and incorporated cdAs were readily extended and ligated into duplex DNA. Using molecular docking analysis, we found that the 5',8-covalent bond in cdA disrupted its hydrogen bonding with a template base suggesting that the phosphodiester bond between the 3'-terminus nucleotide and the α-phosphate of cdATP were generated in the absence of hydrogen bonding. The enzyme kinetics analysis further suggests that pol β and pol η increased their substrate binding to facilitate the enzyme catalysis for cdA incorporation. Our study reveals unique mechanisms underlying the accumulation of cdPu lesions in the genome resulting from nucleotide incorporation by repair DNA polymerases.
Collapse
Affiliation(s)
- Pawlos S. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Daniela Hernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Christopher Brache
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | | | - Marios G. Krokidis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. “Demokritos,” 15341, Agia Paraskevi, Athens, Greece
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL, USA,Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA,Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA,Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA,Correspondence:
| |
Collapse
|
3
|
Li M, Larsen L, Hedglin M. Rad6/Rad18 Competes with DNA Polymerases η and δ for PCNA Encircling DNA. Biochemistry 2020; 59:407-416. [PMID: 31887036 DOI: 10.1021/acs.biochem.9b00938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Translesion DNA synthesis (TLS) bypasses DNA lesions encountered during S-phase and is critical for cell survival after exposure to DNA-damaging agents. In humans, Rad6/Rad18 attaches single ubiquitin moieties (i.e., monoubiquitination) to proliferating cell nuclear antigen (PCNA) sliding clamps encircling primer/template (P/T) junctions that are stalled at DNA lesions. TLS occurs via PCNA monoubiquitination-independent and -dependent pathways, and both contribute to cell survival. The interaction of Rad6/Rad18 with PCNA is paramount to PCNA monoubiquitination and remains poorly defined. In particular, the location of the Rad6/Rad18 binding site on PCNA is unknown. Many PCNA-binding proteins, particularly DNA polymerases (pols), converge on PCNA encircling stalled P/T junctions in human cells, and all interact in a similar manner with the universal binding sites on PCNA. We reasoned the following: if Rad6/Rad18 utilizes the universal binding sites (or nearby sites), then PCNA monoubiquitination may be suppressed by pols involved in TLS. Results from quantitative studies reveal that (1) a Y-family pol (pol η) and a B-family pol (pol δ) critical to TLS each inhibit the transfer of ubiquitin from Rad6/Rad18 to PCNA and that (2) the observed inhibitions are dependent on the interaction of these pols with PCNA encircling DNA. These studies suggest that Rad6/Rad18 utilizes the universal PCNA-binding sites or nearby sites and, hence, competes for PCNA encircling DNA with pols η and δ and possibly other PCNA-binding proteins involved in TLS. These findings provide valuable insight into the nature of the interaction between Rad6/Rad18 and PCNA and have important implications for the division of human TLS pathways.
Collapse
Affiliation(s)
- Mingjie Li
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Leah Larsen
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Mark Hedglin
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
4
|
Structural insights into mutagenicity of anticancer nucleoside analog cytarabine during replication by DNA polymerase η. Sci Rep 2019; 9:16400. [PMID: 31704958 PMCID: PMC6841716 DOI: 10.1038/s41598-019-52703-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023] Open
Abstract
Cytarabine (AraC) is the mainstay chemotherapy for acute myeloid leukemia (AML). Whereas initial treatment with AraC is usually successful, most AML patients tend to relapse, and AraC treatment-induced mutagenesis may contribute to the development of chemo-resistant leukemic clones. We show here that whereas the high-fidelity replicative polymerase Polδ is blocked in the replication of AraC, the lower-fidelity translesion DNA synthesis (TLS) polymerase Polη is proficient, inserting both correct and incorrect nucleotides opposite a template AraC base. Furthermore, we present high-resolution crystal structures of human Polη with a template AraC residue positioned opposite correct (G) and incorrect (A) incoming deoxynucleotides. We show that Polη can accommodate local perturbation caused by the AraC via specific hydrogen bonding and maintain a reaction-ready active site alignment for insertion of both correct and incorrect incoming nucleotides. Taken together, the structures provide a novel basis for the ability of Polη to promote AraC induced mutagenesis in relapsed AML patients.
Collapse
|
5
|
Yoon JH, Roy Choudhury J, Prakash L, Prakash S. Translesion synthesis DNA polymerases η, ι, and ν promote mutagenic replication through the anticancer nucleoside cytarabine. J Biol Chem 2019; 294:19048-19054. [PMID: 31685662 DOI: 10.1074/jbc.ra119.011381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/30/2019] [Indexed: 11/06/2022] Open
Abstract
Cytarabine (AraC) is the mainstay for the treatment of acute myeloid leukemia. Although complete remission is observed in a large proportion of patients, relapse occurs in almost all the cases. The chemotherapeutic action of AraC derives from its ability to inhibit DNA synthesis by the replicative polymerases (Pols); the replicative Pols can insert AraCTP at the 3' terminus of the nascent DNA strand, but they are blocked at extending synthesis from AraC. By extending synthesis from the 3'-terminal AraC and by replicating through AraC that becomes incorporated into DNA, translesion synthesis (TLS) DNA Pols could reduce the effectiveness of AraC in chemotherapy. Here we identify the TLS Pols required for replicating through the AraC templating residue and determine their error-proneness. We provide evidence that TLS makes a consequential contribution to the replication of AraC-damaged DNA; that TLS through AraC is conducted by three different pathways dependent upon Polη, Polι, and Polν, respectively; and that TLS by all these Pols incurs considerable mutagenesis. The prominent role of TLS in promoting proficient and mutagenic replication through AraC suggests that TLS inhibition in acute myeloid leukemia patients would increase the effectiveness of AraC chemotherapy; and by reducing mutation formation, TLS inhibition may dampen the emergence of drug-resistant tumors and thereby the high incidence of relapse in AraC-treated patients.
Collapse
Affiliation(s)
- Jung-Hoon Yoon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| | - Jayati Roy Choudhury
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| |
Collapse
|
6
|
Wilson KA, Fernandes PA, Ramos MJ, Wetmore SD. Exploring the Identity of the General Base for a DNA Polymerase Catalyzed Reaction Using QM/MM: The Case Study of Human Translesion Synthesis Polymerase η. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Katie A. Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4 Canada
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4 Canada
| |
Collapse
|
7
|
Peddu C, Zhang S, Zhao H, Wong A, Lee EYC, Lee MYWT, Zhang Z. Phosphorylation Alters the Properties of Pol η: Implications for Translesion Synthesis. iScience 2018; 6:52-67. [PMID: 30240625 PMCID: PMC6137289 DOI: 10.1016/j.isci.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/26/2018] [Accepted: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
There are significant ambiguities regarding how DNA polymerase η is recruited to DNA lesion sites in stressed cells while avoiding normal replication forks in non-stressed cells. Even less is known about the mechanisms responsible for Pol η-induced mutations in cancer genomes. We show that there are two safeguards to prevent Pol η from adventitious participation in normal DNA replication. These include sequestration by a partner protein and low basal activity. Upon cellular UV irradiation, phosphorylation enables Pol η to be released from sequestration by PDIP38 and activates its polymerase function through increased affinity toward monoubiquitinated proliferating cell nuclear antigen (Ub-PCNA). Moreover, the high-affinity binding of phosphorylated Pol η to Ub-PCNA limits its subsequent displacement by Pol δ. Consequently, activated Pol η replicates DNA beyond the lesion site and potentially introduces clusters of mutations due to its low fidelity. This mechanism could account for the prevalence of Pol η signatures in cancer genome.
Collapse
Affiliation(s)
- Chandana Peddu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Hong Zhao
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | - Agnes Wong
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
8
|
Stevens DR, Hammes-Schiffer S. Exploring the Role of the Third Active Site Metal Ion in DNA Polymerase η with QM/MM Free Energy Simulations. J Am Chem Soc 2018; 140:8965-8969. [PMID: 29932331 DOI: 10.1021/jacs.8b05177] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enzyme human DNA polymerase η (Pol η) is critical for bypassing lesions during DNA replication. In addition to the two Mg2+ ions aligning the active site, experiments suggest that a third Mg2+ ion could play an essential catalytic role. Herein the role of this third metal ion is investigated with quantum mechanical/molecular mechanical (QM/MM) free energy simulations of the phosphoryl transfer reaction and a proposed self-activating proton transfer from the incoming nucleotide to the pyrophosphate leaving group. The simulations with only two metal ions in the active site support a sequential mechanism, with phosphoryl transfer followed by relatively fast proton transfer. The simulations with three metal ions in the active site suggest that the third metal ion may play a catalytic role through electrostatic interactions with the leaving group. These electrostatic interactions stabilize the product, making the phosphoryl transfer reaction more thermodynamically favorable with a lower free energy barrier relative to the activated state corresponding to the deprotonated 3'OH nucleophile, and also inhibit the subsequent proton transfer. The possibility that Mg2+-bound hydroxide acts as the base deprotonating the 3'OH nucleophile is also explored.
Collapse
Affiliation(s)
- David R Stevens
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| |
Collapse
|
9
|
Raper AT, Reed AJ, Suo Z. Kinetic Mechanism of DNA Polymerases: Contributions of Conformational Dynamics and a Third Divalent Metal Ion. Chem Rev 2018; 118:6000-6025. [DOI: 10.1021/acs.chemrev.7b00685] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Austin T. Raper
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew J. Reed
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Hedglin M, Pandey B, Benkovic SJ. Characterization of human translesion DNA synthesis across a UV-induced DNA lesion. eLife 2016; 5. [PMID: 27770570 PMCID: PMC5123862 DOI: 10.7554/elife.19788] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
Translesion DNA synthesis (TLS) during S-phase uses specialized TLS DNA polymerases to replicate a DNA lesion, allowing stringent DNA synthesis to resume beyond the offending damage. Human TLS involves the conjugation of ubiquitin to PCNA clamps encircling damaged DNA and the role of this post-translational modification is under scrutiny. A widely-accepted model purports that ubiquitinated PCNA recruits TLS polymerases such as pol η to sites of DNA damage where they may also displace a blocked replicative polymerase. We provide extensive quantitative evidence that the binding of pol η to PCNA and the ensuing TLS are both independent of PCNA ubiquitination. Rather, the unique properties of pols η and δ are attuned to promote an efficient and passive exchange of polymerases during TLS on the lagging strand. DOI:http://dx.doi.org/10.7554/eLife.19788.001
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, United States
| | - Binod Pandey
- Department of Chemistry, The Pennsylvania State University, University Park, United States
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, United States
| |
Collapse
|
11
|
Why Cockayne syndrome patients do not get cancer despite their DNA repair deficiency. Proc Natl Acad Sci U S A 2016; 113:10151-6. [PMID: 27543334 DOI: 10.1073/pnas.1610020113] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cockayne syndrome (CS) and xeroderma pigmentosum (XP) are human photosensitive diseases with mutations in the nucleotide excision repair (NER) pathway, which repairs DNA damage from UV exposure. CS is mutated in the transcription-coupled repair (TCR) branch of the NER pathway and exhibits developmental and neurological pathologies. The XP-C group of XP patients have mutations in the global genome repair (GGR) branch of the NER pathway and have a very high incidence of UV-induced skin cancer. Cultured cells from both diseases have similar sensitivity to UV-induced cytotoxicity, but CS patients have never been reported to develop cancer, although they often exhibit photosensitivity. Because cancers are associated with increased mutations, especially when initiated by DNA damage, we examined UV-induced mutagenesis in both XP-C and CS cells, using duplex sequencing for high-sensitivity mutation detection. Duplex sequencing detects rare mutagenic events, independent of selection and in multiple loci, enabling examination of all mutations rather than just those that confer major changes to a specific protein. We found telomerase-positive normal and CS-B cells had increased background mutation frequencies that decreased upon irradiation, purging the population of subclonal variants. Primary XP-C cells had increased UV-induced mutation frequencies compared with normal cells, consistent with their GGR deficiency. CS cells, in contrast, had normal levels of mutagenesis despite their TCR deficiency. The lack of elevated UV-induced mutagenesis in CS cells reveals that their TCR deficiency, although increasing cytotoxicity, is not mutagenic. Therefore the absence of cancer in CS patients results from the absence of UV-induced mutagenesis rather than from enhanced lethality.
Collapse
|
12
|
Kinetic analysis of bypass of O(6)- methylguanine by the catalytic core of yeast DNA polymerase eta. Arch Biochem Biophys 2016; 596:99-107. [PMID: 26976707 DOI: 10.1016/j.abb.2016.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
Abstract
Alkylating agents can form O(6)-methylguansine (O(6)-MeG). To study the intrinsic kinetic behaviors of bypassing O(6)-MeG, we used the catalytic core of yeast DNA polymerase η (Pol ηcore, residues 1-513), instead of the full-length Pol η, to study their elementary steps, eliminating the effects of the C-terminal C2H2 motif on dNTP incorporation. The misincorporation frequencies were 10(-4) for G and 0.055-0.446 for O(6)-MeG. O(6)-MeG does not affect the extension efficiency. Pol ηcore showed no fast burst phase for any incorporation opposite G or O(6)-MeG. Primer extension was greatly blocked by O(6)-MeG and about 67% dTTP, 31% dCTP and 2% dATP were incorporated opposite O(6)-MeG. This study provides further understanding of the mutation mechanism of alkylated lesion for yeast DNA polymerase η.
Collapse
|
13
|
Kinetic analysis of bypass of 7,8-dihydro-8-oxo-2'-deoxyguanosine by the catalytic core of yeast DNA polymerase η. Biochimie 2015; 121:161-9. [PMID: 26700143 DOI: 10.1016/j.biochi.2015.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/07/2015] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species damage DNA bases to produce 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG), which results in G:C to T:A transversions. To better understand mechanisms of dNTP incorporation opposite 8-oxoG, we performed pre-steady-state kinetic analysis of nucleotide incorporation using the catalytic core of yeast DNA polymerase η (Pol ηcore, residues 1-513) instead of full-length Pol η, eliminating potential effects of the C-terminal C2H2 sequence motif on dNTP incorporation. Kinetic analysis showed that Pol ηcore preferred to incorporate dCTP opposite 8-oxoG. A lack of a pre-steady-state kinetic burst for Pol ηcore suggested that dCTP incorporation is slower than the dissociation of the polymerase from DNA. The extension products beyond the 8-oxoG were determined by LC-MS/MS and showed that 57% of the products corresponded to the correct incorporation (C) and 43% corresponded to dATP misincorporation. More dATP was incorporated opposite 8-oxoG with a mixture of dNTPs than predicted using only a single dNTP. The kinetic analysis of 8-oxoG bypass by yeast DNA Pol ηcore provides further understanding of the mechanism of mutation at this oxidation lesion with yeast DNA polymerase η.
Collapse
|
14
|
Yang J, Wang R, Liu B, Xue Q, Zhong M, Zeng H, Zhang H. Kinetic analysis of bypass of abasic site by the catalytic core of yeast DNA polymerase eta. Mutat Res 2015. [PMID: 26203649 DOI: 10.1016/j.mrfmmm.2015.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abasic sites (Apurinic/apyrimidinic (AP) sites), produced ∼ 50,000 times/cell/day, are very blocking and miscoding. To better understand miscoding mechanisms of abasic site for yeast DNA polymerase η, pre-steady-state nucleotide incorporation and LC-MS/MS sequence analysis of extension product were studied using pol η(core) (catalytic core, residues 1-513), which can completely eliminate the potential effects of the C-terminal C2H2 motif of pol η on dNTP incorporation. The extension beyond the abasic site was very inefficient. Compared with incorporation of dCTP opposite G, the incorporation efficiencies opposite abasic site were greatly reduced according to the order of dGTP > dATP >> dCTP and dTTP. Pol η(core) showed no fast burst phase for any incorporation opposite G or abasic site, suggesting that the catalytic step is not faster than the dissociation of polymerase from DNA. LC-MS/MS sequence analysis of extension products showed that 53% products were dGTP misincorporation, 33% were dATP and 14% were -1 frameshift, indicating that Pol η(core) bypasses abasic site by a combined G-rule, A-rule and -1 frameshift deletions. Compared with full-length pol η, pol η(core) relatively reduced the efficiency of incorporation of dCTP opposite G, increased the efficiencies of dNTP incorporation opposite abasic site and the exclusive incorporation of dGTP opposite abasic site, but inhibited the extension beyond abasic site, and increased the priority in extension of A: abasic site relative to G: abasic site. This study provides further understanding in the mutation mechanism of abasic sites for yeast DNA polymerase η.
Collapse
Affiliation(s)
- Juntang Yang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Rong Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Binyan Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Qizhen Xue
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Mengyu Zhong
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Hao Zeng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Huidong Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China.
| |
Collapse
|
15
|
Gowda ASP, Moldovan GL, Spratt TE. Human DNA Polymerase ν Catalyzes Correct and Incorrect DNA Synthesis with High Catalytic Efficiency. J Biol Chem 2015; 290:16292-303. [PMID: 25963146 DOI: 10.1074/jbc.m115.653287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 01/04/2023] Open
Abstract
DNA polymerase ν (pol ν) is a low fidelity A-family polymerase with a putative role in interstrand cross-link repair and homologous recombination. We carried out pre-steady-state kinetic analysis to elucidate the kinetic mechanism of this enzyme. We found that the mechanism consists of seven steps, similar that of other A-family polymerases. pol ν binds to DNA with a Kd for DNA of 9.2 nm, with an off-rate constant of 0.013 s(-1)and an on-rate constant of 14 μm(-1) s(-1). dNTP binding is rapid with Kd values of 20 and 476 μm for the correct and incorrect dNTP, respectively. Pyrophosphorylation occurs with a Kd value for PPi of 3.7 mm and a maximal rate constant of 11 s(-1). Pre-steady-state kinetics, examination of the elemental effect using dNTPαS, and pulse-chase experiments indicate that a rapid phosphodiester bond formation step is flanked by slow conformational changes for both correct and incorrect base pair formation. These experiments in combination with computer simulations indicate that the first conformational change occurs with rate constants of 75 and 20 s(-1); rapid phosphodiester bond formation occurs with a Keq of 2.2 and 1.7, and the second conformational change occurs with rate constants of 2.1 and 0.5 s(-1), for correct and incorrect base pair formation, respectively. The presence of a mispair does not induce the polymerase to adopt a low catalytic conformation. pol ν catalyzes both correct and mispair formation with high catalytic efficiency.
Collapse
Affiliation(s)
- A S Prakasha Gowda
- From the Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - George-Lucian Moldovan
- From the Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Thomas E Spratt
- From the Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
16
|
Nevin P, Lu X, Zhang K, Engen JR, Beuning PJ. Noncognate DNA damage prevents the formation of the active conformation of the Y-family DNA polymerases DinB and DNA polymerase κ. FEBS J 2015; 282:2646-60. [PMID: 25899385 DOI: 10.1111/febs.13304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/24/2023]
Abstract
Y-family DNA polymerases are specialized to copy damaged DNA, and are associated with increased mutagenesis, owing to their low fidelity. It is believed that the mechanism of nucleotide selection by Y-family DNA polymerases involves conformational changes preceding nucleotidyl transfer, but there is limited experimental evidence for such structural changes. In particular, nucleotide-induced conformational changes in bacterial or eukaryotic Y-family DNA polymerases have, to date, not been extensively characterized. Using hydrogen-deuterium exchange mass spectrometry, we demonstrate here that the Escherichia coli Y-family DNA polymerase DinB and its human ortholog DNA polymerase κ undergo a conserved nucleotide-induced conformational change in the presence of undamaged DNA and the correct incoming nucleotide. Notably, this holds true for damaged DNA containing N(2) -furfuryl-deoxyguanosine, which is efficiently copied by these two polymerases, but not for damaged DNA containing the major groove modification O(6) -methyl-deoxyguanosine, which is a poor substrate. Our observations suggest that DinB and DNA polymerase κ utilize a common mechanism for nucleotide selection involving a conserved prechemical conformational transition promoted by the correct nucleotide and only preferred DNA substrates.
Collapse
Affiliation(s)
- Philip Nevin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Xueguang Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
17
|
Maxwell BA, Suo Z. Recent insight into the kinetic mechanisms and conformational dynamics of Y-Family DNA polymerases. Biochemistry 2014; 53:2804-14. [PMID: 24716482 PMCID: PMC4018064 DOI: 10.1021/bi5000405] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
The
kinetic mechanisms by which DNA polymerases catalyze DNA replication
and repair have long been areas of active research. Recently discovered
Y-family DNA polymerases catalyze the bypass of damaged DNA bases
that would otherwise block replicative DNA polymerases and stall replication
forks. Unlike DNA polymerases from the five other families, the Y-family
DNA polymerases have flexible, solvent-accessible active sites that
are able to tolerate various types of damaged template bases and allow
for efficient lesion bypass. Their promiscuous active sites, however,
also lead to fidelities that are much lower than those observed for
other DNA polymerases and give rise to interesting mechanistic properties.
Additionally, the Y-family DNA polymerases have several other unique
structural features and undergo a set of conformational changes during
substrate binding and catalysis different from those observed for
replicative DNA polymerases. In recent years, pre-steady-state kinetic
methods have been extensively employed to reveal a wealth of information
about the catalytic properties of these fascinating noncanonical DNA
polymerases. Here, we review many of the recent findings on the kinetic
mechanisms of DNA polymerization with undamaged and damaged DNA substrates
by the Y-family DNA polymerases, and the conformational dynamics employed
by these error-prone enzymes during catalysis.
Collapse
Affiliation(s)
- Brian A Maxwell
- Ohio State Biophysics Program and ‡Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
18
|
Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity. Proc Natl Acad Sci U S A 2013; 110:16856-61. [PMID: 24082115 DOI: 10.1073/pnas.1304355110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation. Moreover, MK2 activity was required for damage response, accumulation of ssDNA, and decreased survival when cells were treated with the nucleoside analogue gemcitabine or when the checkpoint kinase Chk1 was antagonized. By using DNA fiber assays, we found that MK2 inhibition or knockdown rescued DNA replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling.
Collapse
|
19
|
Maddukuri L, Ketkar A, Eddy S, Zafar MK, Griffin WC, Eoff RL. Enhancement of human DNA polymerase η activity and fidelity is dependent upon a bipartite interaction with the Werner syndrome protein. J Biol Chem 2012; 287:42312-23. [PMID: 23045531 DOI: 10.1074/jbc.m112.410332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have investigated the interaction between human DNA polymerase η (hpol η) and the Werner syndrome protein (WRN). Functional assays revealed that the WRN exonuclease and RecQ C-terminal (RQC) domains are necessary for full stimulation of hpol η-catalyzed formation of correct base pairs. We find that WRN does not stimulate hpol η-catalyzed formation of mispairs. Moreover, the exonuclease activity of WRN prevents stable mispair formation by hpol η. These results are consistent with a proofreading activity for WRN during single-nucleotide additions. ATP hydrolysis by WRN appears to attenuate stimulation of hpol η. Pre-steady-state kinetic results show that k(pol) is increased 4-fold by WRN. Finally, pulldown assays reveal a bipartite physical interaction between hpol η and WRN that is mediated by the exonuclease and RQC domains. Taken together, these results are consistent with alteration of the rate-limiting step in polymerase catalysis by direct protein-protein interactions between WRN and hpol η. In summary, WRN improves the efficiency and fidelity of hpol η to promote more effective replication of DNA.
Collapse
Affiliation(s)
- Leena Maddukuri
- Department of Biochemistry and Molecular Biology, The University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, USA
| | | | | | | | | | | |
Collapse
|
20
|
Brown JA, Pack LR, Sherrer SM, Kshetry AK, Newmister SA, Fowler JD, Taylor JS, Suo Z. Identification of critical residues for the tight binding of both correct and incorrect nucleotides to human DNA polymerase λ. J Mol Biol 2010; 403:505-15. [PMID: 20851705 DOI: 10.1016/j.jmb.2010.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/31/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
DNA polymerase λ (Pol λ) is a novel X-family DNA polymerase that shares 34% sequence identity with DNA polymerase β. Pre-steady-state kinetic studies have shown that the Pol λ-DNA complex binds both correct and incorrect nucleotides 130-fold tighter, on average, than the DNA polymerase β-DNA complex, although the base substitution fidelity of both polymerases is 10(-)(4) to 10(-5). To better understand Pol λ's tight nucleotide binding affinity, we created single-substitution and double-substitution mutants of Pol λ to disrupt the interactions between active-site residues and an incoming nucleotide or a template base. Single-turnover kinetic assays showed that Pol λ binds to an incoming nucleotide via cooperative interactions with active-site residues (R386, R420, K422, Y505, F506, A510, and R514). Disrupting protein interactions with an incoming correct or incorrect nucleotide impacted binding to each of the common structural moieties in the following order: triphosphate≫base>ribose. In addition, the loss of Watson-Crick hydrogen bonding between the nucleotide and the template base led to a moderate increase in K(d). The fidelity of Pol λ was maintained predominantly by a single residue, R517, which has minor groove interactions with the DNA template.
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Raychaudhury P, Basu AK. Replication Past the γ-Radiation-Induced Guanine-Thymine Cross-Link G[8,5-Me]T by Human and Yeast DNA Polymerase η. J Nucleic Acids 2010; 2010. [PMID: 20936176 PMCID: PMC2946590 DOI: 10.4061/2010/101495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/02/2010] [Indexed: 12/15/2022] Open
Abstract
γ-Radiation-induced intrastrand guanine-thymine cross-link, G[8,5-Me]T, hinders replication in vitro and is mutagenic in mammalian cells. Herein we report in vitro translesion synthesis of G[8,5-Me]T by human and yeast DNA polymerase η (hPol η and yPol η). dAMP misincorporation opposite the cross-linked G by yPol η was preferred over correct incorporation of dCMP, but further extension was 100-fold less efficient for G∗:A compared to G∗:C. For hPol η, both incorporation and extension were more efficient with the correct nucleotides. To evaluate translesion synthesis in the presence of all four dNTPs, we have developed a plasmid-based DNA sequencing assay, which showed that yPol η was more error-prone. Mutational frequencies of yPol η and hPol η were 36% and 14%, respectively. Targeted G → T was the dominant mutation by both DNA polymerases. But yPol η induced targeted G → T in 23% frequency relative to 4% by hPol η. For yPol η, targeted G → T and G → C constituted 83% of the mutations. By contrast, with hPol η, semi-targeted mutations (7.2%), that is, mutations at bases near the lesion, occurred at equal frequency as the targeted mutations (6.9%). The kind of mutations detected with hPol η showed significant similarities with the mutational spectrum of G[8,5-Me]T in human embryonic kidney cells.
Collapse
|
22
|
Dieckman LM, Johnson RE, Prakash S, Washington MT. Pre-steady state kinetic studies of the fidelity of nucleotide incorporation by yeast DNA polymerase delta. Biochemistry 2010; 49:7344-50. [PMID: 20666462 DOI: 10.1021/bi100556m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eukaryotic DNA polymerase delta (pol delta) is a member of the B family of polymerases and synthesizes most of the lagging strand during DNA replication. Yeast pol delta is a heterotrimer comprised of three subunits: the catalytic subunit (Pol3) and two accessory subunits (Pol31 and Pol32). Although pol delta is one of the major eukaryotic replicative polymerase, the mechanism by which it incorporates nucleotides is unknown. Here we report both steady state and pre-steady state kinetic studies of the fidelity of pol delta. We found that pol delta incorporates nucleotides with an error frequency of 10(-4) to 10(-5). Furthermore, we showed that for correct versus incorrect nucleotide incorporation, there are significant differences between both pre-steady state kinetic parameters (apparent K(d)(dNTP) and k(pol)). Somewhat surprisingly, we found that pol delta synthesizes DNA at a slow rate with a k(pol) of approximately 1 s(-1). We suggest that, unlike its prokaryotic counterparts, pol delta requires replication accessory factors like proliferating cell nuclear antigen to achieve rapid rates of nucleotide incorporation.
Collapse
Affiliation(s)
- Lynne M Dieckman
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa 52242-1109, USA
| | | | | | | |
Collapse
|
23
|
Brown JA, Zhang L, Sherrer SM, Taylor JS, Burgers PMJ, Suo Z. Pre-Steady-State Kinetic Analysis of Truncated and Full-Length Saccharomyces cerevisiae DNA Polymerase Eta. J Nucleic Acids 2010; 2010:871939. [PMID: 20798853 PMCID: PMC2925389 DOI: 10.4061/2010/871939] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 04/30/2010] [Indexed: 11/23/2022] Open
Abstract
Understanding polymerase fidelity is an important objective towards ascertaining the overall stability of an organism's genome. Saccharomyces cerevisiae DNA polymerase eta (yPoleta), a Y-family DNA polymerase, is known to efficiently bypass DNA lesions (e.g., pyrimidine dimers) in vivo. Using pre-steady-state kinetic methods, we examined both full-length and a truncated version of yPoleta which contains only the polymerase domain. In the absence of yPoleta's C-terminal residues 514-632, the DNA binding affinity was weakened by 2-fold and the base substitution fidelity dropped by 3-fold. Thus, the C-terminus of yPoleta may interact with DNA and slightly alter the conformation of the polymerase domain during catalysis. In general, yPoleta discriminated between a correct and incorrect nucleotide more during the incorporation step (50-fold on average) than the ground-state binding step (18-fold on average). Blunt-end additions of dATP or pyrene nucleotide 5'-triphosphate revealed the importance of base stacking during the binding of incorrect incoming nucleotides.
Collapse
Affiliation(s)
- Jessica A. Brown
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Likui Zhang
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Shanen M. Sherrer
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | - Peter M. J. Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zucai Suo
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Brown JA, Fowler JD, Suo Z. Kinetic basis of nucleotide selection employed by a protein template-dependent DNA polymerase. Biochemistry 2010; 49:5504-10. [PMID: 20518555 DOI: 10.1021/bi100433x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rev1, a Y-family DNA polymerase, contributes to spontaneous and DNA damage-induced mutagenic events. In this paper, we have employed pre-steady-state kinetic methodology to establish a kinetic basis for nucleotide selection by human Rev1, a unique nucleotidyl transferase that uses a protein template-directed mechanism to preferentially instruct dCTP incorporation. This work demonstrated that the high incorporation efficiency of dCTP is dependent on both substrates: an incoming dCTP and a templating base dG. The extremely low base substitution fidelity of human Rev1 (10(0) to 10(-5)) was due to the preferred misincorporation of dCTP with templating bases dA, dT, and dC over correct dNTPs. Using non-natural nucleotide analogues, we showed that hydrogen bonding interactions between residue R357 of human Rev1 and an incoming dNTP are not essential for DNA synthesis. Lastly, human Rev1 discriminates between ribonucleotides and deoxyribonucleotides mainly by reducing the rate of incorporation, and the sugar selectivity of human Rev1 is sensitive to both the size and orientation of the 2'-substituent of a ribonucleotide.
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
25
|
Pata JD. Structural diversity of the Y-family DNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1124-35. [PMID: 20123134 DOI: 10.1016/j.bbapap.2010.01.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 12/11/2009] [Accepted: 01/25/2010] [Indexed: 11/17/2022]
Abstract
The Y-family translesion DNA polymerases enable cells to tolerate many forms of DNA damage, yet these enzymes have the potential to create genetic mutations at high rates. Although this polymerase family was defined less than a decade ago, more than 90 structures have already been determined so far. These structures show that the individual family members bypass damage and replicate DNA with either error-free or mutagenic outcomes, depending on the polymerase, the lesion and the sequence context. Here, these structures are reviewed and implications for polymerase function are discussed.
Collapse
Affiliation(s)
- Janice D Pata
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
| |
Collapse
|
26
|
Doi A, Pack SP, Makino K. Comparison of the molecular influences of NO-induced lesions in DNA strands on the reactivity of polynucleotide kinases, DNA ligases and DNA polymerases. J Biochem 2010; 147:697-703. [DOI: 10.1093/jb/mvq003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Brown JA, Suo Z. Elucidating the kinetic mechanism of DNA polymerization catalyzed by Sulfolobus solfataricus P2 DNA polymerase B1. Biochemistry 2009; 48:7502-11. [PMID: 19456143 DOI: 10.1021/bi9005336] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transient-state kinetic techniques were used to resolve the kinetic mechanism of DNA polymerization catalyzed by an exonuclease-deficient mutant of Sulfolobus solfataricus P2 DNA polymerase B1 (PolB1 exo-). Here, we report the kinetic parameters of several elementary steps for the forward polymerization reaction. PolB1 exo- binds tightly to DNA (K(d)(DNA) = 1.8 nM) and a correct incoming nucleotide (apparent K(d)(dTTP) = 11 microM). Moreover, several lines of kinetic evidence suggested that correct nucleotide incorporation catalyzed by PolB1 exo- was limited by a protein conformational change which precedes the chemistry step. The utilization of an "induced fit" mechanism by PolB1 exo- was supported by the following: a small, alpha-thio elemental effect of 1.5, varying DNA dissociation rates for the binary complex (0.043 s(-1)) as well as ternary complexes before (0.18 s(-1)) and after (0.0071 s(-1)) a conformational change, a greater amplitude for the pulse-chase than the pulse-quench reaction, and an activation energy barrier of 38 kcal/mol which is greater than the predicted values of phosphodiester bond formation both in solution and within a polymerase active site. Lastly, PolB1 exo- exhibited a low processivity value of 15, thereby suggesting a protein cofactor confers this replicative DNA polymerase with higher processivity in vivo.
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
28
|
Vooradi V, Romano LJ. Effect of N-2-acetylaminofluorene and 2-aminofluorene adducts on DNA binding and synthesis by yeast DNA polymerase eta. Biochemistry 2009; 48:4209-16. [PMID: 19354292 DOI: 10.1021/bi9000722] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The well-studied aromatic amine carcinogen, N-2-acetylaminofluorene (AAF), forms adducts at the C8 position of guanine in DNA. Unlike replicative polymerases, Y-family polymerases have been shown to have the ability to bypass such bulky DNA lesions. To better understand the mechanism of translesion synthesis by the yeast DNA polymerase eta (yPoleta), a gel retardation technique was used to measure equilibrium dissociation constants of this polymerase for unmodified DNA or DNA containing dG-C8-AAF or the related deacylated dG-C8-AF adduct. These results show that the binding of yPoleta to the unmodified primer-template is substantially stronger in the presence of the next correct nucleotide than when no or an incorrect nucleotide is present. In addition, binding of yPoleta to either dG-C8-AAF or AF-modified templates is also stronger in the presence of dCTP. Finally, the yPoleta complex is destabilized if the primer extends to a position across from the adduct, and stronger binding is not observed in the presence of the next correct nucleotide. Taken together, these data are consistent with the ability of yPoleta to undergo a conformational change to a closed ternary complex in the presence of the next correct nucleotide and on templates containing an AAF or AF adduct but do not rule out other possible explanations.
Collapse
|
29
|
Colis LC, Raychaudhury P, Basu AK. Mutational specificity of gamma-radiation-induced guanine-thymine and thymine-guanine intrastrand cross-links in mammalian cells and translesion synthesis past the guanine-thymine lesion by human DNA polymerase eta. Biochemistry 2008; 47:8070-9. [PMID: 18616294 PMCID: PMC2646719 DOI: 10.1021/bi800529f] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Comparative mutagenesis of γ- or X-ray-induced tandem DNA lesions G[8,5-Me]T and T[5-Me,8]G intrastrand cross-links was investigated in simian (COS-7) and human embryonic (293T) kidney cells. For G[8,5-Me]T in 293T cells, 5.8% of progeny contained targeted base substitutions, whereas 10.0% showed semitargeted single-base substitutions. Of the targeted mutations, the G → T mutation occurred with the highest frequency. The semitargeted mutations were detected up to two bases 5′ and three bases 3′ to the cross-link. The most prevalent semitargeted mutation was a C → T transition immediately 5′ to the G[8,5-Me]T cross-link. Frameshifts (4.6%) (mostly small deletions) and multiple-base substitutions (2.7%) also were detected. For the T[5-Me,8]G cross-link, a similar pattern of mutations was noted, but the mutational frequency was significantly higher than that of G[8,5-Me]T. Both targeted and semitargeted mutations occurred with a frequency of ∼16%, and both included a dominant G → T transversion. As in 293T cells, more than twice as many targeted mutations in COS cells occurred in T[5-Me,8]G (11.4%) as in G[8,5-Me]T (4.7%). Also, the level of semitargeted single-base substitutions 5′ to the lesion was increased and 3′ to the lesion decreased in T[5-Me,8]G relative to G[8,5-Me]T in COS cells. It appeared that the majority of the base substitutions at or near the cross-links resulted from incorporation of dAMP opposite the template base, in agreement with the so-called “A-rule”. To determine if human polymerase η (hpol η) might be involved in the mutagenic bypass, an in vitro bypass study of G[8,5-Me]T in the same sequence was carried out, which showed that hpol η can bypass the cross-link incorporating the correct dNMP opposite each cross-linked base. For G[8,5-Me]T, nucleotide incorporation by hpol η was significantly different from that by yeast pol η in that the latter was more error-prone opposite the cross-linked Gua. The incorporation of the correct nucleotide, dAMP, by hpol η opposite cross-linked T was 3−5-fold more efficient than that of a wrong nucleotide, whereas incorporation of dCMP opposite the cross-linked G was 10-fold more efficient than that with dTMP. Therefore, the nucleotide incorporation pattern by hpol η was not consistent with the observed cellular mutations. Nevertheless, at and near the lesion, hpol η was more error-prone compared to a control template. The in vitro data suggest that translesion synthesis by another Y-family DNA polymerase and/or flawed participation of an accessory protein is a more likely scenario in the mutagenesis of these lesions in mammalian cells. However, hpol η may play a role in correct bypass of the cross-links.
Collapse
Affiliation(s)
- Laureen C Colis
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
30
|
Kumar S, Bakhtina M, Tsai MD. Altered order of substrate binding by DNA polymerase X from African Swine Fever virus. Biochemistry 2008; 47:7875-87. [PMID: 18598057 PMCID: PMC2652249 DOI: 10.1021/bi800731m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
A sequential ordered substrate binding established previously for several DNA polymerases is generally extended to all DNA polymerases, and the characterization of novel polymerases is often based on the assumption that the enzymes should productively bind DNA substrate first, followed by template-directed dNTP binding. The comprehensive kinetic study of DNA polymerase X (Pol X) from African swine fever virus reported here is the first analysis of the substrate binding order performed for a low-fidelity DNA polymerase. A classical steady-state kinetic approach using substrate analogue inhibition assays demonstrates that Pol X does not follow the bi-bi ordered mechanism established for other DNA polymerases. Further, using isotope-trapping experiments and stopped-flow fluorescence assays, we show that Pol X can bind Mg2+·dNTPs in a productive manner in the absence of DNA substrate. We also show that DNA binding to Pol X, although rapid, may not always be productive. Furthermore, we show that binding of Mg2+·dNTP to Pol X facilitates subsequent formation of the catalytically competent Pol X·DNA·dNTP ternary complex, whereas DNA binding prior to dNTP binding brings the enzyme into a nonproductive conformation where subsequent nucleotide substrate binding is hindered. Together, our results suggest that Pol X prefers an ordered sequential mechanism with Mg2+·dNTP as the first substrate.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
31
|
McCulloch SD, Wood A, Garg P, Burgers PMJ, Kunkel TA. Effects of accessory proteins on the bypass of a cis-syn thymine-thymine dimer by Saccharomyces cerevisiae DNA polymerase eta. Biochemistry 2007; 46:8888-96. [PMID: 17608453 PMCID: PMC2288658 DOI: 10.1021/bi700234t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among several hypotheses to explain how translesion synthesis (TLS) by DNA polymerase eta (pol eta) suppresses ultraviolet light-induced mutagenesis in vivo despite the fact that pol eta copies DNA with low fidelity, here we test whether replication accessory proteins enhance the fidelity of TLS by pol eta. We first show that the single-stranded DNA binding protein RPA, the sliding clamp PCNA, and the clamp loader RFC slightly increase the processivity of yeast pol eta and its ability to recycle to new template primers. However, these increases are small, and they are similar when copying an undamaged template and a template containing a cis-syn TT dimer. Consequently, the accessory proteins do not strongly stimulate the already robust TT dimer bypass efficiency of pol eta. We then perform a comprehensive analysis of yeast pol eta fidelity. We show that it is much less accurate than other yeast DNA polymerases and that the accessory proteins have little effect on fidelity when copying undamaged templates or when bypassing a TT dimer. Thus, although accessory proteins clearly participate in pol eta functions in vivo, they do not appear to help suppress UV mutagenesis by improving pol eta bypass fidelity per se.
Collapse
Affiliation(s)
- Scott D McCulloch
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
32
|
de Feraudy S, Limoli CL, Giedzinski E, Karentz D, Marti TM, Feeney L, Cleaver JE. Pol eta is required for DNA replication during nucleotide deprivation by hydroxyurea. Oncogene 2007; 26:5713-21. [PMID: 17369853 DOI: 10.1038/sj.onc.1210385] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydroxyurea reduces DNA replication by nucleotide deprivation, whereas UV damage generates DNA photoproducts that directly block replication fork progression. We show that the low fidelity class Y polymerase Pol eta is recruited to proliferating cell nuclear antigen at replication forks both by hydroxyurea and UV light. Under nucleotide deprivation, Pol eta allows cells to accumulate at the G1/S boundary by facilitating slow S-phase progression and promotes apoptosis. Normal cells consequently enter apoptosis at a faster rate than Pol eta-deficient cells. Coincident with hydroxyurea-induced S-phase delay, Pol eta-deficient cells undergo more replication fork breakage and accumulate more foci of the Mre11/Rad50/Nbs1 complex and phosphorylated histone H2AX. We conclude that under conditions of nucleotide deprivation, Pol eta is required for S-phase progression but is proapoptotic. However, as Pol eta is reported to require higher nucleotide concentrations than class B replicative polymerases, its recruitment by hydroxyurea requires it to function under suboptimal conditions. Our results suggest that hydroxyurea-induced apoptosis occurs at the G1/S boundary and that initiation of the S-phase requires greater nucleotide concentrations than does S-phase progression.
Collapse
Affiliation(s)
- S de Feraudy
- Auerback Melanoma Laboratory, UCSF Cancer Center, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Koren A. The role of the DNA damage checkpoint in regulation of translesion DNA synthesis. Mutagenesis 2007; 22:155-60. [PMID: 17290049 DOI: 10.1093/mutage/gem003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The DNA damage checkpoint is a signal transduction pathway that integrates DNA repair with cell cycle arrest and other cellular responses. The checkpoint response is also directly associated with mutagenic translesion DNA synthesis (TLS). For example, checkpoint activation requires complexes with roles in TLS regulation, and leads to elevated mutation levels. A role in TLS regulation implies that the checkpoint contributes to the generation of mutations, rather than their prevention. It can also explain several currently obscure aspects of this response.
Collapse
Affiliation(s)
- Amnon Koren
- Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
34
|
Kubrycht J, Sigler K, Růzicka M, Soucek P, Borecký J, Jezek P. Ancient Phylogenetic Beginnings of Immunoglobulin Hypermutation. J Mol Evol 2006; 63:691-706. [PMID: 17031458 DOI: 10.1007/s00239-006-0051-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 04/20/2006] [Indexed: 12/15/2022]
Abstract
Many structures and molecules closely related to those involved in the specific process of immunoglobulin (Ig) hypermutation existed before the appearance of primordial Ig genes. Consequently, these structures can be found even in animals and organisms distinct from vertebrates; likewise, homologues of hypermutation enzymes are present in a broad range of species, from bacteria to mammals. Our analysis, based predominantly on primary structure, demonstrates the existence of molecules similar to Ig domains, variable Ig domains (IGv), and antigen receptors (AR) in unicellular organisms, nonvertebrate metazoans, and nonvertebrate Coelomata, respectively. In addition, we deal here with some important structural properties of CDR1-like segments of the selected sponge adhesion molecule GCSAMS exhibiting chimerical Ig domain similarities, and demonstrate the occurrence of conserved regions corresponding to Ohno's modern intact primordial building block in the C-terminal part of IGv-related segments of nonvertebrate origin. The results of our analysis are also discussed with respect to the possible phylogeny of molecules preceding the hypothetical common antigen receptor ancestor.
Collapse
Affiliation(s)
- Jaroslav Kubrycht
- Center of Occupational Medicine, National Institute of Public Health, 100 42 Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
35
|
Showalter AK, Lamarche BJ, Bakhtina M, Su MI, Tang KH, Tsai MD. Mechanistic comparison of high-fidelity and error-prone DNA polymerases and ligases involved in DNA repair. Chem Rev 2006; 106:340-60. [PMID: 16464009 DOI: 10.1021/cr040487k] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Choi JY, Guengerich FP. Adduct size limits efficient and error-free bypass across bulky N2-guanine DNA lesions by human DNA polymerase eta. J Mol Biol 2005; 352:72-90. [PMID: 16061253 DOI: 10.1016/j.jmb.2005.06.079] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 06/29/2005] [Accepted: 06/30/2005] [Indexed: 11/20/2022]
Abstract
The N2 position of guanine (G) is one of the major sites for DNA modification by various carcinogens. Eight oligonucleotides with varying adduct bulk at guanine N2 were analyzed for catalytic efficiency and fidelity with human DNA polymerase (pol) eta, which is involved in translesion synthesis (TLS). Pol eta effectively bypassed N2-methyl(Me)G, N2-ethyl(Et)G, N2-isobutyl(Ib)G, N2-benzyl(Bz)G, and N2-CH2(2-naphthyl)G but was severely blocked at N2-CH2(9-anthracenyl)G (N2-AnthG) and N2-CH2(6-benzo[a]pyrenyl)G (N2-BPG). Steady-state kinetic analysis showed proportional decreases of kcat/Km in dCTP insertion opposite N2-AnthG and N2-BPG (73 and 320-fold) and also kcat/Km in next-base extension from a C paired with each adduct (15 and 51-fold relative to G). Frequencies of dATP misinsertion and extension beyond mispairs were also proportionally increased (70 and 450-fold; 12 and 44-fold) with N2-AnthG and N2-BPG, indicating the effect of adduct bulk on blocking and misincorporation in TLS by pol eta. N2-AnthG and N2-BPG also greatly decreased the pre-steady-state kinetic burst rate (25 and 125-fold) compared to unmodified G. N2-AnthG decreased dCTP binding affinity (2.6-fold) and increased DNA substrate binding affinity. These results and the small kinetic thio effects (S(p)-dCTPalphaS) suggest that the early steps, possibly conformational change, are interfered with by the bulky adducts. In contrast, human pol delta bypassed adducts effectively up to N2-EtG but was strongly blocked by N2-IbG and larger adducts. We conclude that TLS DNA polymerases may be required for the efficient bypass of pol delta-blocking N2-G adducts bulkier than N2-EtG in human cells, and the bulk size can be a major factor for efficient and error-free bypass at these adducts by TLS DNA polymerases.
Collapse
Affiliation(s)
- Jeong-Yun Choi
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
37
|
Prakash S, Johnson RE, Prakash L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 2005; 74:317-53. [PMID: 15952890 DOI: 10.1146/annurev.biochem.74.082803.133250] [Citation(s) in RCA: 789] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on eukaryotic translesion synthesis (TLS) DNA polymerases, and the emphasis is on Saccharomyces cerevisiae and human Y-family polymerases (Pols) eta, iota, kappa, and Rev1, as well as on Polzeta, which is a member of the B-family polymerases. The fidelity, mismatch extension ability, and lesion bypass efficiencies of these different polymerases are examined and evaluated in the context of their structures. One major conclusion is that, despite the overall similarity of basic structural features among the Y-family polymerases, there is a high degree of specificity in their lesion bypass properties. Some are able to bypass a particular DNA lesion, whereas others are efficient at only the insertion step or the extension step of lesion bypass. This functional divergence is related to the differences in their structures. Polzeta is a highly specialized polymerase specifically adapted for extending primer termini opposite from a diverse array of DNA lesions, and depending upon the DNA lesion, it contributes to lesion bypass in a mutagenic or in an error-free manner. Proliferating cell nuclear antigen (PCNA) provides the central scaffold to which TLS polymerases bind for access to the replication ensemble stalled at a lesion site, and Rad6-Rad18-dependent protein ubiquitination is important for polymerase exchange.
Collapse
Affiliation(s)
- Satya Prakash
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555-1061, USA.
| | | | | |
Collapse
|
38
|
Chiapperino D, Cai M, Sayer JM, Yagi H, Kroth H, Masutani C, Hanaoka F, Jerina DM, Cheh AM. Error-prone translesion synthesis by human DNA polymerase eta on DNA-containing deoxyadenosine adducts of 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene. J Biol Chem 2005; 280:39684-92. [PMID: 16188888 DOI: 10.1074/jbc.m508008200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
When human DNA polymerase eta (pol eta) encounters N6-deoxyadenosine adducts formed by trans epoxide ring opening of the 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaP DE) isomer with (+)-7R,8S,9S,10R configuration ((+)-BaP DE-2), misincorporation of A or G and incorporation of the correct T are equally likely to occur. On the other hand, the enzyme exhibits a 3-fold preference for correct T incorporation opposite adducts formed by trans ring opening of the (-)-(7S,8R,9R,10S)-DE-2 enantiomer. Adducts at dA formed by cis ring opening of these two BaP DE-2 isomers exhibit a 2-3-fold preference for A over T incorporation, with G intermediate between the two. Extension one nucleotide beyond these adducts is generally weaker than incorporation across from them, but among mismatches the (adducted A*) x A mispair is the most favored for extension. Because mutations can only occur if mispairs are extended, this observation is consistent with the occurrence of A x T to T x A transversions as common mutations in animal cells treated with BaP DE-2 isomers. Adducts with S absolute configuration at the point of attachment of the hydrocarbon to the base inhibit incorporation and extension by pol eta to a lesser extent than their R counterparts. Template-primers containing each of the four isomeric dA adducts derived from BaP DE-2 and two adducts derived from 9,10-epoxy-7,8,9,10-tetrahydrobenzo-[a]pyrene in which the 7- and 8-hydroxyl groups of the DEs are replaced with hydrogens exhibit reduced electrophoretic mobilities relative to the unadducted oligonucleotides. This effect is largely independent of DNA sequence. Decreased mobility correlates with an increased rate of incorporation by pol eta, suggesting a systematic relationship between the overall DNA structure and efficiency of the enzyme.
Collapse
Affiliation(s)
- Dominic Chiapperino
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, DHHS, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Carlson KD, Washington MT. Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta. Mol Cell Biol 2005; 25:2169-76. [PMID: 15743815 PMCID: PMC1061627 DOI: 10.1128/mcb.25.6.2169-2176.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Most DNA polymerases incorporate nucleotides opposite template 7,8-dihydro-8-oxoguanine (8-oxoG) lesions with reduced efficiency and accuracy. DNA polymerase (Pol) eta, which catalyzes the error-free replication of template thymine-thymine (TT) dimers, has the unique ability to accurately and efficiently incorporate nucleotides opposite 8-oxoG templates. Here we have used pre-steady-state kinetics to examine the mechanisms of correct and incorrect nucleotide incorporation opposite G and 8-oxoG by Saccharomyces cerevisiae Pol eta. We found that Pol eta binds the incoming correct dCTP opposite both G and 8-oxoG with similar affinities, and it incorporates the correct nucleotide bound opposite both G and 8-oxoG with similar rates. While Pol eta incorporates an incorrect A opposite 8-oxoG with lower efficiency than it incorporates a correct C, it does incorporate A more efficiently opposite 8-oxoG than opposite G. This is mainly due to greater binding affinity for the incorrect incoming dATP opposite 8-oxoG. Overall, these results show that Pol eta replicates through 8-oxoG without any barriers introduced by the presence of the lesion.
Collapse
Affiliation(s)
- Karissa D Carlson
- Department of Biochemistry, 4-403 Bowen Science Building, University of Iowa, Iowa City, IA 52242-1109, USA
| | | |
Collapse
|
40
|
McCulloch SD, Kokoska RJ, Chilkova O, Welch CM, Johansson E, Burgers PMJ, Kunkel TA. Enzymatic switching for efficient and accurate translesion DNA replication. Nucleic Acids Res 2004; 32:4665-75. [PMID: 15333698 PMCID: PMC516052 DOI: 10.1093/nar/gkh777] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When cyclobutane pyrimidine dimers stall DNA replication by DNA polymerase (Pol) delta or epsilon, a switch occurs to allow translesion synthesis by DNA polymerase eta, followed by another switch that allows normal replication to resume. In the present study, we investigate these switches using Saccharomyces cerevisiae Pol delta, Pol epsilon and Pol eta and a series of matched and mismatched primer templates that mimic each incorporation needed to completely bypass a cis-syn thymine-thymine (TT) dimer. We report a complementary pattern of substrate use indicating that enzymatic switching involving localized translesion synthesis by Pol eta and mismatch excision and polymerization by a major replicative polymerase can account for the efficient and accurate dimer bypass known to suppress sunlight-induced mutagenesis and skin cancer.
Collapse
Affiliation(s)
- Scott D McCulloch
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|