1
|
Manzo SG, Mazouzi A, Leemans C, van Schaik T, Neyazi N, van Ruiten MS, Rowland BD, Brummelkamp TR, van Steensel B. Chromatin protein complexes involved in gene repression in lamina-associated domains. EMBO J 2024; 43:5260-5287. [PMID: 39322756 PMCID: PMC11535540 DOI: 10.1038/s44318-024-00214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/27/2024] Open
Abstract
Lamina-associated domains (LADs) are large chromatin regions that are associated with the nuclear lamina (NL) and form a repressive environment for transcription. The molecular players that mediate gene repression in LADs are currently unknown. Here, we performed FACS-based whole-genome genetic screens in human cells using LAD-integrated fluorescent reporters to identify such regulators. Surprisingly, the screen identified very few NL proteins, but revealed roles for dozens of known chromatin regulators. Among these are the negative elongation factor (NELF) complex and interacting factors involved in RNA polymerase pausing, suggesting that regulation of transcription elongation is a mechanism to repress transcription in LADs. Furthermore, the chromatin remodeler complex BAF and the activation complex Mediator can work both as activators and repressors in LADs, depending on the local context and possibly by rewiring heterochromatin. Our data indicate that the fundamental regulators of transcription and chromatin remodeling, rather than interaction with NL proteins, play a major role in transcription regulation within LADs.
Collapse
Affiliation(s)
- Stefano G Manzo
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Abdelghani Mazouzi
- Oncode Institute, Amsterdam, the Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christ Leemans
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Tom van Schaik
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Nadia Neyazi
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Marjon S van Ruiten
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Amsterdam, the Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Oncode Institute, Amsterdam, the Netherlands.
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Chivu AG, Basso BA, Abuhashem A, Leger MM, Barshad G, Rice EJ, Vill AC, Wong W, Chou SP, Chovatiya G, Brady R, Smith JJ, Wikramanayake AH, Arenas-Mena C, Brito IL, Ruiz-Trillo I, Hadjantonakis AK, Lis JT, Lewis JJ, Danko CG. Evolution of promoter-proximal pausing enabled a new layer of transcription control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.19.529146. [PMID: 39416036 PMCID: PMC11482795 DOI: 10.1101/2023.02.19.529146] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Promoter-proximal pausing of RNA polymerase II (Pol II) is a key regulatory step during transcription. Despite the central role of pausing in gene regulation, we do not understand the evolutionary processes that led to the emergence of Pol II pausing or its transition to a rate-limiting step actively controlled by transcription factors. Here we analyzed transcription in species across the tree of life. Unicellular eukaryotes display a slow acceleration of Pol II near transcription start sites that transitioned to a longer-lived, focused pause in metazoans. This event coincided with the evolution of new subunits in the NELF and 7SK complexes. Depletion of NELF in mammals shifted the promoter-proximal buildup of Pol II from the pause site into the early gene body and compromised transcriptional activation for a set of heat shock genes. Our work details the evolutionary history of Pol II pausing and sheds light on how new transcriptional regulatory mechanisms evolve.
Collapse
Affiliation(s)
- Alexandra G. Chivu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Brent A. Basso
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Abderhman Abuhashem
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, NY 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, NY 10065, USA
| | - Michelle M. Leger
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, 08003, Spain
| | - Gilad Barshad
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Edward J. Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Albert C. Vill
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Wilfred Wong
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Tri-Institutional training Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Shao-Pei Chou
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gopal Chovatiya
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca Brady
- Department of Biology, Ithaca College, Ithaca NY 14850, USA
| | - Jeramiah J. Smith
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | | | - César Arenas-Mena
- Department of Biology at the College of Staten Island and PhD Programs in Biology and Biochemistry at The Graduate Center, The City University of New York (CUNY), Staten Island, NY 10314, USA
| | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Iñaki Ruiz-Trillo
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, 08003, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain., Barcelona, 08003, Spain
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NY 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, NY 10065, USA
| | - John T. Lis
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - James J. Lewis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Genetics and Biochemistry, Clemson University, 105 Collings St, Clemson, SC 29634
| | - Charles G. Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Diao AJ, Su BG, Vos SM. Pause Patrol: Negative Elongation Factor's Role in Promoter-Proximal Pausing and Beyond. J Mol Biol 2024:168779. [PMID: 39241983 DOI: 10.1016/j.jmb.2024.168779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
RNA polymerase (Pol) II is highly regulated to ensure appropriate gene expression. Early transcription elongation is associated with transient pausing of RNA Pol II in the promoter-proximal region. In multicellular organisms, this pausing is stabilized by the association of transcription elongation factors DRB-sensitivity inducing factor (DSIF) and Negative Elongation Factor (NELF). DSIF is a broadly conserved transcription elongation factor whereas NELF is mostly restricted to the metazoan lineage. Mounting evidence suggests that NELF association with RNA Pol II serves as checkpoint for either release into rapid and productive transcription elongation or premature termination at promoter-proximal pause sites. Here we summarize NELF's roles in promoter-proximal pausing, transcription termination, DNA repair, and signaling based on decades of cell biological, biochemical, and structural work and describe areas for future research.
Collapse
Affiliation(s)
- Annette J Diao
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States
| | - Bonnie G Su
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, United States; Howard Hughes Medical Institute, United States.
| |
Collapse
|
4
|
Khatami F, Reis LO, Ebrahimi M, Nasiri S, Tavangar SM, Pishkuhi MA, Shafiee G, Heshmat R, Aghamir SMK. The role of methylation quantification of circulating tumor DNA (ctDNA) as a diagnostic biomarker of Pheochromocytomas (PCCs) and Paragangliomas (PGLs). J Diabetes Metab Disord 2024. [DOI: 10.1007/s40200-024-01466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/02/2024] [Indexed: 07/26/2024]
|
5
|
Wang S, Sun Y, Li C, Chong Y, Ai M, Wang Y, Shi H, Shang Y. TH1L involvement in colorectal cancer pathogenesis by regulation of CCL20 through the NF-κB signalling pathway. J Cell Mol Med 2024; 28:e18391. [PMID: 38809918 PMCID: PMC11135906 DOI: 10.1111/jcmm.18391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/31/2024] Open
Abstract
TH1L (also known as NELF-C/D) is a member of the Negative Elongation Factor (NELF) complex, which is a metazoan-specific factor that regulates RNA Polymerase II (RNAPII) pausing and transcription elongation. However, the function and molecular mechanisms of TH1L in cancer progression are still largely unknown. In this study, we found that TH1L was highly expressed in colorectal cancer (CRC) tissues and the faeces of CRC patients. Overexpression of TH1L significantly enhanced the proliferation and migration of CRC cells, while its knockdown markedly suppressed these processes. In mechanism, RNA sequencing revealed that CCL20 was upregulated in TH1L-overexpressed CRC cells, leading to activation of the NF-κB signalling pathway. Rescue assays showed that knockdown of CCL20 could impair the tumour-promoting effects of THIL in CRC cells. Taken together, these results suggest that TH1L may play a vital role via the CCL20/NF-κB signalling pathway in CRC proliferation and migration and may serve as a potential target for diagnosis and therapy of CRC.
Collapse
Affiliation(s)
- Shaochang Wang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Yujing Sun
- Department of Laboratory MedicinePeking University International HospitalBeijingChina
| | - Chunya Li
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Yueyang Chong
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
- Department of Cancer Precision Medicine, The MED‐X InstituteThe First Affiliated Hospital of Xi‘an Jiaotong UniversityXi‘anChina
| | - Meihong Ai
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Yanxia Wang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Haiyun Shi
- Department of GastroenterologyBeijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical UniversityBeijingChina
| | - Yu Shang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| |
Collapse
|
6
|
Su BG, Vos SM. Distinct negative elongation factor conformations regulate RNA polymerase II promoter-proximal pausing. Mol Cell 2024; 84:1243-1256.e5. [PMID: 38401543 PMCID: PMC10997474 DOI: 10.1016/j.molcel.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Metazoan gene expression regulation involves pausing of RNA polymerase (Pol II) in the promoter-proximal region of genes and is stabilized by DSIF and NELF. Upon depletion of elongation factors, NELF appears to accompany elongating Pol II past pause sites; however, prior work indicates that NELF prevents Pol II elongation. Here, we report cryoelectron microscopy structures of Pol II-DSIF-NELF complexes with NELF in two distinct conformations corresponding to paused and poised states. The paused NELF state supports Pol II stalling, whereas the poised NELF state enables transcription elongation as it does not support a tilted RNA-DNA hybrid. Further, the poised NELF state can accommodate TFIIS binding to Pol II, allowing for Pol II reactivation at paused or backtracking sites. Finally, we observe that the NELF-A tentacle interacts with the RPB2 protrusion and is necessary for pausing. Our results define how NELF can support pausing, reactivation, and elongation by Pol II.
Collapse
Affiliation(s)
- Bonnie G Su
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
7
|
Dunn LEM, Birkenheuer CH, Baines JD. A Revision of Herpes Simplex Virus Type 1 Transcription: First, Repress; Then, Express. Microorganisms 2024; 12:262. [PMID: 38399666 PMCID: PMC10892140 DOI: 10.3390/microorganisms12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The herpes virus genome bears more than 80 strong transcriptional promoters. Upon entry into the host cell nucleus, these genes are transcribed in an orderly manner, producing five immediate-early (IE) gene products, including ICP0, ICP4, and ICP22, while non-IE genes are mostly silent. The IE gene products are necessary for the transcription of temporal classes following sequentially as early, leaky late, and true late. A recent analysis using precision nuclear run-on followed by deep sequencing (PRO-seq) has revealed an important step preceding all HSV-1 transcription. Specifically, the immediate-early proteins ICP4 and ICP0 enter the cell with the incoming genome to help preclude the nascent antisense, intergenic, and sense transcription of all viral genes. VP16, which is also delivered into the nucleus upon entry, almost immediately reverses this repression on IE genes. The resulting de novo expression of ICP4 and ICP22 further repress antisense, intergenic, and early and late viral gene transcription through different mechanisms before the sequential de-repression of these gene classes later in infection. This early repression, termed transient immediate-early protein-mediated repression (TIEMR), precludes unproductive, antisense, intergenic, and late gene transcription early in infection to ensure the efficient and orderly progression of the viral cascade.
Collapse
Affiliation(s)
- Laura E M Dunn
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Claire H Birkenheuer
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Joel D Baines
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
8
|
Nandy A, Biswas D. Basic techniques associated with studying transcription elongation both in vitro and in vivo within mammalian cells. Methods 2024; 221:42-54. [PMID: 38040206 DOI: 10.1016/j.ymeth.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
All cellular functions and identity of every cell are directly or indirectly depend on its gene expression. Therefore, cells control their gene expression very finely at multiple layers. Cells always fine tune its gene expression profile depending on the internal and external cues to maintain best possible cellular growth condition. Regulation of mRNA production is a major step in the control of gene expression. mRNA production primarily depends on two factors. One is the level of RNA polymerase II (Pol II hereafter) recruitment at the promoter region and another is the amount of Pol II successfully elongating through the whole gene body also known as coding region. There are several proteins (individually or as part of a complex) which control elongation of Pol II both positively or negatively. It is important to understand how different transcription factors regulate this elongation step since this knowledge is important for understanding different cellular functions both under basal and stimulus-dependent contexts. Here, we have discussed both in vitro and in vivo techniques which can be used to study the effect of different factors on Pol II-mediated transcription elongation. In vitro techniques give us valuable information about the ability of a transcription factor or a complex to exert its direct effect on the overall processes. In vivo techniques give us an understanding about the effect of a transcription factor or a complex in its native condition where functions of a transcription factor can be influenced by many other factors including its associated ones.
Collapse
Affiliation(s)
- Arijit Nandy
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Pan H, Cheng X, Rodríguez PFG, Zhang X, Chung I, Jin VX, Li W, Hu Y, Li R. An essential signaling function of cytoplasmic NELFB is independent of RNA polymerase II pausing. J Biol Chem 2023; 299:105259. [PMID: 37717699 PMCID: PMC10591015 DOI: 10.1016/j.jbc.2023.105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
The four-subunit negative elongation factor (NELF) complex mediates RNA polymerase II (Pol II) pausing at promoter-proximal regions. Ablation of individual NELF subunits destabilizes the NELF complex and causes cell lethality, leading to the prevailing concept that NELF-mediated Pol II pausing is essential for cell proliferation. Using separation-of-function mutations, we show here that NELFB function in cell proliferation can be uncoupled from that in Pol II pausing. NELFB mutants sequestered in the cytoplasm and deprived of NELF nuclear function still support cell proliferation and part of the NELFB-dependent transcriptome. Mechanistically, cytoplasmic NELFB physically and functionally interacts with prosurvival signaling kinases, most notably phosphatidylinositol-3-kinase/AKT. Ectopic expression of membrane-tethered phosphatidylinositol-3-kinase/AKT partially bypasses the role of NELFB in cell proliferation, but not Pol II occupancy. Together, these data expand the current understanding of the physiological impact of Pol II pausing and underscore the multiplicity of the biological functions of individual NELF subunits.
Collapse
Affiliation(s)
- Haihui Pan
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA.
| | - Xiaolong Cheng
- Department of Genomics & Precision Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA; Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Pedro Felipe Gardeazábal Rodríguez
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Xiaowen Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Inhee Chung
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Victor X Jin
- Institute of Health Equity and Cancer Center, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Wei Li
- Department of Genomics & Precision Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA; Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA.
| |
Collapse
|
10
|
Cao Y, Qin Y, Zhang W, Tian W, Ren Y, Ren J, Wang J, Wang M, Jiang J, Wang Z. Structural basis of the human negative elongation factor NELF-B/C/E ternary complex. Biochem Biophys Res Commun 2023; 677:155-161. [PMID: 37591184 DOI: 10.1016/j.bbrc.2023.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Negative elongation factor (NELF) is a four-subunit transcription elongation factor that mainly functions in maintaining the paused state of RNA polymerase II in eukaryotes. Upon binding to Pol II, NELF works synergistically with DRB sensitivity-inducing factor (DSIF) and inhibits transcription elongation of Pol II, which subsequently retains a stably paused state 20-60 base pairs downstream of the promoter. The promoter-proximal pausing of Pol II caused by NELF is a general mechanism of transcriptional regulation for most signal-responsive genes. To date, structural studies have significantly advanced our understanding of the molecular mechanisms of NELF. However, a high quality structural model clarifying the interaction details of this complex is still lacking. In this study, we solved the high resolution crystal structure of the NELF-B/C/E ternary complex. We observed detailed interactions between subunits and identified residues important for the association between NELF-B and NELF-E. Our work presents a precise model of the NELF complex, which will facilitate our understanding of its in vivo function.
Collapse
Affiliation(s)
- Yinghua Cao
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Yan Qin
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Weidi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Wei Tian
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Yanpeng Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Jiahao Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Junmeng Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Meng Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Junyi Jiang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China.
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China.
| |
Collapse
|
11
|
Chen Y, Wang X, Xiao B, Luo Z, Long H. Mechanisms and Functions of Activity-Regulated Cytoskeleton-Associated Protein in Synaptic Plasticity. Mol Neurobiol 2023; 60:5738-5754. [PMID: 37338805 DOI: 10.1007/s12035-023-03442-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is one of the most important regulators of cognitive functions in the brain regions. As a hub protein, Arc plays different roles in modulating synaptic plasticity. Arc supports the maintenance of long-term potentiation (LTP) by regulating actin cytoskeletal dynamics, while it guides the endocytosis of AMPAR in long-term depression (LTD). Moreover, Arc can self-assemble into capsids, leading to a new way of communicating among neurons. The transcription and translation of the immediate early gene Arc are rigorous procedures guided by numerous factors, and RNA polymerase II (Pol II) is considered to regulate the precise timing dynamics of gene expression. Since astrocytes can secrete brain-derived neurotrophic factor (BDNF) and L-lactate, their unique roles in Arc expression are emphasized. Here, we review the entire process of Arc expression and summarize the factors that can affect Arc expression and function, including noncoding RNAs, transcription factors, and posttranscriptional regulations. We also attempt to review the functional states and mechanisms of Arc in modulating synaptic plasticity. Furthermore, we discuss the recent progress in understanding the roles of Arc in the occurrence of major neurological disorders and provide new thoughts for future research on Arc.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| |
Collapse
|
12
|
DeBerardine M, Booth GT, Versluis PP, Lis JT. The NELF pausing checkpoint mediates the functional divergence of Cdk9. Nat Commun 2023; 14:2762. [PMID: 37179384 PMCID: PMC10182999 DOI: 10.1038/s41467-023-38359-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Promoter-proximal pausing by RNA Pol II is a rate-determining step in gene transcription that is hypothesized to be a prominent point at which regulatory factors act. The pausing factor NELF is known to induce and stabilize pausing, but not all kinds of pausing are NELF-mediated. Here, we find that NELF-depleted Drosophila melanogaster cells functionally recapitulate the NELF-independent pausing we previously observed in fission yeast (which lack NELF). Critically, only NELF-mediated pausing establishes a strict requirement for Cdk9 kinase activity for the release of paused Pol II into productive elongation. Upon inhibition of Cdk9, cells with NELF efficiently shutdown gene transcription, while in NELF-depleted cells, defective, non-productive transcription continues unabated. By introducing a strict checkpoint for Cdk9, the evolution of NELF was likely critical to enable increased regulation of Cdk9 in higher eukaryotes, as Cdk9 availability can be restricted to limit gene transcription without inducing wasteful, non-productive transcription.
Collapse
Affiliation(s)
- Michael DeBerardine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Kanvas Biosciences, Monmouth Junction, NJ, USA
| | - Philip P Versluis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Zhang J, Hu Z, Chung HH, Tian Y, Lau KW, Ser Z, Lim YT, Sobota RM, Leong HF, Chen BJ, Yeo CJ, Tan SYX, Kang J, Tan DEK, Sou IF, McClurg UL, Lakshmanan M, Vaiyapuri TS, Raju A, Wong ESM, Tergaonkar V, Rajarethinam R, Pathak E, Tam WL, Tan EY, Tee WW. Dependency of NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis. Nat Commun 2023; 14:2439. [PMID: 37117180 PMCID: PMC10147683 DOI: 10.1038/s41467-023-38132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Cancer cells undergo transcriptional reprogramming to drive tumor progression and metastasis. Using cancer cell lines and patient-derived tumor organoids, we demonstrate that loss of the negative elongation factor (NELF) complex inhibits breast cancer development through downregulating epithelial-mesenchymal transition (EMT) and stemness-associated genes. Quantitative multiplexed Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins (qPLEX-RIME) further reveals a significant rewiring of NELF-E-associated chromatin partners as a function of EMT and a co-option of NELF-E with the key EMT transcription factor SLUG. Accordingly, loss of NELF-E leads to impaired SLUG binding on chromatin. Through integrative transcriptomic and genomic analyses, we identify the histone acetyltransferase, KAT2B, as a key functional target of NELF-E-SLUG. Genetic and pharmacological inactivation of KAT2B ameliorate the expression of EMT markers, phenocopying NELF ablation. Elevated expression of NELF-E and KAT2B is associated with poorer prognosis in breast cancer patients, highlighting the clinical relevance of our findings. Taken together, we uncover a crucial role of the NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Republic of Singapore
| | - Zhenhua Hu
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwa Hwa Chung
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yun Tian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 210004, Nanjing, People's Republic of China
| | - Kah Weng Lau
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwei Fen Leong
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Benjamin Jieming Chen
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Clarisse Jingyi Yeo
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jian Kang
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Dennis Eng Kiat Tan
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Ieng Fong Sou
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Urszula Lucja McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Thamil Selvan Vaiyapuri
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Anandhkumar Raju
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Esther Sook Miin Wong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Vinay Tergaonkar
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
| | - Ravisankar Rajarethinam
- Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Elina Pathak
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Drive, Genome, Singapore, 138672, Republic of Singapore
| | - Wai Leong Tam
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Drive, Genome, Singapore, 138672, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Ern Yu Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, 308433, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Republic of Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Republic of Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
14
|
Marwarha G, Slagsvold KH, Høydal MA. NF-κB Transcriptional Activity Indispensably Mediates Hypoxia–Reoxygenation Stress-Induced microRNA-210 Expression. Int J Mol Sci 2023; 24:ijms24076618. [PMID: 37047592 PMCID: PMC10095479 DOI: 10.3390/ijms24076618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Ischemia–reperfusion (I-R) injury is a cardinal pathophysiological hallmark of ischemic heart disease (IHD). Despite significant advances in the understanding of what causes I-R injury and hypoxia–reoxygenation (H-R) stress, viable molecular strategies that could be targeted for the treatment of the deleterious biochemical pathways activated during I-R remain elusive. The master hypoxamiR, microRNA-210 (miR-210), is a major determinant of protective cellular adaptation to hypoxia stress but exacerbates apoptotic cell death during cellular reoxygenation. While the hypoxia-induced transcriptional up-regulation of miR-210 is well delineated, the cellular mechanisms and molecular entities that regulate the transcriptional induction of miR-210 during the cellular reoxygenation phase have not been elucidated yet. Herein, in immortalized AC-16 cardiomyocytes, we delineated the indispensable role of the ubiquitously expressed transcription factor, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in H-R-induced miR-210 expression during cellular reoxygenation. Using dominant negative and dominant active expression vectors encoding kinases to competitively inhibit NF-κB activation, we elucidated NF-κB activation as a significant mediator of H-R-induced miR-210 expression. Ensuing molecular assays revealed a direct NF-κB-mediated transcriptional up-regulation of miR-210 expression in response to the H-R challenge that is characterized by the NF-κB-mediated reorchestration of the entire repertoire of histone modification changes that are a signatory of a permissive actively transcribed miR-210 promoter. Our study confers a novel insight identifying NF-κB as a potential novel molecular target to combat H-R-elicited miR-210 expression that fosters augmented cardiomyocyte cell death.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Katrine Hordnes Slagsvold
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Department of Cardiothoracic Surgery, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Morten Andre Høydal
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| |
Collapse
|
15
|
Chivu AG, Abuhashem A, Barshad G, Rice EJ, Leger MM, Vill AC, Wong W, Brady R, Smith JJ, Wikramanayake AH, Arenas-Mena C, Brito IL, Ruiz-Trillo I, Hadjantonakis AK, Lis JT, Lewis JJ, Danko CG. Evolution of promoter-proximal pausing enabled a new layer of transcription control. RESEARCH SQUARE 2023:rs.3.rs-2679520. [PMID: 36993251 PMCID: PMC10055653 DOI: 10.21203/rs.3.rs-2679520/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Promoter-proximal pausing of RNA polymerase II (Pol II) is a key regulatory step during transcription. Despite the central role of pausing in gene regulation, we do not understand the evolutionary processes that led to the emergence of Pol II pausing or its transition to a rate-limiting step actively controlled by transcription factors. Here we analyzed transcription in species across the tree of life. We found that unicellular eukaryotes display a slow acceleration of Pol II near transcription start sites. This proto-paused-like state transitioned to a longer, focused pause in derived metazoans which coincided with the evolution of new subunits in the NELF and 7SK complexes. Depletion of NELF reverts the mammalian focal pause to a proto-pause-like state and compromises transcriptional activation for a set of heat shock genes. Collectively, this work details the evolutionary history of Pol II pausing and sheds light on how new transcriptional regulatory mechanisms evolve.
Collapse
Affiliation(s)
- Alexandra G. Chivu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Abderhman Abuhashem
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, NY 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, NY 10065, USA
| | - Gilad Barshad
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Edward J. Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michelle M. Leger
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, 08003, Spain
| | - Albert C. Vill
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Wilfred Wong
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Tri-Institutional training Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Rebecca Brady
- Department of Biology, Ithaca College, Ithaca NY 14850, USA
| | - Jeramiah J. Smith
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | | | - César Arenas-Mena
- Department of Biology at the College of Staten Island and PhD Programs in Biology and Biochemistry at The Graduate Center, The City University of New York (CUNY), Staten Island, NY 10314, USA
| | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Iñaki Ruiz-Trillo
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, 08003, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain., Barcelona, 08003, Spain
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NY 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, NY 10065, USA
| | - John T. Lis
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - James J. Lewis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Genetics and Biochemistry, Clemson University, 105 Collings St, Clemson, SC 29634
| | - Charles G. Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Guo C, Zhang Y, Shuai S, Sigbessia A, Hao S, Xie P, Jiang X, Luo Z, Lin C. The super elongation complex (SEC) mediates phase transition of SPT5 during transcriptional pause release. EMBO Rep 2023; 24:e55699. [PMID: 36629390 PMCID: PMC9986819 DOI: 10.15252/embr.202255699] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Release of promoter-proximally paused RNA Pol II into elongation is a tightly regulated and rate-limiting step in metazoan gene transcription. However, the biophysical mechanism underlying pause release remains unclear. Here, we demonstrate that the pausing and elongation regulator SPT5 undergoes phase transition during transcriptional pause release. SPT5 per se is prone to form clusters. The disordered domain in SPT5 is required for pause release and gene activation. During early elongation, the super elongation complex (SEC) induces SPT5 transition into elongation droplets. Depletion of SEC increases SPT5 pausing clusters. Furthermore, disease-associated SEC mutations impair phase properties of elongation droplets and transcription. Our study suggests that SEC-mediated SPT5 phase transition might be essential for pause release and early elongation and that aberrant phase properties could contribute to transcription abnormality in diseases.
Collapse
Affiliation(s)
- Chenghao Guo
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yadi Zhang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
| | - Shimin Shuai
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
| | - Abire Sigbessia
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
| | - Shaohua Hao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
| | - Peng Xie
- Southeast University‐Allen Institute Joint Center, Institute for Brain and IntelligenceSoutheast UniversityNanjingChina
| | - Xu Jiang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
| | - Zhuojuan Luo
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
- Shenzhen Research InstituteSoutheast UniversityShenzhenChina
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Science and TechnologySoutheast UniversityNanjingChina
| | - Chengqi Lin
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
- Shenzhen Research InstituteSoutheast UniversityShenzhenChina
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Science and TechnologySoutheast UniversityNanjingChina
- Key Laboratory of Technical Evaluation of Fertility Regulation of Non‐human primate, Fujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
17
|
Whelan M, Pelchat M. Role of RNA Polymerase II Promoter-Proximal Pausing in Viral Transcription. Viruses 2022; 14:v14092029. [PMID: 36146833 PMCID: PMC9503719 DOI: 10.3390/v14092029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
The promoter-proximal pause induced by the binding of the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) to RNAP II is a key step in the regulation of metazoan gene expression. It helps maintain a permissive chromatin landscape and ensures a quick transcriptional response from stimulus-responsive pathways such as the innate immune response. It is also involved in the biology of several RNA viruses such as the human immunodeficiency virus (HIV), the influenza A virus (IAV) and the hepatitis delta virus (HDV). HIV uses the pause as one of its mechanisms to enter and maintain latency, leading to the creation of viral reservoirs resistant to antiretrovirals. IAV, on the other hand, uses the pause to acquire the capped primers necessary to initiate viral transcription through cap-snatching. Finally, the HDV RNA genome is transcribed directly by RNAP II and requires the small hepatitis delta antigen to displace NELF from the polymerase and overcome the transcriptional block caused by RNAP II promoter-proximal pausing. In this review, we will discuss the RNAP II promoter-proximal pause and the roles it plays in the life cycle of RNA viruses such as HIV, IAV and HDV.
Collapse
|
18
|
Mohamed AA, Vazquez Nunez R, Vos SM. Structural advances in transcription elongation. Curr Opin Struct Biol 2022; 75:102422. [PMID: 35816930 PMCID: PMC9398977 DOI: 10.1016/j.sbi.2022.102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Transcription is the first step of gene expression and involves RNA polymerases. After transcription initiation, RNA polymerase enters elongation followed by transcription termination at the end of the gene. Only recently, structures of transcription elongation complexes bound to key transcription elongation factors have been determined in bacterial and eukaryotic systems. These structures have revealed numerous insights including the basis for transcriptional pausing, RNA polymerase interaction with large complexes such as the ribosome and the spliceosome, and the transition into productive elongation. Here, we review these structures and describe areas for future research.
Collapse
Affiliation(s)
- Abdallah A Mohamed
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/AMohamed_98
| | - Roberto Vazquez Nunez
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/rjareth
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Gala HP, Saha D, Venugopal N, Aloysius A, Purohit G, Dhawan J. A transcriptionally repressed quiescence program is associated with paused RNAPII and is poised for cell cycle reentry. J Cell Sci 2022; 135:275901. [PMID: 35781573 DOI: 10.1242/jcs.259789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Adult stem cells persist in mammalian tissues by entering a state of reversible quiescence/ G0, associated with low transcription. Using cultured myoblasts and muscle stem cells, we report that in G0, global RNA content and synthesis are substantially repressed, correlating with decreased RNA Polymerase II (RNAPII) expression and activation. Integrating RNAPII occupancy and transcriptome profiling, we identify repressed networks and a role for promoter-proximal RNAPII pausing in G0. Strikingly, RNAPII shows enhanced pausing in G0 on repressed genes encoding regulators of RNA biogenesis (Nucleolin, Rps24, Ctdp1); release of pausing is associated with their increased expression in G1. Knockdown of these transcripts in proliferating cells leads to induction of G0 markers, confirming the importance of their repression in establishment of G0. A targeted screen of RNAPII regulators revealed that knockdown of Aff4 (positive regulator of elongation) unexpectedly enhances expression of G0-stalled genes and hastens S phase; NELF, a regulator of pausing appears to be dispensable. We propose that RNAPII pausing contributes to transcriptional control of a subset of G0-repressed genes to maintain quiescence and impacts the timing of the G0-G1 transition.
Collapse
Affiliation(s)
- Hardik P Gala
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Debarya Saha
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Nisha Venugopal
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Ajoy Aloysius
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India.,National Center for Biological Sciences, Bangalore, 560065, India
| | - Gunjan Purohit
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
20
|
Gorbovytska V, Kim SK, Kuybu F, Götze M, Um D, Kang K, Pittroff A, Brennecke T, Schneider LM, Leitner A, Kim TK, Kuhn CD. Enhancer RNAs stimulate Pol II pause release by harnessing multivalent interactions to NELF. Nat Commun 2022; 13:2429. [PMID: 35508485 PMCID: PMC9068813 DOI: 10.1038/s41467-022-29934-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Enhancer RNAs (eRNAs) are long non-coding RNAs that originate from enhancers. Although eRNA transcription is a canonical feature of activated enhancers, the molecular features required for eRNA function and the mechanism of how eRNAs impinge on target gene transcription have not been established. Thus, using eRNA-dependent RNA polymerase II (Pol II) pause release as a model, we here investigate the requirement of sequence, structure and length of eRNAs for their ability to stimulate Pol II pause release by detaching NELF from paused Pol II. We find eRNAs not to exert their function through common structural or sequence motifs. Instead, eRNAs that exhibit a length >200 nucleotides and that contain unpaired guanosines make multiple, allosteric contacts with NELF subunits -A and -E to trigger efficient NELF release. By revealing the molecular determinants of eRNA function, our study establishes eRNAs as an important player in Pol II pause release, and it provides new insight into the regulation of metazoan transcription.
Collapse
Affiliation(s)
- Vladyslava Gorbovytska
- RNA Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Seung-Kyoon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.,Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Filiz Kuybu
- RNA Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Michael Götze
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Andreas Pittroff
- RNA Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Theresia Brennecke
- RNA Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Lisa-Marie Schneider
- RNA Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea. .,Institute of Convergence Science, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Claus-D Kuhn
- RNA Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany.
| |
Collapse
|
21
|
Negative Elongation Factor (NELF) Inhibits Premature Granulocytic Development in Zebrafish. Int J Mol Sci 2022; 23:ijms23073833. [PMID: 35409193 PMCID: PMC8998717 DOI: 10.3390/ijms23073833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Gene expression is tightly regulated during hematopoiesis. Recent studies have suggested that RNA polymerase II (Pol II) promoter proximal pausing, a temporary stalling downstream of the promoter region after initiation, plays a critical role in regulating the expression of various genes in metazoans. However, the function of proximal pausing in hematopoietic gene regulation remains largely unknown. The negative elongation factor (NELF) complex is a key factor important for this proximal pausing. Previous studies have suggested that NELF regulates granulocytic differentiation in vitro, but its in vivo function during hematopoiesis remains uncharacterized. Here, we generated the zebrafish mutant for one NELF complex subunit Nelfb using the CRISPR-Cas9 technology. We found that the loss of nelfb selectively induced excessive granulocytic development during primitive and definitive hematopoiesis. The loss of nelfb reduced hematopoietic progenitor cell formation and did not affect erythroid development. Moreover, the accelerated granulocytic differentiation and reduced progenitor cell development could be reversed by inhibiting Pol II elongation. Further experiments demonstrated that the other NELF complex subunits (Nelfa and Nelfe) played similar roles in controlling granulocytic development. Together, our studies suggested that NELF is critical in controlling the proper granulocytic development in vivo, and that promoter proximal pausing might help maintain the undifferentiated state of hematopoietic progenitor cells.
Collapse
|
22
|
The role of RNA binding proteins in hepatocellular carcinoma. Adv Drug Deliv Rev 2022; 182:114114. [PMID: 35063534 DOI: 10.1016/j.addr.2022.114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of overall cancer deaths worldwide with limited therapeutic options. Due to the heterogeneity of HCC pathogenesis, the molecular mechanisms underlying HCC development are not fully understood. Emerging evidence indicates that RNA-binding proteins (RBPs) play a vital role throughout hepatocarcinogenesis. Thus, a deeper understanding of how RBPs contribute to HCC progression will provide new tools for early diagnosis and prognosis of this devastating disease. In this review, we summarize the tumor suppressive and oncogenic roles of RBPs and their roles in hepatocarcinogenesis. The diagnostic and therapeutic potential of RBPs in HCC, including their limitations, are also discussed.
Collapse
|
23
|
Chignon A, Argaud D, Boulanger MC, Mkannez G, Bon-Baret V, Li Z, Thériault S, Bossé Y, Mathieu P. Genome-wide chromatin contacts of super-enhancer-associated lncRNA identify LINC01013 as a regulator of fibrosis in the aortic valve. PLoS Genet 2022; 18:e1010010. [PMID: 35041643 PMCID: PMC8797204 DOI: 10.1371/journal.pgen.1010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/28/2022] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is characterized by a fibrocalcific process. The regulatory mechanisms that drive the fibrotic response in the aortic valve (AV) are poorly understood. Long noncoding RNAs derived from super-enhancers (lncRNA-SE) control gene expression and cell fate. Herein, multidimensional profiling including chromatin immunoprecipitation and sequencing, transposase-accessible chromatin sequencing, genome-wide 3D chromatin contacts of enhancer-promoter identified LINC01013 as an overexpressed lncRNA-SE during CAVD. LINC01013 is within a loop anchor, which has contact with the promoter of CCN2 (CTGF) located at ~180 kb upstream. Investigation showed that LINC01013 acts as a decoy factor for the negative transcription elongation factor E (NELF-E), whereby it controls the expression of CCN2. LINC01013-CCN2 is part of a transforming growth factor beta 1 (TGFB1) network and exerts a control over fibrogenesis. These findings illustrate a novel mechanism whereby a dysregulated lncRNA-SE controls, through a looping process, the expression of CCN2 and fibrogenesis of the AV. Calcific aortic valve disease is the most common heart valve disorder characterized by a thickening of the aortic valve resulting from fibrotic and calcific processes. Because the aortic valve replacement is currently the only therapeutic option, the identification of key molecular processes that control the progression of the disease could lead to the development of novel noninvasive therapies. Growing evidence suggests that long noncoding RNAs (lncRNAs) fine tune gene expression in health and disease states. By using a multidimensional profiling including genome-wide 3D enhancer-promoter looping data, we identified LINC01013, a lncRNA, as a regulator of fibrogenesis. Specifically, we found that LINC01013 is located in a cluster of distant enhancers (super-enhancer) in aortic valve interstitial cells and has significant long-range looping with the promoter of CCN2, a gene that orchestrates fibrogenesis. We discovered that LINC01013 is acting as a decoy factor for a negative transcription elongation factor, whereby it controls the transcription of CCN2. In turn, higher expression of LINC01013 during calcific aortic valve disease promoted the expression of CCN2 and a fibrogenic program. These findings provide evidence that LINC01013 is a key regulator of fibrogenesis in CAVD.
Collapse
Affiliation(s)
- Arnaud Chignon
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Déborah Argaud
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Marie-Chloé Boulanger
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Ghada Mkannez
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Valentin Bon-Baret
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Zhonglin Li
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Sébastien Thériault
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Patrick Mathieu
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
- * E-mail:
| |
Collapse
|
24
|
Abuhashem A, Garg V, Hadjantonakis AK. RNA polymerase II pausing in development: orchestrating transcription. Open Biol 2022; 12:210220. [PMID: 34982944 PMCID: PMC8727152 DOI: 10.1098/rsob.210220] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
The coordinated regulation of transcriptional networks underpins cellular identity and developmental progression. RNA polymerase II promoter-proximal pausing (Pol II pausing) is a prevalent mechanism by which cells can control and synchronize transcription. Pol II pausing regulates the productive elongation step of transcription at key genes downstream of a variety of signalling pathways, such as FGF and Nodal. Recent advances in our understanding of the Pol II pausing machinery and its role in transcription call for an assessment of these findings within the context of development. In this review, we discuss our current understanding of the molecular basis of Pol II pausing and its function during organismal development. By critically assessing the tools used to study this process we conclude that combining recently developed genomics approaches with refined perturbation systems has the potential to expand our understanding of Pol II pausing mechanistically and functionally in the context of development and beyond.
Collapse
Affiliation(s)
- Abderhman Abuhashem
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medical College, New York, NY 10021, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
25
|
Human FKBP5 negatively regulates transcription through inhibition of P-TEFb complex formation. Mol Cell Biol 2021; 42:e0034421. [PMID: 34780285 DOI: 10.1128/mcb.00344-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although large number of recent studies indicate strong association of FKBP5 (aka FKBP51) functions with various stress-related psychiatric disorder, the overall mechanisms are poorly understood. Beyond a few studies indicating its functions in regulating glucocorticoid receptor-, and AKT-signalling pathways, other functional roles (if any) are unclear. In this study, we report an anti-proliferative role of human FKBP5 through negative regulation of expression of proliferation-related genes. Mechanistically, we show that, owing to same region of interaction on CDK9, human FKBP5 directly competes with CyclinT1 for functional P-TEFb complex formation. In vitro biochemical coupled with cell-based assays, showed strong negative effect of FKBP5 on P-TEFb-mediated phosphorylation of diverse substrates. Consistently, FKBP5 knockdown showed enhanced P-TEFb complex formation leading to increased global RNA polymerase II CTD phosphorylation and expression of proliferation-related genes and subsequent proliferation. Thus, our results show an important role of FKBP5 in negative regulation of P-TEFb functions within mammalian cells.
Collapse
|
26
|
Aoi Y, Takahashi YH, Shah AP, Iwanaszko M, Rendleman EJ, Khan NH, Cho BK, Goo YA, Ganesan S, Kelleher NL, Shilatifard A. SPT5 stabilization of promoter-proximal RNA polymerase II. Mol Cell 2021; 81:4413-4424.e5. [PMID: 34480849 PMCID: PMC8687145 DOI: 10.1016/j.molcel.2021.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023]
Abstract
Based on in vitro studies, it has been demonstrated that the DSIF complex, composed of SPT4 and SPT5, regulates the elongation stage of transcription catalyzed by RNA polymerase II (RNA Pol II). The precise cellular function of SPT5 is not clear, because conventional gene depletion strategies for SPT5 result in loss of cellular viability. Using an acute inducible protein depletion strategy to circumvent this issue, we report that SPT5 loss triggers the ubiquitination and proteasomal degradation of the core RNA Pol II subunit RPB1, a process that we show to be evolutionarily conserved from yeast to human cells. RPB1 degradation requires the E3 ligase Cullin 3, the unfoldase VCP/p97, and a novel form of CDK9 kinase complex. Our study demonstrates that SPT5 stabilizes RNA Pol II specifically at promoter-proximal regions, permitting RNA Pol II release from promoters into gene bodies and providing mechanistic insight into the cellular function of SPT5 in safeguarding accurate gene expression.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yoh-Hei Takahashi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avani P Shah
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Emily J Rendleman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nabiha H Khan
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Byoung-Kyu Cho
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Young Ah Goo
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Sheetal Ganesan
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Neil L Kelleher
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
27
|
Cheon Y, Han S, Kim T, Hwang D, Lee D. The chromatin remodeler Ino80 mediates RNAPII pausing site determination. Genome Biol 2021; 22:294. [PMID: 34663418 PMCID: PMC8524862 DOI: 10.1186/s13059-021-02500-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Promoter-proximal pausing of RNA polymerase II (RNAPII) is a critical step for the precise regulation of gene expression. Despite the apparent close relationship between promoter-proximal pausing and nucleosome, the role of chromatin remodeler governing this step has mainly remained elusive. RESULTS Here, we report highly confined RNAPII enrichments downstream of the transcriptional start site in Saccharomyces cerevisiae using PRO-seq experiments. This non-uniform distribution of RNAPII exhibits both similar and different characteristics with promoter-proximal pausing in Schizosaccharomyces pombe and metazoans. Interestingly, we find that Ino80p knockdown causes a significant upstream transition of promoter-proximal RNAPII for a subset of genes, relocating RNAPII from the main pausing site to the alternative pausing site. The proper positioning of RNAPII is largely dependent on nucleosome context. We reveal that the alternative pausing site is closely associated with the + 1 nucleosome, and nucleosome architecture around the main pausing site of these genes is highly phased. In addition, Ino80p knockdown results in an increase in fuzziness and a decrease in stability of the + 1 nucleosome. Furthermore, the loss of INO80 also leads to the shift of promoter-proximal RNAPII toward the alternative pausing site in mouse embryonic stem cells. CONCLUSIONS Based on our collective results, we hypothesize that the highly conserved chromatin remodeler Ino80p is essential in establishing intact RNAPII pausing during early transcription elongation in various organisms, from budding yeast to mouse.
Collapse
Affiliation(s)
- Youngseo Cheon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Sungwook Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Taemook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
28
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
29
|
Ghouraba MH, Masad RJ, Mpingirika EZ, Abdelraheem OM, Zeghlache R, Alserw AM, Amleh A. Role of NELF-B in supporting epithelial-mesenchymal transition and cell proliferation during hepatocellular carcinoma progression. Oncol Lett 2021; 22:761. [PMID: 34539865 PMCID: PMC8436359 DOI: 10.3892/ol.2021.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Negative elongation factor-B (NELF-B), also known as cofactor of BRCA1 (COBRA1), is one of the four subunits of the NELF complex. It interacts with BRCA1, in addition to other transcription complexes in various tissues. The NELF complex represses the transcription of several genes by stalling RNA polymerase II during the early phase of transcription elongation. The role of NELF-B in liver cancer and hepatocellular carcinoma (HCC), the most prevalent type of liver cancer, remains to be elucidated. It has been previously demonstrated that silencing of NELF-B inhibits the proliferation and migration of HepG2 cells. The present study aimed to investigate the consequences of ectopic expression and silencing of NELF-B in liver cancer HepG2 and SNU449 cell lines. Functional assays were performed to examine the effects on gene and protein expression, viability, migration and invasion of cells. Overexpression of NELF-B did not alter the proliferation and migration of HepG2 cells, or the expression of tested genes, indicating that overexpression alone may not be sufficient for altering these features in HepG2 cells. By contrast, knockdown of NELF-B in SNU449 cells resulted in decreased cell proliferation, together with induction of apoptosis and decreased expression levels of Ki-67 and survivin, which are markers of proliferation and inhibition of apoptosis, respectively. Additionally, silencing of NELF-B resulted in a significant decrease in the hallmarks of epithelial-mesenchymal transition (EMT), including cell migration and invasion, and decreased the expression levels of EMT markers, such as N-cadherin, vimentin and β-catenin. Decreased expression levels of forkhead box F2 transcription factor and increased mRNA levels of trefoil factor 1, a putative tumor suppressor, were also detected following the silencing of NELF-B. The current results demonstrated that NELF-B enhanced the manifestation of most hallmarks of cancer, including cell proliferation, migration, invasion and inhibition of apoptosis, indicating its critical role in the progression of HCC.
Collapse
Affiliation(s)
- Mennatallah Hani Ghouraba
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Razan Jamil Masad
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Eric Zadok Mpingirika
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Omnia Mahmoud Abdelraheem
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Rached Zeghlache
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Aya M Alserw
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Asma Amleh
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.,Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
30
|
Lozano R, Booth GT, Omar BY, Li B, Buckler ES, Lis JT, Del Carpio DP, Jannink JL. RNA polymerase mapping in plants identifies intergenic regulatory elements enriched in causal variants. G3-GENES GENOMES GENETICS 2021; 11:6364897. [PMID: 34499719 PMCID: PMC8527479 DOI: 10.1093/g3journal/jkab273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/04/2021] [Indexed: 12/14/2022]
Abstract
Control of gene expression is fundamental at every level of cell function. Promoter-proximal pausing and divergent transcription at promoters and enhancers, which are prominent features in animals, have only been studied in a handful of research experiments in plants. PRO-Seq analysis in cassava (Manihot esculenta) identified peaks of transcriptionally engaged RNA polymerase at both the 5' and 3' end of genes, consistent with paused or slowly moving Polymerase. In addition, we identified divergent transcription at intergenic sites. A full genome search for bi-directional transcription using an algorithm for enhancer detection developed in mammals (dREG) identified many intergenic regulatory element (IRE) candidates. These sites showed distinct patterns of methylation and nucleotide conservation based on genomic evolutionary rate profiling (GERP). SNPs within these IRE candidates explained significantly more variation in fitness and root composition than SNPs in chromosomal segments randomly ascertained from the same intergenic distribution, strongly suggesting a functional importance of these sites. Maize GRO-Seq data showed RNA polymerase occupancy at IREs consistent with patterns in cassava. Furthermore, these IREs in maize significantly overlapped with sites previously identified on the basis of open chromatin, histone marks, and methylation, and were enriched for reported eQTL. Our results suggest that bidirectional transcription can identify intergenic genomic regions in plants that play an important role in transcription regulation and whose identification has the potential to aid crop improvement.
Collapse
Affiliation(s)
- Roberto Lozano
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | - Bo Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China
| | - Edward S Buckler
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA.,United States Department of Agriculture, Agricultural Research Service (USDA-ARS) R.W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Dunia Pino Del Carpio
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jean-Luc Jannink
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,United States Department of Agriculture, Agricultural Research Service (USDA-ARS) R.W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Pipier A, Devaux A, Lavergne T, Adrait A, Couté Y, Britton S, Calsou P, Riou JF, Defrancq E, Gomez D. Constrained G4 structures unveil topology specificity of known and new G4 binding proteins. Sci Rep 2021; 11:13469. [PMID: 34188089 PMCID: PMC8241873 DOI: 10.1038/s41598-021-92806-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes (G4) are non-canonical secondary structures consisting in stacked tetrads of hydrogen-bonded guanines bases. An essential feature of G4 is their intrinsic polymorphic nature, which is characterized by the equilibrium between several conformations (also called topologies) and the presence of different types of loops with variable lengths. In cells, G4 functions rely on protein or enzymatic factors that recognize and promote or resolve these structures. In order to characterize new G4-dependent mechanisms, extensive researches aimed at identifying new G4 binding proteins. Using G-rich single-stranded oligonucleotides that adopt non-controlled G4 conformations, a large number of G4-binding proteins have been identified in vitro, but their specificity towards G4 topology remained unknown. Constrained G4 structures are biomolecular objects based on the use of a rigid cyclic peptide scaffold as a template for directing the intramolecular assembly of the anchored oligonucleotides into a single and stabilized G4 topology. Here, using various constrained RNA or DNA G4 as baits in human cell extracts, we establish the topology preference of several well-known G4-interacting factors. Moreover, we identify new G4-interacting proteins such as the NELF complex involved in the RNA-Pol II pausing mechanism, and we show that it impacts the clastogenic effect of the G4-ligand pyridostatin.
Collapse
Affiliation(s)
- A Pipier
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre Le Cancer 2018, Toulouse, France
| | - A Devaux
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058, Grenoble, France
| | - T Lavergne
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058, Grenoble, France
| | - A Adrait
- CEA, INSERM, IRIG, BGE, Université Grenoble Alpes, 38000, Grenoble, France
| | - Y Couté
- CEA, INSERM, IRIG, BGE, Université Grenoble Alpes, 38000, Grenoble, France
| | - S Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre Le Cancer 2018, Toulouse, France
| | - P Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre Le Cancer 2018, Toulouse, France
| | - J F Riou
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 75005, Paris, France
| | - E Defrancq
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058, Grenoble, France
| | - D Gomez
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- Equipe Labellisée Ligue Contre Le Cancer 2018, Toulouse, France.
| |
Collapse
|
32
|
Gajos M, Jasnovidova O, van Bömmel A, Freier S, Vingron M, Mayer A. Conserved DNA sequence features underlie pervasive RNA polymerase pausing. Nucleic Acids Res 2021; 49:4402-4420. [PMID: 33788942 PMCID: PMC8096220 DOI: 10.1093/nar/gkab208] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Pausing of transcribing RNA polymerase is regulated and creates opportunities to control gene expression. Research in metazoans has so far mainly focused on RNA polymerase II (Pol II) promoter-proximal pausing leaving the pervasive nature of pausing and its regulatory potential in mammalian cells unclear. Here, we developed a pause detecting algorithm (PDA) for nucleotide-resolution occupancy data and a new native elongating transcript sequencing approach, termed nested NET-seq, that strongly reduces artifactual peaks commonly misinterpreted as pausing sites. Leveraging PDA and nested NET-seq reveal widespread genome-wide Pol II pausing at single-nucleotide resolution in human cells. Notably, the majority of Pol II pauses occur outside of promoter-proximal gene regions primarily along the gene-body of transcribed genes. Sequence analysis combined with machine learning modeling reveals DNA sequence properties underlying widespread transcriptional pausing including a new pause motif. Interestingly, key sequence determinants of RNA polymerase pausing are conserved between human cells and bacteria. These studies indicate pervasive sequence-induced transcriptional pausing in human cells and the knowledge of exact pause locations implies potential functional roles in gene expression.
Collapse
Affiliation(s)
- Martyna Gajos
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany.,Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| | - Olga Jasnovidova
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Alena van Bömmel
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany.,Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Susanne Freier
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| |
Collapse
|
33
|
Ngian Z, Lin W, Ong C. NELF-A controls Drosophila healthspan by regulating heat-shock protein-mediated cellular protection and heterochromatin maintenance. Aging Cell 2021; 20:e13348. [PMID: 33788376 PMCID: PMC8135010 DOI: 10.1111/acel.13348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022] Open
Abstract
NELF‐mediated pausing of RNA polymerase II (RNAPII) constitutes a crucial step in transcription regulation. However, it remains unclear how control release of RNAPII pausing can affect the epigenome and regulate important aspects of animal physiology like aging. We found that NELF‐A dosage regulates Drosophila healthspan: Halving NELF‐A level in the heterozygous mutants or via neuronal‐specific RNAi depletion improves their locomotor activity, stress resistance, and lifespan significantly. Conversely, NELF‐A overexpression shortens fly lifespan drastically. Mechanistically, lowering NELF‐A level facilitates the release of paused RNAPII for productive transcription of the heat‐shock protein (Hsp) genes. The elevated HSPs expression in turn attenuates the accumulation of insoluble protein aggregates, reactive oxidative species, DNA damage and systemic inflammation in the brains of aging NELF‐A depleted flies as compared to their control siblings. This pro‐longevity effect is unique to NELF‐A due to its higher expression level and more efficient pausing of RNAPII than other NELF subunits. Importantly, enhanced resistance to oxidative stress in NELF‐A heterozygous mutants is highly conserved such that knocking down its level in human SH‐SY5Y cells attenuates hydrogen peroxide‐induced DNA damage and apoptosis. Depleting NELF‐A reconfigures the epigenome through the maintenance of H3K9me2‐enriched heterochromatin during aging, leading to the repression of specific retrotransposons like Gypsy‐1 in the brains of NELF‐A mutants. Taken together, we showed that the dosage of neuronal NELF‐A affects multiple aspects of aging in Drosophila by regulating transcription of Hsp genes in the brains, suggesting that targeting transcription elongation might be a viable therapeutic strategy against age‐onset diseases like neurodegeneration.
Collapse
Affiliation(s)
- Zhen‐Kai Ngian
- Temasek Life Sciences Laboratory National University of Singapore Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore Singapore
| | - Wei‐Qi Lin
- Temasek Life Sciences Laboratory National University of Singapore Singapore Singapore
| | - Chin‐Tong Ong
- Temasek Life Sciences Laboratory National University of Singapore Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore Singapore
| |
Collapse
|
34
|
Long Q, Liu Z, Gullerova M. Sweet Melody or Jazz? Transcription Around DNA Double-Strand Breaks. Front Mol Biosci 2021; 8:655786. [PMID: 33959637 PMCID: PMC8096065 DOI: 10.3389/fmolb.2021.655786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Genomic integrity is continuously threatened by thousands of endogenous and exogenous damaging factors. To preserve genome stability, cells developed comprehensive DNA damage response (DDR) pathways that mediate the recognition of damaged DNA lesions, the activation of signaling cascades, and the execution of DNA repair. Transcription has been understood to pose a threat to genome stability in the presence of DNA breaks. Interestingly, accumulating evidence in recent years shows that the transient transcriptional activation at DNA double-strand break (DSB) sites is required for efficient repair, while the rest of the genome exhibits temporary transcription silencing. This genomic shut down is a result of multiple signaling cascades involved in the maintenance of DNA/RNA homeostasis, chromatin stability, and genome fidelity. The regulation of transcription of protein-coding genes and non-coding RNAs has been extensively studied; however, the exact regulatory mechanisms of transcription at DSBs remain enigmatic. These complex processes involve many players such as transcription-associated protein complexes, including kinases, transcription factors, chromatin remodeling complexes, and helicases. The damage-derived transcripts themselves also play an essential role in DDR regulation. In this review, we summarize the current findings on the regulation of transcription at DSBs and discussed the roles of various accessory proteins in these processes and consequently in DDR.
Collapse
Affiliation(s)
| | | | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Negative elongation factor regulates muscle progenitor expansion for efficient myofiber repair and stem cell pool repopulation. Dev Cell 2021; 56:1014-1029.e7. [PMID: 33735618 DOI: 10.1016/j.devcel.2021.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/08/2021] [Accepted: 02/19/2021] [Indexed: 11/24/2022]
Abstract
Negative elongation factor (NELF) is a critical transcriptional regulator that stabilizes paused RNA polymerase to permit rapid gene expression changes in response to environmental cues. Although NELF is essential for embryonic development, its role in adult stem cells remains unclear. In this study, through a muscle-stem-cell-specific deletion, we showed that NELF is required for efficient muscle regeneration and stem cell pool replenishment. In mechanistic studies using PRO-seq, single-cell trajectory analyses and myofiber cultures revealed that NELF works at a specific stage of regeneration whereby it modulates p53 signaling to permit massive expansion of muscle progenitors. Strikingly, transplantation experiments indicated that these progenitors are also necessary for stem cell pool repopulation, implying that they are able to return to quiescence. Thus, we identified a critical role for NELF in the expansion of muscle progenitors in response to injury and revealed that progenitors returning to quiescence are major contributors to the stem cell pool repopulation.
Collapse
|
36
|
Rawat P, Boehning M, Hummel B, Aprile-Garcia F, Pandit AS, Eisenhardt N, Khavaran A, Niskanen E, Vos SM, Palvimo JJ, Pichler A, Cramer P, Sawarkar R. Stress-induced nuclear condensation of NELF drives transcriptional downregulation. Mol Cell 2021; 81:1013-1026.e11. [PMID: 33548202 PMCID: PMC7939545 DOI: 10.1016/j.molcel.2021.01.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/20/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022]
Abstract
In response to stress, human cells coordinately downregulate transcription and translation of housekeeping genes. To downregulate transcription, the negative elongation factor (NELF) is recruited to gene promoters impairing RNA polymerase II elongation. Here we report that NELF rapidly forms nuclear condensates upon stress in human cells. Condensate formation requires NELF dephosphorylation and SUMOylation induced by stress. The intrinsically disordered region (IDR) in NELFA is necessary for nuclear NELF condensation and can be functionally replaced by the IDR of FUS or EWSR1 protein. We find that biomolecular condensation facilitates enhanced recruitment of NELF to promoters upon stress to drive transcriptional downregulation. Importantly, NELF condensation is required for cellular viability under stressful conditions. We propose that stress-induced NELF condensates reported here are nuclear counterparts of cytosolic stress granules. These two stress-inducible condensates may drive the coordinated downregulation of transcription and translation, likely forming a critical node of the stress survival strategy.
Collapse
Affiliation(s)
- Prashant Rawat
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany.
| | - Marc Boehning
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Anwit S Pandit
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; CIBSS, Centre for Integrative Biological Signaling Studies, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Nathalie Eisenhardt
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ashkan Khavaran
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Einari Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Seychelle M Vos
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; CIBSS, Centre for Integrative Biological Signaling Studies, Freiburg, Germany; MRC, University of Cambridge, Cambridge, UK.
| |
Collapse
|
37
|
A machine learning-based framework for modeling transcription elongation. Proc Natl Acad Sci U S A 2021; 118:2007450118. [PMID: 33526657 DOI: 10.1073/pnas.2007450118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA polymerase II (Pol II) generally pauses at certain positions along gene bodies, thereby interrupting the transcription elongation process, which is often coupled with various important biological functions, such as precursor mRNA splicing and gene expression regulation. Characterizing the transcriptional elongation dynamics can thus help us understand many essential biological processes in eukaryotic cells. However, experimentally measuring Pol II elongation rates is generally time and resource consuming. We developed PEPMAN (polymerase II elongation pausing modeling through attention-based deep neural network), a deep learning-based model that accurately predicts Pol II pausing sites based on the native elongating transcript sequencing (NET-seq) data. Through fully taking advantage of the attention mechanism, PEPMAN is able to decipher important sequence features underlying Pol II pausing. More importantly, we demonstrated that the analyses of the PEPMAN-predicted results around various types of alternative splicing sites can provide useful clues into understanding the cotranscriptional splicing events. In addition, associating the PEPMAN prediction results with different epigenetic features can help reveal important factors related to the transcription elongation process. All these results demonstrated that PEPMAN can provide a useful and effective tool for modeling transcription elongation and understanding the related biological factors from available high-throughput sequencing data.
Collapse
|
38
|
Yu S, Li L, Cai H, He B, Gao Y, Li Y. Overexpression of NELFE contributes to gastric cancer progression via Wnt/β-catenin signaling-mediated activation of CSNK2B expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:54. [PMID: 33526068 PMCID: PMC7851912 DOI: 10.1186/s13046-021-01848-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/17/2021] [Indexed: 02/08/2023]
Abstract
Background Accumulating evidence has highlighted the importance of negative elongation factor complex member E (NELFE) in tumorigenesis. However, the relationship between NELFE and gastric cancer (GC) remains unclear. This study aimed to explore the expression pattern and specific function of NELFE in GC. Methods NELFE expression was evaluated by immunohistochemistry and qRT-PCR in GC tissues, respectively. Cell proliferation, migration and invasion were measured by CCK-8, colony formation, transwell assays, and nude mice model. Bioinformatics analysis was performed to search potential target genes of NELFE, and a Cignal Finder 10-Pathway Reporter Array was used to explore potential signaling pathways regulated by NELFE. Dual-luciferase reporter assays, qRT-PCR and western blotting were conducted to verify their regulatory relationship. The expression correlations among NELFE, β-catenin and CSNK2B were further explored by immunohistochemistry on consecutive resections. Results NELFE was significantly overexpressed in GC tissues both in protein and mRNA level and negatively correlated with the prognosis of GC patients. Gain- and loss-of-function experiments showed that NELFE potentiated GC cell proliferation and metastasis in vitro and in vivo. CSNK2B was identified as a downstream effector of NELFE. Wnt/β-catenin signaling may mediate the regulation of CSNK2B by NELFE. In addition, NELFE, β-catenin and CSNK2B were all remarkably upregulated in tumor tissues compared with adjacent normal tissues, and their expression levels in GC were positively correlated with each other. Conclusion Our findings reveal a new NELFE-Wnt/β-catenin-CSNK2B axis to promote GC progression and provide new candidate targets against this disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01848-3.
Collapse
Affiliation(s)
- Shijun Yu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Li Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Cai
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Bin He
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
39
|
Reddy PC, Pradhan SJ, Karmodiya K, Galande S. Origin of RNA Polymerase II pause in eumetazoans: Insights from Hydra. J Biosci 2020. [DOI: 10.1007/s12038-019-9979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Tellier M, Maudlin I, Murphy S. Transcription and splicing: A two-way street. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1593. [PMID: 32128990 DOI: 10.1002/wrna.1593] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/18/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
RNA synthesis by RNA polymerase II and RNA processing are closely coupled during the transcription cycle of protein-coding genes. This coupling affords opportunities for quality control and regulation of gene expression and the effects can go in both directions. For example, polymerase speed can affect splice site selection and splicing can increase transcription and affect the chromatin landscape. Here we review the many ways that transcription and splicing influence one another, including how splicing "talks back" to transcription. We will also place the connections between transcription and splicing in the context of other RNA processing events that define the exons that will make up the final mRNA. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Isabella Maudlin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Structure of complete Pol II-DSIF-PAF-SPT6 transcription complex reveals RTF1 allosteric activation. Nat Struct Mol Biol 2020; 27:668-677. [PMID: 32541898 DOI: 10.1038/s41594-020-0437-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Transcription by RNA polymerase II (Pol II) is carried out by an elongation complex. We previously reported an activated porcine Pol II elongation complex, EC*, encompassing the human elongation factors DSIF, PAF1 complex (PAF) and SPT6. Here we report the cryo-EM structure of the complete EC* that contains RTF1, a dissociable PAF subunit critical for chromatin transcription. The RTF1 Plus3 domain associates with Pol II subunit RPB12 and the phosphorylated C-terminal region of DSIF subunit SPT5. RTF1 also forms four α-helices that extend from the Plus3 domain along the Pol II protrusion and RPB10 to the polymerase funnel. The C-terminal 'fastener' helix retains PAF and is followed by a 'latch' that reaches the end of the bridge helix, a flexible element of the Pol II active site. RTF1 strongly stimulates Pol II elongation, and this requires the latch, possibly suggesting that RTF1 activates transcription allosterically by influencing Pol II translocation.
Collapse
|
42
|
Gao Y, Liu LK, Wang KJ, Liu HP. A negative elongation factor E inhibits white spot syndrome virus replication by suppressing promoter activity of the viral immediate early genes in red claw crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103665. [PMID: 32147597 DOI: 10.1016/j.dci.2020.103665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Invertebrates rely solely on the innate immune system to protect against virus infection, while the viral infection must rely on the transcriptional system of the host cell to achieve the expression of viral genes, which is naturally regulated by the host's transcriptional system. However, the mechanism of the host against viral transcription in host cells is still poorly understood in crustaceans. Previously, we found that the partial transcript sequence of a negative elongation factor E (named as CqNELF-E) was up-regulated in a differentially expressed transcriptome library of the haematopietic tissue (Hpt) cells from red claw crayfish Cherax quadricarinatus upon white spot syndrome virus (WSSV) infection, suggesting a possible role of CqNELF-E in WSSV-host interaction. In the present study, we revealed the function of CqNELF-E. The full-length cDNA sequence of CqNELF-E was identified with 1726 bp from red claw crayfish, which contained an open reading frame of 816 bp, encoding 271 amino acids. Amino acid sequencing analysis revealed that the CqNELF-E had a conserved RNA recognition motif (RRM) and a leucine zipper motif (LZM). Tissue distribution analysis showed that CqNELF-E was widely expressed in various tissues with the highest expression in muscle, relatively abundant in Hpt and the lowest presence in heart. Interestingly, the gene expression of CqNELF-E was significantly up-regulated at both 6 and 12 hpi after WSSV infection in Hpt cell cultures in red claw crayfish. In addition, the expression of both the viral immediately early gene (IE) 1 (IE1) and a late gene envelope protein VP28 were significantly increased after gene silencing of CqNELF-E in Hpt cells, indicating the potential suppression role of CqNELF-E against the viral infection. Further study revealed that the CqNELF-E had an inhibitory effect on the promoter activity of WSSV IE genes WSV051, WSV069 (IE1) and WSV083 by a dual luciferase reporter gene assay. Taken together, these results suggest that CqNELF-E plays an antiviral role, probably via inhibition on the viral transcription activity in WSSV infection in a crustacean.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ling-Ke Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
43
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
44
|
Aoi Y, Smith ER, Shah AP, Rendleman EJ, Marshall SA, Woodfin AR, Chen FX, Shiekhattar R, Shilatifard A. NELF Regulates a Promoter-Proximal Step Distinct from RNA Pol II Pause-Release. Mol Cell 2020; 78:261-274.e5. [PMID: 32155413 PMCID: PMC7402197 DOI: 10.1016/j.molcel.2020.02.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/17/2019] [Accepted: 02/18/2020] [Indexed: 02/08/2023]
Abstract
RNA polymerase II (RNA Pol II) is generally paused at promoter-proximal regions in most metazoans, and based on in vitro studies, this function has been attributed to the negative elongation factor (NELF). Here, we show that upon rapid depletion of NELF, RNA Pol II fails to be released into gene bodies, stopping instead around the +1 nucleosomal dyad-associated region. The transition to the 2nd pause region is independent of positive transcription elongation factor P-TEFb. During the heat shock response, RNA Pol II is rapidly released from pausing at heat shock-induced genes, while most genes are paused and transcriptionally downregulated. Both of these aspects of the heat shock response remain intact upon NELF loss. We find that NELF depletion results in global loss of cap-binding complex from chromatin without global reduction of nascent transcript 5' cap stability. Thus, our studies implicate NELF functioning in early elongation complexes distinct from RNA Pol II pause-release.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Edwin R Smith
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avani P Shah
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Emily J Rendleman
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stacy A Marshall
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ashley R Woodfin
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fei X Chen
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
45
|
Alikunju S, Severinova E, Yang Z, Ivessa A, Sayed D. Acute NelfA knockdown restricts compensatory gene expression and precipitates ventricular dysfunction during cardiac hypertrophy. J Mol Cell Cardiol 2020; 142:93-104. [PMID: 32278832 DOI: 10.1016/j.yjmcc.2020.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/15/2020] [Accepted: 04/06/2020] [Indexed: 11/30/2022]
Abstract
Coordinated functional balance of negative and positive transcription complexes maintain and accommodate gene expression in hearts during quiescent and hypertrophic conditions, respectively. Negative elongation factor (Nelf) complex has been implicated in RNA polymerase II (pol II) pausing, a widespread regulatory transcriptional phenomenon observed across the cardiac genome. Here, we examine the role of NelfA aka, Wolf-Hirschhorn syndrome candidate 2 (Whsc2), a critical component of the negative elongation complex in hearts undergoing pressure-overload induced hypertrophy. Alignment of high-resolution genome-wide occupancy data of NelfA, Pol II, TFIIB and H3k9ac from control and hypertrophied hearts reveal that NelfA associates with active gene promoters. High NelfA occupancy is seen at promoters of essential and cardiac-enriched genes, expressed under both quiescent and hypertrophic conditions. Conversely, de novo NelfA recruitment is observed at inducible gene promoters with pressure overload, accompanied by significant increase in expression of these genes with hypertrophy. Interestingly, change in promoter NelfA levels correlates with the transcript output in hypertrophied hearts compared to Sham, suggesting NelfA might be playing a critical role in the regulation of gene transcription during cardiac hypertrophy. In vivo knockdown of NelfA (siNelfA) in hearts subjected to pressure-overload results in early ventricular dilatation and dysfunction, associated with decrease in expression of inducible and cardiac-enriched genes in siNelfA hypertrophied compared to control hypertrophied hearts. In accordance, in vitro knockdown of NelfA in cardiomyocytes showed no change in promoter pol II, however significant decrease in in-gene and downstream pol II occupancy was observed. These data suggest an inhibited pol II progression in transcribing and inducible genes, which reflects as a decrease in transcript abundance of these genes. These results indicate that promoter NelfA occupancy is essential for pol II -dependent transcription. Therefore, we conclude that NelfA is required for active transcription and gene expression during cardiac hypertrophy.
Collapse
Affiliation(s)
- Saleena Alikunju
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Elena Severinova
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Zhi Yang
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Danish Sayed
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America.
| |
Collapse
|
46
|
Presence of Antibodies Binding to Negative Elongation Factor E in Sarcoidosis. J Clin Med 2020; 9:jcm9030715. [PMID: 32155774 PMCID: PMC7141344 DOI: 10.3390/jcm9030715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Sarcoidosis is characterized by multiorgan involvement and granulomatous inflammation. Its origin is unknown and the potential role of autoimmunity has not been sufficiently determined. We investigated the presence of autoantibodies in sarcoidosis using protein array technology. The derivation cohort consisted of patients with sarcoidosis (n = 25) and controls including autoimmune disease and blood donors (n = 246). In addition, we tested a validation cohort including pulmonary sarcoidosis patients (n = 58) and healthy controls (n = 13). Initially, sera of three patients with sarcoidosis were screened using a protein array with 28.000 proteins against controls. Thereby we identified the Negative Elongation Factor E (NELF-E) as an autoantigen. With confirmatory Enzyme-linked Immunosorbent Assay (ELISA)testing, 29/82 patients (35%) with sarcoidosis had antibodies against NELF-E of the Immunoglobulin (Ig) G type, whereas 18/253 (7%) sera of the controls were positive for NELF-E. Clinically, there was an association of the frequency of NELF-E antibody detection with lung parenchymal involvement and corresponding x-ray types. NELF-E autoantibodies are associated with sarcoidosis and should be further investigated.
Collapse
|
47
|
Adam AHB, de Haan LHJ, Estruch IM, Hooiveld GJEJ, Louisse J, Rietjens IMCM. Estrogen receptor alpha (ERα)-mediated coregulator binding and gene expression discriminates the toxic ERα agonist diethylstilbestrol (DES) from the endogenous ERα agonist 17β-estradiol (E2). Cell Biol Toxicol 2020; 36:417-435. [PMID: 32088792 PMCID: PMC7505815 DOI: 10.1007/s10565-020-09516-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/28/2020] [Indexed: 12/29/2022]
Abstract
Diethylstilbestrol (DES) is a synthetic estrogen and proven human teratogen and carcinogen reported to act via the estrogen receptor α (ERα). Since the endogenous ERα ligand 17β-estradiol (E2) does not show these adverse effects to a similar extent, we hypothesized that DES' interaction with the ERα differs from that of E2. The current study aimed to investigate possible differences between DES and E2 using in vitro assays that detect ERα-mediated effects, including ERα-mediated reporter gene expression, ERα-mediated breast cancer cell (T47D) proliferation and ERα-coregulator interactions and gene expression in T47D cells. Results obtained indicate that DES and E2 activate ERα-mediated reporter gene transcription and T47D cell proliferation in a similar way. However, significant differences between DES- and E2-induced binding of the ERα to 15 coregulator motifs and in transcriptomic signatures obtained in the T47D cells were observed. It is concluded that differences observed in binding of the ERα with several co-repressor motifs, in downregulation of genes involved in histone deacetylation and DNA methylation and in upregulation of CYP26A1 and CYP26B1 contribute to the differential effects reported for DES and E2.
Collapse
Affiliation(s)
- Aziza Hussein Bakheit Adam
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands.
| | - Laura H J de Haan
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands
| | - Ignacio Miro Estruch
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Division of Human Nutrition and Health, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, The Netherlands
| | - Jochem Louisse
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands
| |
Collapse
|
48
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
49
|
Zhou D, Lai M, Luo A, Yu CY. An RNA Metabolism and Surveillance Quartet in the Major Histocompatibility Complex. Cells 2019; 8:E1008. [PMID: 31480283 PMCID: PMC6769589 DOI: 10.3390/cells8091008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
At the central region of the mammalian major histocompatibility complex (MHC) is a complement gene cluster that codes for constituents of complement C3 convertases (C2, factor B and C4). Complement activation drives the humoral effector functions for immune response. Sandwiched between the genes for serine proteinase factor B and anchor protein C4 are four less known but critically important genes coding for essential functions related to metabolism and surveillance of RNA during the transcriptional and translational processes of gene expression. These four genes are NELF-E (RD), SKIV2L (SKI2W), DXO (DOM3Z) and STK19 (RP1 or G11) and dubbed as NSDK. NELF-E is the subunit E of negative elongation factor responsible for promoter proximal pause of transcription. SKIV2L is the RNA helicase for cytoplasmic exosomes responsible for degradation of de-polyadenylated mRNA and viral RNA. DXO is a powerful enzyme with pyro-phosphohydrolase activity towards 5' triphosphorylated RNA, decapping and exoribonuclease activities of faulty nuclear RNA molecules. STK19 is a nuclear kinase that phosphorylates RNA-binding proteins during transcription. STK19 is also involved in DNA repair during active transcription and in nuclear signal transduction. The genetic, biochemical and functional properties for NSDK in the MHC largely stay as a secret for many immunologists. Here we briefly review the roles of (a) NELF-E on transcriptional pausing; (b) SKIV2L on turnover of deadenylated or expired RNA 3'→5' through the Ski-exosome complex, and modulation of inflammatory response initiated by retinoic acid-inducible gene 1-like receptor (RLR) sensing of viral infections; (c) DXO on quality control of RNA integrity through recognition of 5' caps and destruction of faulty adducts in 5'→3' fashion; and (d) STK19 on nuclear protein phosphorylations. There is compelling evidence that a dysregulation or a deficiency of a NSDK gene would cause a malignant, immunologic or digestive disease.
Collapse
Affiliation(s)
- Danlei Zhou
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA.
| | - Michalea Lai
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Aiqin Luo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Chack-Yung Yu
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA.
| |
Collapse
|
50
|
Etchegaray JP, Zhong L, Li C, Henriques T, Ablondi E, Nakadai T, Van Rechem C, Ferrer C, Ross KN, Choi JE, Samarakkody A, Ji F, Chang A, Sadreyev RI, Ramaswamy S, Nechaev S, Whetstine JR, Roeder RG, Adelman K, Goren A, Mostoslavsky R. The Histone Deacetylase SIRT6 Restrains Transcription Elongation via Promoter-Proximal Pausing. Mol Cell 2019; 75:683-699.e7. [PMID: 31399344 PMCID: PMC6907403 DOI: 10.1016/j.molcel.2019.06.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
Transcriptional regulation in eukaryotes occurs at promoter-proximal regions wherein transcriptionally engaged RNA polymerase II (Pol II) pauses before proceeding toward productive elongation. The role of chromatin in pausing remains poorly understood. Here, we demonstrate that the histone deacetylase SIRT6 binds to Pol II and prevents the release of the negative elongation factor (NELF), thus stabilizing Pol II promoter-proximal pausing. Genetic depletion of SIRT6 or its chromatin deficiency upon glucose deprivation causes intragenic enrichment of acetylated histone H3 at lysines 9 (H3K9ac) and 56 (H3K56ac), activation of cyclin-dependent kinase 9 (CDK9)-that phosphorylates NELF and the carboxyl terminal domain of Pol II-and enrichment of the positive transcription elongation factors MYC, BRD4, PAF1, and the super elongation factors AFF4 and ELL2. These events lead to increased expression of genes involved in metabolism, protein synthesis, and embryonic development. Our results identified SIRT6 as a Pol II promoter-proximal pausing-dedicated histone deacetylase.
Collapse
Affiliation(s)
- Jean-Pierre Etchegaray
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Lei Zhong
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Catherine Li
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Telmo Henriques
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen Ablondi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Capucine Van Rechem
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Christina Ferrer
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth N Ross
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Eun Choi
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Ann Samarakkody
- University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Chang
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sridhar Ramaswamy
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Sergei Nechaev
- University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Johnathan R Whetstine
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alon Goren
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|