1
|
Oborská-Oplová M, Geiger AG, Michel E, Klingauf-Nerurkar P, Dennerlein S, Bykov YS, Amodeo S, Schneider A, Schuldiner M, Rehling P, Panse VG. An avoidance segment resolves a lethal nuclear-mitochondrial targeting conflict during ribosome assembly. Nat Cell Biol 2025:10.1038/s41556-024-01588-4. [PMID: 39890954 DOI: 10.1038/s41556-024-01588-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/27/2024] [Indexed: 02/03/2025]
Abstract
The correct sorting of nascent ribosomal proteins from the cytoplasm to the nucleus or to mitochondria for ribosome production poses a logistical challenge for cellular targeting pathways. Here we report the discovery of a conserved mitochondrial avoidance segment (MAS) within the cytosolic ribosomal protein uS5 that resolves an evolutionary lethal conflict between the nuclear and mitochondrial targeting machinery. MAS removal mistargets uS5 to the mitochondrial matrix and disrupts the assembly of the cytosolic ribosome. The resulting lethality can be rescued by impairing mitochondrial import. We show that MAS triages nuclear targeting by disabling a cryptic mitochondrial targeting activity within uS5 and thereby prevents fatal capture by mitochondria. Our findings identify MAS as an essential acquisition by the primordial eukaryote that reinforced organelle targeting fidelity while developing an endosymbiotic relationship with its mitochondrial progenitor.
Collapse
Affiliation(s)
- Michaela Oborská-Oplová
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | - Erich Michel
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Yury S Bykov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Simona Amodeo
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
- Max-Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells', University of Goettingen, Goettingen, Germany
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Yang G, Shi W, He W, Wu J, Huang S, Mo L, Zhang J, Wang H, Zhou X. The mitochondrial protein Bcs1A regulates antifungal drug tolerance by affecting efflux pump expression in the filamentous pathogenic fungus Aspergillus fumigatus. Microbiol Spectr 2024; 12:e0117224. [PMID: 39162512 PMCID: PMC11448404 DOI: 10.1128/spectrum.01172-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 08/21/2024] Open
Abstract
Aspergillus fumigatus is the predominant pathogen responsible for aspergillosis infections, with emerging drug-resistant strains complicating treatment strategies. The role of mitochondrial functionality in fungal resistance to antifungal agents is well-documented yet not fully understood. In this study, the mitochondrial protein Bcs1A, a homolog of yeast Bcs1, was found to regulate colony growth, ion homeostasis, and the response to antifungal drugs in A. fumigatus. Microscopic observations revealed substantial colocalization of Bcs1A-GFP fusion protein fluorescence with mitochondria. Bcs1A deletion compromised colony growth and the utilization of non-fermentable carbon sources, alongside causing abnormal mitochondrial membrane potential and reduced reactive oxygen species production. These findings underscore Bcs1A's vital role in maintaining mitochondrial integrity. Phenotypic analysis and determinations of minimum inhibitory concentrations indicated that the Δbcs1A mutant was more resistant to various antifungal agents, such as azoles, terbinafine, and simvastatin, compared to wild-type strain. RNA sequencing and RT-qPCR analysis highlighted an upregulation of multiple efflux pumps in the Δbcs1A mutant. Furthermore, loss of the principal drug efflux pump, mdr1, decreased azole tolerance in the Δbcs1A mutant, suggesting that Bcs1A's modulated of azoles response via efflux pump expression. Collectively, these results establish Bcs1A as essential for growth and antifungal drug responsiveness in A. fumigatus mediated through mitochondrial regulation.IMPORTANCEDrug resistance presents a formidable obstacle in the clinical management of aspergillosis. Mitochondria are integral to various biochemical pathways, including those involved in fungi drug response, making mitochondrial proteins promising therapeutic targets for drug therapy. This study confirms that Bcs1A, a mitochondrial respiratory chain protein, is indispensable for mitochondrial functionality and multidrug tolerance in Aspergillus fumigatus. Mutation of Bcs1A not only leads to a series of drug efflux pumps upregulated but also shows that loss of the primary efflux pump, mdr1, partial reduction in drug tolerance in the Bcs1A mutant, highlighting that Bcs1A's significant influence on mitochondria-mediated drug resistance.
Collapse
Affiliation(s)
- Guorong Yang
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Weiwei Shi
- Departments of Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Wenlin He
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Jing Wu
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Sutao Huang
- School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Li Mo
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Huaxue Wang
- Departments of Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xiaogang Zhou
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| |
Collapse
|
3
|
Goel D, Kumar S. Advancements in unravelling the fundamental function of the ATAD3 protein in multicellular organisms. Adv Biol Regul 2024; 93:101041. [PMID: 38909398 DOI: 10.1016/j.jbior.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
ATPase family AAA domain containing protein 3, commonly known as ATAD3 is a versatile mitochondrial protein that is involved in a large number of pathways. ATAD3 is a transmembrane protein that spans both the inner mitochondrial membrane and outer mitochondrial membrane. It, therefore, functions as a connecting link between the mitochondrial lumen and endoplasmic reticulum facilitating their cross-talk. ATAD3 contains an N-terminal domain which is amphipathic in nature and is inserted into the membranous space of the mitochondria, while the C-terminal domain is present towards the lumen of the mitochondria and contains the ATPase domain. ATAD3 is known to be involved in mitochondrial biogenesis, cholesterol transport, hormone synthesis, apoptosis and several other pathways. It has also been implicated to be involved in cancer and many neurological disorders making it an interesting target for extensive studies. This review aims to provide an updated comprehensive account of the role of ATAD3 in the mitochondria especially in lipid transport, mitochondrial-endoplasmic reticulum interactions, cancer and inhibition of mitophagy.
Collapse
Affiliation(s)
- Divya Goel
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Klugherz I, Basch M, Ng N, Zhu Z, Wagener N, Wagener J. Only One of Three Bcs1 Homologs in Aspergillus fumigatus Confers Respiratory Growth. J Fungi (Basel) 2023; 9:1074. [PMID: 37998879 PMCID: PMC10672213 DOI: 10.3390/jof9111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The mitochondrial translocase Bcs1 is required for the correct assembly of complex III of the mitochondrial respiratory chain. Because of its importance, Bcs1 was recently proposed as a target for antifungal agents. The function of this AAA (ATPase Associated with diverse cellular Activities) protein has been extensively characterized in Saccharomyces cerevisiae. This yeast as well as previously studied mammals each encode only one homolog. In contrast, the pathogenic mold Aspergillus fumigatus encodes three putative Bcs1 homologs, none of which have been characterized to date. To study the role of these three homologs in A. fumigatus, conditional and deletion mutants of the respective genes AFUA_3G13000 (bcs1A), AFUA_4G01260 (bcs1B), and AFUA_2G14760 (bcs1C) were generated. A deletion or downregulation of bcs1A resulted in drastically reduced growth and sporulation rates and in a significantly altered susceptibility to azole antifungals. In contrast, mutants lacking Bcs1B or Bcs1C did not show any phenotypes differing from the wild type. Salicylhydroxamic acid-an inhibitor of the alternative oxidase that allows the respiratory chain to bypass complex III in some species-caused a complete growth arrest of the bcs1A deletion mutant. In a Galleria mellonella infection model, the deletion of bcs1A resulted in significantly decreased virulence. Only Bcs1A was able to partially complement a deletion of BCS1 in S. cerevisiae. The subcellular localization of Bcs1B and Bcs1C outside of mitochondria suggests that these Bcs1 homologs exert cellular functions different from that of Bcs1. Our data demonstrate that Bcs1A is the sole Bcs1 ortholog in A. fumigatus.
Collapse
Affiliation(s)
- Isabel Klugherz
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (I.K.)
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Marion Basch
- Zell- und Entwicklungsbiologie, Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152 Munich, Germany
| | - Natanya Ng
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, The University of Dublin, St James’s Hospital Campus, D08 RX0X Dublin, Ireland
| | - Zhaojun Zhu
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (I.K.)
| | - Nikola Wagener
- Zell- und Entwicklungsbiologie, Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152 Munich, Germany
| | - Johannes Wagener
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (I.K.)
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, The University of Dublin, St James’s Hospital Campus, D08 RX0X Dublin, Ireland
| |
Collapse
|
5
|
Al Qurashi M, Mustafa A, Aga SS, Ahmad A, El-Farra A, Shawli A, Al Hindi M, Hasosah M. Clinical and diagnostic characteristics of complex III mitopathy due to novel BCS1L gene mutation in a Saudi patient. BMC Med Genomics 2022; 15:63. [PMID: 35305621 PMCID: PMC8933996 DOI: 10.1186/s12920-022-01210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background Of the many types of mitochondrial diseases, mutations affecting BCS1L gene are regarded as chief cause of the defective mitochondrial complex-III, affecting normal mitochondrial functioning, and leading to wide variety of phenotypes. Case presentation In this case report we describe a novel genotype linked to a unique phenotype in a Saudi patient born of a consanguineous marriage. Detailed genetic analysis and whole genome sequencing identified a novel homozygous missense mutation in exon 5 c.712A > G (p.Ser328Gly) of the BCS1L gene, with predicted deleterious effects on the functioning AAA+-ATPase domain of the protein characterized by distinct clinical presentation associated with profound multisystem involvement, conductive hearing loss, absent external auditory canal, low posterior hair line, short neck, micro and retrognathia, over riding fingers, rocker bottom foot, small phallus with bilateral absent testis (empty scrotum) and intolerable lactic acidosis. Conclusions A pathogenic effect of this novel BCS1L mutation was reflected in the patient with his failure to thrive and a complex clinical and metabolic phenotype.
Collapse
|
6
|
Kreimendahl S, Schwichtenberg J, Günnewig K, Brandherm L, Rassow J. The selectivity filter of the mitochondrial protein import machinery. BMC Biol 2020; 18:156. [PMID: 33121519 PMCID: PMC7596997 DOI: 10.1186/s12915-020-00888-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022] Open
Abstract
Background The uptake of newly synthesized nuclear-encoded mitochondrial proteins from the cytosol is mediated by a complex of mitochondrial outer membrane proteins comprising a central pore-forming component and associated receptor proteins. Distinct fractions of proteins initially bind to the receptor proteins and are subsequently transferred to the pore-forming component for import. The aim of this study was the identification of the decisive elements of this machinery that determine the specific selection of the proteins that should be imported. Results We identified the essential internal targeting signal of the members of the mitochondrial metabolite carrier proteins, the largest protein family of the mitochondria, and we investigated the specific recognition of this signal by the protein import machinery at the mitochondrial outer surface. We found that the outer membrane import receptors facilitated the uptake of these proteins, and we identified the corresponding binding site, marked by cysteine C141 in the receptor protein Tom70. However, in tests both in vivo and in vitro, the import receptors were neither necessary nor sufficient for specific recognition of the targeting signals. Although these signals are unrelated to the amino-terminal presequences that mediate the targeting of other mitochondrial preproteins, they were found to resemble presequences in their strict dependence on a content of positively charged residues as a prerequisite of interactions with the import pore. Conclusions The general import pore of the mitochondrial outer membrane appears to represent not only the central channel of protein translocation but also to form the decisive general selectivity filter in the uptake of the newly synthesized mitochondrial proteins.
Collapse
Affiliation(s)
- Sebastian Kreimendahl
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Jan Schwichtenberg
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Kathrin Günnewig
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Lukas Brandherm
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Joachim Rassow
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
7
|
Subrahmanian N, Castonguay AD, Fatnes TA, Hamel PP. Chlamydomonas reinhardtii as a plant model system to study mitochondrial complex I dysfunction. PLANT DIRECT 2020; 4:e00200. [PMID: 32025618 PMCID: PMC6996877 DOI: 10.1002/pld3.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Mitochondrial complex I, a proton-pumping NADH: ubiquinone oxidoreductase, is required for oxidative phosphorylation. However, the contribution of several human mutations to complex I deficiency is poorly understood. The unicellular alga Chlamydomonas reinhardtii was utilized to study complex I as, unlike in mammals, mutants with complete loss of the holoenzyme are viable. From a forward genetic screen for complex I-deficient insertional mutants, six mutants exhibiting complex I deficiency with assembly defects were isolated. Chlamydomonas mutants isolated from our screens, lacking the subunits NDUFV2 and NDUFB10, were used to reconstruct and analyze the effect of two human mutations in these subunit-encoding genes. The K209R substitution in NDUFV2, reported in Parkinson's disease patients, did not significantly affect the enzyme activity or assembly. The C107S substitution in the NDUFB10 subunit, reported in a case of fatal infantile cardiomyopathy, is part of a conserved C-(X)11-C motif. The cysteine substitutions, at either one or both positions, still allowed low levels of holoenzyme formation, indicating that this motif is crucial for complex I function but not strictly essential for assembly. We show that the algal mutants provide a simple and useful platform to delineate the consequences of patient mutations on complex I function.
Collapse
Affiliation(s)
- Nitya Subrahmanian
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
- Plant Cellular and Molecular Biology Graduate ProgramThe Ohio State UniversityColumbusOHUSA
| | - Andrew David Castonguay
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
- Molecular Genetics Graduate ProgramThe Ohio State UniversityColumbusOHUSA
| | - Thea Aspelund Fatnes
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
- Present address:
Fürst Medical LaboratoryOsloNorway
| | - Patrice Paul Hamel
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
- Department of Biological Chemistry and PharmacologyThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
8
|
Baker RA, Priestley JRC, Wilstermann AM, Reese KJ, Mark PR. Clinical spectrum of
BCS1L
Mitopathies and their underlying structural relationships. Am J Med Genet A 2018; 179:373-380. [DOI: 10.1002/ajmg.a.61019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Rachael A. Baker
- Department of Chemistry and BiochemistryCalvin College Grand Rapids Michigan
| | | | | | - Kalina J. Reese
- Department of Chemistry and BiochemistryCalvin College Grand Rapids Michigan
| | - Paul R. Mark
- Spectrum Health Medical GroupDepartment of Medical Genetics Grand Rapids Michigan
| |
Collapse
|
9
|
Ni Z, He J, Wu Y, Hu C, Dai X, Yan X, Li B, Li X, Xiong H, Li Y, Li S, Xu L, Li Y, Lian J, He F. AKT-mediated phosphorylation of ATG4B impairs mitochondrial activity and enhances the Warburg effect in hepatocellular carcinoma cells. Autophagy 2018; 14:685-701. [PMID: 29165041 DOI: 10.1080/15548627.2017.1407887] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phosphorylation is a major type of post-translational modification, which can influence the cellular physiological function. ATG4B, a key macroautophagy/autophagy-related protein, has a potential effect on the survival of tumor cells. However, the role of ATG4B phosphorylation in cancers is still unknown. In this study, we identified a novel phosphorylation site at Ser34 of ATG4B induced by AKT in HCC cells. The phosphorylation of ATG4B at Ser34 had little effect on autophagic flux, but promoted the Warburg effect including the increase of L-lactate production and glucose consumption, and the decrease of oxygen consumption in HCC cells. The Ser34 phosphorylation of ATG4B also contributed to the impairment of mitochondrial activity including the inhibition of F1Fo-ATP synthase activity and the elevation of mitochondrial ROS in HCC cells. Moreover, the phosphorylation of ATG4B at Ser34 enhanced its mitochondrial location and the subsequent colocalization with F1Fo-ATP synthase in HCC cells. Furthermore, recombinant human ATG4B protein suppressed the activity of F1Fo-ATP synthase in MgATP submitochondrial particles from patient-derived HCC tissues in vitro. In brief, our results demonstrate for the first time that the phosphorylation of ATG4B at Ser34 participates in the metabolic reprogramming of HCC cells via repressing mitochondrial function, which possibly results from the Ser34 phosphorylation-induced mitochondrial enrichment of ATG4B and the subsequent inhibition of F1Fo-ATP synthase activity. Our findings reveal a noncanonical working pattern of ATG4B under pathological conditions, which may provide a scientific basis for developing novel strategies for HCC treatment by targeting ATG4B and its Ser34 phosphorylation.
Collapse
Affiliation(s)
- Zhenhong Ni
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| | - Jintao He
- b Battalion 17 of Students , College of Preventive Medicine, Third Military Medical University , Chongqing, China
| | - Yaran Wu
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| | - Changjiang Hu
- c Department of Gastroenterology , Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Xufang Dai
- d College of Educational Science, Chongqing Normal University , Chongqing , China
| | - Xiaojing Yan
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| | - Bo Li
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| | - Xinzhe Li
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| | - Haojun Xiong
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| | - Yuming Li
- e Department of Hepatobiliary Surgery , Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Song Li
- f Center for Pharmacogenetics , Department of Pharmaceutical Sciences, School of Pharmacy , University of Pittsburgh , Pittsburgh , PA , USA
| | - Liang Xu
- g Department of Molecular Biosciences and Department of Radiation Oncology , University of Kansas Cancer Center, University of Kansas , Lawrence , KS , USA
| | - Yongsheng Li
- h Institute of Cancer, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Jiqin Lian
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| | - Fengtian He
- a Department of Biochemistry and Molecular Biology , College of Basic Medical Sciences, Third Military Medical University , Chongqing, China
| |
Collapse
|
10
|
TAC102 Is a Novel Component of the Mitochondrial Genome Segregation Machinery in Trypanosomes. PLoS Pathog 2016; 12:e1005586. [PMID: 27168148 PMCID: PMC4864229 DOI: 10.1371/journal.ppat.1005586] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/30/2016] [Indexed: 11/19/2022] Open
Abstract
Trypanosomes show an intriguing organization of their mitochondrial DNA into a catenated network, the kinetoplast DNA (kDNA). While more than 30 proteins involved in kDNA replication have been described, only few components of kDNA segregation machinery are currently known. Electron microscopy studies identified a high-order structure, the tripartite attachment complex (TAC), linking the basal body of the flagellum via the mitochondrial membranes to the kDNA. Here we describe TAC102, a novel core component of the TAC, which is essential for proper kDNA segregation during cell division. Loss of TAC102 leads to mitochondrial genome missegregation but has no impact on proper organelle biogenesis and segregation. The protein is present throughout the cell cycle and is assembled into the newly developing TAC only after the pro-basal body has matured indicating a hierarchy in the assembly process. Furthermore, we provide evidence that the TAC is replicated de novo rather than using a semi-conservative mechanism. Lastly, we demonstrate that TAC102 lacks an N-terminal mitochondrial targeting sequence and requires sequences in the C-terminal part of the protein for its proper localization. Proper segregation of the mitochondrial genome during cell division is a prerequisite of healthy eukaryotic cells. However, the mechanism underlying the segregation process is only poorly understood. We use the single celled parasite Trypanosoma brucei, which, unlike most model organisms, harbors a single large mitochondrion with a single mitochondrial genome, also called kinetoplast DNA (kDNA), to study this question. In trypanosomes, kDNA replication and segregation are tightly integrated into the cell cycle and thus can be studied alongside cell cycle markers. Furthermore, previous studies using electron microscopy have characterized the tripartite attachment complex (TAC) as a structural element of the mitochondrial genome segregation machinery. Here, we characterize TAC102, a novel trypanosome protein localized to the TAC. The protein is essential for proper kDNA segregation and cell growth. We analyze the presence of this protein using super resolution microscopy and show that TAC102 is a mitochondrial protein localized between the kDNA and the basal body of the cell’s flagellum. In addition, we characterize different parts of the protein and show that the C-terminus of TAC102 is important for its proper localization. The data and resources presented will allow a more detailed characterization of the dynamics and hierarchy of the TAC in the future and might open new avenues for drug discovery targeting this structure.
Collapse
|
11
|
Nam MK, Han JH, Jang JY, Yun SE, Kim GY, Kang S, Rhim H. A novel link between the conformations, exposure of specific epitopes, and subcellular localization of α-synuclein. Biochim Biophys Acta Gen Subj 2015; 1850:2497-505. [PMID: 26391842 DOI: 10.1016/j.bbagen.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/19/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Genetic studies and the abundance of alpha-synuclein (α-Syn) in presynaptic terminals suggest that α-Syn plays a critical role in maintaining synaptic vesicle pools. However, there are still few experimental tools for elucidating its physiological roles. METHODS Unexpectedly, we detected various cellular distribution patterns of endogenous α-Syn by immunofluorescence assays (IFAs). To provide new molecular insights into α-Syn research, we identified associations between epitopes, conformations, and subcellular localization of α-Syn and categorized them. RESULTS The α-Syn exposing Y125 was found to coexist with F-actin at the edge of the cells, including the plasma membrane. α-Syn conformations exposing P128 or both F94 and K97 were partly localized to the mitochondria. These results indicate that various conformations of α-Syn are associated with specific subcellular localizations. Intriguingly, we demonstrate for the first time that the phosphorylated α-Syn at Ser129, also known as a Parkinson's disease (PD)-causing form, is targeted to the mitochondria. CONCLUSIONS Our study showed that different subcellular distribution patterns of α-Syn reflect the existence of various α-Syn conformations under normal conditions. GENERAL SIGNIFICANCE This study provides novel clues for deciphering the physiological function of α-Syn in connection with subcellular localization. Dissecting the specific α-Syn conformations may lead to useful strategies in PD therapy and diagnosis.
Collapse
Affiliation(s)
- Min-Kyung Nam
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Ji-Hye Han
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Ja-Young Jang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Si-Eun Yun
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Goo-Young Kim
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Hyangshuk Rhim
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| |
Collapse
|
12
|
A Perspective on Transport of Proteins into Mitochondria: A Myriad of Open Questions. J Mol Biol 2015; 427:1135-58. [DOI: 10.1016/j.jmb.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 11/22/2022]
|
13
|
Esparza-Perusquía M, Olvera-Sánchez S, Flores-Herrera O, Flores-Herrera H, Guevara-Flores A, Pardo JP, Espinosa-García MT, Martínez F. Mitochondrial proteases act on STARD3 to activate progesterone synthesis in human syncytiotrophoblast. Biochim Biophys Acta Gen Subj 2014; 1850:107-17. [PMID: 25459514 DOI: 10.1016/j.bbagen.2014.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND STARD1 transports cholesterol into mitochondria of acutely regulated steroidogenic tissue. It has been suggested that STARD3 transports cholesterol in the human placenta, which does not express STARD1. STARD1 is proteolytically activated into a 30-kDa protein. However, the role of proteases in STARD3 modification in the human placenta has not been studied. METHODS Progesterone determination and Western blot using anti-STARD3 antibodies showed that mitochondrial proteases cleave STARD3 into a 28-kDa fragment that stimulates progesterone synthesis in isolated syncytiotrophoblast mitochondria. Protease inhibitors decrease STARD3 transformation and steroidogenesis. RESULTS STARD3 remained tightly bound to isolated syncytiotrophoblast mitochondria. Simultaneous to the increase in progesterone synthesis, STARD3 was proteolytically processed into four proteins, of which a 28-kDa protein was the most abundant. This protein stimulated mitochondrial progesterone production similarly to truncated-STARD3. Maximum levels of protease activity were observed at pH7.5 and were sensitive to 1,10-phenanthroline, which inhibited steroidogenesis and STARD3 proteolytic cleavage. Addition of 22(R)-hydroxycholesterol increased progesterone synthesis, even in the presence of 1,10-phenanthroline, suggesting that proteolytic products might be involved in mitochondrial cholesterol transport. CONCLUSION Metalloproteases from human placental mitochondria are involved in steroidogenesis through the proteolytic activation of STARD3. 1,10-Phenanthroline inhibits STARD3 proteolytic cleavage. The 28-kDa protein and the amino terminal truncated-STARD3 stimulate steroidogenesis in a comparable rate, suggesting that both proteins share similar properties, probably the START domain that is involved in cholesterol binding. GENERAL SIGNIFICANCE Mitochondrial proteases are involved in syncytiotrophoblast-cell steroidogenesis regulation. Understanding STARD3 activation and its role in progesterone synthesis is crucial to getting insight into its action mechanism in healthy and diseased syncytiotrophoblast cells.
Collapse
Affiliation(s)
| | - Sofía Olvera-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Héctor Flores-Herrera
- Departamento de Bioquímica y Biología Molecular, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Mexico
| | - Alberto Guevara-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | | | - Federico Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
14
|
Flores-Herrera O, Olvera-Sánchez S, Esparza-Perusquía M, Pardo JP, Rendón JL, Mendoza-Hernández G, Martínez F. Membrane potential regulates mitochondrial ATP-diphosphohydrolase activity but is not involved in progesterone biosynthesis in human syncytiotrophoblast cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:143-152. [PMID: 25444704 DOI: 10.1016/j.bbabio.2014.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/17/2014] [Accepted: 10/07/2014] [Indexed: 11/26/2022]
Abstract
ATP-diphosphohydrolase is associated with human syncytiotrophoblast mitochondria. The activity of this enzyme is implicated in the stimulation of oxygen uptake and progesterone synthesis. We reported previously that: (1) the detergent-solubilized ATP-diphosphohydrolase has low substrate specificity, and (2) purine and pyrimidine nucleosides, tri- or diphosphates, are fully dephosphorylated in the presence of calcium or magnesium (Flores-Herrera 1999, 2002). In this study we show that ATP-diphosphohydrolase hydrolyzes first the nucleoside triphosphate to nucleoside diphosphate, and then to nucleotide monophosphate, in the case of all tested nucleotides. The activation energies (Ea) for ATP, GTP, UTP, and CTP were 6.06, 4.10, 6.25, and 5.26 kcal/mol, respectively; for ADP, GDP, UDP, and CDP, they were 4.67, 5.42, 5.43, and 6.22 kcal/mol, respectively. The corresponding Arrhenius plots indicated a single rate-limiting step for each hydrolyzed nucleoside, either tri- or diphosphate. In intact mitochondria, the ADP produced by ATP-diphosphohydrolase activity depolarized the membrane potential (ΔΨm) and stimulated oxygen uptake. Mitochondrial respiration showed the state-3/state-4 transition when ATP was added, suggesting that ATP-diphosphohydrolase and the F1F0-ATP synthase work in conjunction to avoid a futile cycle. Substrate selectivity of the ATP-diphosphohydrolase was modified by ΔΨm (i.e. ATP was preferred over GTP when the inner mitochondrial membrane was energized). In contrast, dissipation of ΔΨm by CCCP produced a loss of substrate specificity and so the ATP-diphosphohydrolase was able to hydrolyze ATP and GTP at the same rate. In intact mitochondria, ATP hydrolysis increased progesterone synthesis as compared with GTP. Although dissipation of ΔΨm by CCCP decreased progesterone synthesis, NADPH production restores steroidogenesis. Overall, our results suggest a novel physiological role for ΔΨm in steroidogenesis.
Collapse
Affiliation(s)
- Oscar Flores-Herrera
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico.
| | - Sofia Olvera-Sánchez
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Mercedes Esparza-Perusquía
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Juan Pablo Pardo
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Juan Luis Rendón
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Guillermo Mendoza-Hernández
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Federico Martínez
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| |
Collapse
|
15
|
Trypanosome alternative oxidase possesses both an N-terminal and internal mitochondrial targeting signal. EUKARYOTIC CELL 2014; 13:539-47. [PMID: 24562910 DOI: 10.1128/ec.00312-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recognition of mitochondrial targeting signals (MTS) by receptor translocases of outer and inner membranes of mitochondria is one of the prerequisites for import of nucleus-encoded proteins into this organelle. The MTS for a majority of trypanosomatid mitochondrial proteins have not been well defined. Here we analyzed the targeting signal for trypanosome alternative oxidase (TAO), which functions as the sole terminal oxidase in the infective form of Trypanosoma brucei. Deleting the first 10 of 24 amino acids predicted to be the classical N-terminal MTS of TAO did not affect its import into mitochondria in vitro. Furthermore, ectopically expressed TAO was targeted to mitochondria in both forms of the parasite even after deletion of first 40 amino acid residues. However, deletion of more than 20 amino acid residues from the N terminus reduced the efficiency of import. These data suggest that besides an N-terminal MTS, TAO possesses an internal mitochondrial targeting signal. In addition, both the N-terminal MTS and the mature TAO protein were able to target a cytosolic protein, dihydrofolate reductase (DHFR), to a T. brucei mitochondrion. Further analysis identified a cryptic internal MTS of TAO, located within amino acid residues 115 to 146, which was fully capable of targeting DHFR to mitochondria. The internal signal was more efficient than the N-terminal MTS for import of this heterologous protein. Together, these results show that TAO possesses a cleavable N-terminal MTS as well as an internal MTS and that these signals act together for efficient import of TAO into mitochondria.
Collapse
|
16
|
Stadler C, Rexhepaj E, Singan VR, Murphy RF, Pepperkok R, Uhlén M, Simpson JC, Lundberg E. Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat Methods 2013; 10:315-23. [PMID: 23435261 DOI: 10.1038/nmeth.2377] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/25/2013] [Indexed: 12/19/2022]
Abstract
Imaging techniques such as immunofluorescence (IF) and the expression of fluorescent protein (FP) fusions are widely used to investigate the subcellular distribution of proteins. Here we report a systematic analysis of >500 human proteins comparing the localizations obtained in live versus fixed cells using FPs and IF, respectively. We identify systematic discrepancies between IF and FPs as well as between FP tagging at the N and C termini. The analysis shows that for 80% of the proteins, IF and FPs yield the same subcellular distribution, and the locations of 250 previously unlocalized proteins were determined by the overlap between the two methods. Approximately 60% of proteins localize to multiple organelles for both methods, indicating a complex subcellular protein organization. These results show that both IF and FP tagging are reliable techniques and demonstrate the usefulness of an integrative approach for a complete investigation of the subcellular human proteome.
Collapse
Affiliation(s)
- Charlotte Stadler
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Midzak A, Rone M, Aghazadeh Y, Culty M, Papadopoulos V. Mitochondrial protein import and the genesis of steroidogenic mitochondria. Mol Cell Endocrinol 2011; 336:70-9. [PMID: 21147195 PMCID: PMC3057322 DOI: 10.1016/j.mce.2010.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 11/23/2022]
Abstract
The principal site of regulation of steroid hormone biosynthesis is the transfer of cholesterol from the outer to inner mitochondrial membrane. Hormonal stimulation of steroidogenic cells promotes this mitochondrial lipid import through a multi-protein complex, termed the transduceosome, spanning the two membranes. The transduceosome complex is assembled from multiple proteins, such as the steroidogenic acute regulatory (STAR) protein and translocator protein (TSPO), and requires their targeting to the mitochondria for transduceosome function. The vast majority of mitochondrial proteins, including those participating in cholesterol import, are encoded in the nucleus. Their subsequent mitochondrial incorporation is performed through a series of protein import machineries located in the outer and inner mitochondrial membranes. Here we review our current knowledge of the mitochondrial cholesterol import machinery of the transduceosome. This is complemented with descriptions of mitochondrial protein import machineries and mechanisms by which these machineries assemble the transduceosome in steroidogenic mitochondria.
Collapse
Affiliation(s)
- Andrew Midzak
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Malena Rone
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Yassaman Aghazadeh
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Martine Culty
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Correspondence at The Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, C10-148, Montreal, Quebec H3G 1A4, Canada. Tel: 514-934-1934 ext. 44580; Fax: 514-934-8261;
| |
Collapse
|
18
|
Bcs1p can rescue a large and productive cytochrome bc1 complex assembly intermediate in the inner membrane of yeast mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:91-101. [DOI: 10.1016/j.bbamcr.2010.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/15/2010] [Accepted: 08/11/2010] [Indexed: 11/23/2022]
|
19
|
Morán M, Marín-Buera L, Gil-Borlado MC, Rivera H, Blázquez A, Seneca S, Vázquez-López M, Arenas J, Martín MA, Ugalde C. Cellular pathophysiological consequences of BCS1L mutations in mitochondrial complex III enzyme deficiency. Hum Mutat 2010; 31:930-41. [PMID: 20518024 DOI: 10.1002/humu.21294] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mutations in BCS1L, an assembly factor that facilitates the insertion of the catalytic Rieske Iron-Sulfur subunit into respiratory chain complex III, result in a wide variety of clinical phenotypes that range from the relatively mild Björnstad syndrome to the severe GRACILE syndrome. To better understand the pathophysiological consequences of such mutations, we studied fibroblasts from six complex III-deficient patients harboring mutations in the BCS1L gene. Cells from patients with the most severe clinical phenotypes exhibited slow growth rates in glucose medium, variable combined enzyme deficiencies, and assembly defects of respiratory chain complexes I, III, and IV, increased H(2)O(2) levels, unbalanced expression of the cellular antioxidant defenses, and apoptotic cell death. In addition, all patients showed cytosolic accumulation of the BCS1L protein, suggestive of an impaired mitochondrial import, assembly or stability defects of the BCS1L complex, fragmentation of the mitochondrial networks, and decreased MFN2 protein levels. The observed structural alterations were independent of the respiratory chain function and ROS production. Our results provide new insights into the role of pathogenic BCS1L mutations in mitochondrial function and dynamics.
Collapse
Affiliation(s)
- María Morán
- Centro de Investigación, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Characterization of complex III deficiency and liver dysfunction in GRACILE syndrome caused by a BCS1L mutation. Mitochondrion 2010; 10:497-509. [PMID: 20580947 DOI: 10.1016/j.mito.2010.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 04/19/2010] [Accepted: 05/19/2010] [Indexed: 02/02/2023]
Abstract
A homozygous mutation in the complex III chaperone BCS1L causes GRACILE syndrome (intrauterine growth restriction, aminoaciduria, cholestasis, hepatic iron overload, lactacidosis). In control and patient fibroblasts we localized BCS1L in inner mitochondrial membranes. In patient liver, kidney, and heart BCS1L and Rieske protein levels, as well as the amount and activity of complex III, were decreased. Major histopathology was found in kidney and liver with cirrhosis and iron deposition, but of iron-related proteins only ferritin levels were high. In placenta from a GRACILE fetus, the ferrooxidases ceruloplasmin and hephaestin were upregulated suggesting association between iron overload and placental dysfunction.
Collapse
|
21
|
Truscott KN, Lowth BR, Strack PR, Dougan DA. Diverse functions of mitochondrial AAA+ proteins: protein activation, disaggregation, and degradation. Biochem Cell Biol 2010; 88:97-108. [PMID: 20130683 DOI: 10.1139/o09-167] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In eukaryotes, mitochondria are required for the proper function of the cell and as such the maintenance of proteins within this organelle is crucial. One class of proteins, collectively known as the AAA+ (ATPases associated with various cellular activities) superfamily, make a number of important contributions to mitochondrial protein homeostasis. In this organelle, they contribute to the maturation and activation of proteins, general protein quality control, respiratory chain complex assembly, and mitochondrial DNA maintenance and integrity. To achieve such diverse functions this group of ATP-dependent unfoldases utilize the energy from ATP hydrolysis to modulate the structure of proteins via unique domains and (or) associated functional components. In this review, we describe the current status of knowledge regarding the known mitochondrial AAA+ proteins and their role in this organelle.
Collapse
Affiliation(s)
- Kaye N Truscott
- La Trobe University, Science Dr., Melbourne, Victoria 3086, Australia
| | | | | | | |
Collapse
|
22
|
The AAA+ ATPase ATAD3A controls mitochondrial dynamics at the interface of the inner and outer membranes. Mol Cell Biol 2010; 30:1984-96. [PMID: 20154147 DOI: 10.1128/mcb.00007-10] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dynamic interactions between components of the outer (OM) and inner (IM) membranes control a number of critical mitochondrial functions such as channeling of metabolites and coordinated fission and fusion. We identify here the mitochondrial AAA(+) ATPase protein ATAD3A specific to multicellular eukaryotes as a participant in these interactions. The N-terminal domain interacts with the OM. A central transmembrane segment (TMS) anchors the protein in the IM and positions the C-terminal AAA(+) ATPase domain in the matrix. Invalidation studies in Drosophila and in a human steroidogenic cell line showed that ATAD3A is required for normal cell growth and cholesterol channeling at contact sites. Using dominant-negative mutants, including a defective ATP-binding mutant and a truncated 50-amino-acid N-terminus mutant, we showed that ATAD3A regulates dynamic interactions between the mitochondrial OM and IM sensed by the cell fission machinery. The capacity of ATAD3A to impact essential mitochondrial functions and organization suggests that it possesses unique properties in regulating mitochondrial dynamics and cellular functions in multicellular organisms.
Collapse
|
23
|
Nouet C, Truan G, Mathieu L, Dujardin G. Functional Analysis of Yeast bcs1 Mutants Highlights the Role of Bcs1p-Specific Amino Acids in the AAA Domain. J Mol Biol 2009; 388:252-61. [DOI: 10.1016/j.jmb.2009.03.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/04/2009] [Accepted: 03/09/2009] [Indexed: 11/28/2022]
|
24
|
Anandatheerthavarada HK, Sepuri NBV, Avadhani NG. Mitochondrial targeting of cytochrome P450 proteins containing NH2-terminal chimeric signals involves an unusual TOM20/TOM22 bypass mechanism. J Biol Chem 2009; 284:17352-17363. [PMID: 19401463 DOI: 10.1074/jbc.m109.007492] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we showed that xenobiotic inducible cytochrome P450 (CYP) proteins are bimodally targeted to the endoplasmic reticulum and mitochondria. In this study, we investigated the mechanism of delivery of chimeric signal containing CYP proteins to the peripheral and channel-forming mitochondrial outer membrane translocases (TOMs). CYP+33/1A1 and CYP2B1 did not require peripheral TOM70, TOM20, or TOM22 for translocation through the channel-forming TOM40 protein. In contrast, CYP+5/1A1 and CYP2E1 were able to bypass TOM20 and TOM22 but required TOM70. CYP27, which contains a canonical cleavable mitochondrial signal, required all of the peripheral TOMs for its mitochondrial translocation. We investigated the underlying mechanisms of bypass of peripheral TOMs by CYPs with chimeric signals. The results suggested that interaction of CYPs with Hsp70, a cytosolic chaperone involved in the mitochondrial import, alone was sufficient for the recognition of chimeric signals by peripheral TOMs. However, sequential interaction of chimeric signal containing CYPs with Hsp70 and Hsp90 resulted in the bypass of peripheral TOMs, whereas CYP27A1 interacted only with Hsp70 and was not able to bypass peripheral TOMs. Our results also show that delivery of a chimeric signal containing client protein by Hsp90 required the cytosol-exposed NH(2)-terminal 143 amino acids of TOM40. TOM40 devoid of this domain was unable to import CYP proteins. These results suggest that compared with the unimodal mitochondrial targeting signals, the chimeric mitochondrial targeting signals are highly evolved and dynamic in nature.
Collapse
Affiliation(s)
- Hindupur K Anandatheerthavarada
- From the Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Naresh Babu V Sepuri
- From the Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Narayan G Avadhani
- From the Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
25
|
Mokranjac D, Sichting M, Popov-Celeketić D, Mapa K, Gevorkyan-Airapetov L, Zohary K, Hell K, Azem A, Neupert W. Role of Tim50 in the transfer of precursor proteins from the outer to the inner membrane of mitochondria. Mol Biol Cell 2009; 20:1400-7. [PMID: 19144822 DOI: 10.1091/mbc.e08-09-0934] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transport of essentially all matrix and a number of inner membrane proteins is governed, entirely or in part, by N-terminal presequences and requires a coordinated action of the translocases of outer and inner mitochondrial membranes (TOM and TIM23 complexes). Here, we have analyzed Tim50, a subunit of the TIM23 complex that is implicated in transfer of precursors from TOM to TIM23. Tim50 is recruited to the TIM23 complex via Tim23 in an interaction that is essentially independent of the rest of the translocase. We find Tim50 in close proximity to the intermembrane space side of the TOM complex where it recognizes both types of TIM23 substrates, those that are to be transported into the matrix and those destined to the inner membrane, suggesting that Tim50 recognizes presequences. This function of Tim50 depends on its association with TIM23. We conclude that the efficient transfer of precursors between TOM and TIM23 complexes requires the concerted action of Tim50 with Tim23.
Collapse
Affiliation(s)
- Dejana Mokranjac
- Institute for Physiological Chemistry, Ludwig-Maximilians University, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Anandatheerthavarada HK, Sepuri NBV, Biswas G, Avadhani NG. An unusual TOM20/TOM22 bypass mechanism for the mitochondrial targeting of cytochrome P450 proteins containing N-terminal chimeric signals. J Biol Chem 2008; 283:19769-80. [PMID: 18480056 DOI: 10.1074/jbc.m801464200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we showed that xenobiotic-inducible cytochrome P450 (CYP) proteins are bimodally targeted to the endoplasmic reticulum and mitochondria. In the present study, we investigated the mechanism of delivery of chimeric signal-containing CYP proteins to the peripheral and channel-forming mitochondrial outer membrane translocases (TOMs). CYP+33/1A1 and CYP2B1 did not require peripheral TOM70, TOM20, or TOM22 for translocation through the channel-forming TOM40 protein. In contrast, CYP+5/1A1 and CYP2E1 were able to bypass TOM20 and TOM22 but required TOM70. CYP27, which contains a canonical cleavable mitochondrial signal, required all of the peripheral TOMs for its mitochondrial translocation. We investigated the underlying mechanisms of bypass of peripheral TOMs by CYPs with chimeric signals. The results suggested that interaction of CYPs with Hsp70, a cytosolic chaperone involved in the mitochondrial import, alone was sufficient for the recognition of chimeric signals by peripheral TOMs. However, sequential interaction of chimeric signal-containing CYPs with Hsp70 and Hsp90 resulted in the bypass of peripheral TOMs, whereas CYP27 interacted only with Hsp70 and was not able to bypass peripheral TOMs. Our results also show that delivery of chimeric signal-containing client proteins by Hsp90 required the cytosol-exposed N-terminal 143 amino acids of TOM40. TOM40 devoid of this domain was unable to bind CYP proteins. These results suggest that, compared with the unimodal mitochondria-targeting signals, the chimeric mitochondria-targeting signals are highly evolved and dynamic in nature.
Collapse
Affiliation(s)
- Hindupur K Anandatheerthavarada
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Ejaculated sperm are capable of using mRNAs transcripts for protein translation during the final maturation steps before fertilization. In a capacitation-dependent process, nuclear-encoded mRNAs are translated by mitochondrial-type ribosomes while the cytoplasmic translation machinery is not involved. Our findings suggest that new proteins are synthesized to replace degraded proteins while swimming and waiting in the female reproductive tract before fertilization, or produced due to the specific needs of the capacitating spermatozoa. In addition, a growing number of articles have reported evidence for the correlation of nuclear-encoded mRNA and protein synthesis in somatic mitochondria. It is known that all of the proteins necessary for the replication, transcription and translation of the genes encoded in mtDNA are now encoded in the nuclear genome. This genetic investment is far out of proportion to the number of proteins involved, as there have been multiple movements and duplications of genes. However, the evolutionary retention (or secondary uptake) of the mitochondrial machinery for translation of nuclear-encoded mRNAs may shed light on this paradox.
Collapse
Affiliation(s)
- Yael Gur
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
28
|
Habib SJ, Neupert W, Rapaport D. Analysis and prediction of mitochondrial targeting signals. Methods Cell Biol 2007; 80:761-81. [PMID: 17445721 DOI: 10.1016/s0091-679x(06)80035-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shukry J Habib
- Institut für Physiologische Chemie, Universität München, D-81377 Munich, Germany
| | | | | |
Collapse
|
29
|
van Lis R, Mendoza-Hernández G, Groth G, Atteia A. New insights into the unique structure of the F0F1-ATP synthase from the chlamydomonad algae Polytomella sp. and Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2007; 144:1190-9. [PMID: 17468226 PMCID: PMC1914207 DOI: 10.1104/pp.106.094060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this study, we investigate the structure of the mitochondrial F(0)F(1)-ATP synthase of the colorless alga Polytomella sp. with respect to the enzyme of its green close relative Chlamydomonas reinhardtii. It is demonstrated that several unique features of the ATP synthase in C. reinhardtii are also present in Polytomella sp. The alpha- and beta-subunits of the ATP synthase from both algae are highly unusual in that they exhibit extensions at their N- and C-terminal ends, respectively. Several subunits of the Polytomella ATP synthase in the range of 9 to 66 kD have homologs in the green alga but do not have known equivalents as yet in mitochondrial ATP synthases of mammals, plants, or fungi. The largest of these so-called ASA (ATP Synthase-Associated) subunits, ASA1, is shown to be an extrinsic protein. Short heat treatment of isolated Polytomella mitochondria unexpectedly dissociated the otherwise highly stable ATP synthase dimer of 1,600 kD into subcomplexes of 800 and 400 kD, assigned as the ATP synthase monomer and F(1)-ATPase, respectively. Whereas no ASA subunits were found in the F(1)-ATPase, all but two were present in the monomer. ASA6 (12 kD) and ASA9 (9 kD), predicted to be membrane bound, were not detected in the monomer and are thus proposed to be involved in the formation or stabilization of the enzyme. A hypothetical configuration of the Chlamydomonad dimeric ATP synthase portraying its unique features is provided to spur further research on this topic.
Collapse
Affiliation(s)
- Robert van Lis
- Institut für Biochemie der Pflanzen, Heinrich Heine Universität Düsseldorf, Duesseldorf D-40225, Germany.
| | | | | | | |
Collapse
|
30
|
Fernandez-Vizarra E, Bugiani M, Goffrini P, Carrara F, Farina L, Procopio E, Donati A, Uziel G, Ferrero I, Zeviani M. Impaired complex III assembly associated with BCS1L gene mutations in isolated mitochondrial encephalopathy. Hum Mol Genet 2007; 16:1241-52. [PMID: 17403714 DOI: 10.1093/hmg/ddm072] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated two unrelated children with an isolated defect of mitochondrial complex III activity. The clinical picture was characterized by a progressive encephalopathy featuring early-onset developmental delay, spasticity, seizures, lactic acidosis, brain atrophy and MRI signal changes in the basal ganglia. Both children were compound heterozygotes for novel mutations in the human bc1 synthesis like (BCS1L) gene, which encodes an AAA mitochondrial protein putatively involved in both iron homeostasis and complex III assembly. The pathogenic role of the mutations was confirmed by complementation assays, using a DeltaBcs1 strain of Saccharomyces cerevisiae. By investigating complex III assembly and the structural features of the BCS1L gene product in skeletal muscle, cultured fibroblasts and lymphoblastoid cell lines from our patients, we have demonstrated, for the first time in a mammalian system, that a major function of BCS1L is to promote the maturation of complex III and, more specifically, the incorporation of the Rieske iron-sulfur protein into the nascent complex. Defective BCS1L leads to the formation of a catalytically inactive, structurally unstable complex III. We have also shown that BCS1L is contained within a high-molecular-weight supramolecular complex which is clearly distinct from complex III intermediates.
Collapse
MESH Headings
- ATPases Associated with Diverse Cellular Activities
- Amino Acid Sequence
- Base Sequence
- Brain/pathology
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- Brain Diseases, Metabolic, Inborn/pathology
- Child, Preschool
- DNA, Complementary/genetics
- Electron Transport Complex III/chemistry
- Electron Transport Complex III/genetics
- Electron Transport Complex III/metabolism
- Female
- Genetic Complementation Test
- Heterozygote
- Humans
- Iron-Sulfur Proteins/chemistry
- Iron-Sulfur Proteins/metabolism
- Magnetic Resonance Imaging
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/metabolism
- Mitochondrial Diseases/pathology
- Molecular Sequence Data
- Multiprotein Complexes
- Mutagenesis, Site-Directed
- Mutation
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Department of Molecular Neurogenetics, , Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hinson JT, Fantin VR, Schönberger J, Breivik N, Siem G, McDonough B, Sharma P, Keogh I, Godinho R, Santos F, Esparza A, Nicolau Y, Selvaag E, Cohen BH, Hoppel CL, Tranebjaerg L, Eavey RD, Seidman JG, Seidman CE. Missense mutations in the BCS1L gene as a cause of the Björnstad syndrome. N Engl J Med 2007; 356:809-19. [PMID: 17314340 DOI: 10.1056/nejmoa055262] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The Björnstad syndrome, an autosomal recessive disorder associated with sensorineural hearing loss and pili torti, is caused by mutation of a previously unidentified gene on chromosome 2q34-36. METHODS Refined genetic mapping and DNA sequencing of 44 genes between D2S2210 and D2S2244 revealed BCS1L mutations. Functional analyses elucidated how BCS1L mutations cause the Björnstad syndrome. RESULTS BCS1L encodes a member of the AAA family of ATPases that is necessary for the assembly of complex III in the mitochondria. In addition to the Björnstad syndrome, BCS1L mutations cause complex III deficiency and the GRACILE syndrome, which in neonates are lethal conditions that have multisystem and neurologic manifestations typifying severe mitochondrial disorders. Patients with the Björnstad syndrome have mutations that alter residues involved in protein-protein interactions, whereas mutations in patients with complex III deficiency alter ATP-binding residues, as deduced from the crystal structure of a related AAA-family ATPase. Biochemical studies provided evidence to support this model: complex III deficiency mutations prevented ATP-dependent assembly of BCS1L-associated complexes. All mutant BCS1L proteins disrupted the assembly of complex III, reduced the activity of the mitochondrial electron-transport chain, and increased the production of reactive oxygen species. However, only mutations associated with complex III deficiency increased mitochondrial content, which further increased the production of reactive oxygen species. CONCLUSIONS BCS1L mutations cause disease phenotypes ranging from highly restricted pili torti and sensorineural hearing loss (the Björnstad syndrome) to profound multisystem organ failure (complex III deficiency and the GRACILE syndrome). All BCS1L mutations disrupted the assembly of mitochondrial respirasomes (the basic unit for respiration in human mitochondria), but the clinical expression of the mutations was correlated with the production of reactive oxygen species. Mutations that cause the Björnstad syndrome illustrate the exquisite sensitivity of ear and hair tissues to mitochondrial function, particularly to the production of reactive oxygen species.
Collapse
|
32
|
Kotarsky H, Tabasum I, Mannisto S, Heikinheimo M, Hansson S, Fellman V. BCS1L is expressed in critical regions for neural development during ontogenesis in mice. Gene Expr Patterns 2007; 7:266-73. [PMID: 17049929 DOI: 10.1016/j.modgep.2006.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 11/24/2022]
Abstract
BCS1L is a chaperone necessary for the incorporation of Rieske FeS and Qcr10p into complex III (CIII) of the respiratory chain. Mutations in the BCS1L gene cause early fetal growth restriction and a lethal neonatal disease in humans, however, the pathogenesis remains unclear. Here, we analysed the expression of BCS1L during mouse embryonic development and compared its expression with that of the mitochondrial markers Porin, GRIM19, Core I, and Rieske FeS. BCS1L was strongly expressed in embryonic tissues already at embryonic days 7 (E7) and 9 whereas the expression of Porin and Rieske FeS was not as evident at this time point. At E11, BCS1L, Porin, and Rieske FeS had overlapping expression patterns in organs known to contain high numbers of mitochondria such as heart, liver and somites. In contrast, BCS1L was differently distributed compared to the mitochondrial proteins Porin, Rieske FeS, Core I and Grim 19 in the floor plate of the E11, E12 and E13 neural tube. These results show that the expression pattern of BCS1L only partially overlaps with the expression of Porin and Rieske FeS. Thus, BCS1L alone or in cooperation with Rieske FES may during development have previously unknown functions beside its role in assembly of complex III. The floor plate of the neural tube is essential for dorsal ventral patterning and the guidance of the developing neurons to their targets. The predominant expression of BCS1L in this region, together with its presence in peripheral ganglia from E13 onwards, indicates a role for BCS1L in the development of neural structures.
Collapse
Affiliation(s)
- Heike Kotarsky
- Department of Pediatrics, Clinical Sciences, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
33
|
Habib SJ, Waizenegger T, Niewienda A, Paschen SA, Neupert W, Rapaport D. The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial beta-barrel proteins. ACTA ACUST UNITED AC 2006; 176:77-88. [PMID: 17190789 PMCID: PMC2063629 DOI: 10.1083/jcb.200602050] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
β-Barrel proteins constitute a distinct class of mitochondrial outer membrane proteins. For import into mitochondria, their precursor forms engage the TOM complex. They are then relayed to the TOB complex, which mediates their insertion into the outer membrane. We studied the structure–function relationships of the core component of the TOB complex, Tob55. Tob55 precursors with deletions in the N-terminal domain were not affected in their targeting to and insertion into the mitochondrial outer membrane. Replacement of wild-type Tob55 by these deletion variants resulted in reduced growth of cells, and mitochondria isolated from such cells were impaired in their capacity to import β-barrel precursors. The purified N-terminal domain was able to bind β-barrel precursors in a specific manner. Collectively, these results demonstrate that the N-terminal domain of Tob55 recognizes precursors of β-barrel proteins. This recognition may contribute to the coupling of the translocation of β-barrel precursors across the TOM complex to their interaction with the TOB complex.
Collapse
Affiliation(s)
- Shukry J Habib
- Institut für Physiologische Chemie, Universität München, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Rambold AS, Miesbauer M, Rapaport D, Bartke T, Baier M, Winklhofer KF, Tatzelt J. Association of Bcl-2 with misfolded prion protein is linked to the toxic potential of cytosolic PrP. Mol Biol Cell 2006; 17:3356-68. [PMID: 16707568 PMCID: PMC1525242 DOI: 10.1091/mbc.e06-01-0083] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/17/2006] [Accepted: 05/10/2006] [Indexed: 01/07/2023] Open
Abstract
Protein misfolding is linked to different neurodegenerative disorders like Alzheimer's disease, polyglutamine, and prion diseases. We investigated the cytotoxic effects of aberrant conformers of the prion protein (PrP) and show that toxicity is specifically linked to misfolding of PrP in the cytosolic compartment and involves binding of PrP to the anti-apoptotic protein Bcl-2. PrP targeted to different cellular compartments, including the cytosol, nucleus, and mitochondria, adopted a misfolded and partially proteinase K-resistant conformation. However, only in the cytosol did the accumulation of misfolded PrP induce apoptosis. Apoptotic cell death was also induced by two pathogenic mutants of PrP, which are partially localized in the cytosol. A mechanistic analysis revealed that the toxic potential is linked to an internal domain of PrP (amino acids 115-156) and involves coaggregation of cytosolic PrP with Bcl-2. Increased expression of the chaperones Hsp70 and Hsp40 prevented the formation of PrP/Bcl-2 coaggregates and interfered with PrP-induced apoptosis. Our study reveals a compartment-specific toxicity of PrP misfolding that involves coaggregation of Bcl-2 and indicates a protective role of molecular chaperones.
Collapse
Affiliation(s)
- Angelika S. Rambold
- *Department of Biochemistry, Neurobiochemistry, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | - Margit Miesbauer
- *Department of Biochemistry, Neurobiochemistry, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | - Doron Rapaport
- Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | - Till Bartke
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | | | - Konstanze F. Winklhofer
- *Department of Biochemistry, Neurobiochemistry, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | - Jörg Tatzelt
- *Department of Biochemistry, Neurobiochemistry, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| |
Collapse
|
35
|
Hervias I, Beal MF, Manfredi G. Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle Nerve 2006; 33:598-608. [PMID: 16372325 DOI: 10.1002/mus.20489] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The causes of motor neuron death in amyotrophic lateral sclerosis (ALS) are still unknown. Several lines of evidence suggest that mitochondrial dysfunction may be involved in the pathogenesis of ALS. Biochemical and morphological mitochondrial abnormalities have been demonstrated in postmortem spinal cords of ALS patients. Furthermore, in transgenic mice expressing mutant Cu,Zn-superoxide dismutase (SOD1), the antioxidant enzyme associated with familial ALS (FALS), mitochondrial abnormalities precede the disease onset, suggesting that mitochondrial dysfunction is causally involved in the pathogenesis of SOD1-FALS. Despite this evidence, it is not yet fully understood how mutant SOD1 damages mitochondria. Recent work has demonstrated that a portion of mutant SOD1 is localized in mitochondria, both in transgenic mice and in FALS patients, where it forms proteinaceous aggregates. These findings have opened new avenues of investigation addressing the hypothesis that mutant SOD1 may directly damage mitochondria. Major future challenges will be to better understand the mechanisms and the consequences of mitochondrial dysfunction in ALS. If mitochondrial dysfunction is convincingly involved in ALS pathogenesis, either as a primary cause or as contributing factor, it is likely to become a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Isabel Hervias
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 East 68th Street, A-505, New York, New York 10021, USA
| | | | | |
Collapse
|
36
|
Chan NC, Likić VA, Waller RF, Mulhern TD, Lithgow T. The C-terminal TPR Domain of Tom70 Defines a Family of Mitochondrial Protein Import Receptors Found only in Animals and Fungi. J Mol Biol 2006; 358:1010-22. [PMID: 16566938 DOI: 10.1016/j.jmb.2006.02.062] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/21/2006] [Accepted: 02/23/2006] [Indexed: 11/15/2022]
Abstract
In fungi and animals the translocase in the outer mitochondrial membrane (TOM complex) consists of multiple components including the receptor subunit Tom70. Genome sequence analyses suggest no Tom70 receptor subunit exists in plants or protozoans, raising questions about its ancestry, function and the importance of its activity. Here we characterise the relationships within the Tom70 family of proteins. We find that in both fungi and animals, a conserved domain structure exists within the Tom70 family, with a transmembrane segment followed by 11 tetratricopeptide repeat motifs organised in three distinct domains. The C-terminal domain of Tom70 is highly conserved, and crucial for the import of hydrophobic substrate proteins, including those with and those without N-terminal presequences. Tom70 likely arose after fungi and animals diverged from other eukaryote lineages including plants, and subsequent gene duplication gave rise to a paralogue specific to the Saccharomyces group of yeasts. In animals and in fungi, Tom70 plays a fundamental role in the import of precursor proteins, by assisting relatively hydrophobic regions of substrate proteins into the translocation channel in the outer mitochondrial membrane. Proteins that function equivalently to Tom70 may have arisen independently in plants and protists.
Collapse
Affiliation(s)
- Nickie C Chan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | |
Collapse
|
37
|
Zara V, Ferramosca A, Papatheodorou P, Palmieri F, Rassow J. Import of rat mitochondrial citrate carrier (CIC) at increasing salt concentrations promotes presequence binding to import receptor Tom20 and inhibits membrane translocation. J Cell Sci 2005; 118:3985-95. [PMID: 16129883 DOI: 10.1242/jcs.02526] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria contain a family of related carrier proteins that mediate transport of metabolites across the mitochondrial inner membrane. All members of this family are synthesized in the cytosol. We characterized the interactions of newly synthesized rat citrate carrier (CIC) precursor protein (pCIC) with the components of the mitochondrial protein import machinery. pCIC contains both a positively charged presequence of 13 amino acids and internal targeting sequences. We found that the pCIC presequence does not interfere with the import pathway and merely acts as an internal chaperone in the cytosol. Under conditions of increased ionic strength, the pCIC presequence binds to the import receptor Tom20 and accumulates at the mitochondrial surface, thereby delaying pCIC translocation across the mitochondrial outer membrane. Similarly, the presequence of the bovine phosphate carrier (PiC) precursor protein (pPiC) is arrested at the mitochondrial surface when salt concentrations are elevated. We conclude that presequences can only act as mediators of mitochondrial protein import if they allow rapid release from import receptor sites. Release from receptors sites may be rate-limiting in translocation.
Collapse
Affiliation(s)
- Vincenzo Zara
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università di Lecce, I-73100 Lecce, Italy.
| | | | | | | | | |
Collapse
|
38
|
Bortfeld M, Auffarth K, Kahmann R, Basse CW. The Ustilago maydis a2 mating-type locus genes lga2 and rga2 compromise pathogenicity in the absence of the mitochondrial p32 family protein Mrb1. THE PLANT CELL 2004; 16:2233-48. [PMID: 15273296 PMCID: PMC519210 DOI: 10.1105/tpc.104.022657] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 06/01/2004] [Indexed: 05/19/2023]
Abstract
The Ustilago maydis mrb1 gene specifies a mitochondrial matrix protein with significant similarity to mitochondrial p32 family proteins known from human and many other eukaryotic species. Compatible mrb1 mutant strains were able to mate and form dikaryotic hyphae; however, proliferation within infected tissue and the ability to induce tumor development of infected maize (Zea mays) plants were drastically impaired. Surprisingly, manifestation of the mrb1 mutant phenotype selectively depended on the a2 mating type locus. The a2 locus contains, in addition to pheromone signaling components, the genes lga2 and rga2 of unknown function. Deletion of lga2 in an a2Deltamrb1 strain fully restored pathogenicity, whereas pathogenicity was partially regained in an a2Deltamrb1Deltarga2 strain, implicating a concerted action between Lga2 and Rga2 in compromising pathogenicity in Deltamrb1 strains. Lga2 and Rga2 localized to mitochondria and Mrb1 interacted with Rga2 in the yeast two-hybrid system. Conditional expression of lga2 in haploid cells reduced vegetative growth, conferred mitochondrial fragmentation and mitochondrial DNA degradation, and interfered with respiratory activity. The consequences of lga2 overexpression depended on the expression strength and were greatly exacerbated in Deltamrb1 mutants. We propose that Lga2 interferes with mitochondrial fusion and that Mrb1 controls this activity, emphasizing a critical link between mitochondrial morphology and pathogenicity.
Collapse
Affiliation(s)
- Miriam Bortfeld
- Max-Planck-Institut für Terrestrische Mikrobiologie, Abteilung Organismische Interaktionen, 35043 Marburg, Germany
| | | | | | | |
Collapse
|
39
|
Graf SA, Haigh SE, Corson ED, Shirihai OS. Targeting, import, and dimerization of a mammalian mitochondrial ATP binding cassette (ABC) transporter, ABCB10 (ABC-me). J Biol Chem 2004; 279:42954-63. [PMID: 15215243 DOI: 10.1074/jbc.m405040200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP binding cassette (ABC) transporters are a diverse superfamily of energy-dependent membrane translocases. Although responsible for the majority of transmembrane transport in bacteria, they are relatively uncommon in eukaryotic mitochondria. Organellar trafficking and import, in addition to quaternary structure assembly, of mitochondrial ABC transporters is poorly understood and may offer explanations for the paucity of their diversity. Here we examine these processes in ABCB10 (ABC-me), a mitochondrial inner membrane erythroid transporter involved in heme biosynthesis. We report that ABCB10 possesses an unusually long 105-amino acid mitochondrial targeting presequence (mTP). The central subdomain of the mTP (amino acids (aa) 36-70) is sufficient for mitochondrial import of enhanced green fluorescent protein. The N-terminal subdomain (aa 1-35) of the mTP, although not necessary for the trafficking of ABCB10 to mitochondria, participates in the proper import of the molecule into the inner membrane. We performed a series of amino acid mutations aimed at changing specific properties of the mTP. The mTP requires neither arginine residues nor predictable alpha-helices for efficient mitochondrial targeting. Disruption of its hydrophobic character by the mutation L46Q/I47Q, however, greatly diminishes its efficacy. This mutation can be rescued by cryptic downstream (aa 106-715) mitochondrial targeting signals, highlighting the redundancy of this protein's targeting qualities. Mass spectrometry analysis of chemically cross-linked, immunoprecipitated ABCB10 indicates that ABCB10 embedded in the mitochondrial inner membrane homodimerizes and homo-oligomerizes. A deletion mutant of ABCB10 that lacks its mTP efficiently targets to the endoplasmic reticulum. Quaternary structure assembly of ABCB10 in the ER appears to be similar to that in the mitochondria.
Collapse
Affiliation(s)
- Solomon A Graf
- BioCurrents Research Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | | | | | | |
Collapse
|
40
|
Vasiljev A, Ahting U, Nargang FE, Go NE, Habib SJ, Kozany C, Panneels V, Sinning I, Prokisch H, Neupert W, Nussberger S, Rapaport D. Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes. Mol Biol Cell 2003; 15:1445-58. [PMID: 14668492 PMCID: PMC363167 DOI: 10.1091/mbc.e03-05-0272] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Precursor proteins of the solute carrier family and of channel forming Tim components are imported into mitochondria in two main steps. First, they are translocated through the TOM complex in the outer membrane, a process assisted by the Tim9/Tim10 complex. They are passed on to the TIM22 complex, which facilitates their insertion into the inner membrane. In the present study, we have analyzed the function of the Tim9/Tim10 complex in the translocation of substrates across the outer membrane of mitochondria. The purified TOM core complex was reconstituted into lipid vesicles in which purified Tim9/Tim10 complex was entrapped. The precursor of the ADP/ATP carrier (AAC) was found to be translocated across the membrane of such lipid vesicles. Thus, these components are sufficient for translocation of AAC precursor across the outer membrane. Peptide libraries covering various substrate proteins were used to identify segments that are bound by Tim9/Tim10 complex upon translocation through the TOM complex. The patterns of binding sites on the substrate proteins suggest a mechanism by which portions of membrane-spanning segments together with flanking hydrophilic segments are recognized and bound by the Tim9/Tim10 complex as they emerge from the TOM complex into the intermembrane space.
Collapse
Affiliation(s)
- Andreja Vasiljev
- Institut für Physiologische Chemie der Universität München, D-81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|