1
|
Bentanachs R, Miró L, Sánchez RM, Ramírez-Carrasco P, Amat C, Alegret M, Pérez A, Roglans N, Laguna JC. Pemafibrate abrogates SLD in a rat experimental dietary model, inducing a shift in fecal bile acids and microbiota composition. Biomed Pharmacother 2024; 177:117067. [PMID: 38943989 DOI: 10.1016/j.biopha.2024.117067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND AND AIMS Drugs resolving steatotic liver disease (SLD) could prevent the evolution of metabolic dysfunction associated SLD (MASLD) to more aggressive forms but must show not only efficacy, but also a high safety profile. Repurposing of drugs in clinical use, such as pemafibrate and mirabegron, could facilitate the finding of an effective and safe drug-treatment for SLD. APPROACH AND RESULTS The SLD High Fat High Fructose (HFHFr) rat model develops steatosis without the influence of other metabolic disturbances, such as obesity, inflammation, or type 2 diabetes. Further, liver fatty acids are provided, as in human pathology, both from dietary origin and de novo lipid synthesis. We used the HFHFr model to evaluate the efficacy of pemafibrate and mirabegron, alone or in combination, in the resolution of SLD, analyzing zoometric, biochemical, histological, transcriptomic, fecal metabolomic and microbiome data. We provide evidence showing that pemafibrate, but not mirabegron, completely reverted liver steatosis, due to a direct effect on liver PPARα-driven fatty acid catabolism, without changes in total energy consumption, subcutaneous, perigonadal and brown fat, blood lipids and body weight. Moreover, pemafibrate treatment showed a neutral effect on whole-body glucose metabolism, but deeply modified fecal bile acid composition and microbiota. CONCLUSIONS Pemafibrate administration reverts liver steatosis in the HFHFr dietary rat SLD model without altering parameters related to metabolic or organ toxicity. Our results strongly support further clinical research to reposition pemafibrate for the treatment of SLD/MASLD.
Collapse
Affiliation(s)
- Roger Bentanachs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Institute of Biomedicine IBUB, University of Barcelona, Barcelona 08028, Spain.
| | - Lluïsa Miró
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Institute for Nutrition and Food Safety Research INSA-UB, University of Barcelona, Barcelona 08028, Spain.
| | - Rosa M Sánchez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain; Institute of Biomedicine IBUB, University of Barcelona, Barcelona 08028, Spain.
| | - Patricia Ramírez-Carrasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain.
| | - Concepció Amat
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Institute for Nutrition and Food Safety Research INSA-UB, University of Barcelona, Barcelona 08028, Spain.
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain; Institute of Biomedicine IBUB, University of Barcelona, Barcelona 08028, Spain.
| | - Anna Pérez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Institute for Nutrition and Food Safety Research INSA-UB, University of Barcelona, Barcelona 08028, Spain.
| | - Núria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain; Institute of Biomedicine IBUB, University of Barcelona, Barcelona 08028, Spain.
| | - Juan C Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain; Institute of Biomedicine IBUB, University of Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
2
|
Bråtveit M, Van Parys A, Olsen T, Strand E, Marienborg I, Laupsa-Borge J, Haugsgjerd TR, McCann A, Dhar I, Ueland PM, Dierkes J, Dankel SN, Nygård OK, Lysne V. Association between dietary macronutrient composition and plasma one-carbon metabolites and B-vitamin cofactors in patients with stable angina pectoris. Br J Nutr 2024; 131:1678-1690. [PMID: 38361451 PMCID: PMC11063666 DOI: 10.1017/s0007114524000473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/03/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Elevated plasma concentrations of several one-carbon metabolites are associated with increased CVD risk. Both diet-induced regulation and dietary content of one-carbon metabolites can influence circulating concentrations of these markers. We cross-sectionally analysed 1928 patients with suspected stable angina pectoris (geometric mean age 61), representing elevated CVD risk, to assess associations between dietary macronutrient composition (FFQ) and plasma one-carbon metabolites and related B-vitamin status markers (GC-MS/MS, LC-MS/MS or microbiological assay). Diet-metabolite associations were modelled on the continuous scale, adjusted for age, sex, BMI, smoking, alcohol and total energy intake. Average (geometric mean (95 % prediction interval)) intake was forty-nine (38, 63) energy percent (E%) from carbohydrate, thirty-one (22, 45) E% from fat and seventeen (12, 22) E% from protein. The strongest associations were seen for higher protein intake, i.e. with higher plasma pyridoxal 5'-phosphate (PLP) (% change (95 % CI) 3·1 (2·1, 4·1)), cobalamin (2·9 (2·1, 3·7)), riboflavin (2·4 (1·1, 3·7)) and folate (2·1 (1·2, 3·1)) and lower total homocysteine (tHcy) (-1·4 (-1·9, -0·9)) and methylmalonic acid (MMA) (-1·4 (-2·0, -0·8)). Substitution analyses replacing MUFA or PUFA with SFA demonstrated higher plasma concentrations of riboflavin (5·0 (0·9, 9·3) and 3·3 (1·1, 5·6)), tHcy (2·3 (0·7, 3·8) and 1·3 (0·5, 2·2)) and MMA (2·0 (0·2, 3·9) and 1·7 (0·7, 2·7)) and lower PLP (-2·5 (-5·3, 0·3) and -2·7 (-4·2, -1·2)). In conclusion, a higher protein intake and replacing saturated with MUFA and PUFA were associated with a more favourable metabolic phenotype regarding metabolites associated with CVD risk.
Collapse
Affiliation(s)
- Marianne Bråtveit
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anthea Van Parys
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elin Strand
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Marienborg
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Johnny Laupsa-Borge
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Indu Dhar
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Simon Nitter Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar Kjell Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
3
|
Bishop CA, Schulze MB, Klaus S, Weitkunat K. The branched‐chain amino acids valine and leucine have differential effects on hepatic lipid metabolism. FASEB J 2020; 34:9727-9739. [DOI: 10.1096/fj.202000195r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/21/2020] [Accepted: 05/15/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Christopher A. Bishop
- Department of Physiology of Energy Metabolism German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- Institute of Nutrition Science University of Potsdam Nuthetal Germany
| | - Matthias B. Schulze
- Institute of Nutrition Science University of Potsdam Nuthetal Germany
- Department of Molecular Epidemiology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- Institute of Nutrition Science University of Potsdam Nuthetal Germany
| | - Karolin Weitkunat
- Department of Physiology of Energy Metabolism German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
| |
Collapse
|
4
|
Eissa M, Elarabany N, Hyder A. In vitro efficacy of liver microenvironment in bone marrow mesenchymal stem cell differentiation. In Vitro Cell Dev Biol Anim 2020; 56:341-348. [PMID: 32270392 DOI: 10.1007/s11626-020-00436-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/08/2020] [Indexed: 12/31/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent an interesting alternative to liver or hepatocyte transplantation to treat liver injuries. Many studies have reported that MSCs can treat several diseases, including liver damage, just by injection into the bloodstream, without evidence of differentiation. The improvements were attributed to the organotrophic factors, low immunogenicity, immunomodulatory, and anti-inflammatory effects of MSCs, rather than their differentiation. The aim of the present study was to answer the question of whether the presence of BM-MSCs in the hepatic microenvironment will lead to their differentiation to functional hepatocyte-like cells. The hepatic microenvironment was mimicked in vitro by culture for 21 d with liver extract. The resulted cells expressed marker genes of the hepatic lineage including AFP, CK18, and Hnf4a. Functionally, they were able to detoxify ammonia into urea, to store glycogen as observed by PAS staining, and to synthesize glucose from pyruvate/lactate mixture. Phenotypically, the expression of MSC surface markers CD90 and CD105 decreased by differentiation. This evidenced differentiation into hepatocyte-like cells was accompanied by a downregulation of the stem cell marker genes sox2 and Nanog and the cell cycle regulatory genes ANAPC2, CDC2, Cyclin A1, and ABL1. The present results suggest a clear differentiation of BM-MSCs into functional hepatocyte-like cells by the extracted liver microenvironment. This differentiation is confirmed by a decrease in the stemness and mitotic activities. Tracking transplanted BM-MSCs and proving their in vivo differentiation remains to be elucidated.
Collapse
Affiliation(s)
- Manar Eissa
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Naglaa Elarabany
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Ayman Hyder
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
5
|
Lysne V, Bjørndal B, Grinna ML, Midttun Ø, Ueland PM, Berge RK, Dierkes J, Nygård O, Strand E. Short-term treatment with a peroxisome proliferator-activated receptor α agonist influences plasma one-carbon metabolites and B-vitamin status in rats. PLoS One 2019; 14:e0226069. [PMID: 31805132 PMCID: PMC6894826 DOI: 10.1371/journal.pone.0226069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of one-carbon metabolism. Previously we have reported effects on plasma concentrations of metabolites along these pathways as well as markers of B-vitamin status in rats following treatment with a pan-PPAR agonist. Here we aimed to investigate the effect on these metabolites after specific activation of the PPARα and PPARγ subtypes. METHODS For a period of 12 days, Male Wistar rats (n = 20) were randomly allocated to receive treatment with the PPARα agonist WY-14.643 (n = 6), the PPARγ agonist rosiglitazone (n = 6) or placebo (n = 8). The animals were sacrificed under fasting conditions, and plasma concentration of metabolites were determined. Group differences were assessed by one-way ANOVA, and planned comparisons were performed for both active treatment groups towards the control group. RESULTS Treatment with a PPARα agonist was associated with increased plasma concentrations of most biomarkers, with the most pronounced differences observed for betaine, dimethylglycine, glycine, nicotinamide, methylnicotinamide, pyridoxal and methylmalonic acid. Lower levels were observed for flavin mononucleotide. Fewer associations were observed after treatment with a PPARγ agonist, and the most notable was increased plasma serine. CONCLUSION Treatment with a PPARα agonist influenced plasma concentration of one-carbon metabolites and markers of B-vitamin status. This confirms previous findings, suggesting specific involvement of PPARα in the regulation of these metabolic pathways as well as the status of closely related B-vitamins.
Collapse
Affiliation(s)
- Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- * E-mail:
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bevital A/S, Bergen, Norway
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Jutta Dierkes
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway
| | - Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Li L, Yan G, Zhang X. A rapid and efficient method for N-termini analysis in short-lived proteins. Talanta 2019; 204:367-371. [DOI: 10.1016/j.talanta.2019.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 02/05/2023]
|
7
|
Raas Q, Saih FE, Gondcaille C, Trompier D, Hamon Y, Leoni V, Caccia C, Nasser B, Jadot M, Ménétrier F, Lizard G, Cherkaoui-Malki M, Andreoletti P, Savary S. A microglial cell model for acyl-CoA oxidase 1 deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:567-576. [DOI: 10.1016/j.bbalip.2018.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022]
|
8
|
Sugihara T, Tanaka S, Braga-Tanaka I, Murano H, Nakamura-Murano M, Komura JI. Screening of biomarkers for liver adenoma in low-dose-rate γ-ray-irradiated mice. Int J Radiat Biol 2018; 94:315-326. [PMID: 29424599 DOI: 10.1080/09553002.2018.1439193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Chronic low-dose-rate (20 mGy/day) γ-irradiation increases the incidence of hepatocellular adenomas (HCA) in female B6C3F1 mice. The purpose of this study is to identify potential serum biomarkers for these HCAs by a new approach. MATERIAL AND METHODS Microarray analysis were performed to compare the gene expression profiles of HCAs from mice exposed to low-dose-rate γ-rays with those of normal livers from non-irradiated mice. From the differentially expressed genes, those for possibly secretory proteins were selected. Then, the levels of the proteins in sera were analysed by ELISA. RESULTS Microarray analysis identified 4181 genes differentially expressed in HCAs (>2.0-fold). From these genes, those for α-fetoprotein (Afp), α-1B-glycoprotein (A1bg) and serine peptidase inhibitor Kazal type-3 (Spink3) were selected as the genes for candidate proteins. ELISA revealed that the levels of Afp and A1bg proteins in sera significantly increased and decreased, respectively, in low-dose-rate irradiated mice with HCAs and also same tendency was observed in human patients with hepatocellular carcinomas. CONCLUSION These results indicate that A1bg could be a new serum biomarker for liver tumor. This new approach of using microarray to select genes for secretory proteins is useful for prediction of novel tumor markers in sera.
Collapse
Affiliation(s)
- Takashi Sugihara
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| | - Satoshi Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| | - Ignacia Braga-Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| | - Hayato Murano
- b Tohoku Environmental Sciences Services Corporation , Rokkasho Kamikita , Aomori , Japan
| | - Masako Nakamura-Murano
- b Tohoku Environmental Sciences Services Corporation , Rokkasho Kamikita , Aomori , Japan
| | - Jun-Ichiro Komura
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| |
Collapse
|
9
|
Kim-Muller JY, Kim YJR, Fan J, Zhao S, Banks AS, Prentki M, Accili D. FoxO1 Deacetylation Decreases Fatty Acid Oxidation in β-Cells and Sustains Insulin Secretion in Diabetes. J Biol Chem 2016; 291:10162-72. [PMID: 26984405 DOI: 10.1074/jbc.m115.705608] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 11/06/2022] Open
Abstract
Pancreatic β-cell dysfunction contributes to onset and progression of type 2 diabetes. In this state β-cells become metabolically inflexible, losing the ability to select between carbohydrates and lipids as substrates for mitochondrial oxidation. These changes lead to β-cell dedifferentiation. We have proposed that FoxO proteins are activated through deacetylation-dependent nuclear translocation to forestall the progression of these abnormalities. However, how deacetylated FoxO exert their actions remains unclear. To address this question, we analyzed islet function in mice homozygous for knock-in alleles encoding deacetylated FoxO1 (6KR). Islets expressing 6KR mutant FoxO1 have enhanced insulin secretion in vivo and ex vivo and decreased fatty acid oxidation ex vivo Remarkably, the gene expression signature associated with FoxO1 deacetylation differs from wild type by only ∼2% of the >4000 genes regulated in response to re-feeding. But this narrow swath includes key genes required for β-cell identity, lipid metabolism, and mitochondrial fatty acid and solute transport. The data support the notion that deacetylated FoxO1 protects β-cell function by limiting mitochondrial lipid utilization and raise the possibility that inhibition of fatty acid oxidation in β-cells is beneficial to diabetes treatment.
Collapse
Affiliation(s)
- Ja Young Kim-Muller
- From the Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, New York 10032, Merck Research Laboratories, Boston, Massachusetts 02816
| | - Young Jung R Kim
- From the Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, New York 10032
| | - Jason Fan
- From the Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, New York 10032
| | - Shangang Zhao
- Molecular Nutrition Unit and Montreal Diabetes Research Center at the CRCHUM and Departments of Nutrition and Biochemistry and Department of Molecular Medicine, Université de Montréal, Montréal, H2X 0A9, Canada, and
| | | | - Marc Prentki
- Molecular Nutrition Unit and Montreal Diabetes Research Center at the CRCHUM and Departments of Nutrition and Biochemistry and Department of Molecular Medicine, Université de Montréal, Montréal, H2X 0A9, Canada, and
| | - Domenico Accili
- From the Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, New York 10032,
| |
Collapse
|
10
|
Lysne V, Strand E, Svingen GFT, Bjørndal B, Pedersen ER, Midttun Ø, Olsen T, Ueland PM, Berge RK, Nygård O. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats. Nutrients 2016; 8:nu8010026. [PMID: 26742069 PMCID: PMC4728640 DOI: 10.3390/nu8010026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 12/16/2022] Open
Abstract
Plasma concentrations of metabolites along the choline oxidation pathway have been linked to increased risk of major lifestyle diseases, and peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of key enzymes along this pathway. In this study, we investigated the effect of PPAR activation on circulating and urinary one-carbon metabolites as well as markers of B-vitamin status. Male Wistar rats (n = 20) received for 50 weeks either a high-fat control diet or a high-fat diet with tetradecylthioacetic acid (TTA), a modified fatty acid and pan-PPAR agonist with high affinity towards PPARα. Hepatic gene expression of PPARα, PPARβ/δ and the enzymes involved in the choline oxidation pathway were analyzed and concentrations of metabolites were analyzed in plasma and urine. TTA treatment altered most biomarkers, and the largest effect sizes were observed for plasma concentrations of dimethylglycine, nicotinamide, methylnicotinamide, methylmalonic acid and pyridoxal, which were all higher in the TTA group (all p < 0.01). Hepatic Pparα mRNA was increased after TTA treatment, but genes of the choline oxidation pathway were not affected. Long-term TTA treatment was associated with pronounced alterations on the plasma and urinary concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats.
Collapse
Affiliation(s)
- Vegard Lysne
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Elin Strand
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Gard F T Svingen
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Eva R Pedersen
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | | | - Thomas Olsen
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
- KG Jebsen Centre for Diabetes Research, University of Bergen, 5009 Bergen, Norway.
| |
Collapse
|
11
|
A comparison of the chemical and liver extract-induced hepatic differentiation of adipose derived stem cells. In Vitro Cell Dev Biol Anim 2015; 51:1085-92. [DOI: 10.1007/s11626-015-9939-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/08/2015] [Indexed: 12/22/2022]
|
12
|
Selenium-binding protein 1: its physiological function, dependence on aryl hydrocarbon receptors, and role in wasting syndrome by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochim Biophys Acta Gen Subj 2013; 1830:3616-24. [PMID: 23500078 DOI: 10.1016/j.bbagen.2013.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 02/15/2013] [Accepted: 03/06/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Selenium-binding protein 1 (Selenbp1) is suggested to play a role in tumor suppression, and may be involved in the toxicity produced by dioxin, an activator of aryl hydrocarbon receptors (AhR). However, the mechanism or likelihood is largely unknown because of the limited information available about the physiological role of Selenbp1. METHODS To address this issue, we generated Selenbp1-null [Selenbp1 (-/-)] mice, and examined the toxic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in this mouse model. RESULTS Selenbp1 (-/-) mice exhibited only a few differences from wild-type mice in their apparent phenotypes. However, a DNA microarray experiment showed that many genes including Notch1 and Cdk1, which are known to be enhanced in ovarian carcinoma, are also increased in the ovaries of Selenbp1 (-/-) mice. Based on the different responses to TCDD between C57BL/6J and DBA/2J strains of mice, the expression of Selenbp1 is suggested to be under the control of AhR. However, wasting syndrome by TCDD occurred equally in Selenbp1 (-/-) and (+/+) mice. CONCLUSIONS The above pieces of evidence suggest that 1) Selenbp1 suppresses the expression of tumor-promoting genes although a reduction in Selenbp1 alone is not very serious as far as the animals are concerned; and 2) Selenbp1 induction by TCDD is neither a pre-requisite for toxicity nor a protective response for combating TCDD toxicity. GENERAL SIGNIFICANCE Selenbp1 (-/-) mice exhibit little difference in their apparent phenotype and responsiveness to dioxin compared with the wild-type. This may be due to the compensation of Selenbp1 function by a closely-related protein, Selenbp2.
Collapse
|
13
|
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer is the third leading cause of cancer-related cell death in human and the fifth in women worldwide. The incidence of HCC is increasing despite progress in identifying risk factors, understanding disease etiology and developing anti-viral strategies. Therapeutic options are limited and survival after diagnosis is poor. Therefore, better preventive, diagnostic and therapeutic tools are urgently needed, in particular given the increased contribution from systemic metabolic disease to HCC incidence worldwide. In the last three decades, technological advances have facilitated the generation of genetically engineered mouse models (GEMMs) to mimic the alterations frequently observed in human cancers or to conduct intervention studies and assess the relevance of candidate gene networks in tumor establishment, progression and maintenance. Because these studies allow molecular and cellular manipulations impossible to perform in patients, GEMMs have improved our understanding of this complex disease and represent a source of great potential for mechanism-based therapy development. In this review, we provide an overview of the current state of HCC modeling in the mouse, highlighting successes, current challenges and future opportunities.
Collapse
|
14
|
Nelson JE, Brunt EM, Kowdley KV. Lower serum hepcidin and greater parenchymal iron in nonalcoholic fatty liver disease patients with C282Y HFE mutations. Hepatology 2012; 56:1730-40. [PMID: 22611049 PMCID: PMC3462887 DOI: 10.1002/hep.25856] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/08/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Hepcidin regulation is linked to both iron and inflammatory signals and may influence iron loading in nonalcoholic steatohepatitis (NASH). The aim of this study was to examine the relationships among HFE genotype, serum hepcidin level, hepatic iron deposition, and histology in nonalcoholic fatty liver disease (NAFLD). Single-nucleotide polymorphism genotyping for C282Y (rs1800562) and H63D (rs1799945) HFE mutations was performed in 786 adult subjects in the NASH Clinical Research Network (CRN). Clinical, histologic, and laboratory data were compared using nonparametric statistics and multivariate logistic regression. NAFLD patients with C282Y, but not H63D mutations, had lower median serum hepcidin levels (57 versus 65 ng/mL; P = 0.01) and higher mean hepatocellular (HC) iron grades (0.59 versus 0.28; P < 0.001), compared to wild-type (WT) subjects. Subjects with hepatic iron deposition had higher serum hepcidin levels than subjects without iron for all HFE genotypes (P < 0.0001). Hepcidin levels were highest among patients with mixed HC/reticuloendothelial system cell (RES) iron deposition. H63D mutations were associated with higher steatosis grades and NAFLD activity scores (odds ratio [OR], ≥1.4; 95% confidence interval [CI]: >1.0, ≤2.5; P ≤ 0.041), compared to WT, but not with either HC or RES iron. NAFLD patients with C282Y mutations had less ballooning or NASH (OR, ≤0.62; 95% CI: >0.39, <0.94; P ≤ 0.024), compared to WT subjects. CONCLUSIONS The presence of C282Y mutations in patients with NAFLD is associated with greater HC iron deposition and decreased serum hepcidin levels, and there is a positive relationship between hepatic iron stores and serum hepcidin level across all HFE genotypes. These data suggest that body iron stores are the major determinant of hepcidin regulation in NAFLD, regardless of HFE genotype. A potential role for H63D mutations in NAFLD pathogenesis is possible through iron-independent mechanisms.
Collapse
Affiliation(s)
- James E. Nelson
- Center for Liver Disease, Digestive Disease Institute and Benaroya Research Institute, Virginia Mason Medical Center, Seattle WA
| | - Elizabeth M. Brunt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Kris V. Kowdley
- Center for Liver Disease, Digestive Disease Institute and Benaroya Research Institute, Virginia Mason Medical Center, Seattle WA
| | | |
Collapse
|
15
|
Li B, Reed JC, Kim HR, Chae HJ. Proteomic profiling of differentially expressed proteins from Bax inhibitor-1 knockout and wild type mice. Mol Cells 2012; 34:15-23. [PMID: 22736268 PMCID: PMC3887783 DOI: 10.1007/s10059-012-0001-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/04/2012] [Accepted: 05/12/2012] [Indexed: 02/02/2023] Open
Abstract
Bax inhibitor-1 (BI-1) is an anti-apoptotic protein located in the endoplasmic reticulum (ER). The role of BI-1 has been studied in different physiopathological models including ischemia, diabetes, liver regeneration and cancer. However, fundamental knowledge about the effects of BI-1 deletion on the proteome is lacking. To further explore this protein, we compared the levels of different proteins in bi-1 (-/-) and bi-1 (+/+) mouse tissues by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). In several bi-1 (-/-) mice, glucose-regulated protein 75 (GRP75/mortalin/ PBP74/mthsp70), peroxiredoxin6 (Prx6) and fumarylacetoacetate hydrolase (FAH) showed a pI shift that could be attributed to post-translational modifications. Selenium-binding protein 2 (SBP2) and ferritin light chain 1 levels were significantly increased. Phosphatidylethanolamine-binding protein-1 (PEBP-1) was dramatically decreased in bi-1 (-/-) mice, which was confirmed by Western blotting. The phosphorylation of GRP75, Prx6 and FAH were compared between bi-1 (+/+) and bi-1 (-/-) mice using liver tissue lysates. Of these three proteins, only one exhibited modified phosphorylation; Tyr phosphorylation of Prx6 was increased in bi-1 (-/-) mice. Our protein profiling results provide fundamental knowledge about the physiopathological function of BI-1.
Collapse
Affiliation(s)
- Bo Li
- Department of Pharmacology and Cardiovascular Research Center, Chonbuk National University, Jeonju 561-182,
Korea
| | - John C. Reed
- Burnham Institute for Medical Research, California 92037,
USA
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology, School of Dentistry, Wonkwang University, Iksan 570-749,
Korea
| | - Han-Jung Chae
- Department of Pharmacology and Cardiovascular Research Center, Chonbuk National University, Jeonju 561-182,
Korea
- Research Center for Pulmonary Disorders, Chonbuk National University Hospital, Jeonju 561-182,
Korea
| |
Collapse
|
16
|
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common worldwide clinical and major public health problem affecting both adults and children in developed nations. Increased hepatic iron stores are observed in about one-third of adult NAFLD patients. Iron deposition may occur in parenchymal and/or non-parenchymal cells of the reticuloendothelial system (RES). Similar patterns of iron deposition have been associated with increased severity of other chronic liver diseases including HCV infection and dysmetabolic iron overload, suggesting there may be a common mechanism for hepatic iron deposition in these diseases. In NAFLD, iron may potentiate the onset and progression of disease by increasing oxidative stress and altering insulin signaling and lipid metabolism. The impact of iron in these processes may depend upon the sub-cellular location of iron deposition in hepatocytes or RES cells. Iron depletion therapy has shown efficacy at reducing serum aminotransferase levels and improving insulin sensitivity in subjects with NAFLD.
Collapse
|
17
|
Fan X, Wang J, Soman KV, Ansari GAS, Khan MF. Aniline-induced nitrosative stress in rat spleen: proteomic identification of nitrated proteins. Toxicol Appl Pharmacol 2011; 255:103-12. [PMID: 21708182 DOI: 10.1016/j.taap.2011.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/06/2011] [Accepted: 06/06/2011] [Indexed: 01/08/2023]
Abstract
Aniline exposure is associated with toxicity to the spleen which is characterized by splenomegaly, hyperplasia, fibrosis, and a variety of sarcomas on chronic exposure in rats. However, mechanisms by which aniline elicits splenotoxic responses are not well understood. Earlier we have shown that aniline exposure leads to increased nitration of proteins in the spleen. However, nitrated proteins remain to be characterized. Therefore, in the current study using proteomic approaches, we focused on characterizing the nitrated proteins in the spleen of aniline-exposed rats. Aniline exposure led to increased tyrosine nitration of proteins, as determined by 2D Western blotting with anti-3-nitrotyrosine specific antibody, compared to the controls. The analyzed nitrated proteins were found in the molecular weight range of 27.7 to 123.6kDa. A total of 37 nitrated proteins were identified in aniline-treated and control spleens. Among them, 25 were found only in aniline-treated rats, 11 were present in both aniline-treated and control rats, while one was found in controls only. The nitrated proteins identified mainly represent skeletal proteins, chaperones, ferric iron transporter, enzymes, nucleic acids binding protein, and signaling and protein synthesis pathways. Furthermore, aniline exposure led to significantly increased iNOS mRNA and protein expression in the spleen, suggesting its role in increased reactive nitrogen species formation and contribution to increased nitrated proteins. The identified nitrated proteins provide a global map to further investigate alterations in their structural and functional properties, which will lead to a better understanding of the role of protein nitration in aniline-mediated splenic toxicity.
Collapse
Affiliation(s)
- Xiuzhen Fan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
18
|
Alvergnas M, Rouleau A, Lucchi G, Heyd B, Ducoroy P, Richert L, Martin H. Proteomic mapping of bezafibrate-treated human hepatocytes in primary culture using two-dimensional liquid chromatography. Toxicol Lett 2011; 201:123-9. [DOI: 10.1016/j.toxlet.2010.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/17/2010] [Accepted: 12/21/2010] [Indexed: 10/25/2022]
|
19
|
Im SS, Kim MY, Kwon SK, Kim TH, Bae JS, Kim H, Kim KS, Oh GT, Ahn YH. Peroxisome proliferator-activated receptor {alpha} is responsible for the up-regulation of hepatic glucose-6-phosphatase gene expression in fasting and db/db Mice. J Biol Chem 2010; 286:1157-64. [PMID: 21081500 DOI: 10.1074/jbc.m110.157875] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glucose-6-phosphatase (G6Pase) is a key enzyme that is responsible for the production of glucose in the liver during fasting or in type 2 diabetes mellitus (T2DM). During fasting or in T2DM, peroxisome proliferator-activated receptor α (PPARα) is activated, which may contribute to increased hepatic glucose output. However, the mechanism by which PPARα up-regulates hepatic G6Pase gene expression in these states is not well understood. We evaluated the mechanism by which PPARα up-regulates hepatic G6Pase gene expression in fasting and T2DM states. In PPARα-null mice, both hepatic G6Pase and phosphoenolpyruvate carboxykinase levels were not increased in the fasting state. Moreover, treatment of primary cultured hepatocytes with Wy14,643 or fenofibrate increased the G6Pase mRNA level. In addition, we have localized and characterized a PPAR-responsive element in the promoter region of the G6Pase gene. Chromatin immunoprecipitation (ChIP) assay revealed that PPARα binding to the putative PPAR-responsive element of the G6Pase promoter was increased in fasted wild-type mice and db/db mice. These results indicate that PPARα is responsible for glucose production through the up-regulation of hepatic G6Pase gene expression during fasting or T2DM animal models.
Collapse
Affiliation(s)
- Seung-Soon Im
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kang HW, Wei J, Cohen DE. PC-TP/StARD2: Of membranes and metabolism. Trends Endocrinol Metab 2010; 21:449-56. [PMID: 20338778 PMCID: PMC2897958 DOI: 10.1016/j.tem.2010.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 11/25/2022]
Abstract
Phosphatidylcholine transfer protein (PC-TP, synonym StARD2) binds phosphatidylcholines, and catalyzes their intermembrane transfer and exchange in vitro. The structure of PC-TP comprises a hydrophobic pocket and a well-defined head group binding site, and its gene expression is regulated by peroxisome proliferator activated receptor-alpha. Recent studies have revealed key regulatory roles for PC-TP in lipid and glucose metabolism. Notably, Pctp(-/-) mice are sensitized to the action of insulin, and exhibit more efficient brown fat-mediated thermogenesis. PC-TP appears to limit access of fatty acids to mitochondria by stimulating the activity of thioesterase superfamily member 2, a newly characterized long-chain fatty acyl-coenzyme A thioesterase. Because PC-TP discriminates between phosphatidylcholines within lipid bilayers, it might function as a sensor that links metabolic regulation to membrane composition.
Collapse
Affiliation(s)
- Hye Won Kang
- Department of Medicine, Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
21
|
Pyper SR, Viswakarma N, Yu S, Reddy JK. PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. NUCLEAR RECEPTOR SIGNALING 2010; 8:e002. [PMID: 20414453 PMCID: PMC2858266 DOI: 10.1621/nrs.08002] [Citation(s) in RCA: 300] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 03/04/2010] [Indexed: 12/11/2022]
Abstract
The peroxisome proliferator-activated receptor alpha (PPARalpha, or NR1C1) is a nuclear hormone receptor activated by a structurally diverse array of synthetic chemicals known as peroxisome proliferators. Endogenous activation of PPARalpha in liver has also been observed in certain gene knockout mouse models of lipid metabolism, implying the existence of enzymes that either generate (synthesize) or degrade endogenous PPARalpha agonists. For example, substrates involved in fatty acid oxidation can function as PPARalpha ligands. PPARalpha serves as a xenobiotic and lipid sensor to regulate energy combustion, hepatic steatosis, lipoprotein synthesis, inflammation and liver cancer. Mainly, PPARalpha modulates the activities of all three fatty acid oxidation systems, namely mitochondrial and peroxisomal beta-oxidation and microsomal omega-oxidation, and thus plays a key role in energy expenditure. Sustained activation of PPARalpha by either exogenous or endogenous agonists leads to the development of hepatocellular carcinoma resulting from sustained oxidative and possibly endoplasmic reticulum stress and liver cell proliferation. PPARalpha requires transcription coactivator PPAR-binding protein (PBP)/mediator subunit 1(MED1) for its transcriptional activity.
Collapse
Affiliation(s)
| | | | | | - Janardan K. Reddy
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
22
|
Manivannan B, Rawson P, Jordan TW, Secor WE, La Flamme AC. Differential patterns of liver proteins in experimental murine hepatosplenic schistosomiasis. Infect Immun 2010; 78:618-28. [PMID: 19933830 PMCID: PMC2812215 DOI: 10.1128/iai.00647-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/17/2009] [Accepted: 11/13/2009] [Indexed: 12/13/2022] Open
Abstract
Schistosoma mansoni eggs produced by adult worms in the mesenteric vasculature become trapped in the liver, where they induce granulomatous lesions and strong immune responses. Infected individuals suffer from intestinal schistosomiasis (INT) in 90% of cases, whereas the remaining 10% present with severe hepatosplenic schistosomiasis (HS). The CBA/J mouse model mimics human disease, with 20% of infected mice developing hypersplenomegaly syndrome (HSS) that resembles HS and 80% developing moderate splenomegaly syndrome (MSS) similar to INT. We studied differential patterns of protein expression in livers of 20-week-infected CBA/J mice with MSS or HSS to understand the molecular changes that underlie these two disease forms. Using differential in-gel electrophoresis to identify differentially expressed protein spots, we found 80 protein spots significantly changed with infection and 35 changes specific to severe disease. In particular, the abundances of prohibitin 2, transferrin isoforms, and major urinary protein isoforms were significantly altered in HSS mice. Furthermore, annexin 5, glutathione S-transferase pi class, and S. mansoni phosphoenolpyruvate carboxykinase expression levels changed significantly with schistosome infection. Additionally, levels of major urinary protein decreased and levels of transferrin increased significantly in the sera of HSS mice compared to levels in sera of MSS or control mice, and these differences correlated to the degree of splenomegaly. These findings indicate that the liver protein abundances differ between MSS and HSS mice and may be used for the development of diagnostic markers for the early detection of hepatosplenic schistosomiasis.
Collapse
Affiliation(s)
- B. Manivannan
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - P. Rawson
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - T. W. Jordan
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - W. E. Secor
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - A. C. La Flamme
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
23
|
Iff J, Wang W, Sajic T, Oudry N, Gueneau E, Hopfgartner G, Varesio E, Szanto I. Differential proteomic analysis of STAT6 knockout mice reveals new regulatory function in liver lipid homeostasis. J Proteome Res 2010; 8:4511-24. [PMID: 19663508 DOI: 10.1021/pr9003272] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increased inflammatory signaling is a key feature of metabolic disorders. In this context, the role of increased pro-inflammatory signals has been extensively studied. By contrast, no efforts have been dedicated to study the contrasting scenario: the attenuation of anti-inflammatory signals and their role in metabolic homeostasis. IL-4 and IL-13 are anti-inflammatory cytokines signaling through the Signal Transducer and Activator of Transcription 6 (STAT6). Our study was aimed at evaluating the lack of STAT6 signaling on liver homeostasis. To this end we analyzed the liver proteome of wild type and STAT6 knock-out mice using 2D nanoscale LC-MS/MS with iTRAQ labeling technique. The coordinated changes in proteins identified by this quantitative proteome analysis indicated disturbed lipid homeostasis and a state of hepatocellular stress. Most significantly, the expression of the liver fatty acid binding protein (FABP1) was increased in the knock-out mice. In line with the elevated FABP1 expression we found latent liver lipid accumulation in the STAT6-deficient mice which was further aggravated when mice were challenged by a high fat diet. In conclusion, our study revealed a so far uncharacterized role for STAT6 in regulating liver lipid homeostasis and demonstrates the importance of anti-inflammatory signaling in the defense against the development of liver steatosis.
Collapse
Affiliation(s)
- Joël Iff
- Department of Cellular Physiology and Metabolism, University of Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kang HW, Kanno K, Scapa EF, Cohen DE. Regulatory role for phosphatidylcholine transfer protein/StarD2 in the metabolic response to peroxisome proliferator activated receptor alpha (PPARalpha). Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:496-502. [PMID: 20045742 DOI: 10.1016/j.bbalip.2009.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 11/25/2009] [Accepted: 12/24/2009] [Indexed: 10/20/2022]
Abstract
Phosphatidylcholine transfer protein (PC-TP, a.k.a. StarD2) is abundantly expressed in liver and is regulated by PPARalpha. When fed the synthetic PPARalpha ligand fenofibrate, Pctp(-/-) mice exhibited altered lipid and glucose metabolism. Microarray profiling of livers from fenofibrate fed wild type and Pctp(-/-) mice revealed differential expression of a broad array of metabolic genes, as well as their regulatory transcription factors. PC-TP expression in cell culture controlled the activities of both PPARalpha and HNF4alpha, suggesting that the mechanism by which it modulates hepatic metabolism is at least in part via activation of transcription factors that govern nutrient homeostasis.
Collapse
Affiliation(s)
- Hye Won Kang
- Department of Medicine, Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
25
|
Cerrada-Gimenez M, Häyrinen J, Juutinen S, Reponen T, Jänne J, Alhonen L. Proteomic analysis of livers from a transgenic mouse line with activated polyamine catabolism. Amino Acids 2009; 38:613-22. [PMID: 20012117 DOI: 10.1007/s00726-009-0420-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/08/2009] [Indexed: 01/19/2023]
Abstract
We have generated a transgenic mouse line that over expresses the rate-controlling enzyme of the polyamine catabolism, spermidine/spermine N (1)-acetyltransferase, under the control of a heavy metal inducible promoter. This line is characterized by a notable increase in SSAT activity in liver, pancreas and kidneys and a moderate increase in the rest of the tissues. SSAT induction results in an enhanced polyamine catabolism manifested as a depletion of spermidine and spermine and an overaccumulation of putrescine in all tissues. To study how the activation of polyamine catabolism affects other metabolic pathways, protein expression pattern of the livers of transgenic animals was analyzed by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. A total of 23 proteins were shown to be differentially expressed in the transgenic from the wild-type animals. Many of the identified proteins showed expression patterns associated with polyamine catabolism activation. However, the expression pattern of other proteins, such as repression of GST pi and selenium-binding protein 2 and 60 kDa heat-shock protein, could be explained by the overexpression of peroxisome proliferator-activated receptor gamma co-activator 1alpha in response to depleted ATP pools. The activation of the latter proteins is thought to lead to the improved insulin sensitivity seen in the MT-SSAT animals.
Collapse
Affiliation(s)
- Marc Cerrada-Gimenez
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O.Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
26
|
Tenorio-Laranga J, Männistö PT, Karayiorgou M, Gogos JA, García-Horsman JA. Sex-dependent compensated oxidative stress in the mouse liver upon deletion of catechol O-methyltransferase. Biochem Pharmacol 2009; 77:1541-52. [DOI: 10.1016/j.bcp.2009.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/09/2009] [Accepted: 02/11/2009] [Indexed: 11/30/2022]
|
27
|
Kling P, Norman A, Andersson PL, Norrgren L, Förlin L. Gender-specific proteomic responses in zebrafish liver following exposure to a selected mixture of brominated flame retardants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 71:319-327. [PMID: 18258299 DOI: 10.1016/j.ecoenv.2007.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/05/2007] [Accepted: 12/08/2007] [Indexed: 05/25/2023]
Abstract
Proteomic effect screening in zebrafish liver was performed to generate hypotheses following exposure (21 days) to a structurally diverse mixture of brominated flame retardants (BFRs). Fish were exposed to two doses (10 and 100 nmol/g feed). Two-dimensional gel-electrophoresis, image analysis and MALDI-TOF mass-spectrometry revealed 13 and 19 significant responses in males and females, respectively. Effects on proteins related to cellular maintenance and stress were observed in both genders. Regulated proteins were gender-specific, but functionally indicated common protective responses (peroxiredoxin 6 and Zgc:92891 in males and transketolase in females) suggesting oxidative stress. Betaine homocysteine methyltransferase (BHMT) was induced in both genders. In addition a female-specific downregulation of ironhomeostatic proteins (iron-regulatory protein 1 and transferrin) were observed. Our proteomic approach revealed novel responses that suggest important gender-specific sensitivity to BFRs that should be considered when interpreting adverse effects of BFRs.
Collapse
Affiliation(s)
- P Kling
- Department of Zoology/Zoophysiology, Göteborg University, Box 463, SE-405 30 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
28
|
Rozanas CR, Loyland SM. Capabilities using 2-D DIGE in proteomics research : the new gold standard for 2-D gel electrophoresis. Methods Mol Biol 2008; 441:1-18. [PMID: 18370308 DOI: 10.1007/978-1-60327-047-2_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The use of two-dimensional gel electrophoresis for differential analysis in proteomics was revolutionized by the introduction of 2-D fluorescence difference gel electrophoresis (2-D DIGE). This fluorescence-based technique allows the use of multiplexed samples and an internal standard that virtually eliminates gel-to-gel variability, resulting in increased confidence that differences found between samples are due to real induced changes, rather than inherent biological variation or experimental variability. 2-D DIGE has quickly become the "gold standard" for gel-based proteomics for studying tissues, as well as cell culture and bodily fluids such as serum or plasma. This chapter will describe the basic 2-D DIGE technique using minimal labeling, image acquisition using high-quality fluorescence scanners, and software capable of analyzing the multiplexed images and normalizing the data using the internal standard.
Collapse
|
29
|
Meier BW, Gomez JD, Kirichenko OV, Thompson JA. Mechanistic basis for inflammation and tumor promotion in lungs of 2,6-di-tert-butyl-4-methylphenol-treated mice: electrophilic metabolites alkylate and inactivate antioxidant enzymes. Chem Res Toxicol 2007; 20:199-207. [PMID: 17305404 PMCID: PMC2570584 DOI: 10.1021/tx060214f] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An established model for mechanistic analysis of lung carcinogenesis involves administration of 3-methylcholanthrene to mice followed by several weekly injections of the tumor promoter 2,6-di-tert-butyl-4-methylphenol (BHT). BHT is metabolized to quinone methides (QMs) responsible for promoting tumor formation. QMs are strongly electrophilic and readily form adducts with proteins. The goal of the present study was to identify adducted proteins in the lungs of mice injected with BHT and to assess the potential impact of these modifications on tumorigenesis. Cytosolic proteins from treated mouse lungs were separated by two-dimensional electrophoresis, adducts detected by immunoblotting, and proteins identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Eight adducts were detected in the lungs of most, or all, of six experimental groups of BALB mice. Of these adducts, several were structural proteins, but others, namely, peroxiredoxin 6 (Prx6), Cu,Zn-superoxide dismutase (SOD1), carbonyl reductase, and selenium-binding protein 1, have direct or indirect antioxidant functions. When the 9000g supernatant fraction of mouse lung was treated with BHT-QM (2,6-di-tert-butyl-4-methylene-2,5-cyclohexadienone), substantial lipid peroxidation and increases in hydrogen peroxide and superoxide formation were observed. Studies with human Prx6 and bovine SOD1 demonstrated inhibition of enzyme activity concomitant with adduct formation. LC-MS/MS analysis of digests of adducted Prx6 demonstrated adduction of both Cys 91 and Cys 47; the latter residue is essential for peroxidatic activity. Analysis of QM-treated bovine SOD1 by matrix-assisted laser desorption/ionization time-of-flight MS demonstrated the predominance of a monoadduct at His 78. This study provides evidence that indicates Prx6, SOD1, and possibly other antioxidant enzymes in mouse lung are inhibited by BHT-derived QMs leading to enhanced levels of reactive oxygen species and inflammation and providing a mechanistic basis for the effects of BHT on lung tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - John A. Thompson
- To whom correspondence should be addressed. Tel. 303−315−6167. Fax: 303−315−0274. E-mail:
| |
Collapse
|
30
|
Kanno K, Wu MK, Scapa EF, Roderick SL, Cohen DE. Structure and function of phosphatidylcholine transfer protein (PC-TP)/StarD2. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:654-62. [PMID: 17499021 PMCID: PMC2743068 DOI: 10.1016/j.bbalip.2007.04.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 03/31/2007] [Accepted: 04/03/2007] [Indexed: 11/29/2022]
Abstract
Phosphatidylcholine transfer protein (PC-TP) is a highly specific soluble lipid binding protein that transfers phosphatidylcholine between membranes in vitro. PC-TP is a member of the steroidogenic acute regulatory protein-related transfer (START) domain superfamily. Although its biochemical properties and structure are well characterized, the functions of PC-TP in vivo remain incompletely understood. Studies of mice with homozygous disruption of the Pctp gene have largely refuted the hypothesis that this protein participates in the hepatocellular selection and transport of biliary phospholipids, in the production of lung surfactant, in leukotriene biosynthesis and in cellular phosphatidylcholine metabolism. Nevertheless, Pctp(-/-) mice exhibit interesting defects in lipid homeostasis, the understanding of which should elucidate the biological functions of PC-TP.
Collapse
Affiliation(s)
- Keishi Kanno
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Michele K. Wu
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Erez F. Scapa
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Steven L. Roderick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David E. Cohen
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Boston, MA 02115, USA
- Correspondence should be addressed to this author at: Department of Medicine, Gastroenterology Division, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115. Phone: (617) 525-7846; Fax: (617) 264-6368;
| |
Collapse
|
31
|
Wang Y, Lam KSL, Lam JBB, Lam MC, Leung PTY, Zhou M, Xu A. Overexpression of Angiopoietin-Like Protein 4 Alters Mitochondria Activities and Modulates Methionine Metabolic Cycle in the Liver Tissues of db/db Diabetic Mice. Mol Endocrinol 2007; 21:972-86. [PMID: 17213385 DOI: 10.1210/me.2006-0249] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is a circulating protein predominantly produced from fat tissue and liver. Recent data from others and our laboratory have demonstrated this protein to be an important player in energy metabolism and insulin sensitivity. However, the molecular mechanisms underlying its metabolic actions remain elusive. In this study, we have employed a two-dimensional fluorescence difference gel electrophoresis technique to study the protein profiles in the livers of db/db mice treated with or without ANGPTL4. When compared with those of lean mice, 118 proteins were found to be up- or down-regulated in db/db mice. Adenovirus-mediated overexpression of ANGPTL4 could reverse a large portion of the up- or down-regulated proteins to control levels. Especially, a number of mitochondria proteins were down-regulated by ANGPTL4 to a great extent. Chronic treatment with ANGPTL4 resulted in an elevated activity of mitochondria respiratory chain complexes II-III and IV in db/db mice. Additionally, several key enzymes in the methionine/homocysteine metabolic cycle were found to be increased in db/db diabetic mice but decreased by ANGPTL4 treatment. HPLC analysis consistently revealed that ANGPTL4 could significantly restore the augmented S-adenosylmethionine levels and S-adenosylmethionine/S-adenosylhomocysteine ratios in livers of db/db mice. In summary, our results suggest that ANGPTL4 might elicit its metabolic effects through modulating the mitochondria functions and methionine metabolic cycles in the liver tissue.
Collapse
Affiliation(s)
- Yu Wang
- Genome Research Center, Faculty of Medicine Building, the University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Petrak J, Myslivcova D, Halada P, Cmejla R, Cmejlova J, Vyoral D, Vulpe CD. Iron-independent specific protein expression pattern in the liver of HFE-deficient mice. Int J Biochem Cell Biol 2007; 39:1006-15. [PMID: 17376729 DOI: 10.1016/j.biocel.2007.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 12/01/2022]
Abstract
Hereditary hemochromatosis type I is an autosomal-recessive iron overload disease associated with a mutation in HFE gene. The most common mutation, C282Y, disrupts the disulfide bond necessary for the association of HFE with beta-2-microglobulin and abrogates cell surface HFE expression. HFE-deficient mice develop iron overload indicating a central role of the protein in the pathogenesis of hereditary hemochromatosis type I. However, despite significant effort, the role of the HFE protein in iron metabolism is still unknown. To shed a light on the molecular mechanism of HFE-related hemochromatosis we studied protein expression changes elicited by HFE-deficiency in the liver which is the organ critical for the regulation of iron metabolism. We undertook a proteomic study comparing protein expression in the liver of HFE deficient mice with control animals. We compared HFE-deficient animals with control animals with identical iron levels obtained by dietary treatment to identify changes specific to HFE deficiency rather than iron loading. We found 11 proteins that were differentially expressed in the HFE-deficient liver using two-dimensional electrophoresis and mass spectrometry identification. Of particular interest were urinary proteins 1, 2 and 6, glutathione-S-transferase P1, selenium binding protein 2, sarcosine dehydrogenase and thioredoxin-like protein 2. Our data suggest possible involvement of lipocalins, TNF-alpha signaling and PPAR alpha regulatory pathway in the pathogenesis of hereditary hemochromatosis and suggest future targeted research addressing the roles of the identified candidate genes in the molecular mechanism of hereditary hemochromatosis.
Collapse
Affiliation(s)
- Jiri Petrak
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
33
|
Inadera H, Uchida M, Shimomura A. [Advances in "omics" technologies for toxicological research]. Nihon Eiseigaku Zasshi 2007; 62:18-31. [PMID: 17334089 DOI: 10.1265/jjh.62.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Toxicology research can be applied to evaluate potential human health risks resulting from exposure to chemicals and other factors in the environment. The tremendous advances that have been made in high-throughput "omics" technologies (e.g., genomics, transcriptomics, proteomics and metabolomics) are providing good tools for toxicological research. Toxicogenomics is the study of changes in gene expression, protein and metabolite profiles, and combines the tools of traditional toxicology with those of genomics and bioinformatics. In particular, identification of changes in gene expression using DNA microarrays is an important method for understanding toxicological processes and obtaining an informative biomarker. Although these technologies have emerged as a powerful tool for clarifying hazard mechanisms, there are some concerns for the application of these technologies to toxicological research. This review summarizes the impact of "omics" technologies in toxicological study, followed by a brief discussion of future research.
Collapse
Affiliation(s)
- Hidekuni Inadera
- Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | |
Collapse
|
34
|
Henkel C, Roderfeld M, Weiskirchen R, Berres ML, Hillebrandt S, Lammert F, Meyer HE, Stühler K, Graf J, Roeb E. Changes of the hepatic proteome in murine models for toxically induced fibrogenesis and sclerosing cholangitis. Proteomics 2006; 6:6538-48. [PMID: 17109383 DOI: 10.1002/pmic.200600580] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the changes in the hepatic proteome in murine models for toxic-induced fibrogenesis and sclerosing cholangitis. A comprehensive comparison of protein changes observed is made and the mechanistical basis of the expression changes is discussed. Hepatic fibrosis was induced by repetitive intraperitoneal CCl4 treatment of BALB/c mice or developed spontaneously in BALB/c-ATP-binding cassette, subfamily B, member 4 (Abcb4) knock out mice. Fibrosis was verified by a morphometric score and assessment of hydroxyproline content of liver tissue, respectively. The innovative difference in-gel electrophoresis (DIGE) technique was used to analyse protein expression levels of the mouse proteome. Results were confirmed by Western blotting and real-time RT-PCR. In CCl4-induced fibrosis 20 out of 40 and in BALB/c-Abcb4(-/-) mice 8 out of 28 differentially expressed proteins were identified utilizing DIGE. Only two proteins, selenium-binding protein (Sbp2) and carbonic anhydrase 3, have been unidirectionally expressed (i.e. down-regulated) in both models. Relevant differences in the pathogenesis of toxically induced liver fibrosis and sclerosing cholangitis exist. The only novel protein with regard to liver fibrosis depicting a unidirectional expression pattern in both animal models was Sbp2. An explicit protein function could not be clarified yet.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Animals
- Blotting, Western
- Carbon Tetrachloride/toxicity
- Cholangitis, Sclerosing/chemically induced
- Cholangitis, Sclerosing/metabolism
- Cholangitis, Sclerosing/pathology
- Disease Models, Animal
- Electrophoresis, Gel, Two-Dimensional
- Humans
- Immunohistochemistry
- Liver/metabolism
- Liver Cirrhosis/chemically induced
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Proteome/genetics
- Proteome/isolation & purification
- Proteome/metabolism
- Proteomics/methods
- Reverse Transcriptase Polymerase Chain Reaction
- Selenium-Binding Proteins/genetics
- Selenium-Binding Proteins/isolation & purification
- Selenium-Binding Proteins/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Corinna Henkel
- University Hospital Giessen & Marburg, Campus Giessen, Department of Medicine II, Gastroenterology, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Takahara Y, Takahashi M, Wagatsuma H, Yokoya F, Zhang QW, Yamaguchi M, Aburatani H, Kawada N. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis. World J Gastroenterol 2006; 12:6473-99. [PMID: 17072980 PMCID: PMC4100637 DOI: 10.3748/wjg.v12.i40.6473] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the gene expression profile data for the whole liver during development of dimethylni-trosamine (DMN)-induced hepatic fibrosis.
METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells), and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells.
RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSC-specific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis, suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocyte-specific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis.
CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis.
Collapse
Affiliation(s)
- Yoshiyuki Takahara
- Exploratory and Applied Pharmaceutical Research Department, Pharmaceutical Company, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Agalou A, Spaink HP, Roussis A. Novel interaction of selenium-binding protein with glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase of Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:847-856. [PMID: 32689295 DOI: 10.1071/fp05312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 05/16/2006] [Indexed: 06/11/2023]
Abstract
The metabolic role and regulation of selenium, particularly in plants, is poorly understood. One of the proteins probably involved in the metabolic regulation of this element is the selenium-binding protein (SBP) with homologues present across prokaryotic and eukaryotic species. The high degree of conservation of SBP in different organisms suggests that this protein may play a role in fundamental biological processes. In order to gain insight into the biochemical function of SBP in plants we used the yeast two-hybrid system to identify proteins that potentially interact with an Arabidopsis thaliana (L.) Heynh. homologue. Among the putative binding partners of SBP, a NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a fructose-bisphosphate aldolase (FBA) were found as reliable positive candidates. The interaction of these proteins with SBP was confirmed by in vitro binding assays. Previous findings in Escherichia coli, demonstrated the direct binding of selenium to both GAPDH and aldolase. Therefore our results reveal the interaction, at least in pairs, of three proteins that are possibly linked to selenium and suggest the existence of a protein network consisting of at least SBP, GAPDH and FBA, triggered by or regulating selenium metabolism in plant cells.
Collapse
Affiliation(s)
- Adamantia Agalou
- Institute of Biology, Clusius Laboratory, Leiden University, Wassenaarseweg 64, 2333AL Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Clusius Laboratory, Leiden University, Wassenaarseweg 64, 2333AL Leiden, The Netherlands
| | - Andreas Roussis
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333AL Leiden, The Netherlands. Current address: Agricultural University of Athens, Department of Agricultural Biotechnology, Iera odos 75, 118 55 Athens, Greece
| |
Collapse
|
37
|
Wintz H, Yoo LJ, Loguinov A, Wu YY, Steevens JA, Holland RD, Beger RD, Perkins EJ, Hughes O, Vulpe CD. Gene Expression Profiles in Fathead Minnow Exposed to 2,4-DNT: Correlation with Toxicity in Mammals. Toxicol Sci 2006; 94:71-82. [PMID: 16917068 DOI: 10.1093/toxsci/kfl080] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Toxicogenomics, the genome-wide analysis of gene expression to study the effect of toxicants, has great potential for use in environmental toxicology. Applied to standard test organisms, it has possible applications in aquatic toxicology as a sensitive monitoring tool to detect the presence of contaminants while providing information on the mechanisms of action of these pollutants. We describe the use of a complementary DNA (cDNA) microarray of the fathead minnow (Pimephales promelas) a standard sentinel organism in aquatic toxicology, to better understand the mechanisms of toxicity of 2,4-dinitrotoluene (2,4-DNT) which is released in the environment through military and industrial use. We have constructed a fathead minnow microarray containing 5000 randomly picked anonymous cDNAs from a whole fish cDNA library. Expression profiles were analyzed in fish exposed to 2,4-DNT for 10 days at three concentrations (11, 22, and 44 microM, respectively) below the measured median lethal concentration (58 microM). Sequence analysis of cDNAs corresponding to differentially expressed genes affected by exposure revealed that lipid metabolism and oxygen transport genes were prominently affected in a dose-specific manner. We measured liver lipids and demonstrate that lipid metabolism is indeed perturbed following exposure. These observations correlate well with available toxicological data on 2,4-DNT. We present possible modes of action of 2,4-DNT toxicity and suggest that fathead minnow cDNA microarrays can be useful to identify mechanisms of toxicity in fish and as a predictive tool for toxicity in mammals.
Collapse
Affiliation(s)
- Henri Wintz
- Department of Nutritional Sciences and Toxicology, Morgan Hall and Berkeley Institute of the Environment, University of California, Berkeley, California 94720, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kussmann M, Raymond F, Affolter M. OMICS-driven biomarker discovery in nutrition and health. J Biotechnol 2006; 124:758-87. [PMID: 16600411 DOI: 10.1016/j.jbiotec.2006.02.014] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 12/22/2005] [Accepted: 02/17/2006] [Indexed: 01/21/2023]
Abstract
While traditional nutrition research has dealt with providing nutrients to nourish populations, it nowadays focuses on improving health of individuals through diet. Modern nutritional research is aiming at health promotion and disease prevention and on performance improvement. As a consequence of these ambitious objectives, the disciplines "nutrigenetics" and "nutrigenomics" have evolved. Nutrigenetics asks the question how individual genetic disposition, manifesting as single nucleotide polymorphisms, copy-number polymorphisms and epigenetic phenomena, affects susceptibility to diet. Nutrigenomics addresses the inverse relationship, that is how diet influences gene transcription, protein expression and metabolism. A major methodological challenge and first pre-requisite of nutrigenomics is integrating genomics (gene analysis), transcriptomics (gene expression analysis), proteomics (protein expression analysis) and metabonomics (metabolite profiling) to define a "healthy" phenotype. The long-term deliverable of nutrigenomics is personalised nutrition for maintenance of individual health and prevention of disease. Transcriptomics serves to put proteomic and metabolomic markers into a larger biological perspective and is suitable for a first "round of discovery" in regulatory networks. Metabonomics is a diagnostic tool for metabolic classification of individuals. The great asset of this platform is the quantitative, non-invasive analysis of easily accessible human body fluids like urine, blood and saliva. This feature also holds true to some extent for proteomics, with the constraint that proteomics is more complex in terms of absolute number, chemical properties and dynamic range of compounds present. Apart from addressing the most complex "-ome", proteomics represents the only platform that delivers not only markers for disposition and efficacy but also targets of intervention. The Omics disciplines applied in the context of nutrition and health have the potential to deliver biomarkers for health and comfort, reveal early indicators for disease disposition, assist in differentiating dietary responders from non-responders, and, last but not least, discover bioactive, beneficial food components. This paper reviews the state-of-the-art of the three Omics platforms, discusses their implication in nutrigenomics and elaborates on applications in nutrition and health such as digestive health, allergy, diabetes and obesity, nutritional intervention and nutrient bioavailability. Proteomic developments, applications and potential in the field of nutrition have been specifically addressed in another review issued by our group.
Collapse
Affiliation(s)
- Martin Kussmann
- Bioanalytical Science Department, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland.
| | | | | |
Collapse
|
39
|
Léonard JF, Courcol M, Mariet C, Charbonnier A, Boitier E, Duchesne M, Parker F, Genet B, Supatto F, Roberts R, Gautier JC. Proteomic characterization of the effects of clofibrate on protein expression in rat liver. Proteomics 2006; 6:1915-33. [PMID: 16470657 DOI: 10.1002/pmic.200500251] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Clofibrate is a peroxisome proliferator known to induce liver tumours in rats. A proteomics study was conducted to provide new insights into the molecular mechanisms of clofibrate-induced non-genotoxic hepatocarcinogenesis. Rats were treated with 250 mg/kg day clofibrate orally and sacrificed after 7 days. Proteins extracted from the liver were analysed by 2-DE using DIGE technology. The protein identification performed by MS showed that clofibrate induced up-regulation of 77 proteins and down-regulation of 27 proteins. The highest expression ratios corresponded to proteins involved in a series of biochemical pathways such as lipid metabolism, fatty acid metabolism, amino acid metabolism, protein metabolism, citric acid cycle, xenobiotic detoxification and oxidative stress. Proteins implicated in cell proliferation and apoptosis, such as prohibitin, 10-formyl tetrahydrofolate dehydrogenase, senescence marker protein-30, pyridoxine 5'-phosphate oxidase and vimentin, were also identified as being regulated. These results provide leads for further investigations into the molecular mechanisms of liver tumours induced by clofibrate. In addition, MS results showed that a series of regulated proteins were detected as several spots corresponding to different pI and/or M(r). Differential effects on those variants could result from specific PTM and could be a specific molecular signature of the clofibrate-induced protein expression modulation in rat liver.
Collapse
|
40
|
Mattow J, Demuth I, Haeselbarth G, Jungblut PR, Klose J. Selenium-binding protein 2, the major hepatic target for acetaminophen, shows sex differences in protein abundance. Electrophoresis 2006; 27:1683-91. [PMID: 16532517 DOI: 10.1002/elps.200500703] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liver samples from female and male mice of two subspecies, Mus musculus musculus and Mus musculus domesticus, were investigated by a combination of 2-DE and MALDI-MS. The image analysis of the generated 2-DE patterns revealed several protein spots with significant differences in intensity/abundance between the sexes. Seven protein spots, which were prominent in 2-DE patterns of male mice, but which showed very low intensities in females, were identified as selenium-binding protein 2 (SBP2) also known as 56-kDa acetaminophen-binding protein. Edman degradation indicated that at least three of these protein spots represent N-terminally truncated SBP2 variants. Furthermore, it was shown that the observed differences in SBP2 abundance correlate with sex differences in transcription of the gene encoding SBP2, selenbp2, as revealed by RT-PCR and restriction digest as well as sequence analysis of the products. Since SBP2 has been described as the major target for acetaminophen in mouse liver cytosol, these findings are discussed with respect to their possible relevance for sex differences in acetaminophen-mediated toxicity, which have been described in a variety of mammals including mice and rats.
Collapse
Affiliation(s)
- Jens Mattow
- Institute of Human Genetics, Charité, Berlin, Germany.
| | | | | | | | | |
Collapse
|
41
|
Wen T, Li H, Song H, Chen F, Zhao C, Lu W, Bao K, Jin Y. Down-regulation of specific gene expression by double-strand RNA induces neural stem cell differentiation in vitro. Mol Cell Biochem 2005; 275:215-21. [PMID: 16335801 DOI: 10.1007/s11010-005-2049-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the postgenomic era the elucidation of the physiological function of genes has become the rate-limiting step in the quest to understand the development and function of living organisms. Double-stranded RNA (dsRNA) interferes with gene expression in various species, a phenomenon known as RNA interference (RNAi). We show here that RNAi is also effective in modifying gene expression in neural stem cell differentiation. The progenitor cells were obtained from E14 mouse embryonic forebrain and maintained using N-2 medium containing basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and B27.A gene (NM017084.1) was previously discovered and validated to express obviously differently between differentiated and undifferentiated neural stem cells in our laboratory. Here we report a long double-stranded RNA to knock out or knock down this gene. The results demonstrated that following RNAi inhibition of expression of the NM017084.1 gene, the differentiation of neural stem cells is accelerated. Thus the NM017084.1 gene may play a pivotal role in the process of differentiation of neural stem cells.
Collapse
Affiliation(s)
- Tieqiao Wen
- Laboratory of Neural Molecular Biology, School of Life Sciences, Shanghai University, Shanghai, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Peters JM, Cheung C, Gonzalez FJ. Peroxisome proliferator-activated receptor-α and liver cancer: where do we stand? J Mol Med (Berl) 2005; 83:774-85. [PMID: 15976920 DOI: 10.1007/s00109-005-0678-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
The peroxisome proliferator-activated receptor-alpha (PPARalpha), first identified in 1990 as a member of the nuclear receptor superfamily, has a central role in the regulation of numerous target genes encoding proteins that modulate fatty acid transport and catabolism. PPARalpha is the molecular target for the widely prescribed lipid-lowering fibrate drugs and the diverse class of chemicals collectively referred to as peroxisome proliferators. The lipid-lowering function of PPARalpha occurs across a number of mammalian species, thus demonstrating the essential role of this nuclear receptor in lipid homeostasis. In contrast, prolonged administration of PPARalpha agonists causes hepatocarcinogenesis, specifically in rats and mice, indicating that PPARalpha also mediates this effect. There is no strong evidence that the low-affinity fibrate ligands are associated with cancer in humans, but it still remains a possibility that chronic activation with high-affinity ligands could be carcinogenic in humans. It is now established that the species difference between rodents and humans in response to peroxisome proliferators is due in part to PPARalpha. The cascade of molecular events leading to liver cancer in rodents involves hepatocyte proliferation and oxidative stress, but the PPARalpha target genes that mediate this response are unknown. This review focuses on the current understanding of the role of PPARalpha in hepatocarcinogenesis and identifies future research directions that should be taken to delineate the mechanisms underlying PPARalpha agonist-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, 16802, USA.
| | | | | |
Collapse
|
43
|
Zhang YQ, Friedman DB, Wang Z, Woodruff E, Pan L, O'donnell J, Broadie K. Protein Expression Profiling of the Fragile X Mutant Brain Reveals Up-regulation of Monoamine Synthesis. Mol Cell Proteomics 2005; 4:278-90. [PMID: 15634690 DOI: 10.1074/mcp.m400174-mcp200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fragile X syndrome is the most common form of inherited mental retardation, associated with both cognitive and behavioral anomalies. The disease is caused by silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the mRNA-binding, translational regulator FMRP. Previously we established a disease model through mutation of Drosophila fmr1 (dfmr1) and showed that loss of dFMRP causes defects in neuronal structure, function, and behavioral output similar to the human disease state. To uncover molecular targets of dFMRP in the brain, we use here a proteomic approach involving two-dimensional difference gel electrophoresis analyses followed by mass spectrometry identification of proteins with significantly altered expression in dfmr1 null mutants. We then focus on two misregulated enzymes, phenylalanine hydroxylase (Henna) and GTP cyclohydrolase (Punch), both of which mediate in concert the synthetic pathways of two key monoamine neuromodulators, dopamine and serotonin. Brain enzymatic assays show a nearly 2-fold elevation of Punch activity in dfmr1 null mutants. Consistently brain neurochemical assays show that both dopamine and serotonin are significantly increased in dfmr1 null mutants. At a cellular level, dfmr1 null mutant neurons display a highly significant elevation of the dense core vesicles that package these monoamine neuromodulators for secretion. Taken together, these data indicate that dFMRP normally down-regulates the monoamine pathway, which is consequently up-regulated in the mutant condition. Elevated brain levels of dopamine and serotonin provide a plausible mechanistic explanation for aspects of cognitive and behavioral deficits in human patients.
Collapse
Affiliation(s)
- Yong Q Zhang
- Department of Biological Science, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37232-1634, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Reddy JK. Peroxisome proliferators and peroxisome proliferator-activated receptor alpha: biotic and xenobiotic sensing. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:2305-21. [PMID: 15161663 PMCID: PMC1615758 DOI: 10.1016/s0002-9440(10)63787-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janardan K Reddy
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| |
Collapse
|