1
|
Okamura D, Kohara A, Chigi Y, Katayama T, Sharif J, Wu J, Ito-Matsuoka Y, Matsui Y. p38 MAPK as a gatekeeper of reprogramming in mouse migratory primordial germ cells. Front Cell Dev Biol 2024; 12:1410177. [PMID: 38911025 PMCID: PMC11191381 DOI: 10.3389/fcell.2024.1410177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
Mammalian germ cells are derived from primordial germ cells (PGCs) and ensure species continuity through generations. Unlike irreversible committed mature germ cells, migratory PGCs exhibit a latent pluripotency characterized by the ability to derive embryonic germ cells (EGCs) and form teratoma. Here, we show that inhibition of p38 mitogen-activated protein kinase (MAPK) by chemical compounds in mouse migratory PGCs enables derivation of chemically induced Embryonic Germ-like Cells (cEGLCs) that do not require conventional growth factors like LIF and FGF2/Activin-A, and possess unique naïve pluripotent-like characteristics with epiblast features and chimera formation potential. Furthermore, cEGLCs are regulated by a unique PI3K-Akt signaling pathway, distinct from conventional naïve pluripotent stem cells described previously. Consistent with this notion, we show by performing ex vivo analysis that inhibition of p38 MAPK in organ culture supports the survival and proliferation of PGCs and also potentially reprograms PGCs to acquire indefinite proliferative capabilities, marking these cells as putative teratoma-producing cells. These findings highlight the utility of our ex vivo model in mimicking in vivo teratoma formation, thereby providing valuable insights into the cellular mechanisms underlying tumorigenesis. Taken together, our research underscores a key role of p38 MAPK in germ cell development, maintaining proper cell fate by preventing unscheduled pluripotency and teratoma formation with a balance between proliferation and differentiation.
Collapse
Affiliation(s)
- Daiji Okamura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Aoi Kohara
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yuta Chigi
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Tomoka Katayama
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yumi Ito-Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Safwan-Zaiter H, Wagner N, Wagner KD. P16INK4A-More Than a Senescence Marker. Life (Basel) 2022; 12:1332. [PMID: 36143369 PMCID: PMC9501954 DOI: 10.3390/life12091332] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is a biological feature that is characterized by gradual degeneration of function in cells, tissues, organs, or an intact organism due to the accumulation of environmental factors and stresses with time. Several factors have been attributed to aging such as oxidative stress and augmented production or exposure to reactive oxygen species, inflammatory cytokines production, telomere shortening, DNA damage, and, importantly, the deposit of senescent cells. These are irreversibly mitotically inactive, yet metabolically active cells. The reason underlying their senescence lies within the extrinsic and the intrinsic arms. The extrinsic arm is mainly characterized by the expression and the secretory profile known as the senescence-associated secretory phenotype (SASP). The intrinsic arm results from the impact of several genes meant to regulate the cell cycle, such as tumor suppressor genes. P16INK4A is a tumor suppressor and cell cycle regulator that has been linked to aging and senescence. Extensive research has revealed that p16 expression is significantly increased in senescent cells, as well as during natural aging or age-related pathologies. Based on this fact, p16 is considered as a specific biomarker for detecting senescent cells and aging. Other studies have found that p16 is not only a senescence marker, but also a protein with many functions outside of senescence and aging. In this paper, we discuss and shed light on several studies that show the different functions of p16 and provide insights in its role in several biological processes besides senescence and aging.
Collapse
Affiliation(s)
| | - Nicole Wagner
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | | |
Collapse
|
3
|
CRISPR interference and activation of the microRNA-3662-HBP1 axis control progression of triple-negative breast cancer. Oncogene 2022; 41:268-279. [PMID: 34728806 PMCID: PMC8781987 DOI: 10.1038/s41388-021-02089-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022]
Abstract
MicroRNA-3662 (miR-3662) is minimally expressed in normal human tissues but is highly expressed in all types of cancers, including breast cancer. As determined with The Cancer Genome Atlas dataset, miR-3662 expression is higher in triple-negative breast cancers (TNBCs) and African American breast cancers than in other breast cancer types. However, the functional role of miR-3662 remains a topic of debate. Here, we found that inhibition or knockout of endogenous, mature miR-3662 in TNBC cells suppresses proliferation and migration in vitro and tumor growth and metastasis in vivo. Functional analysis revealed that, for TNBC cells, knockout of miR-3662 reduces the activation of Wnt/β-catenin signaling. Furthermore, using CRISPR-mediated miR-3662 activation and repression, dual-luciferase assays, and miRNA/mRNA immunoprecipitation assays, we established that HMG-box transcription factor 1 (HBP-1), a Wnt/β-catenin signaling inhibitor, is a target of miR-3662 and is most likely responsible for miR-3662-mediated TNBC cell proliferation. Our results suggest that miR-3662 has an oncogenic function in tumor progression and metastasis via an miR-3662-HBP1 axis, regulating the Wnt /β-catenin signaling pathway in TNBC cells. Since miR-3662 expression occurs a tumor-specific manner, it is a promising biomarker and therapeutic target for patients who have TNBCs with dysregulation of miR-3662, especially African Americans.
Collapse
|
4
|
Cao Z, Cheng Y, Wang J, Liu Y, Yang R, Jiang W, Li H, Zhang X. HBP1-mediated transcriptional repression of AFP inhibits hepatoma progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:118. [PMID: 33794968 PMCID: PMC8015059 DOI: 10.1186/s13046-021-01881-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 12/31/2022]
Abstract
Background Hepatoma is a common malignancy of the liver. The abnormal high expression of alpha-fetoprotein (AFP) is intimately associated with hepatoma progress, but the mechanism of transcriptional regulation and singularly activation of AFP gene in hepatoma is not clear. Methods The expression of transcription factor HBP1 and AFP and clinical significance were further analyzed in hepatoma tissues from the patients who received surgery or TACE and then monitored for relapse for up 10 years. HBP1-mediated transcriptional regulation of AFP was analyzed by Western blotting, Luciferase assay, Realtime-PCR, ChIP and EMSA. After verified the axis of HBP-AFP, its impact on hepatoma was measured by MTT, Transwell and FACS in hepatoma cells and by tumorigenesis in HBP1−/− mice. Results The relative expressions of HBP1 and AFP correlated with survival and prognosis in hepatoma patients. HBP1 repressed the expression of AFP gene by directly binding to the AFP gene promoter. Hepatitis B Virus (HBV)-encoded protein HBx promoted malignancy in hepatoma cells through binding to HBP1 directly. Icaritin, an active ingredient of Chinese herb epimedium, inhibited malignancy in hepatoma cells through enhancing HBP1 transrepression of AFP. The repression of AFP by HBP1 attenuated AFP effect on PTEN, MMP9 and caspase-3, thus inhibited proliferation and migration, and induced apoptosis in hepatoma cells. The deregulation of AFP by HBP1 contributed to hepatoma progression in mice. Conclusions Our data clarify the mechanism of HBP1 in inhibiting the expression of AFP and its suppression in malignancy of hepatoma cells, providing a more comprehensive theoretical basis and potential solutions for the diagnosis and treatment of hepatoma. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01881-2.
Collapse
Affiliation(s)
- Zhengyi Cao
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, People's Republic of China.,Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, 100029, People's Republic of China
| | - Yuning Cheng
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, People's Republic of China
| | - Jiyin Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, People's Republic of China
| | - Yujuan Liu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, People's Republic of China
| | - Ruixiang Yang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, People's Republic of China
| | - Wei Jiang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, People's Republic of China
| | - Hui Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, People's Republic of China.
| | - Xiaowei Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, People's Republic of China.
| |
Collapse
|
5
|
Nuclear P38: Roles in Physiological and Pathological Processes and Regulation of Nuclear Translocation. Int J Mol Sci 2020; 21:ijms21176102. [PMID: 32847129 PMCID: PMC7504396 DOI: 10.3390/ijms21176102] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The p38 mitogen-activated protein kinase (p38MAPK, termed here p38) cascade is a central signaling pathway that transmits stress and other signals to various intracellular targets in the cytoplasm and nucleus. More than 150 substrates of p38α/β have been identified, and this number is likely to increase. The phosphorylation of these substrates initiates or regulates a large number of cellular processes including transcription, translation, RNA processing and cell cycle progression, as well as degradation and the nuclear translocation of various proteins. Being such a central signaling cascade, its dysregulation is associated with many pathologies, particularly inflammation and cancer. One of the hallmarks of p38α/β signaling is its stimulated nuclear translocation, which occurs shortly after extracellular stimulation. Although p38α/β do not contain nuclear localization or nuclear export signals, they rapidly and robustly translocate to the nucleus, and they are exported back to the cytoplasm within minutes to hours. Here, we describe the physiological and pathological roles of p38α/β phosphorylation, concentrating mainly on the ill-reviewed regulation of p38α/β substrate degradation and nuclear translocation. In addition, we provide information on the p38α/β ’s substrates, concentrating mainly on the nuclear targets and their role in p38α/β functions. Finally, we also provide information on the mechanisms of nuclear p38α/β translocation and its use as a therapeutic target for p38α/β-dependent diseases.
Collapse
|
6
|
Chan CY, Chang CM, Chen YH, Sheu JJC, Lin TY, Huang CY. Regulatory role of transcription factor HBP1 in anticancer efficacy of EGFR inhibitor erlotinib in HNSCC. Head Neck 2020; 42:2958-2967. [PMID: 32677158 DOI: 10.1002/hed.26346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/13/2020] [Accepted: 06/09/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is often hyperactivated in head and neck squamous cell carcinoma (HNSCC); however, its downstream mediators are not fully identified. Here, we investigate the role of transcription factor HBP1 in the anticancer efficacy of EGFR inhibitor erlotinib in HNSCC. METHODS The effect of erlotinib and HBP1 on cell proliferation and invasion was examined by flow cytometric analysis and a Matrigel invasion assay, respectively. Oral tumor specimens were used to evaluate the association between the expression level of EGFR and HBP1, and metastatic potential. RESULTS Erlotinib caused cell growth arrest in the G1 phase and sluggish invasion with a concomitant increase in HBP1 and p27 expression. The erlotinib effect was attenuated upon HBP1 knockdown. Analysis of oral tumor specimens revealed that the low HBP1/high EGFR status can predict metastatic potential. CONCLUSIONS Our data support HBP1 as a crucial mediator of EGFR-targeting inhibitors in HNSCC.
Collapse
Affiliation(s)
- Chien-Yi Chan
- Department of Nutrition, China Medical University, Taichung, Taiwan, ROC.,Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan, Taiwan, ROC
| | - Chin-Ming Chang
- Department of Nutrition, China Medical University, Taichung, Taiwan, ROC
| | - Yuan-Hong Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan, ROC
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan, ROC
| | - Tzu-Yuan Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan, ROC
| | - Chun-Yin Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
7
|
Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020; 9. [PMID: 32612808 PMCID: PMC7324945 DOI: 10.12688/f1000research.22092.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.
Collapse
Affiliation(s)
- Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - John Silke
- The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
8
|
Chen H, Liu C, Liu Y, Li H, Cheng B. Transcription factor HBP1: A regulator of senescence and apoptosis of preadipocytes. Biochem Biophys Res Commun 2019; 517:216-220. [PMID: 31331641 DOI: 10.1016/j.bbrc.2019.07.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND /aim: HMG-box protein 1 (HBP1) plays an important role in the senescence and apoptosis of mammalian cells, but its role in chicken cells remains unclear. The aim of this study was to investigate the effects of HBP1 on senescence and apoptosis of chicken preadipocytes. METHODS The immortalized chicken preadipocyte cell line (ICP2) was used as a cell model. Chicken HBP1 knockout and overexpressing preadipocyte cell lines were established using CRISPR/Cas9 gene editing technology and lentiviral infection. Western blotting was used to detect the protein expression of HBP1 and senescence markers p16 and p53. Cell senescence was measured by Sa-β-Gal staining and apoptosis was detected by flow cytometry. RESULTS HBP1 was highly expressed in senescent ICP2 cells compared with young ICP2 cells. After the deletion of HBP1, the degree of senescence, the apoptosis rate and the protein expression levels of p16 and p53 were significantly reduced. After the overexpression of HBP1, the degree of senescence, the apoptosis rate and the protein expression levels of p16 and p53 were significantly increased. CONCLUSION HBP1 promotes the senescence and apoptosis of chicken preadipocytes.
Collapse
Affiliation(s)
- Hongyan Chen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Chang Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yumeng Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
9
|
Bollaert E, de Rocca Serra A, Demoulin JB. The HMG box transcription factor HBP1: a cell cycle inhibitor at the crossroads of cancer signaling pathways. Cell Mol Life Sci 2019; 76:1529-1539. [PMID: 30683982 PMCID: PMC11105191 DOI: 10.1007/s00018-019-03012-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
HMG box protein 1 (HBP1) is a transcription factor and a potent cell cycle inhibitor in normal and cancer cells. HBP1 activates or represses the expression of different cell cycle genes (such as CDKN2A, CDKN1A, and CCND1) through direct DNA binding, cofactor recruitment, chromatin remodeling, or neutralization of other transcription factors. Among these are LEF1, TCF4, and MYC in the WNT/beta-catenin pathway. HBP1 also contributes to oncogenic RAS-induced senescence and terminal cell differentiation. Collectively, these activities suggest a tumor suppressor function. However, HBP1 is not listed among frequently mutated cancer driver genes. Nevertheless, HBP1 expression is lower in several tumor types relative to matched normal tissues. Several micro-RNAs, such as miR-155, miR-17-92, and miR-29a, dampen HBP1 expression in cancer cells of various origins. The phosphatidylinositol-3 kinase (PI3K)/AKT pathway also inhibits HBP1 transcription by preventing FOXO binding to the HBP1 promoter. In addition, AKT directly phosphorylates HBP1, thereby inhibiting its transcriptional activity. Taken together, these findings place HBP1 at the center of a network of micro-RNAs and oncoproteins that control cell proliferation. In this review, we discuss our current understanding of HBP1 function in human physiology and diseases.
Collapse
Affiliation(s)
- Emeline Bollaert
- Université Catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Audrey de Rocca Serra
- Université Catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- Université Catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200, Brussels, Belgium.
| |
Collapse
|
10
|
Cao Z, Xue J, Cheng Y, Wang J, Liu Y, Li H, Jiang W, Li G, Gui Y, Zhang X. MDM2 promotes genome instability by ubiquitinating the transcription factor HBP1. Oncogene 2019; 38:4835-4855. [PMID: 30816344 PMCID: PMC6756050 DOI: 10.1038/s41388-019-0761-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/09/2018] [Accepted: 02/10/2019] [Indexed: 12/26/2022]
Abstract
Genome instability is a common feature of tumor cells, and the persistent presence of genome instability is a potential mechanism of tumorigenesis. The E3 ubiquitin ligase MDM2 is intimately involved in genome instability, but its mechanisms are unclear. Our data demonstrated that the transcription factor HBP1 is a target of MDM2. MDM2 facilitates HBP1 proteasomal degradation by ubiquitinating HBP1, regardless of p53 status, thus attenuating the transcriptional inhibition of HBP1 in the expression of its target genes, such as the DNA methyltransferase DNMT1 and histone methyltransferase EZH2, which results in global DNA hypermethylation and histone hypermethylation and ultimately genome instability. The repression of HBP1 by MDM2 finally promotes cell growth and tumorigenesis. Next, we thoroughly explored the regulatory mechanism of the MDM2/HBP1 axis in DNA damage repair following ionizing radiation. Our data indicated that MDM2 overexpression-mediated repression of HBP1 delays DNA damage repair and causes cell death in a p53-independent manner. This investigation elucidated the mechanism of how MDM2 promotes genome instability and enhances tumorigenesis in the absence of p53, thus providing a theoretical and experimental basis for targeting MDM2 as a cancer therapy.
Collapse
Affiliation(s)
- Zhengyi Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Junhui Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yuning Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Jiyin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yujuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Wei Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Gang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, P. R. China
| | - Xiaowei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China.
| |
Collapse
|
11
|
Guo X, Qiu W, Wang J, Liu Q, Qian M, Wang S, Zhang Z, Gao X, Chen Z, Guo Q, Xu J, Xue H, Li G. Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/Prkar1a pathways. Int J Cancer 2019; 144:3111-3126. [PMID: 30536597 DOI: 10.1002/ijc.32052] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) play a pivotal role in mediating the formation of an immunosuppressive environment and assisting tumors in evading the host immune response. However, the mechanism through which tumors manipulate the differentiation and function of MDSCs remains unclear. Here, we report that hypoxia-induced glioma cells can stimulate the differentiation of functional MDSCs by transferring exosomal miR-29a and miR-92a to MDSCs. Our results showed that glioma-derived exosomes (GEXs) can enhance the differentiation of functional MDSCs both in vitro and in vivo, and hypoxia-induced GEXs (H-GEXs) demonstrated a stronger MDSCs induction ability than did normoxia-induced GEXs (N-GEXs). A subsequent miRNA sequencing analysis of N-GEXs and H-GEXs revealed that hypoxia-induced exosomal miR-29a and miR-92a expression induced the propagation of MDSCs. miR-29a and miR-92a activated the proliferation and function of MDSCs by targeting high-mobility group box transcription factor 1 (Hbp1) and protein kinase cAMP-dependent type I regulatory subunit alpha (Prkar1a), respectively. Altogether, the results of our study provide new insights into the role of glioma exosomal miRNAs in mediating the formation of immunosuppressive microenvironments in tumors and elucidate the underlying exosomal miR-29a/miR-92a-based regulatory mechanism responsible for the modulation of functional MDSC induction.
Collapse
Affiliation(s)
- Xiaofan Guo
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Wei Qiu
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Jian Wang
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Qinglin Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Mingyu Qian
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Shaobo Wang
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Zongpu Zhang
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Xiao Gao
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Zihang Chen
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Qindong Guo
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Jianye Xu
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Hao Xue
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Gang Li
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, People's Republic of China.,Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
12
|
Song X, Gao X, Lu J, Liang H, Su P, Li Q, Pang Y. High mobility group box transcription factor 1 (HBP1) from Lampetra japonica affects cell cycle regulation. Dev Growth Differ 2018. [PMID: 29520767 DOI: 10.1111/dgd.12426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High mobility group (HMG) box-containing protein 1 (HBP1) is a member of the HMG family of chromosomal proteins. Previous studies have shown that human HBP1 exhibits tumor-suppressor activity. Here, we identified a homologue of HBP1, L-hbp1, in Lampetra japonica. The L-hbp1 gene shared high sequence similarity with its homologues in jawed vertebrates, as shown by bioinformatics analyses. L-hbp1 contains a 1,584-bp open reading frame that encodes 527 amino acids. A pAdenox-L-HBP1 plasmid was constructed and transfected successfully in Raji cells, as revealed by real-time PCR. The overexpression of L-HBP1 reduced cell growth rates, inhibited G1 phase progression, decreased cyclin D1 and c-Myc protein expression, and increased p53 protein expression. Western blot and immunohistochemical assays showed that L-HBP1 was primarily distributed in the heart, kidney, gill and liver of lamprey. Cell cycle analysis revealed that decreased L-HBP1 expression in HBP1 morpholino oligonucleotide-transfected lamprey cells resulted in a decreased fraction of cells in the G1 phase and corresponding increases in the S and G2/M phases. Additionally, treatment of lamprey cardiac cells with pharmacological inhibitors of p38 MAP kinase released the cells from G1 arrest. Together, these results indicated that HBP1 expression in lamprey was correlated with the onset of mitotic arrest in these cells, which have implications for cell cycle regulation.
Collapse
Affiliation(s)
- Xiaoping Song
- College of Life Science, Liaoning Normal University, Dalian, China.,Respiratory Medicine, Affiliated Zhong shan Hospital of Dalian University, Dalian, China
| | - Xingxing Gao
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jiali Lu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Hongfang Liang
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
13
|
Bollaert E, Johanns M, Herinckx G, de Rocca Serra A, Vandewalle VA, Havelange V, Rider MH, Vertommen D, Demoulin JB. HBP1 phosphorylation by AKT regulates its transcriptional activity and glioblastoma cell proliferation. Cell Signal 2018; 44:158-170. [PMID: 29355710 DOI: 10.1016/j.cellsig.2018.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/22/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
The HMG-box protein 1 (HBP1) is a transcriptional regulator and a potential tumor suppressor that controls cell proliferation, differentiation and oncogene-mediated senescence. In a previous study, we showed that AKT activation through the PI3K/AKT/FOXO pathway represses HBP1 expression at the transcriptional level in human fibroblasts as well as in cancer cell lines. In the present study, we investigated whether AKT could also regulate HBP1 directly. First, AKT1 phosphorylated recombinant human HBP1 in vitro on three conserved sites, Ser380, Thr484 and Ser509. In living cells, we confirmed the phosphorylation of HBP1 on residues 380 and 509 using phospho-specific antibodies. HBP1 phosphorylation was induced by growth factors, such as EGF or IGF-1, which activated AKT. Conversely, it was blocked by treatment of cells with an AKT inhibitor (MK-2206) or by AKT knockdown. Next, we observed that HBP1 transcriptional activity was strongly modified by mutating its phosphorylation sites. The regulation of target genes such as DNMT1, P47phox, p16INK4A and cyclin D1 was also affected. HBP1 had previously been shown to limit glioma cell growth. Accordingly, HBP1 silencing by small-hairpin RNA increased human glioblastoma cell proliferation. Conversely, HBP1 overexpression decreased cell growth and foci formation. This effect was amplified by mutations that prevented phosphorylation by AKT, and blunted by mutations that mimicked phosphorylation. In conclusion, our results suggest that HBP1 phosphorylation by AKT blocks its functions as transcriptional regulator and tumor suppressor.
Collapse
Affiliation(s)
- Emeline Bollaert
- de Duve Institute, Université Catholique de Louvain (UCL), MEXP Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Manuel Johanns
- de Duve Institute, Université Catholique de Louvain (UCL), PHOS Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Gaëtan Herinckx
- de Duve Institute, Université Catholique de Louvain (UCL), PHOS Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Audrey de Rocca Serra
- de Duve Institute, Université Catholique de Louvain (UCL), MEXP Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Virginie A Vandewalle
- de Duve Institute, Université Catholique de Louvain (UCL), MEXP Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Violaine Havelange
- de Duve Institute, Université Catholique de Louvain (UCL), MEXP Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Mark H Rider
- de Duve Institute, Université Catholique de Louvain (UCL), PHOS Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain (UCL), PHOS Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium
| | - Jean-Baptiste Demoulin
- de Duve Institute, Université Catholique de Louvain (UCL), MEXP Unit, Avenue Hippocrate 75, Box B1.74.05, 1200 Brussels, Belgium.
| |
Collapse
|
14
|
HMG-box transcription factor 1: a positive regulator of the G1/S transition through the Cyclin-CDK-CDKI molecular network in nasopharyngeal carcinoma. Cell Death Dis 2018; 9:100. [PMID: 29367693 PMCID: PMC5833394 DOI: 10.1038/s41419-017-0175-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022]
Abstract
HMG-box transcription factor 1 (HBP1) has been reported to be a tumor suppressor in diverse malignant carcinomas. However, our findings provide a conclusion that HBP1 plays a novel role in facilitating nasopharyngeal carcinoma (NPC) growth. The Kaplan-Meier analysis indicates that high expression HBP1 and low miR-29c expression both are negatively correlated with the overall survival rates of NPC patients. HBP1 knockdown inhibits cellular proliferation and growth, and arrested cells in G1 phase rather than affected cell apoptosis via flow cytometry (FCM) analysis. Mechanistically, HBP1 induces the expression of CCND1 and CCND3 levels by binding to their promoters, and binds to CDK4, CDK6 and p16INK4A promoters while not affects their expression levels. CCND1 and CCND3 promote CCND1-CDK4, CCND3-CDK6, and CDK2-CCNE1 complex formation, thus, E2F-1 and DP-1 are activated to accelerate the G1/S transition in the cell cycle. MiR-29c is down-regulated and correlated with NPC tumorigenesis and progression. Luciferase assays confirms that miR-29c binds to the 3' untranslated region (3'-UTR) of HBP1. Introduction of pre-miR-29c decreased HBP1 mRNA and protein levels. Therefore, the high endogenous HBP1 expression might be attributed to the low levels of endogenous miR-29c in NPC. In addition, HBP1 knockdown and miR-29c agomir administration both decrease xenograft growth in nude mice in vivo. It is firstly reported that HBP1 knockdown inhibited the proliferation and metastasis of NPC, which indicates that HBP1 functions as a non-tumor suppressor gene in NPC. This study provides a novel potential target for the prevention of and therapies for NPC.
Collapse
|
15
|
Corre I, Paris F, Huot J. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells. Oncotarget 2017; 8:55684-55714. [PMID: 28903453 PMCID: PMC5589692 DOI: 10.18632/oncotarget.18264] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022] Open
Abstract
By gating the traffic of molecules and cells across the vessel wall, endothelial cells play a central role in regulating cardiovascular functions and systemic homeostasis and in modulating pathophysiological processes such as inflammation and immunity. Accordingly, the loss of endothelial cell integrity is associated with pathological disorders that include atherosclerosis and cancer. The p38 mitogen-activated protein kinase (MAPK) cascades are major signaling pathways that regulate several functions of endothelial cells in response to exogenous and endogenous stimuli including growth factors, stress and cytokines. The p38 MAPK family contains four isoforms p38α, p38β, p38γ and p38δ that are encoded by four different genes. They are all widely expressed although to different levels in almost all human tissues. p38α/MAPK14, that is ubiquitously expressed is the prototype member of the family and is referred here as p38. It regulates the production of inflammatory mediators, and controls cell proliferation, differentiation, migration and survival. Its activation in endothelial cells leads to actin remodeling, angiogenesis, DNA damage response and thereby has major impact on cardiovascular homeostasis, and on cancer progression. In this manuscript, we review the biology of p38 in regulating endothelial functions especially in response to oxidative stress and during the metastatic process.
Collapse
Affiliation(s)
- Isabelle Corre
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
| | - François Paris
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Jacques Huot
- Le Centre de Recherche du CHU de Québec-Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada
| |
Collapse
|
16
|
Wang S, Cao Z, Xue J, Li H, Jiang W, Cheng Y, Li G, Zhang X. A positive feedback loop between Pim-1 kinase and HBP1 transcription factor contributes to hydrogen peroxide-induced premature senescence and apoptosis. J Biol Chem 2017; 292:8207-8222. [PMID: 28348080 DOI: 10.1074/jbc.m116.768101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress can induce cell dysfunction and lead to a broad range of degenerative alterations, including carcinogenesis, aging, and other oxidative stress-related conditions. To avoid undergoing carcinogenesis in response to oxidative stress, cells trigger a succession of checkpoint responses, including premature senescence and apoptosis. Increasing evidence indicates that H2O2, an important cause of oxidative stress, functions as an important physiological regulator of intracellular signaling pathways that participate in regulation of cell premature senescence and apoptosis. However, the precise mechanisms underlying this process remain to be studied extensively. In this study, we describe the importance of Pim-1 kinase in this checkpoint response to oxidative stress. Pim-1 binds to and phosphorylates the transcription factor high mobility group box transcription factor 1 (HBP1), activating it. H2O2 enhances the interaction between Pim-1 and HBP1 and promotes HBP1 accumulation. In turn, HBP1 rapidly and selectively up-regulates Pim-1 expression in H2O2-stimulated cells, thereby creating a Pim-1-HBP1 positive feedback loop that regulates H2O2-induced premature senescence and apoptosis. Furthermore, the Pim-1-HBP1 positive feedback loop exerts its effect by regulating the senescence markers DNMT1 and p16 and the apoptosis marker Bax. The Pim-1-HBP1 axis thus constitutes a novel checkpoint pathway critical for the inhibition of tumorigenesis.
Collapse
Affiliation(s)
- Shuya Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191, China
| | - Zhengyi Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191, China
| | - Junhui Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191, China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191, China
| | - Wei Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191, China
| | - Yuning Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191, China
| | - Gang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191, China
| | - Xiaowei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
17
|
Liu X, Ding S, Shi P, Dietrich R, Märtlbauer E, Zhu K. Non-hemolytic enterotoxin of Bacillus cereus induces apoptosis in Vero cells. Cell Microbiol 2016; 19. [PMID: 27762484 DOI: 10.1111/cmi.12684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
Bacillus cereus is an opportunistic pathogen that often causes foodborne infectious diseases and food poisoning. Non-hemolytic enterotoxin (Nhe) is the major toxin found in almost all enteropathogenic B. cereus and B. thuringiensis isolates. However, little is known about the cellular response after Nhe triggered pore formation on cell membrane. Here, we demonstrate that Nhe induced cell cycle arrest at G0 /G1 phase and provoked apoptosis in Vero cells, most likely associated with mitogen-activated protein kinase (MAPK) and death receptor pathways. The influx of extracellular calcium ions and increased level of reactive oxygen species in cytoplasm were sensed by apoptosis signal-regulating kinase 1 (ASK1) and p38 MAPK. Extrinsic death receptor Fas could also promote the activation of p38 MAPK. Subsequently, ASK1 and p38 MAPK triggered downstream caspase-8 and 3 to initiate apoptosis. Our results clearly demonstrate that ASK1, and Fas-p38 MAPK-mediated caspase-8 dependent pathways are involved in apoptotic cell death provoked by the pore-forming enterotoxin Nhe.
Collapse
Affiliation(s)
- Xiaoye Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peijie Shi
- The Children's Hospital of Fudan University, Shanghai, China
| | - Richard Dietrich
- Institute of Food Safety, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Erwin Märtlbauer
- Institute of Food Safety, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Feng YM, Feng CW, Chen SY, Hsieh HY, Chen YH, Hsu CD. Cyproheptadine, an antihistaminic drug, inhibits proliferation of hepatocellular carcinoma cells by blocking cell cycle progression through the activation of P38 MAP kinase. BMC Cancer 2015; 15:134. [PMID: 25886177 PMCID: PMC4383201 DOI: 10.1186/s12885-015-1137-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 02/26/2015] [Indexed: 01/12/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a major cause of cancer deaths worldwide. However, current chemotherapeutic drugs for HCC are either poorly effective or expensive, and treatment with these drugs has not led to satisfactory outcomes. In a 2012 case report, we described our breakthrough finding in two advanced HCC patients, of whom one achieved complete remission of liver tumors and the other a normalized α-fetoprotein level, along with complete remission of their lung metastases, after the concomitant use of thalidomide and cyproheptadine. We assumed the key factor in our effective therapy to be cyproheptadine. In this study, we investigated the antiproliferative effects and molecular mechanisms of cyproheptadine. Methods The effect of cyproheptadine on cell proliferation was examined in human HCC cell lines HepG2 and Huh-7. Cell viability was assayed with Cell Counting Kit-8; cell cycle distribution was analyzed by flow cytometry. Mechanisms underlying cyproheptadine-induced cell cycle arrest were probed by western blot analysis. Results Cyproheptadine had a potent inhibitory effect on the proliferation of HepG2 and Huh-7 cells but minimal toxicity in normal hepatocytes. Cyproheptadine induced cell cycle arrest in HepG2 cells in the G1 phase and in Huh-7 cells at the G1/S transition. The cyproheptadine-induced G1 arrest in HepG2 cells was associated with an increased expression of HBP1 and p16, whereas the G1/S arrest in Huh-7 cells was associated with an increase in p21 and p27 expression and a dramatic decrease in the phosphorylation of the retinoblastoma protein. Additionally, cyproheptadine elevated the percentage of Huh-7 cells in the sub-G1 population, increased annexin V staining for cell death, and raised the levels of PARP and its cleaved form, indicating induction of apoptosis. Finally, cyproheptadine-mediated cell cycle arrest was dependent upon the activation of p38 MAP kinase in HepG2 cells and the activation of both p38 MAP kinase and CHK2 in Huh-7 cells. Conclusions Our results demonstrate that a non-classical p38 MAP kinase function, regulation of cell cycle checkpoints, is one of the underlying mechanisms promoted by cyproheptadine to suppress the proliferation of HCC cells. These results provide evidence for the drug’s potential as a treatment option for liver cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1137-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Min Feng
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan.
| | - Chin-Wen Feng
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Syue-Yi Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan.
| | - Hsiao-Yen Hsieh
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan.
| | - Yu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan.
| | - Cheng-Da Hsu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan.
| |
Collapse
|
19
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
20
|
Chang Z, Ju H, Ling J, Zhuang Z, Li Z, Wang H, Fleming JB, Freeman JW, Yu D, Huang P, Chiao PJ. Cooperativity of oncogenic K-ras and downregulated p16/INK4A in human pancreatic tumorigenesis. PLoS One 2014; 9:e101452. [PMID: 25029561 PMCID: PMC4100754 DOI: 10.1371/journal.pone.0101452] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022] Open
Abstract
Activation of K-ras and inactivation of p16 are the most frequently identified genetic alterations in human pancreatic epithelial adenocarcinoma (PDAC). Mouse models engineered with mutant K-ras and deleted p16 recapitulate key pathological features of PDAC. However, a human cell culture transformation model that recapitulates the human pancreatic molecular carcinogenesis is lacking. In this study, we investigated the role of p16 in hTERT-immortalized human pancreatic epithelial nestin-expressing (HPNE) cells expressing mutant K-ras (K-rasG12V). We found that expression of p16 was induced by oncogenic K-ras in these HPNE cells and that silencing of this induced p16 expression resulted in tumorigenic transformation and development of metastatic PDAC in an orthotopic xenograft mouse model. Our results revealed that PI3K/Akt, ERK1/2 pathways and TGFα signaling were activated by K-ras and involved in the malignant transformation of human pancreatic cells. Also, p38/MAPK pathway was involved in p16 up-regulation. Thus, our findings establish an experimental cell-based model for dissecting signaling pathways in the development of human PDAC. This model provides an important tool for studying the molecular basis of PDAC development and gaining insight into signaling mechanisms and potential new therapeutic targets for altered oncogenic signaling pathways in PDAC.
Collapse
Affiliation(s)
- Zhe Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Huaiqiang Ju
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jianhua Ling
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhuonan Zhuang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhongkui Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jason B. Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - James W. Freeman
- The Division of Hematology and Medical Oncology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Peng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Paul J. Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
The expression of the tumour suppressor HBP1 is down-regulated by growth factors via the PI3K/PKB/FOXO pathway. Biochem J 2014; 460:25-34. [PMID: 24762137 DOI: 10.1042/bj20131467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Growth factors inactivate the FOXO (forkhead box O) transcription factors through PI3K (phosphoinositide 3-kinase) and PKB (protein kinase B). By comparing microarray data from multiple model systems, we identified HBP1 (high-mobility group-box protein 1) as a novel downstream target of this pathway. HBP1 mRNA was down-regulated by PDGF (platelet-derived growth factor), FGF (fibroblast growth factor), PI3K and PKB, whereas it was up-regulated by FOXO factors. This observation was confirmed in human and murine fibroblasts as well as in cell lines derived from leukaemia, breast adenocarcinoma and colon carcinoma. Bioinformatics analysis led to the identification of a conserved consensus FOXO-binding site in the HBP1 promoter. By luciferase activity assay and ChIP, we demonstrated that FOXO bound to this site and regulated the HBP1 promoter activity in a PI3K-dependent manner. Silencing of HBP1 by shRNA increased the proliferation of human fibroblasts in response to growth factors, suggesting that HBP1 limits cell growth. Finally, by analysing a transcriptomics dataset from The Cancer Genome Atlas, we observed that HBP1 expression was lower in breast tumours that had lost FOXO expression. In conclusion, HBP1 is a novel target of the PI3K/FOXO pathway and controls cell proliferation in response to growth factors.
Collapse
|
22
|
Xu Y, Li N, Xiang R, Sun P. Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence. Trends Biochem Sci 2014; 39:268-76. [PMID: 24818748 DOI: 10.1016/j.tibs.2014.04.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022]
Abstract
Oncogene-induced senescence (OIS) is a tumor-suppressing response that must be disrupted for cancer to develop. Mechanistic insights into OIS have begun to emerge. Activation of the p53/p21(WAF1) and/or p16(INK4A) tumor-suppressor pathways is essential for OIS. Moreover, the DNA damage response, chromatin remodeling, and senescence-associated secretory phenotype (SASP) are important for the initiation and maintenance of OIS. This review discusses recent advances in elucidating the mechanisms of OIS, focusing on the roles of the p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/cellular homolog of murine thymoma virus AKT/mammalian target of rapamycin (mTOR) pathways. These studies indicate that OIS is mediated by an intricate signaling network. Further delineation of this network may lead to development of new cancer therapies targeting OIS.
Collapse
Affiliation(s)
- Yingxi Xu
- College of Medicine, Nankai University, 94 Weijin Road, Tianjin, China, 300071; Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Na Li
- College of Medicine, Nankai University, 94 Weijin Road, Tianjin, China, 300071
| | - Rong Xiang
- College of Medicine, Nankai University, 94 Weijin Road, Tianjin, China, 300071
| | - Peiqing Sun
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Woo CC, Hsu A, Kumar AP, Sethi G, Tan KHB. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS. PLoS One 2013; 8:e75356. [PMID: 24098377 PMCID: PMC3788809 DOI: 10.1371/journal.pone.0075356] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/14/2013] [Indexed: 12/15/2022] Open
Abstract
Due to narrow therapeutic window of cancer therapeutic agents and the development of resistance against these agents, there is a need to discover novel agents to treat breast cancer. The antitumor activities of thymoquinone (TQ), a compound isolated from Nigella sativa oil, were investigated in breast carcinoma in vitro and in vivo. Cell responses after TQ treatment were assessed by using different assays including MTT assay, annexin V-propidium iodide staining, Mitosox staining and Western blot. The antitumor effect was studied by breast tumor xenograft mouse model, and the tumor tissues were examined by histology and immunohistochemistry. The level of anti-oxidant enzymes/molecules in mouse liver tissues was measured by commercial kits. Here, we show that TQ induced p38 phosphorylation and ROS production in breast cancer cells. These inductions were found to be responsible for TQ’s anti-proliferative and pro-apoptotic effects. Moreover, TQ-induced ROS production regulated p38 phosphorylation but not vice versa. TQ treatment was found to suppress the tumor growth and this effect was further enhanced by combination with doxorubicin. TQ also inhibited the protein expression of anti-apoptotic genes, such as XIAP, survivin, Bcl-xL and Bcl-2, in breast cancer cells and breast tumor xenograft. Reduced Ki67 and increased TUNEL staining were observed in TQ-treated tumors. TQ was also found to increase the level of catalase, superoxide dismutase and glutathione in mouse liver tissues. Overall, our results demonstrated that the anti-proliferative and pro-apoptotic effects of TQ in breast cancer are mediated through p38 phosphorylation via ROS generation.
Collapse
Affiliation(s)
- Chern Chiuh Woo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Annie Hsu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- * E-mail: (KHBT); (GS)
| | - Kwong Huat Benny Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (KHBT); (GS)
| |
Collapse
|
24
|
Zhang Y, Gao Y, Zhao L, Han L, Lu Y, Hou P, Shi X, Liu X, Tian B, Wang X, Huang B, Lu J. Mitogen-activated protein kinase p38 and retinoblastoma protein signalling is required for DNA damage-mediated formation of senescence-associated heterochromatic foci in tumour cells. FEBS J 2013; 280:4625-39. [PMID: 23859194 DOI: 10.1111/febs.12435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/18/2013] [Accepted: 07/09/2013] [Indexed: 12/12/2022]
Abstract
DNA-damaging agents are able to induce irreversible cell growth arrest and senescence in some types of tumour cells, thus contributing to the static feature of cancer. However, senescent tumour cells may re-enter the cell cycle, leading to tumour relapse. Understanding the mechanisms that control the viability of senescent cells may be critical for tumour suppression. Primary human fibroblasts undergoing oncogene-induced or replicative senescence are known to form senescence-associated heterochromatin foci (SAHF), which contribute to the stability of the senescent state. However, it is unclear whether SAHF formation is universal in tumour cells. We report that the DNA-damaging agents doxorubicin and 7-ethyl-10-hydroxycamptothecin were able to induce the formation of SAHF in some tumour cell types, and this induction was accompanied by activation of the retinoblastoma protein pathway. By contrast, tumour cells in which the retinoblastoma protein pathway could not be activated by doxorubicin or 7-ethyl-10-hydroxycamptothecin failed to form SAHF. In parallel, tumour cells with deficient retinoblastoma protein were also unable to form SAHF. In addition, we show that the mitogen-activated protein kinase p38 pathway was involved in tumour cell SAHF formation in response to doxorubicin and 7-ethyl-10-hydroxycamptothecin. Furthermore, HMG box transcription factor 1 (HBP1), a downstream target of the mitogen-activated protein kinase p38-mediated senescence pathway, was required for SAHF formation. Taken together, the results of the present study highlight the roles of the mitogen-activated protein kinase p38/retinoblastoma protein pathway in tumour cell SAHF formation in response to DNA-damaging agents, and provide new insights into the mechanisms of DNA damage-mediated tumour suppression.
Collapse
Affiliation(s)
- Yu Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
HBP1-mediated transcriptional regulation of DNA methyltransferase 1 and its impact on cell senescence. Mol Cell Biol 2012; 33:887-903. [PMID: 23249948 DOI: 10.1128/mcb.00637-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activity of DNA methyltransferase 1 (DNMT1) is associated with diverse biological activities, including cell proliferation, senescence, and cancer development. In this study, we demonstrated that the HMG box-containing protein 1 (HBP1) transcription factor is a new repressor of DNMT1 in a complex mechanism during senescence. The DNMT1 gene contains an HBP1-binding site at bp -115 to -134 from the transcriptional start site. HBP1 repressed the endogenous DNMT1 gene through sequence-specific binding, resulting in both gene-specific (e.g., p16(INK4)) and global DNA hypomethylation changes. The HBP1-mediated repression by DNMT1 contributed to replicative and premature senescence, the latter of which could be induced by Ras and HBP1 itself. A detailed investigation unexpectedly revealed that HBP1 has dual and complex transcriptional functions, both of which contribute to premature senescence. HBP1 both repressed the DNMT1 gene and activated the p16 gene in premature senescence. The opposite transcriptional functions proceeded through different DNA sequences and differential protein acetylation. While intricate, the reciprocal partnership between HBP1 and DNMT1 has exceptional importance, since its abrogation compromises senescence and promotes tumorigenesis. Together, our results suggest that the HBP1 transcription factor orchestrates a complex regulation of key genes during cellular senescence, with an impact on overall DNA methylation state.
Collapse
|
26
|
Agrawal M, Gadgil M. Meta analysis of gene expression changes upon treatment of A549 cells with anti-cancer drugs to identify universal responses. Comput Biol Med 2012; 42:1141-9. [PMID: 23063289 DOI: 10.1016/j.compbiomed.2012.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 08/29/2012] [Accepted: 09/11/2012] [Indexed: 11/26/2022]
Abstract
A meta-analysis of publicly available gene expression changes in A549 cells upon treatment with anti-cancer drugs is reported. To reduce false positives, both fold-change and significance level cutoffs were used. Simulated datasets and permutation analysis were used to guide choice of ratio cutoff. Of the genes identified, FDXR is the only gene differentially expressed in six of the seven drug treatments. Though FDXR has been reported to be differentially expressed upon treatment with 5-fluorouracil and its expression correlated to long term disease survival, to our knowledge this is a first study implicating a wide effect of anti-cancer drug treatment on FDXR expression. The other genes identified which are differentially expressed in four out of the seven drug treatments are CDKN1A and PARVB which are upregulated and MYC, HBP1, LDLR, SIM2, ALX1 and GPHN which are downregulated.
Collapse
Affiliation(s)
- Megha Agrawal
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | | |
Collapse
|
27
|
Singh AK, Pandey R, Gill K, Singh R, Saraya A, Chauhan SS, Yadav S, Pal S, Singh N, Dey S. p38β MAP kinase as a therapeutic target for pancreatic cancer. Chem Biol Drug Des 2012; 80:266-73. [PMID: 22515544 DOI: 10.1111/j.1747-0285.2012.01395.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pancreatic cancer is very difficult to diagnose in its early stage. Molecular marker and imaging have not proven to be accurate modalities for screening of pancreatic cancer. This study aims to develop p38β as a protein marker for pancreatic cancer and to design peptide inhibitor against the same. The serum p38β level of pancreatic cancer (n = 35; 5.06 μg/mL) was twofold higher compared to that of the chronic pancreatitis (n = 10; 2.92 μg/mL) and matched normal control (n = 10; 2.86 μg/ml) (p < 0.0005). Peptide inhibitors were designed to inhibit the activity of p38β and the kinetic assay had shown the dissociation constant, (K(D)) to be 3.16 × 10(-8) M and IC(50), 25 nM by Surface Plasmon Resonance (SPR) and Enzyme-Linked Immunosorbent Assay (ELISA), respectively. The peptide inhibitor also significantly reduced viability and induced cytotoxicity in Human Pancreatic carcinoma epithelial-like cell line (PANC-1) cells.
Collapse
Affiliation(s)
- Abhay Kumar Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Synthesis of a dual functional anti-MDR tumor agent PH II-7 with elucidations of anti-tumor effects and mechanisms. PLoS One 2012; 7:e32782. [PMID: 22403708 PMCID: PMC3293869 DOI: 10.1371/journal.pone.0032782] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 02/02/2012] [Indexed: 11/24/2022] Open
Abstract
Multidrug resistance mediated by P-glycoprotein in cancer cells has been a major issue that cripples the efficacy of chemotherapy agents. Aimed for improved efficacy against resistant cancer cells, we designed and synthesized 25 oxindole derivatives based on indirubin by structure-activity relationship analysis. The most potent one was named PH II-7, which was effective against 18 cancer cell lines and 5 resistant cell lines in MTT assay. It also significantly inhibited the resistant xenograft tumor growth in mouse model. In cell cycle assay and apoptosis assay conducted with flow cytometry, PH II-7 induced S phase cell cycle arrest and apoptosis even in resistant cells. Consistently revealed by real-time PCR, it modulates the expression of genes related to the cell cycle and apoptosis in these cells, which may contributes to its efficacy against them. By side-chain modification and FITC-labeling of PH II-7, we were able to show with confocal microscopy that not only it was not pumped by P-glycoprotein, it also attenuated the efflux of Adriamycin by P-glycoprotein in MDR tumor cells. Real-time PCR and western blot analysis showed that PH II-7 down-regulated MDR1 gene via protein kinase C alpha (PKCA) pathway, with c-FOS and c-JUN as possible mediators. Taken together, PH II-7 is a dual-functional compound that features both the cytotoxicity against cancer cells and the inhibitory effect on P-gp mediated drug efflux.
Collapse
|
29
|
Rayess H, Wang MB, Srivatsan ES. Cellular senescence and tumor suppressor gene p16. Int J Cancer 2011; 130:1715-25. [PMID: 22025288 DOI: 10.1002/ijc.27316] [Citation(s) in RCA: 507] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/14/2011] [Indexed: 12/14/2022]
Abstract
Cellular senescence is an irreversible arrest of cell growth. Biochemical and morphological changes occur during cellular senescence, including the formation of a unique cellular morphology such as flattened cytoplasm. Function of mitochondria, endoplasmic reticulum and lysosomes are affected resulting in the inhibition of lysosomal and proteosomal pathways. Cellular senescence can be triggered by a number of factors including, aging, DNA damage, oncogene activation and oxidative stress. While the molecular mechanism of senescence involves p16 and p53 tumor suppressor genes and telomere shortening, this review is focused on the mechanism of p16 control. The p16-mediated senescence acts through the retinoblastoma (Rb) pathway inhibiting the action of the cyclin dependant kinases leading to G1 cell cycle arrest. Rb is maintained in a hypophosphorylated state resulting in the inhibition of transcription factor E2F1. Regulation of p16 expression is complex and involves epigenetic control and multiple transcription factors. PRC1 (Pombe repressor complex (1) and PRC2 (Pombe repressor complex (2) proteins and histone deacetylases play an important role in the promoter hypermethylation for suppressing p16 expression. While transcription factors YY1 and Id1 suppress p16 expression, transcription factors CTCF, Sp1 and Ets family members activate p16 transcription. Senescence occurs with the inactivation of suppressor elements leading to the enhanced expression of p16.
Collapse
Affiliation(s)
- Hani Rayess
- Department of Surgery, VA Greater Los Angeles Healthcare system, West Los Angeles, CA, USA
| | | | | |
Collapse
|
30
|
Wang W, Pan K, Chen Y, Huang C, Zhang X. The acetylation of transcription factor HBP1 by p300/CBP enhances p16INK4A expression. Nucleic Acids Res 2011; 40:981-95. [PMID: 21967847 PMCID: PMC3273810 DOI: 10.1093/nar/gkr818] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HBP1 is a sequence-specific DNA-binding transcription factor with many important biological roles. It activates or represses the expression of some specific genes during cell growth and differentiation. Previous studies have exhibited that HBP1 binds to p16INK4A promoter and activates p16INK4A expression. We found that trichostatin A (TSA), an inhibitor of HDAC (histone deacetylase), induces p16INK4A expression in an HBP1-dependent manner. This result was drawn from a transactivation experiment by measuring relative luciferase activities of p16INK4A promoter with HBP1-binding site in comparison with that of the wild-type p16INK4A promoter by transient cotransfection with HBP1 into HEK293T cells and 2BS cells. HBP1 acetylation after TSA treatment was confirmed by immunoprecipitation assay. Our data showed that HBP1 interacted with histone acetyltransferase p300 and CREB-binding protein (CBP) and also recruited p300/CBP to p16INK4A promoter. HBP1 was acetylated by p300/CBP in two regions: repression domain (K297/305/307) and P domain (K171/419). Acetylation of Repression domain was not required for HBP1 transactivation on p16INK4A. However, luciferase assay and western blotting results indicate that acetylation of P domain, especially K419 acetylation is essential for HBP1 transactivation on p16INK4A. As assayed by SA-beta-gal staining, the acetylation of HBP1 at K419 enhanced HBP1-induced premature senescence in 2BS cells. In addition, HDAC4 repressed HBP1-induced premature senescence through permanently deacetylating HBP1. We conclude that our data suggest that HBP1 acetylation at K419 plays an important role in HBP1-induced p16INK4A expression.
Collapse
Affiliation(s)
- Weibin Wang
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, P R China
| | | | | | | | | |
Collapse
|
31
|
Ewen K, Jackson A, Wilhelm D, Koopman P. A Male-Specific Role for p38 Mitogen-Activated Protein Kinase in Germ Cell Sex Differentiation in Mice1. Biol Reprod 2010; 83:1005-14. [DOI: 10.1095/biolreprod.110.086801] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
32
|
Abstract
Primordial germ cells (PGCs) are embryonic progenitors for the gametes. In the gastrulating mouse embryo, a small group of cells begin expressing a unique set of genes and so commit to the germline. Over the next 3-5 days, these PGCs migrate anteriorly and increase rapidly in number via mitotic division before colonizing the newly formed gonads. PGCs then express a different set of unique genes, their inherited epigenetic imprint is erased and an individual methylation imprint is established, and for female PGCs, the silent X chromosome is reactivated. At this point, germ cells (GCs) commit to either a female or male sexual lineage, denoted by meiosis entry and mitotic arrest, respectively. This developmental program is determined by cues emanating from the somatic environment.
Collapse
Affiliation(s)
- Katherine A Ewen
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
33
|
Li H, Wang W, Liu X, Paulson KE, Yee AS, Zhang X. Transcriptional factor HBP1 targets P16(INK4A), upregulating its expression and consequently is involved in Ras-induced premature senescence. Oncogene 2010; 29:5083-94. [PMID: 20581871 DOI: 10.1038/onc.2010.252] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Oncogene-mediated premature senescence has emerged as a potential tumor-suppressive mechanism in early cancer transitions. Many studies showed that Ras and p38 mitogen-activated protein kinase (MAPK) participate in premature senescence. Our previous work indicated that the HMG box-containing protein 1 (HBP1) transcription factor is involved in Ras- and p38 MAPK-induced premature senescence, but the mechanism of which has not yet been identified. Here, we showed that the p16(INK4A) cyclin-dependent kinase inhibitor is a novel target of HBP1 participating in Ras-induced premature senescence. The promoter of the p16(INK4A) gene contains an HBP1-binding site at position -426 to -433 bp from the transcriptional start site. HBP1 regulates the expression of the endogenous p16(INK4A) gene through direct sequence-specific binding. With HBP1 expression and the subsequent increase of p16(INK4A) gene expression, Ras induces premature senescence in primary cells. The data suggest a model in which Ras and p38 MAPK signaling engage HBP1 and p16(INK4A) to trigger premature senescence. In addition, we report that HBP1 knockdown is also required for Ras-induced transformation. All the data indicate that the mechanism of HBP1-mediated transcriptional regulation is important for not only premature senescence but also tumorigenesis.
Collapse
Affiliation(s)
- H Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Badi I, Cinquetti R, Frascoli M, Parolini C, Chiesa G, Taramelli R, Acquati F. Intracellular ANKRD1 protein levels are regulated by 26S proteasome-mediated degradation. FEBS Lett 2009; 583:2486-92. [PMID: 19589340 DOI: 10.1016/j.febslet.2009.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 06/29/2009] [Accepted: 07/01/2009] [Indexed: 12/01/2022]
Abstract
The ANKRD1/CARP gene encodes a muscle-specific protein which has been implicated in transcriptional regulation and myofibrillar assembly. Several features at both the mRNA and protein levels define ANKRD1 as a gene whose expression is tightly regulated, and deregulated expression of this protein has been recently associated to human congenital heart disease. It is therefore crucial to define the intracellular pathways that regulate the ANKRD1 protein's steady-state levels. Here, we show that ANKRD1 is a short-lived protein whose levels are tightly regulated by the 26S proteasome. In addition, a critical role for a putative PEST motif was established, although other degrons within the ANKRD1 protein are likely implicated in the control of its intracellular levels.
Collapse
Affiliation(s)
- Ileana Badi
- Dipartimento di Biotecnologie e Scienze Molecolari, Università degli Studi dell'Insubria, Varese, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Yao YQ, Ding X, Jia YC, Huang CX, Wang YZ, Xu YH. Anti-tumor effect of beta-elemene in glioblastoma cells depends on p38 MAPK activation. Cancer Lett 2008; 264:127-34. [PMID: 18442668 DOI: 10.1016/j.canlet.2008.01.049] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 01/28/2008] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
beta-Elemene, a natural plant drug extracted from Curcuma wenyujin, has been used as an antitumor drug for different tumors, including glioblastoma. However, the mechanism of its anti-tumor effect is largely unknown. Here we report that anti-proliferation of glioblastoma cells induced by beta-elemene was dependent on p38 MAPK activation. Treatment of glioblastoma cell lines with beta-elemene, led to phosphorylation of p38 MAPK, cell-cycle arrest in G0/G1 phase and inhibition of proliferation of these cells. Inhibition of p38 MAPK reversed beta-elemene-mediated anti-proliferation effect. Furthermore, the growth of glioblastoma cell-transplanted tumors in nude mice was inhibited by intraperitoneal injection of beta-elemene. Taken together, our findings indicate that activation of p38 MAPK is critical for the anti-proliferation effect of beta-elemene and that p38 MAPK might be a putative pharmacological target for glioblastoma therapy.
Collapse
Affiliation(s)
- Yi-Qun Yao
- Department of Neurosurgery, 1st Affiliated Hospital of Dalian Medical University, Dalian, China
| | | | | | | | | | | |
Collapse
|
36
|
Paulson KE, Rieger-Christ K, McDevitt MA, Kuperwasser C, Kim J, Unanue VE, Zhang X, Hu M, Ruthazer R, Berasi SP, Huang CY, Giri D, Kaufman S, Dugan JM, Blum J, Netto G, Wazer DE, Summerhayes IC, Yee AS. Alterations of the HBP1 transcriptional repressor are associated with invasive breast cancer. Cancer Res 2007; 67:6136-45. [PMID: 17616670 DOI: 10.1158/0008-5472.can-07-0567] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Invasive breast cancer has a high risk of recurrence to incurable disease and needs improved prognostic and therapeutic tools. Our work combines clinical and molecular analyses to show that the transcriptional repressor HBP1 may be a new target for invasive breast cancer. Previous work indicated that HBP1 regulated proliferation and senescence and inhibited Wnt signaling. Two of these functions have been associated with invasive breast cancer. In 76 breast tumors, we identified 10 HBP1 mutations/variants that were associated with fully invasive breast cancer. In a separate analysis, we found that a subset of invasive breast cancer specimens also had reduced HBP1 mRNA levels. These clinical correlations suggested that mutation or reduction of HBP1 occurs in invasive breast cancer and that HBP1 might regulate the proliferation and invasiveness of this breast cancer type. Analysis of the HBP1 mutants showed they were functionally defective for suppressing Wnt signaling. To test the consequences of reduced HBP1 levels, we used RNA interference to knock down HBP1 and observed increased Wnt signaling, tumorigenic proliferation, and invasiveness in cell and animal breast cancer models. Lastly, statistical analysis of a breast cancer patient database linked reduced HBP1 expression to breast cancer recurrence. In considering two-gene criteria for relapse potential, reduced expression of HBP1 and SFRP1, which is another Wnt inhibitor that was recently linked to invasive breast cancer, strikingly correlated with recurrence. Together, these data indicate that HBP1 may be a molecularly and clinically relevant regulator of breast cancer transitions that eventually lead to poor prognosis.
Collapse
Affiliation(s)
- K Eric Paulson
- Department of Biochemistry and Program in Genetics, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Mitogen-activated protein (MAP) kinase kinase 4 (MKK4) is a component of stress activated MAP kinase signaling modules. It directly phosphorylates and activates the c-Jun N-terminal kinase (JNK) and p38 families of MAP kinases in response to environmental stress, pro-inflammatory cytokines and developmental cues. MKK4 is ubiquitously expressed and the targeted deletion of the Mkk4 gene in mice results in early embryonic lethality. Further studies in mice have indicated a role for MKK4 in liver formation, the immune system and cardiac hypertrophy. In humans, it is reported that loss of function mutations in the MKK4 gene are found in approximately 5% of tumors from a variety of tissues, suggesting it may have a tumor suppression function. Furthermore, MKK4 has been identified as a suppressor of metastasis of prostate and ovarian cancers. However, the role of MKK4 in cancer development appears complex as other studies support a pro-oncogenic role for MKK4 and JNK. Here we review the biochemical and functional properties of MKK4 and discuss the likely mechanisms by which it may regulate the steps leading to the formation of cancers.
Collapse
Affiliation(s)
- A J Whitmarsh
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
38
|
Zhang X, Kim J, Ruthazer R, McDevitt MA, Wazer DE, Paulson KE, Yee AS. The HBP1 transcriptional repressor participates in RAS-induced premature senescence. Mol Cell Biol 2006; 26:8252-66. [PMID: 16966377 PMCID: PMC1636767 DOI: 10.1128/mcb.00604-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oncogene-mediated premature senescence has emerged as a potential tumor-suppressive mechanism in early cancer transitions. Previous work shows that RAS and p38 MAPK participate in premature senescence, but transcriptional effectors have not been identified. Here, we demonstrate that the HBP1 transcriptional repressor participates in RAS- and p38 MAPK-induced premature senescence. In cell lines, we had previously isolated HBP1 as a retinoblastoma (RB) target but have determined that it functions as a proliferation regulator by inhibiting oncogenic pathways as a transcriptional repressor. In primary cells, the results indicate that HBP1 is a necessary component of premature senescence by RAS and p38 MAPK. Similarly, a knockdown of WIP1 (a p38 MAPK phosphatase) induced premature senescence that also required HBP1. Furthermore, HBP1 requires regulation by RB, in which few transcriptional regulators for premature senescence have been shown. Together, the data suggest a model in which RAS and p38 MAPK signaling engage HBP1 and RB to trigger premature senescence. As an initial step toward clinical relevance, a bioinformatics approach shows that the relative expression levels of HBP1 and WIP1 correlated with decreased relapse-free survival in breast cancer patients. Together, these studies highlight p38 MAPK, HBP1, and RB as important components for a premature-senescence pathway with possible clinical relevance to breast cancer.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Clotet J, Escoté X, Adrover MÀ, Yaakov G, Garí E, Aldea M, de Nadal E, Posas F. Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO J 2006; 25:2338-46. [PMID: 16688223 PMCID: PMC1478172 DOI: 10.1038/sj.emboj.7601095] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 03/22/2006] [Indexed: 11/09/2022] Open
Abstract
Control of cell cycle progression by stress-activated protein kinases (SAPKs) is essential for cell adaptation to extracellular stimuli. Exposure of yeast to osmostress leads to activation of the Hog1 SAPK, which controls cell cycle at G1 by the targeting of Sic1. Here, we show that survival to osmostress also requires regulation of G2 progression. Activated Hog1 interacts and directly phosphorylates a residue within the Hsl7-docking site of the Hsl1 checkpoint kinase, which results in delocalization of Hsl7 from the septin ring and leads to Swe1 accumulation. Upon Hog1 activation, cells containing a nonphosphorylatable Hsl1 by Hog1 are unable to promote Hsl7 delocalization, fail to arrest at G2 and become sensitive to osmostress. Together, we present a novel mechanism that regulates the Hsl1-Hsl7 complex to integrate stress signals to mediate cell cycle arrest and, demonstrate that a single MAPK coordinately modulates different cell cycle checkpoints to improve cell survival upon stress.
Collapse
Affiliation(s)
- Josep Clotet
- Department of Molecular and Cellular Biology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Xavier Escoté
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Miquel Àngel Adrover
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gilad Yaakov
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eloi Garí
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Martí Aldea
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Eulàlia de Nadal
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francesc Posas
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Dr. Aiguader, 80, 08003 Barcelona, Spain. Tel.: +34 93 542 2848; Fax: +34 93 542 2802; E-mail:
| |
Collapse
|
40
|
Berry FB, Mirzayans F, Walter MA. Regulation of FOXC1 Stability and Transcriptional Activity by an Epidermal Growth Factor-activated Mitogen-activated Protein Kinase Signaling Cascade. J Biol Chem 2006; 281:10098-104. [PMID: 16492674 DOI: 10.1074/jbc.m513629200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the FOXC1 transcription factor gene result in Axenfeld Rieger malformations, a disorder that affects the anterior segment of the eye, the teeth, and craniofacial structures. Individuals with this disorder possess an elevated risk for developing glaucoma. Previous work in our laboratory has indicated that FOXC1 transcriptional activity may be regulated by phosphorylation. We report here that FOXC1 is a short-lived protein (t 1/2< 30 min), and serine 272 is a critical residue in maintaining proper stability of FOXC1. Furthermore, we have demonstrated that activation of the ERK1/2 mitogen-activated protein kinase through epidermal growth factor stimulation is required for maximal FOXC1 transcriptional activation and stability. Finally, we have demonstrated that FOXC1 is targeted to the ubiquitin 26 S proteasomal degradation pathway and that amino acid residues 367-553, which include the C-terminal transactivation domain of FOXC1, are essential for ubiquitin incorporation and proteolysis. These results indicate that FOXC1 protein levels and activity are tightly regulated by post-translational modifications.
Collapse
Affiliation(s)
- Fred B Berry
- Department of Ophthalmology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | | | | |
Collapse
|
41
|
Yang L, Lin C, Liu ZR. Signaling to the DEAD box—Regulation of DEAD-box p68 RNA helicase by protein phosphorylations. Cell Signal 2005; 17:1495-504. [PMID: 15927448 DOI: 10.1016/j.cellsig.2005.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Accepted: 03/04/2005] [Indexed: 11/20/2022]
Abstract
P68 nuclear RNA helicase is essential for normal cell growth. The protein plays a very important role in cell development and proliferation. However, the molecular mechanism by which the p68 functions in cell developmental program is not clear. We previously observed that bacterially expressed his-p68 was phosphorylated at multiple sites including serine/threonine and tyrosine [L. Yang, Z.R. Liu, Protein Expr. Purif., 35: 327]. Here we report that p68 RNA helicase is phosphorylated at tyrosine residue(s) in HeLa cells. Phosphorylation of p68 at threonine or tyrosine residues responds differently to tumor necrosis factor alpha (TNF-alpha)induced cell signal. Kinase inhibition and in vitro kinase assays demonstrate that p68 RNA helicase is a cellular target of p38 MAP kinase. Phosphorylation of p68 affects the ATPase and RNA unwinding activities of the protein. In addition, we demonstrate here that phosphorylation of p68 RNA helicase controls the function of the protein in the pre-mRNA splicing process. Interestingly, phosphorylation at different amino acid residues exhibits different regulatory effects. The data suggest that function(s) of p68 RNA helicase may be subjected to the regulation of multiple cell signal pathways.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
42
|
Yao CJ, Works K, Romagnoli PA, Austin GE. Effects of overexpression of HBP1 upon growth and differentiation of leukemic myeloid cells. Leukemia 2005; 19:1958-68. [PMID: 16179914 DOI: 10.1038/sj.leu.2403918] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HMG-box containing protein 1 (HBP1) is a member of the high mobility group (HMG) of chromosomal proteins. Since HBP1 exhibits tumor-suppressor activity in nonmyeloid tissues, we examined the effects of ectopic overexpression of HBP1 upon the growth and differentiation of myeloid cells. We prepared transient and stable transfectants of the myeloblast cell line K562, which overexpress HBP1 mRNA and protein. HBP1 transfectants displayed slower growth in cell culture and reduced colony formation in soft agar, retardation of S-phase progression, reduced expression of cyclin D1 and D3 mRNAs and increased expression of p21 mRNA. HBP1 transfectants also underwent increased apoptosis, as demonstrated by morphology and binding of Annexin V. Fas ligand mRNA levels were increased in HBP1 transfectants, suggesting involvement of the Fas/Fas ligand pathway. HBP1 overexpression enhanced differentiation of K562 cells towards erythroid and megakaryocyte lineages, as evidenced by increased hemoglobin and CD41a expression. Overexpression of HBP1 modulated mRNA levels for myeloid-specific transcription factors C/EBPalpha, c-Myb, c-Myc, and JunB, as well as lineage-specific transcription factors PU.1, GATA-1, and RUNX1. These findings suggest that in myeloid cells HBP1 may serve as a tumor suppressor and a general differentiation inducer and may synergize with chemical differentiating agents to enhance lineage-specific differentiation.
Collapse
Affiliation(s)
- C J Yao
- Department of Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | | | | | | |
Collapse
|
43
|
Abstract
The p38 proteins are an evolutionally conserved family of mitogen-activated protein kinases (MAPK). Recent studies have led to progress in our understanding the roles of p38 MAPK in regulation of tumorigenesis through key cellular growth-control mechanisms. Along with the previously well-characterized proapoptotic functions, new data highlight the critical contributions of p38 MAPK in the negative regulation of cell cycle progression. This review will focus on the ability of p38 MAPK to positively regulate several tumor suppressor (p53- and Rb-dependent) pathways and to attenuate oncogenic (Cdc25A and Cdc25B phosphatases) signals. The concept of p38 MAPK as a potential tumor suppressor will be developed.
Collapse
|
44
|
Yee AS, Paulson EK, McDevitt MA, Rieger-Christ K, Summerhayes I, Berasi SP, Kim J, Huang CY, Zhang X. The HBP1 transcriptional repressor and the p38 MAP kinase: unlikely partners in G1 regulation and tumor suppression. Gene 2004; 336:1-13. [PMID: 15225871 DOI: 10.1016/j.gene.2004.04.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 03/03/2004] [Accepted: 04/05/2004] [Indexed: 02/07/2023]
Abstract
Mechanisms that inhibit cell cycle progression and establish growth arrest are fundamental to tumor suppression and to normal cell differentiation. A complete understanding of these mechanisms should provide new diagnostic and therapeutic targets for future clinical applications related to cancer-specific pathways. This review will focus on the HMG-box protein 1 (HBP1) transcriptional repressor and its roles in cell cycle progression and tumor suppression. The work of several labs now suggests a new pathway for inhibiting G1 progression with exciting possible implications for tumor suppression. Our recent work suggests that the two previously unassociated proteins-the HBP1 transcription factor and the p38 MAP kinase pathway-may now participate together in a G1 regulatory network. Several recent papers collectively highlight an unexpected role and connection of the p38 MAP kinase-signaling pathway in cell cycle control, senescence, and tumor suppression. Together, these initially divergent observations may provide clues into a new tumor suppressive network and spur further investigations that may contribute to new diagnostic and therapeutic targets for cancer.
Collapse
Affiliation(s)
- Amy S Yee
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Berasi SP, Xiu M, Yee AS, Paulson KE. HBP1 repression of the p47phox gene: cell cycle regulation via the NADPH oxidase. Mol Cell Biol 2004; 24:3011-24. [PMID: 15024088 PMCID: PMC371097 DOI: 10.1128/mcb.24.7.3011-3024.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 10/08/2003] [Accepted: 12/30/2003] [Indexed: 11/20/2022] Open
Abstract
Several studies have linked the production of reactive oxygen species (ROS) by the NADPH oxidase to cellular growth control. In many cases, activation of the NADPH oxidase and subsequent ROS generation is required for growth factor signaling and mitogenesis in nonimmune cells. In this study, we demonstrate that the transcriptional repressor HBP1 (HMG box-containing protein 1) regulates the gene for the p47phox regulatory subunit of the NADPH oxidase. HBP1 represses growth regulatory genes (e.g., N-Myc, c-Myc, and cyclin D1) and is an inhibitor of G(1) progression. The promoter of the p47phox gene contains six tandem high-affinity HBP1 DNA-binding elements at positions -1243 to -1318 bp from the transcriptional start site which were required for repression. Furthermore, HBP1 repressed the expression of the endogenous p47phox gene through sequence-specific binding. With HBP1 expression and the subsequent reduction in p47phox gene expression, intracellular superoxide production was correspondingly reduced. Using both the wild type and a dominant-negative mutant of HBP1, we demonstrated that the repression of superoxide production through the NADPH oxidase contributed to the observed cell cycle inhibition by HBP1. Together, these results indicate that HBP1 may contribute to the regulation of NADPH oxidase-dependent superoxide production through transcriptional repression of the p47phox gene. This study defines a transcriptional mechanism for regulating intracellular ROS levels and has implications in cell cycle regulation.
Collapse
Affiliation(s)
- Stephen P Berasi
- Department of Biochemistry, Tufts University School of Medicine, School of Nutrition, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
46
|
Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP, Snijders A, Albertson DG, Pinkel D, Marra MA, Ling V, MacAulay C, Lam WL. A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 2004; 36:299-303. [PMID: 14981516 DOI: 10.1038/ng1307] [Citation(s) in RCA: 437] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 01/23/2004] [Indexed: 11/08/2022]
Abstract
We constructed a tiling resolution array consisting of 32,433 overlapping BAC clones covering the entire human genome. This increases our ability to identify genetic alterations and their boundaries throughout the genome in a single comparative genomic hybridization (CGH) experiment. At this tiling resolution, we identified minute DNA alterations not previously reported. These alterations include microamplifications and deletions containing oncogenes, tumor-suppressor genes and new genes that may be associated with multiple tumor types. Our findings show the need to move beyond conventional marker-based genome comparison approaches, that rely on inference of continuity between interval markers. Our submegabase resolution tiling set for array CGH (SMRT array) allows comprehensive assessment of genomic integrity and thereby the identification of new genes associated with disease.
Collapse
Affiliation(s)
- Adrian S Ishkanian
- British Columbia Cancer Research Centre, 601 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|