1
|
Shirasaki T, Lenarcic E, Misumi I, Xie L, Fusco WG, Yonish B, Das A, Kim H, Cameron CE, Léger-Abraham M, Chen X, Cullen JM, Whitmire JK, Li Y, Duncan JA, Moorman NJ, Lemon SM. Hepatovirus translation requires PDGFA-associated protein 1, an eIF4E-binding protein regulating endoplasmic reticulum stress responses. SCIENCE ADVANCES 2024; 10:eadq6342. [PMID: 39565848 PMCID: PMC11578187 DOI: 10.1126/sciadv.adq6342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
The overexpression and misfolding of viral proteins in the endoplasmic reticulum (ER) may cause cellular stress, thereby inducing a cytoprotective, proteostatic host response involving phosphorylation of eukaryotic translation initiation factor 2 subunit alpha (eIF2α). Here, we show that hepatitis A virus, a positive-strand RNA virus responsible for infectious hepatitis, adopts a stress-resistant, eIF2α-independent mechanism of translation to ensure the synthesis of viral proteins within the infected liver. Cap-independent translation directed by the hepatovirus internal ribosome entry site and productive hepatovirus infection of mice both require platelet-derived growth factor subunit A (PDGFA)-associated protein 1 (PDAP1), a small phosphoprotein of unknown function with eIF4E-binding activity. PDAP1 also interacts with eIF1A and is essential for translating stress-resistant host messenger RNAs that evade the proteostatic response to ER stress and that encode proteins promoting the survival of stressed cells.
Collapse
Affiliation(s)
- Takayoshi Shirasaki
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erik Lenarcic
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ichiro Misumi
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William G. Fusco
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan Yonish
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anshuman Das
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hyejeong Kim
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig E. Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mélissa Léger-Abraham
- Division of Molecular Medicine, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Xian Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M. Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jason K. Whitmire
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - You Li
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph A. Duncan
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathaniel J. Moorman
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
NMR Analysis Suggests Synergy between the RRM2 and the Carboxy-Terminal Segment of Human La Protein in the Recognition and Interaction with HCV IRES. Int J Mol Sci 2023; 24:ijms24032572. [PMID: 36768895 PMCID: PMC9916714 DOI: 10.3390/ijms24032572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
The La protein (lupus antigen) is a ubiquitous RNA-binding protein found in all human cells. It is mainly localized in the nucleus, associates with all RNA polymerase III (Pol III) transcripts, as the first factor they interact with, and modulates subsequent processing events. Export of La to the cytoplasm has been reported to stimulate the decoding of specific cellular and viral mRNAs through IRES-dependent (Internal ribosome entry site) binding and translation. Using NMR (Nuclear Magnetic Resonance) spectroscopy, we provide atomic-level-resolution structural insights on the dynamical properties of human La (hLa) protein in solution. Moreover, using a combination of NMR spectroscopy and isothermal titration calorimetry (ITC), we provide evidence about the role and ligand specificity of the C-terminal domain of the La protein (RRM2 and C-terminal region) that could mediate the recognition of HCV-IRES.
Collapse
|
3
|
Huang X, Zhu J, Li Y, Yu Y, Tang J. La protein regulates protein expression by binding with the mRNAs of target genes and participates the pathological process of ovarian cancer. Front Oncol 2022; 12:763480. [PMID: 36110943 PMCID: PMC9468491 DOI: 10.3389/fonc.2022.763480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
Research on the mechanism and new targets of ovarian cancer is of great significance to reduce the high mortality and drug resistance of ovarian cancer. Human La protein has been found to be highly expressed in a variety of malignant tumors and plays a role in tumorigenesis and development through its RNA-binding function. However, its role and mechanism in ovarian cancer are not completely clear. The present study showed that La protein was highly expressed in serum and tissues of patients with ovarian cancer by ELISA and immunohistochemistry, and the high expression of La protein was associated with the increased degree of malignancy and poor prognosis by searching the KM plotter database. Interference of the La gene resulted in a significant decrease in the proliferation, migration, and invasion of ovarian cancer cells with growth block in the G1 phase and increasing apoptosis. By RNA binding protein immunoprecipitation, transcriptome sequencing, and proteomics, 14 downstream target genes were screened. The La protein might affect the protein expression of these 14 genes by binding with the mRNAs. Therefore, it played a role in the pathological process of ovarian cancer.
Collapse
|
4
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
5
|
Bartsch T, Arndt C, Loureiro LR, Kegler A, Puentes-Cala E, Soto JA, Kurien BT, Feldmann A, Berndt N, Bachmann MP. A Small Step, a Giant Leap: Somatic Hypermutation of a Single Amino Acid Leads to Anti-La Autoreactivity. Int J Mol Sci 2021; 22:ijms222112046. [PMID: 34769474 PMCID: PMC8584381 DOI: 10.3390/ijms222112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
The anti-La mab 312B, which was established by hybridoma technology from human-La transgenic mice after adoptive transfer of anti-human La T cells, immunoprecipitates both native eukaryotic human and murine La protein. Therefore, it represents a true anti-La autoantibody. During maturation, the anti-La mab 312B acquired somatic hypermutations (SHMs) which resulted in the replacement of four aa in the complementarity determining regions (CDR) and seven aa in the framework regions. The recombinant derivative of the anti-La mab 312B in which all the SHMs were corrected to the germline sequence failed to recognize the La antigen. We therefore wanted to learn which SHM(s) is (are) responsible for anti-La autoreactivity. Humanization of the 312B ab by grafting its CDR regions to a human Ig backbone confirms that the CDR sequences are mainly responsible for anti-La autoreactivity. Finally, we identified that a single amino acid replacement (D > Y) in the germline sequence of the CDR3 region of the heavy chain of the anti-La mab 312B is sufficient for anti-La autoreactivity.
Collapse
Affiliation(s)
- Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta 681011, Colombia
| | - Javier Andrés Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- BIOGEN Research Group, University of Santander, Faculty of Health Sciences, Cúcuta 540001, Colombia
| | - Biji T. Kurien
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- BIOGEN Research Group, University of Santander, Faculty of Health Sciences, Cúcuta 540001, Colombia
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-3223
| |
Collapse
|
6
|
Berndt N, Bippes CC, Michalk I, Bartsch T, Arndt C, Puentes-Cala E, Soto JA, Loureiro LR, Kegler A, Bachmann D, Gross JK, Gross T, Kurien BT, Scofield RH, Farris AD, James JA, Bergmann R, Schmitz M, Feldmann A, Bachmann MP. And Yet It Moves: Oxidation of the Nuclear Autoantigen La/SS-B Is the Driving Force for Nucleo-Cytoplasmic Shuttling. Int J Mol Sci 2021; 22:9699. [PMID: 34575862 PMCID: PMC8470643 DOI: 10.3390/ijms22189699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
Decades ago, we and many other groups showed a nucleo-cytoplasmic translocation of La protein in cultured cells. This shuttling of La protein was seen after UV irradiation, virus infections, hydrogen peroxide exposure and the Fenton reaction based on iron or copper ions. All of these conditions are somehow related to oxidative stress. Unfortunately, these harsh conditions could also cause an artificial release of La protein. Even until today, the shuttling and the cytoplasmic function of La/SS-B is controversially discussed. Moreover, the driving mechanism for the shuttling of La protein remains unclear. Recently, we showed that La protein undergoes redox-dependent conformational changes. Moreover, we developed anti-La monoclonal antibodies (anti-La mAbs), which are specific for either the reduced form of La protein or the oxidized form. Using these tools, here we show that redox-dependent conformational changes are the driving force for the shuttling of La protein. Moreover, we show that translocation of La protein to the cytoplasm can be triggered in a ligand/receptor-dependent manner under physiological conditions. We show that ligands of toll-like receptors lead to a redox-dependent shuttling of La protein. The shuttling of La protein depends on the redox status of the respective cell type. Endothelial cells are usually resistant to the shuttling of La protein, while dendritic cells are highly sensitive. However, the deprivation of intracellular reducing agents in endothelial cells makes endothelial cells sensitive to a redox-dependent shuttling of La protein.
Collapse
Affiliation(s)
- Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Claudia C. Bippes
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Irene Michalk
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta 681011, Colombia
| | - Javier Andrés Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Instituto de Investigación Masira, Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Cúcuta 540001, Colombia
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Dominik Bachmann
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Technische Universität Dresden, 01307 Dresden, Germany;
| | - Joanne K. Gross
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Tim Gross
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Biji T. Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Department of Biophysics and Radiobiology, Semmelweis University, 1094 Budapest, Hungary
| | - Marc Schmitz
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
| |
Collapse
|
7
|
N6-methyladenosine modification of HCV RNA genome regulates cap-independent IRES-mediated translation via YTHDC2 recognition. Proc Natl Acad Sci U S A 2021; 118:2022024118. [PMID: 33649237 DOI: 10.1073/pnas.2022024118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) infections are associated with the risk of progression to fibrosis, cirrhosis, and hepatocellular carcinoma. The HCV RNA genome is translated by an internal ribosome entry site (IRES)-dependent mechanism. The structure and function of the HCV IRES have been investigated by both biological and biophysical criteria. Recently, the role of N6-methyladenosine (m6A) in cellular RNA and viral transcripts has been intensely investigated. The HCV RNA genome is m6A-methylated, and this modification regulates the viral life cycle. In this study, we investigated the role of m6A modification of the HCV genome in the IRES-dependent translation function by mutating m6A consensus motifs (DRACH) within the IRES element in stem-loop III and IV regions and studied their effect on translation initiation. There are several DRACH motifs within the IRES element. Of these, the DRACH motif at nucleotide (nt) 329-333, located about 7 nt upstream of initiator AUG (iAUG) codon, regulates IRES-mediated translation initiation. Mutational analysis showed that m6A methylation of the adenosine at nt 331 is essential for the IRES-dependent translation. m6A reader protein YTHDC2, containing the RNA helicase domain, recognizes m6A-methylated adenosine at nt 331 and, in concert with the cellular La antigen, supports HCV IRES-dependent translation. The RNA helicase dead YTHDC2 (E332Q) mutant failed to stimulate HCV translation initiation. This report highlights the functional roles of m6A modification and YTHDC2 in the HCV IRES-dependent translation initiation, thus offering alternative therapeutic avenues to interfere with the infectious process.
Collapse
|
8
|
Nucleocytoplasmic Trafficking Perturbation Induced by Picornaviruses. Viruses 2021; 13:v13071210. [PMID: 34201715 PMCID: PMC8310216 DOI: 10.3390/v13071210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022] Open
Abstract
Picornaviruses are positive-stranded RNA viruses. Even though replication and translation of their genome take place in the cytoplasm, these viruses evolved different strategies to disturb nucleocytoplasmic trafficking of host proteins and RNA. The major targets of picornavirus are the phenylalanine-glycine (FG)-nucleoporins, which form a mesh in the central channel of the nuclear pore complex through which protein cargos and karyopherins are actively transported in both directions. Interestingly, while enteroviruses use the proteolytic activity of their 2A protein to degrade FG-nucleoporins, cardioviruses act by triggering phosphorylation of these proteins by cellular kinases. By targeting the nuclear pore complex, picornaviruses recruit nuclear proteins to the cytoplasm, where they increase viral genome translation and replication; they affect nuclear translocation of cytoplasmic proteins such as transcription factors that induce innate immune responses and retain host mRNA in the nucleus thereby preventing cell emergency responses and likely making the ribosomal machinery available for translation of viral RNAs.
Collapse
|
9
|
Su YS, Hwang LH, Chen CJ. Heat Shock Protein A6, a Novel HSP70, Is Induced During Enterovirus A71 Infection to Facilitate Internal Ribosomal Entry Site-Mediated Translation. Front Microbiol 2021; 12:664955. [PMID: 34025620 PMCID: PMC8137988 DOI: 10.3389/fmicb.2021.664955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a human pathogen causing hand, foot, and mouth disease (HFMD) in children. Its infection can lead to severe neurological diseases or even death in some cases. While being produced in a large quantity during infection, viral proteins often require the assistance from cellular chaperones for proper folding. In this study, we found that heat shock protein A6 (HSPA6), whose function in viral life cycle is scarcely studied, was induced and functioned as a positive regulator for EV-A71 infection. Depletion of HSPA6 led to the reductions of EV-A71 viral proteins, viral RNA and virions as a result of the downregulation of internal ribosomal entry site (IRES)-mediated translation. Unlike other HSP70 isoforms such as HSPA1, HSPA8, and HSPA9, which regulate all phases of the EV-A71 life, HSPA6 was required for the IRES-mediated translation only. Unexpectedly, the importance of HSPA6 in the IRES activity could be observed in the absence of viral proteins, suggesting that HSPA6 facilitated IRES activity through cellular factor(s) instead of viral proteins. Intriguingly, the knockdown of HSPA6 also caused the reduction of luciferase activity driven by the IRES from coxsackievirus A16, echovirus 9, encephalomyocarditis virus, or hepatitis C virus, supporting that HSPA6 may assist the function of a cellular protein generally required for viral IRES activities.
Collapse
Affiliation(s)
- Yu-Siang Su
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Lih-Hwa Hwang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ju Chen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
10
|
Péladeau C, Jasmin BJ. Targeting IRES-dependent translation as a novel approach for treating Duchenne muscular dystrophy. RNA Biol 2020; 18:1238-1251. [PMID: 33164678 DOI: 10.1080/15476286.2020.1847894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Internal-ribosomal entry sites (IRES) are translational elements that allow the initiation machinery to start protein synthesis via internal initiation. IRESs promote tissue-specific translation in stress conditions when conventional cap-dependent translation is inhibited. Since many IRES-containing mRNAs are relevant to diseases, this cellular mechanism is emerging as an attractive therapeutic target for pharmacological and genetic modulations. Indeed, there has been growing interest over the past years in determining the therapeutic potential of IRESs for several disease conditions such as cancer, neurodegeneration and neuromuscular diseases including Duchenne muscular dystrophy (DMD). IRESs relevant for DMD have been identified in several transcripts whose protein product results in functional improvements in dystrophic muscles. Together, these converging lines of evidence indicate that activation of IRES-mediated translation of relevant transcripts in DMD muscle represents a novel and appropriate therapeutic strategy for DMD that warrants further investigation, particularly to identify agents that can modulate their activity.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Huang X, Tang J. Human La Protein: An RNA-Binding Protein Involved in Ovarian Cancer Development and Multidrug Resistance. Onco Targets Ther 2020; 13:10721-10727. [PMID: 33132701 PMCID: PMC7592153 DOI: 10.2147/ott.s269983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Multidrug resistance is the main cause of chemotherapy failure and death in patients with advanced ovarian cancer. Drug resistance is a problem that must be solved to improve the survival rate of patients with advanced ovarian cancer. The RNA-binding protein La and the La-related protein family are highly expressed in various malignant tumors, including ovarian cancer. This article reviews the mechanisms of La protein in tumorigenesis, development, and drug resistance. High La protein expression in tumor cells promotes tumor proliferation, invasion, and migration; disrupts cell cycle; and inhibits tumor cell apoptosis caused by chemotherapeutic drugs through various pathways, resulting in chemotherapy resistance in ovarian cancer. Further study of the role of La protein in ovarian cancer multidrug resistance may be conducive to the development of human La protein-specific inhibitors that suppress ovarian cancer drug resistance.
Collapse
Affiliation(s)
- Xuan Huang
- Department of Pharmacy, Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Jing Tang
- Department of Pharmacy, Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| |
Collapse
|
12
|
Liu W, Yang D, Sun C, Wang H, Zhao B, Zhou G, Yu L. hnRNP K Is a Novel Internal Ribosomal Entry Site-Transacting Factor That Negatively Regulates Foot-and-Mouth Disease Virus Translation and Replication and Is Antagonized by Viral 3C Protease. J Virol 2020; 94:e00803-20. [PMID: 32581104 PMCID: PMC7431795 DOI: 10.1128/jvi.00803-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
Cap-independent translation initiation on picornavirus mRNAs is mediated by an internal ribosomal entry site (IRES) in the 5' untranslated region. The regulation of internal initiation requires the interaction of IRES-transacting factors (ITAFs) with the IRES. In this study, we identified a novel ITAF, heterogeneous nuclear ribonucleoprotein K (hnRNP K), which negatively regulates foot-and-mouth disease virus (FMDV) translation and viral replication. Further investigation revealed that the KH2 and KH3 domains of hnRNP K directly bind to domains II, III, and IV of the FMDV IRES, resulting in the inhibition of IRES-mediated translation by interfering with the recognition of another positive ITAF, polypyrimidine tract-binding protein (PTB). Conversely, hnRNP K-mediated inhibition was antagonized by the viral 3C protease through the cleavage of hnRNP K at the Glu-364 residue during FMDV infection. Interestingly, the N-terminal cleavage product, hnRNP K1-364, retained partial inhibitory effects on IRES activity, whereas the C-terminal cleavage product, hnRNP K364-465, became a positive regulator of FMDV replication. Our findings expand the current understanding of virus-host interactions concerning viral recruitment and the modulation of ITAFs, providing new insights into translational control during viral infection.IMPORTANCE The translation of picornaviral genome RNA mediated by the internal ribosomal entry site (IRES) is a crucial step for virus infections. Virus-host interactions play a critical role in the regulation of IRES-dependent translation, but the regulatory mechanism remains largely unknown. In this study, we identified an ITAF, hnRNP K, that negatively regulates FMDV replication by inhibiting viral IRES-mediated translation. In addition, we describe a novel translational regulation mechanism involving the proteolytic cleavage of hnRNP K by FMDV protease 3C. The cleavage of hnRNP K yields two cleavage products with opposite functions: the cleavage product hnRNP K1-364 retains a partial inhibitory effect on IRES activity, and the cleavage product hnRNP K364-465 becomes a positive regulator of FMDV replication. Our findings shed light on the effect of a novel ITAF on the translational regulation of picornavirus and provide new insights into translational control during viral infection.
Collapse
Affiliation(s)
- Wenming Liu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Decheng Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Chao Sun
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Haiwei Wang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Bo Zhao
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Guohui Zhou
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Li Yu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
13
|
Pan J, Tong S, Kong L, Zhu J, Tang J. La protein contributes to cells proliferation and migration and serves as a potential therapeutic target for hepatocellular carcinoma. Asia Pac J Clin Oncol 2020; 16:e228-e235. [PMID: 32780941 DOI: 10.1111/ajco.13370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 04/28/2020] [Indexed: 01/09/2023]
Abstract
AIM La protein is a multifunctional RNA-binding protein involved in RNA metabolism that has been reported to promote the growth of some solid tumors. However, potential role of La in hepatocellular carcinoma (HCC) has not been fully elucidated. This study aimed to investigate the expression of La and its function in HCC. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis were conducted to detect the expression levels of La mRNA and protein in HCC cells and tissues. The proliferation capability of cells was clarified by Cell Counting Kit-8 and clone formation assays. Wound healing assay was carried out to assess cell migration ability. Related protein expressions were also analyzed by western blot. RESULTS Analysis of our clinical samples showed that La mRNA and protein expression of HCC tissues was higher than those of corresponding adjacent tissues, consistent with the result of microarray datasets from Oncomine database. La was also significantly overexpressed in eight HCC cells, compared with normal hepatocytes. According to in vitro experiments, we demonstrated that knockdown of La inhibited HCC cell proliferation and migration. CONCLUSIONS Our results revealed that La expression is elevated both at the RNA and protein levels in HCC. Highly expressed La significantly promotes tumorigenesis of HCC, suggesting that La may be a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Jiaqian Pan
- Department of Pharmacy, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Shuangmei Tong
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingjun Kong
- Department of Pharmacy, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jialei Zhu
- Department of Pharmacy, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Tang
- Department of Pharmacy, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
14
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 742] [Impact Index Per Article: 148.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
15
|
Abstract
RNA-binding proteins are important regulators of RNA metabolism and are of critical importance in all steps of the gene expression cascade. The role of aberrantly expressed RBPs in human disease is an exciting research field and the potential application of RBPs as a therapeutic target or a diagnostic marker represents a fast-growing area of research.Aberrant overexpression of the human RNA-binding protein La has been found in various cancer entities including lung, cervical, head and neck, and chronic myelogenous leukaemia. Cancer-associated La protein supports tumour-promoting processes such as proliferation, mobility, invasiveness and tumour growth. Moreover, the La protein maintains the survival of cancer cells by supporting an anti-apoptotic state that may cause resistance to chemotherapeutic therapy.The human La protein represents a multifunctional post-translationally modified RNA-binding protein with RNA chaperone activity that promotes processing of non-coding precursor RNAs but also stimulates the translation of selective messenger RNAs encoding tumour-promoting and anti-apoptotic factors. In our model, La facilitates the expression of those factors and helps cancer cells to cope with cellular stress. In contrast to oncogenes, able to initiate tumorigenesis, we postulate that the aberrantly elevated expression of the human La protein contributes to the non-oncogenic addiction of cancer cells. In this review, we summarize the current understanding about the implications of the RNA-binding protein La in cancer progression and therapeutic resistance. The concept of exploiting the RBP La as a cancer drug target will be discussed.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Barrera A, Olguín V, Vera-Otarola J, López-Lastra M. Cap-independent translation initiation of the unspliced RNA of retroviruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194583. [PMID: 32450258 DOI: 10.1016/j.bbagrm.2020.194583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Retroviruses are a unique family of RNA viruses that utilize a virally encoded reverse transcriptase (RT) to replicate their genomic RNA (gRNA) through a proviral DNA intermediate. The provirus is permanently integrated into the host cell chromosome and is expressed by the host cell transcription, RNA processing, and translation machinery. Retroviral messenger RNAs (mRNAs) entirely resemble a cellular mRNA as they have a 5'cap structure, 5'untranslated region (UTR), an open reading frame (ORF), 3'UTR, and a 3'poly(A) tail. The primary transcription product interacts with the cellular RNA processing machinery and is spliced, exported to the cytoplasm, and translated. However, a proportion of the pre-mRNA subverts typical RNA processing giving rise to the full-length RNA. In the cytoplasm, the full-length retroviral RNA fulfills a dual role acting as mRNA and as the gRNA. Simple retroviruses generate two pools of full-length RNA, one for each purpose. However, complex retroviruses have a single pool of full-length RNA, which is destined for translation or encapsidation. As for eukaryotic mRNAs, translational control of retroviral protein synthesis is mostly exerted at the step of initiation. Interestingly, some retroviral mRNAs, both simple and complex, use a dual mechanism to initiate protein synthesis, a cap-dependent initiation mechanism, or via internal initiation using an internal ribosome entry site (IRES). In this review, we describe and discuss data regarding the molecular mechanism driving the canonical cap-dependent and IRES-mediated translation initiation for retroviral mRNA, focusing the discussion mainly on the most studied retroviral mRNA, the HIV-1 mRNA.
Collapse
Affiliation(s)
- Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| |
Collapse
|
17
|
Abstract
La proteins have well-established roles in the maturation of RNA polymerase III transcripts, including pre-tRNAs. In addition to protecting the 3' end of pre-tRNAs from exonuclease digestion, La proteins also promote the native fold of the pre-tRNA using RNA chaperone activity. tRNA-mediated suppression in the fission yeast S. pombe has been an invaluable tool in determining the mechanistic basis by which La proteins promote the maturation of defective pre-tRNAs that benefit from RNA chaperone activity. More recently, tRNA-mediated suppression has been adapted to test for RNA chaperone function in the La-related proteins and in the promoting of tRNA function by tRNA modification enzymes. Thus tRNA-mediated suppression can be a useful assay for the investigation of various proteins hypothesized to promote tRNA folding through RNA chaperone related activities.
Collapse
|
18
|
Sommer G, Sendlmeier C, Heise T. Salt-Dependent Modulation of the RNA Chaperone Activity of RNA-Binding Protein La. Methods Mol Biol 2020; 2106:121-136. [PMID: 31889254 DOI: 10.1007/978-1-0716-0231-7_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It is well established that the RNA-binding protein La has RNA chaperone activity. Recent work suggests that the La protein has two distinct RNA chaperone domains (RCD-A and RCD-B) assisting structural changes in diverse groups of RNA molecules such as RNA polymerase III transcripts (e.g., pre-tRNA, U6 snRNA), cellular messenger, and viral RNAs. In this protocol we focus on the RNA chaperone domain RCD-B, which is located in the carboxy-terminal domain of La. It has been shown that this RNA chaperone domain assists structural changes in predicted RNA hairpins folded in the 5'-untranslated regions of cyclin D1 and Bcl2 mRNAs. Besides RNA helicases, which are implicated in melting RNA hairpin structures in an ATP-dependent manner, RNA chaperones fulfil a similar function in an ATP-independent manner. Aiming to study the RNA chaperon activity of La, we established a La-dependent molecular beacon-based RNA chaperone assay and systematically tested the various salt conditions. Herein we describe the assay format and design to study the salt dependency of RNA chaperones. This protocol can be easily adapted to test the RNA chaperone activity of other RNA-binding proteins and to optimize assay conditions.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Regensburg, Germany
| | - Christina Sendlmeier
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Regensburg, Germany
| | - Tilman Heise
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Regensburg, Germany.
| |
Collapse
|
19
|
Dock-Bregeon AC, Lewis KA, Conte MR. The La-related proteins: structures and interactions of a versatile superfamily of RNA-binding proteins. RNA Biol 2019; 18:178-193. [PMID: 31752575 DOI: 10.1080/15476286.2019.1695712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The La-related proteins (LaRPs) are an ancient superfamily of RNA-binding proteins orchestrating the major fates of RNA, from processing and maturation to regulation of mRNA translation. LaRPs are instrumental in modulating complex assemblies where the RNA is bound, folded, processed, escorted and presented to the functional effectors often through recruitment of protein partners. This intricate web of protein-RNA and protein-protein interactions is enabled by the modular nature of the LaRPs, comprising several structured domains connected by flexible linkers, and other sequences lacking recognizable folded motifs. Recent structures, together with biochemical and biophysical studies, have provided insights into how each LaRP family has evolved unique mechanisms of RNA recognition, not only through the conserved RNA-binding unit, the La-module, but also mediated by other family-specific motifs. Furthermore, in a series of unexpected twists and turns, they have revealed that the dynamic and conformational interplay of multi-structured domains and disordered regions operate in unison to achieve RNA substrate discrimination. This review proposes a perspective of our current knowledge of the structure-function relationship of the LaRP superfamily.
Collapse
Affiliation(s)
| | - Karen A Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
20
|
Cho H, Lee W, Kim GW, Lee SH, Moon JS, Kim M, Kim HS, Oh JW. Regulation of La/SSB-dependent viral gene expression by pre-tRNA 3' trailer-derived tRNA fragments. Nucleic Acids Res 2019; 47:9888-9901. [PMID: 31504775 PMCID: PMC6765225 DOI: 10.1093/nar/gkz732] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022] Open
Abstract
tRNA-derived RNA fragments (tRFs) have emerged as a new class of functional RNAs implicated in cancer, metabolic and neurological disorders, and viral infection. Yet our understanding of their biogenesis and functions remains limited. In the present study, through analysis of small RNA profile we have identified a distinct set of tRFs derived from pre-tRNA 3′ trailers in the hepatocellular carcinoma cell line Huh7. Among those tRFs, tRF_U3_1, which is a 19-nucleotide-long chr10.tRNA2-Ser(TGA)-derived trailer, was expressed most abundantly in both Huh7 and cancerous liver tissues, being present primarily in the cytoplasm. We show that genetic loss of tRF_U3_1 does not affect cell growth and it is not involved in Ago2-mediated gene silencing. Using La/SSB knockout Huh7 cell lines, we demonstrate that this nuclear-cytoplasmic shuttling protein directly binds to the 3′ U-tail of tRF_U3_1 and other abundantly expressed trailers and plays a critical role in their stable cytoplasmic accumulation. The pre-tRNA trailer-derived tRFs capable of sequestering the limiting amounts of La/SSB in the cytoplasm rendered cells resistant to various RNA viruses, which usurp La/SSB with RNA chaperone activity for their gene expression. Collectively, our results establish the trailer-derived tRF-La/SSB interface, regulating viral gene expression.
Collapse
Affiliation(s)
- Hee Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Wooseong Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Geon-Woo Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seung-Hoon Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jae-Su Moon
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Minwoo Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hyun Seok Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
21
|
Kwan T, Thompson SR. Noncanonical Translation Initiation in Eukaryotes. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032672. [PMID: 29959190 DOI: 10.1101/cshperspect.a032672] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vast majority of eukaryotic messenger RNAs (mRNAs) initiate translation through a canonical, cap-dependent mechanism requiring a free 5' end and 5' cap and several initiation factors to form a translationally active ribosome. Stresses such as hypoxia, apoptosis, starvation, and viral infection down-regulate cap-dependent translation during which alternative mechanisms of translation initiation prevail to express proteins required to cope with the stress, or to produce viral proteins. The diversity of noncanonical initiation mechanisms encompasses a broad range of strategies and cellular cofactors. Herein, we provide an overview and, whenever possible, a mechanistic understanding of the various noncanonical mechanisms of initiation used by cells and viruses. Despite many unanswered questions, recent advances have propelled our understanding of the scope, diversity, and mechanisms of alternative initiation.
Collapse
Affiliation(s)
- Thaddaeus Kwan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
22
|
Bojar D, Fuhrer T, Fussenegger M. Purity by design: Reducing impurities in bioproduction by stimulus-controlled global translational downregulation of non-product proteins. Metab Eng 2018; 52:110-123. [PMID: 30468874 DOI: 10.1016/j.ymben.2018.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/01/2018] [Accepted: 11/17/2018] [Indexed: 01/22/2023]
Abstract
Capitalizing on the ability of mammalian cells to conduct complex post-translational modifications, most protein therapeutics are currently produced in cell culture systems. Addition of a signal peptide to the product protein enables its accumulation in the cell culture supernatant, but separation of the product from endogenously secreted proteins remains costly and labor-intensive. We considered that global downregulation of translation of non-product proteins would be an efficient strategy to minimize downstream processing requirements. Therefore, taking advantage of the ability of mammalian protein kinase R (PKR) to switch off most cellular translation processes in response to infection by viruses, we fused a caffeine-inducible dimerization domain to the catalytic domain of PKR. Addition of caffeine to this construct results in homodimerization and activation of PKR, effectively rewiring rapid global translational downregulation to the addition of the stimulus in a dose-dependent manner. Then, to protect translation of the target therapeutic, we screened viral and cellular internal ribosomal entry sites (IRESes) known or suspected to be resistant to PKR-induced translational stress. After choosing the best-in-class Seneca valley virus (SVV) IRES, we additionally screened for IRES transactivation factors (ITAFs) as well as for supplementary small molecules to further boost the production titer of the product protein under conditions of global translational downregulation. Importantly, the residual global translation activity of roughly 10% under maximal downregulation is sufficient to maintain cellular viability during a production timeframe of at least five days. Standard industrially used adherent as well as suspension-adapted cell lines transfected with this synthetic biology-inspired Protein Kinase R-Enhanced Protein Production (PREPP) system could produce several medicinally relevant protein therapeutics, such as the blockbuster drug rituximab, in substantial quantities and with significantly higher purity than previous culture technologies. We believe incorporation of such purity-by-design technology in the production process will alleviate downstream processing bottlenecks in future biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Daniel Bojar
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Tobias Fuhrer
- ETH Zurich, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland; Faculty of Life Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
23
|
James CC, Smyth JW. Alternative mechanisms of translation initiation: An emerging dynamic regulator of the proteome in health and disease. Life Sci 2018; 212:138-144. [PMID: 30290184 DOI: 10.1016/j.lfs.2018.09.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023]
Abstract
Eukaryotic mRNAs were historically thought to rely exclusively on recognition and binding of their 5' cap by initiation factors to effect protein translation. While internal ribosome entry sites (IRESs) are well accepted as necessary for the cap-independent translation of many viral genomes, there is now recognition that eukaryotic mRNAs also undergo non-canonical modes of translation initiation. Recently, high-throughput assays have identified thousands of mammalian transcripts with translation initiation occurring at non-canonical start codons, upstream of and within protein coding regions. In addition to IRES-mediated events, regulatory mechanisms of translation initiation have been described involving alternate 5' cap recognition, mRNA sequence elements, and ribosome selection. These mechanisms ensure translation of specific mRNAs under conditions where cap-dependent translation is shut down and contribute to pathological states including cardiac hypertrophy and cancer. Such global and gene-specific dynamic regulation of translation presents us with an increasing number of novel therapeutic targets. While these newly discovered modes of translation initiation have been largely studied in isolation, it is likely that several act on the same mRNA and exquisite coordination is necessary to maintain 'normal' translation. In this short review, we summarize the current state of knowledge of these alternative mechanisms of eukaryotic protein translation, their contribution to normal and pathological cell biology, and the potential of targeting translation initiation therapeutically in human disease.
Collapse
Affiliation(s)
- Carissa C James
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - James W Smyth
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA, USA; Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA.
| |
Collapse
|
24
|
Jagdeo JM, Dufour A, Klein T, Solis N, Kleifeld O, Kizhakkedathu J, Luo H, Overall CM, Jan E. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection. J Virol 2018; 92:e02211-17. [PMID: 29437971 PMCID: PMC5874412 DOI: 10.1128/jvi.02211-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cproin vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner.IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection. Although several host protein targets have been identified, the entire list of proteins that are targeted is not known. In this study, we used a novel unbiased proteomics approach to identify ∼100 novel host targets of the enterovirus 3C protease, thus providing further insights into the network of cellular pathways that are modulated to promote virus infection.
Collapse
Affiliation(s)
- Julienne M Jagdeo
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antoine Dufour
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Theo Klein
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nestor Solis
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oded Kleifeld
- School of Biomedical Sciences, Monash University, Victoria, Australia
| | - Jayachandran Kizhakkedathu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Honglin Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Nikonov OS, Chernykh ES, Garber MB, Nikonova EY. Enteroviruses: Classification, Diseases They Cause, and Approaches to Development of Antiviral Drugs. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523062 PMCID: PMC7087576 DOI: 10.1134/s0006297917130041] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The genus Enterovirus combines a portion of small (+)ssRNA-containing viruses and is divided into 10 species of true enteroviruses and three species of rhinoviruses. These viruses are causative agents of the widest spectrum of severe and deadly epidemic diseases of higher vertebrates, including humans. Their ubiquitous distribution and high pathogenici- ty motivate active search to counteract enterovirus infections. There are no sufficiently effective drugs targeted against enteroviral diseases, thus treatment is reduced to supportive and symptomatic measures. This makes it extremely urgent to develop drugs that directly affect enteroviruses and hinder their development and spread in infected organisms. In this review, we cover the classification of enteroviruses, mention the most common enterovirus infections and their clinical man- ifestations, and consider the current state of development of anti-enteroviral drugs. One of the most promising targets for such antiviral drugs is the viral Internal Ribosome Entry Site (IRES). The classification of these elements of the viral mRNA translation system is also examined.
Collapse
Affiliation(s)
- O S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | |
Collapse
|
26
|
The La protein counteracts cisplatin-induced cell death by stimulating protein synthesis of anti-apoptotic factor Bcl2. Oncotarget 2018; 7:29664-76. [PMID: 27105491 PMCID: PMC5045424 DOI: 10.18632/oncotarget.8819] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/28/2016] [Indexed: 02/06/2023] Open
Abstract
Up-regulation of anti-apoptotic factors is a critical mechanism of cancer cell resistance and often counteracts the success of chemotherapeutic treatment. Herein, we identified the cancer-associated RNA-binding protein La as novel factor contributing to cisplatin resistance. Our data demonstrate that depletion of the RNA-binding protein La in head and neck squamous cell carcinoma cells (HNSCC) increases the sensitivity toward cisplatin-induced cell death paralleled by reduced expression of the anti-apoptotic factor Bcl2. Furthermore, it is shown that transient expression of Bcl2 in La-depleted cells protects against cisplatin-induced cell death. By dissecting the underlying mechanism we report herein, that the La protein is required for Bcl2 protein synthesis in cisplatin-treated cells. The RNA chaperone La binds in close proximity to the authentic translation start site and unwinds a secondary structure embedding the authentic AUG. Altogether, our data support a novel model, whereby cancer-associated La protein contributes to cisplatin resistance by stimulating the translation of anti-apoptotic factor Bcl2 in HNSCC cells.
Collapse
|
27
|
SUMO Modification of the RNA-Binding Protein La Regulates Cell Proliferation and STAT3 Protein Stability. Mol Cell Biol 2017; 38:MCB.00129-17. [PMID: 29084811 DOI: 10.1128/mcb.00129-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
The cancer-associated RNA-binding protein La is posttranslationally modified by phosphorylation and sumoylation. Sumoylation of La regulates not only the trafficking of La in neuronal axons but also its association with specific mRNAs. Depletion of La in various types of cancer cell lines impairs cell proliferation; however, the molecular mechanism whereby La supports cell proliferation is not clearly understood. In this study, we address the question of whether sumoylation of La contributes to cell proliferation of HEK293 cells. We show that HEK293 cells stably expressing green fluorescent protein (GFP)-tagged wild-type La (GFP-LaWT) grow faster than cells expressing a sumoylation-deficient mutant La (GFP-LaSD), suggesting a proproliferative function of La in HEK293 cells. Further, we found that STAT3 protein levels were reduced in GFP-LaSD cells due to an increase in STAT3 ubiquitination and that overexpression of STAT3 partially restored cell proliferation. Finally, we present RNA sequencing data from RNA immunoprecipitations (RIPs) and report that mRNAs associated with the cell cycle and ubiquitination are preferentially bound by GFP-LaWT and are less enriched in GFP-LaSD RIPs. Taken together, results of our study support a novel mechanism whereby sumoylation of La promotes cell proliferation by averting ubiquitination-mediated degradation of the STAT3 protein.
Collapse
|
28
|
Mahony R, Broadbent L, Maier-Moore JS, Power UF, Jefferies CA. The RNA binding protein La/SS-B promotes RIG-I-mediated type I and type III IFN responses following Sendai viral infection. Sci Rep 2017; 7:14537. [PMID: 29109527 PMCID: PMC5673980 DOI: 10.1038/s41598-017-15197-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022] Open
Abstract
La/SS-B (or La) is a 48 kDa RNA-binding protein and an autoantigen in autoimmune disorders such as systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS). La involvement in regulating the type I interferon (IFN) response is controversial - acting through both positive and negative regulatory mechanisms; inhibiting the IFN response and enhancing viral growth, or directly inhibiting viral replication. We therefore sought to clarify how La regulates IFN production in response to viral infection. ShRNA knockdown of La in HEK 293 T cells increased Sendai virus infection efficiency, decreased IFN-β, IFN-λ1, and interferon-stimulated chemokine gene expression. In addition, knockdown attenuated CCL-5 and IFN-λ1 secretion. Thus, La has a positive role in enhancing type I and type III IFN production. Mechanistically, we show that La directly binds RIG-I and have mapped this interaction to the CARD domains of RIG-I and the N terminal domain of La. In addition, we showed that this interaction is induced following RIG-I activation and that overexpression of La enhances RIG-I-ligand binding. Together, our results demonstrate a novel role for La in mediating RIG-I-driven responses downstream of viral RNA detection, ultimately leading to enhanced type I and III IFN production and positive regulation of the anti-viral response.
Collapse
Affiliation(s)
- Rebecca Mahony
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Lindsay Broadbent
- Centre for Experimental Medicine, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
| | - Jacen S Maier-Moore
- The University of Texas at El Paso College of Health Sciences, Clinical Laboratory Sciences Program, 500 W. University Avenue, El Paso, Texas, 79968, USA
| | - Ultan F Power
- Centre for Experimental Medicine, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
| | - Caroline A Jefferies
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Division of Rheumatology, Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, California, 90048, USA.
| |
Collapse
|
29
|
Maraia RJ, Mattijssen S, Cruz-Gallardo I, Conte MR. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. WILEY INTERDISCIPLINARY REVIEWS. RNA 2017; 8:10.1002/wrna.1430. [PMID: 28782243 PMCID: PMC5647580 DOI: 10.1002/wrna.1430] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Commissioned Corps, U.S. Public Health Service, Rockville, MD USA
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Isabel Cruz-Gallardo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| |
Collapse
|
30
|
Gao WQ, Ma J, Sun LL, Li Q, Zhu RY, Jin J. Paclitaxel-mediated human aryl hydrocarbon receptor mRNA translation by an internal ribosomal entry site-dependent mechanism. Oncol Rep 2017; 38:3211-3219. [PMID: 29048649 DOI: 10.3892/or.2017.5958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/02/2017] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is best known in mediating the toxicities of dioxins and dioxin-like compounds. AHR is activated by a variety of endogenous ligands and participating in tumor development. Thus, it will provide a new approach for cancer prevention and treatment to study the translation mechanism of AHR in tumor cells. In this study, we show that the 5'-untranslated region (UTR) of AHR mRNA contains an internal ribosome entry site (IRES). After mapping the entire AHR 5'-UTR, we determined that the full-length 5'-UTR is indispensable for the highest IRES activity. Interestingly, we found that AHR expression is induced in ovarian (A2780), breast (MDA-MB231), hepatic (Bel7402) and colorectal cancer cells (SW620) by chemotherapeutic drug paclitaxel (PTX) through IRES-dependent translation mechanism. Moreover, IRES activity is increased in the PTX-resistant ovarian cancer cells in which AHR protein expression was also enhanced. These results strongly suggest an important role for AHR IRES-dependent translation mechanism in cancer cell response to paclitaxel treatment.
Collapse
Affiliation(s)
- Wen-Qing Gao
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jing Ma
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Liu-Liu Sun
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Qi Li
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Rui-Yu Zhu
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jian Jin
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
31
|
Tolbert M, Morgan CE, Pollum M, Crespo-Hernández CE, Li ML, Brewer G, Tolbert BS. HnRNP A1 Alters the Structure of a Conserved Enterovirus IRES Domain to Stimulate Viral Translation. J Mol Biol 2017; 429:2841-2858. [PMID: 28625847 PMCID: PMC5610934 DOI: 10.1016/j.jmb.2017.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 01/25/2023]
Abstract
Enteroviruses use a type I Internal Ribosome Entry Site (IRES) structure to facilitate protein synthesis and promote genome replication. Type I IRES elements require auxiliary host proteins to organize RNA structure for 40S ribosomal subunit assembly. Heterogeneous nuclear ribonucleoprotein A1 stimulates enterovirus 71 (EV71) translation in part through specific interactions with its stem loop II (SLII) IRES domain. Here, we determined a conjoined NMR-small angle x-ray scattering structure of the EV71 SLII domain and a mutant that significantly attenuates viral replication by abrogating hnRNP A1 interactions. Native SLII adopts a locally compact structure wherein stacking interactions in a conserved 5'-AUAGC-3' bulge preorganize the adjacent helices at nearly orthogonal orientations. Mutating the bulge sequence to 5'-ACCCC-3' ablates base stacking in the loop and globally reorients the SLII structure. Biophysical titrations reveal that the 5'-AUAGC-3' bulge undergoes a conformational change to assemble a functional hnRNP A1-RNA complex. Importantly, IRES mutations that delete the bulge impair viral translation and completely inhibit replication. Thus, this work provides key details into how an EV71 IRES structure adapts to hijack a cellular protein, and it suggests that the SLII domain is a potential target for antiviral therapy.
Collapse
Affiliation(s)
- Michele Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106-7078 USA
| | - Christopher E Morgan
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106-7078 USA
| | - Marvin Pollum
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106-7078 USA
| | | | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854 USA
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854 USA
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106-7078 USA.
| |
Collapse
|
32
|
Pan J, Tong S, Tang J. Alteration of microRNA profiles by a novel inhibitor of human La protein in HBV-transformed human hepatoma cells. J Med Virol 2017; 90:255-262. [PMID: 28885699 PMCID: PMC5763324 DOI: 10.1002/jmv.24941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022]
Abstract
A pyrazolopyridine HBSC11 was previously identified as a novel inhibitor of human La protein with anti‐hepatitis B virus (HBV) activity. However, the underlying mechanism(s) of HBV inhibition by HBSC11 remains unclear. This study aimed to examine the regulation of microRNA (miRNA) by HBSC11 in HBV‐transformed human hepatoma HepG2.2.15 cells using microarray and quantitative real‐time PCR. Target genes of the differentially expressed miRNAs were predicted and subjected to bioinformatics analysis. Results showed that HBSC11 significantly upregulated the expression of miR‐3912‐5p, miR‐6793‐5p, and miR‐7159‐5p in HepG2.2.15 cells. Target genes of the three miRNAs were mainly involved in the regulation of nucleic acid‐templated transcription, negative regulation of gene expression, nucleic acid binding transcription factor activity and regulation of phosphorylation. In addition, target genes were enriched in certain regulatory pathways related to HBV infection and HBV‐associated disease progression, such as the transforming growth factor (TGF)‐β, Wnt, and p53 signaling. Our study demonstrates the involvement of miR‐3912‐5p, miR‐6793‐5p, and miR‐7159‐5p and the potential modulation of specific pathways (TGF‐β, Wnt, and p53 signaling) in HBSC11‐mediated inhibition of HBV replication. This study provides insight into the molecular mechanism of the action of HBSC11 against HBV infection and will support the development of antiviral drugs targeting La protein.
Collapse
Affiliation(s)
- Jiaqian Pan
- Department of Clinical Pharmacy, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangmei Tong
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Tang
- Department of Clinical Pharmacy, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Blewett NH, Iben JR, Gaidamakov S, Maraia RJ. La Deletion from Mouse Brain Alters Pre-tRNA Metabolism and Accumulation of Pre-5.8S rRNA, with Neuron Death and Reactive Astrocytosis. Mol Cell Biol 2017; 37:e00588-16. [PMID: 28223366 PMCID: PMC5477551 DOI: 10.1128/mcb.00588-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/01/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
Human La antigen (Sjögren's syndrome antigen B [SSB]) is an abundant multifunctional RNA-binding protein. In the nucleoplasm, La binds to and protects from 3' exonucleases, the ends of precursor tRNAs, and other transcripts synthesized by RNA polymerase III and facilitates their maturation, while a nucleolar isoform has been implicated in rRNA biogenesis by multiple independent lines of evidence. We showed previously that conditional La knockout (La cKO) from mouse cortex neurons results in defective tRNA processing, although the pathway(s) involved in neuronal loss thereafter was unknown. Here, we demonstrate that La is stably associated with a spliced pre-tRNA intermediate. Microscopic evidence of aberrant nuclear accumulation of 5.8S rRNA in La cKO is supported by a 10-fold increase in a pre-5.8S rRNA intermediate. To identify pathways involved in subsequent neurodegeneration and loss of brain mass in the cKO cortex, we employed mRNA sequencing (mRNA-Seq), immunohistochemistry, and other approaches. This revealed robust enrichment of immune and astrocyte reactivity in La cKO cortex. Immunohistochemistry, including temporal analyses, demonstrated neurodegeneration, followed by astrocyte invasion associated with immune response and decreasing cKO cortex size over time. Thus, deletion of La from postmitotic neurons results in defective pre-tRNA and pre-rRNA processing and progressive neurodegeneration with loss of cortical brain mass.
Collapse
Affiliation(s)
- Nathan H Blewett
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, Maryland, USA
| | - James R Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, Maryland, USA
| | - Sergei Gaidamakov
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, Maryland, USA
| | - Richard J Maraia
- Commissioned Corps, U.S. Public Health Service, Rockville, Maryland, USA
| |
Collapse
|
34
|
Sommer G, Fedarovich A, Kota V, Rodriguez R, Smith CD, Heise T. Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells. PLoS One 2017; 12:e0173246. [PMID: 28291789 PMCID: PMC5349447 DOI: 10.1371/journal.pone.0173246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/18/2017] [Indexed: 12/14/2022] Open
Abstract
The RNA-binding protein La is overexpressed in a number of tumor tissues and is thought to support tumorigenesis by binding to and facilitating the expression of mRNAs encoding tumor-promoting and anti-apoptotic factors. Hence, small molecules able to block the binding of La to specific RNAs could have a therapeutic impact by reducing the expression of tumor-promoting and anti-apoptotic factors. Toward this novel therapeutic strategy, we aimed to develop a high-throughput fluorescence polarization assay to screen small compound libraries for molecules blocking the binding of La to an RNA element derived from cyclin D1 mRNA. Herein, we make use of a robust fluorescence polarization assay and the validation of primary hits by electrophoretic mobility shift assays. We showed recently that La protects cells against cisplatin treatment by stimulating the protein synthesis of the anti-apoptotic factor Bcl2. Here, we show by RNA immunoprecipitation experiments that one small compound specifically impairs the association of La with Bcl2 mRNA in cells and sensitizes cells for cipslatin-induced cell death. In summary, we report the application of a high-throughput fluorescence polarization assay to identify small compounds that impair the binding of La to target RNAs in vitro and in cells.
Collapse
Affiliation(s)
- Gunhild Sommer
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, 173 Ashley Avenue, Charleston, SC, United States of America
| | - Alena Fedarovich
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, 173 Ashley Avenue, Charleston, SC, United States of America
| | - Venkatesh Kota
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, 173 Ashley Avenue, Charleston, SC, United States of America
| | - Reycel Rodriguez
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, 173 Ashley Avenue, Charleston, SC, United States of America
| | - Charles D. Smith
- Department of Pharmaceutical and Biomedical Sciences, 173 Ashley Avenue, Charleston, SC, United States of America
| | - Tilman Heise
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, 173 Ashley Avenue, Charleston, SC, United States of America
- * E-mail:
| |
Collapse
|
35
|
Wang F, Qiu Y, Zhang HM, Hanson P, Ye X, Zhao G, Xie R, Tong L, Yang D. Heat shock protein 70 promotes coxsackievirus B3 translation initiation and elongation via Akt-mTORC1 pathway depending on activation of p70S6K and Cdc2. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/15/2016] [Accepted: 01/01/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Fengping Wang
- Department of Pathology and Laboratory Medicine; University of British Columbia, Center for Heart Lung Innovation, St. Paul's Hospital; Vancouver British Columbia Canada
| | - Ye Qiu
- Department of Pathology and Laboratory Medicine; University of British Columbia, Center for Heart Lung Innovation, St. Paul's Hospital; Vancouver British Columbia Canada
| | - Huifang M. Zhang
- Department of Pathology and Laboratory Medicine; University of British Columbia, Center for Heart Lung Innovation, St. Paul's Hospital; Vancouver British Columbia Canada
| | - Paul Hanson
- Department of Pathology and Laboratory Medicine; University of British Columbia, Center for Heart Lung Innovation, St. Paul's Hospital; Vancouver British Columbia Canada
| | - Xin Ye
- Department of Pathology and Laboratory Medicine; University of British Columbia, Center for Heart Lung Innovation, St. Paul's Hospital; Vancouver British Columbia Canada
| | - Guangze Zhao
- Department of Pathology and Laboratory Medicine; University of British Columbia, Center for Heart Lung Innovation, St. Paul's Hospital; Vancouver British Columbia Canada
| | - Ronald Xie
- Department of Pathology and Laboratory Medicine; University of British Columbia, Center for Heart Lung Innovation, St. Paul's Hospital; Vancouver British Columbia Canada
| | - Lei Tong
- Department of Pathology and Laboratory Medicine; University of British Columbia, Center for Heart Lung Innovation, St. Paul's Hospital; Vancouver British Columbia Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine; University of British Columbia, Center for Heart Lung Innovation, St. Paul's Hospital; Vancouver British Columbia Canada
| |
Collapse
|
36
|
Carnicelli D, Arfilli V, Onofrillo C, Alfieri RR, Petronini PG, Montanaro L, Brigotti M. Cap-independent protein synthesis is enhanced by betaine under hypertonic conditions. Biochem Biophys Res Commun 2017; 483:936-940. [PMID: 28082201 DOI: 10.1016/j.bbrc.2017.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 01/15/2023]
Abstract
Protein synthesis is one of the main cellular functions inhibited during hypertonic challenge. The subsequent accumulation of the compatible osmolyte betaine during the later adaptive response allows not only recovery of translation but also its stimulation. In this paper, we show that betaine modulates translation by enhancing the formation of cap-independent 48 S pre-initiation complexes, leaving cap-dependent 48 S pre-initiation complexes basically unchanged. In the presence of betaine, CrPV IRES- and sodium-dependent neutral amino acid transporter-2 (SNAT2) 5'-UTR-driven translation is 2- and 1.5-fold stimulated in MCF7 cells, respectively. Thus, betaine could provide an advantage in translation of messengers coding for proteins implicated in the response of cells to different stressors, which are often recognized by ribosomal 40 S subunit through simplified cap-independent mechanisms.
Collapse
Affiliation(s)
- Domenica Carnicelli
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Valentina Arfilli
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Carmine Onofrillo
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Roberta R Alfieri
- Dipartimento di Medicina Clinica e Sperimentale, Università di Parma, Parma, Italy
| | | | - Lorenzo Montanaro
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Maurizio Brigotti
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy.
| |
Collapse
|
37
|
Gao W, Li Q, Zhu R, Jin J. La Autoantigen Induces Ribosome Binding Protein 1 (RRBP1) Expression through Internal Ribosome Entry Site (IRES)-Mediated Translation during Cellular Stress Condition. Int J Mol Sci 2016; 17:E1174. [PMID: 27447629 PMCID: PMC4964545 DOI: 10.3390/ijms17071174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 01/23/2023] Open
Abstract
The function of ribosome binding protein 1 (RRBP1) is regulating the transportation and secretion of some intracellular proteins in mammalian cells. Transcription of RRBP1 is induced by various cytokines. However, few studies focused on the process of RRPB1 mRNA translation. The RRBP1 mRNA has a long 5' untranslated region that potentially formed a stable secondary structure. In this study, we show that the 5' UTR of RRBP1 mRNA contains an internal ribosome entry site (IRES). Moreover, the RRBP1 expression is induced by chemotherapeutic drug paclitaxel or adriamycin in human hepatocellular carcinoma cells and accompanied with the increased expression of La autoantigen (La), which binds to RRBP1 IRES element and facilitates translation initiation. Interestingly, we found IRES-mediated RRBP1 translation is also activated during serum-starvation condition which can induce cytoplasmic localization of La. After mapping the entire RRBP1 5' UTR, we determine the core IRES activity is located between nt-237 and -58. Furthermore, two apical GARR loops within the functional RRBP1 IRES elements may be important for La binding. These results strongly suggest an important role for IRES-dependent translation of RRBP1 mRNA in hepatocellular carcinoma cells during cellular stress conditions.
Collapse
Affiliation(s)
- Wenqing Gao
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Qi Li
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Ruiyu Zhu
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Jian Jin
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
38
|
Chan SW. Hydrogen peroxide induces La cytoplasmic shuttling and increases hepatitis C virus internal ribosome entry site-dependent translation. J Gen Virol 2016; 97:2301-2315. [PMID: 27436793 PMCID: PMC5042130 DOI: 10.1099/jgv.0.000556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have previously shown that physio/pathological levels of hydrogen peroxide (H2O2) stimulate translation from the hepatitis C virus (HCV) internal ribosome entry site (IRES) element in tissue-cultured cells. Here, using in vitro translation, we further show that H2O2 upregulates HCV IRES-dependent mRNA translation and correlates with an increase in intracellular oxidant level. Using Western blotting, immunocytochemistry, microscopy and affinity pulldown, we show that H2O2 stimulates HCV IRES-dependent translation and correlates with nuclear–cytoplasmic shuttling of the La autoantigen, resulting in enhanced binding of cytoplasmic La to HCV IRES RNA. The role of the La protein in H2O2-stimulated IRES-dependent translation is further confirmed by the ability of an anti-La antibody to suppress H2O2-activated IRES-dependent translation in vitro. This is further supported by the ability of an ectopically expressed dominant, negative La mutant protein to suppress H2O2-inducible IRES-mediated translation in Huh7 cells, transiently transfected with a bicistronic reporter and in a sub-genomic replicon cell line resembling a persistent infection. On the other hand, translation from the encephalomyocarditis virus IRES is diminished in the presence of H2O2, suggesting that H2O2 translational responsiveness is a specific property of the HCV IRES and is not a general phenomenon for all viral IRESs. Altogether, these results suggest that HCV adapts to physio/pathological oxidative stress in the host cell by mediating La cytoplasmic shuttling to enhance its IRES-dependent translation.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
39
|
Vincent HA, Ziehr B, Moorman NJ. Human Cytomegalovirus Strategies to Maintain and Promote mRNA Translation. Viruses 2016; 8:97. [PMID: 27089357 PMCID: PMC4848592 DOI: 10.3390/v8040097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 02/02/2023] Open
Abstract
mRNA translation requires the ordered assembly of translation initiation factors and ribosomal subunits on a transcript. Host signaling pathways regulate each step in this process to match levels of protein synthesis to environmental cues. In response to infection, cells activate multiple defenses that limit viral protein synthesis, which viruses must counteract to successfully replicate. Human cytomegalovirus (HCMV) inhibits host defenses that limit viral protein expression and manipulates host signaling pathways to promote the expression of both host and viral proteins necessary for virus replication. Here we review key regulatory steps in mRNA translation, and the strategies used by HCMV to maintain protein synthesis in infected cells.
Collapse
Affiliation(s)
- Heather A Vincent
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Benjamin Ziehr
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Nathaniel J Moorman
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
40
|
De Lorenzo G, Drikic M, Papa G, Eichwald C, Burrone OR, Arnoldi F. An Inhibitory Motif on the 5'UTR of Several Rotavirus Genome Segments Affects Protein Expression and Reverse Genetics Strategies. PLoS One 2016; 11:e0166719. [PMID: 27846320 PMCID: PMC5112996 DOI: 10.1371/journal.pone.0166719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022] Open
Abstract
Rotavirus genome consists of eleven segments of dsRNA, each encoding one single protein. Viral mRNAs contain an open reading frame (ORF) flanked by relatively short untranslated regions (UTRs), whose role in the viral cycle remains elusive. Here we investigated the role of 5'UTRs in T7 polymerase-driven cDNAs expression in uninfected cells. The 5'UTRs of eight genome segments (gs3, gs5-6, gs7-11) of the simian SA11 strain showed a strong inhibitory effect on the expression of viral proteins. Decreased protein expression was due to both compromised transcription and translation and was independent of the ORF and the 3'UTR sequences. Analysis of several mutants of the 21-nucleotide long 5'UTR of gs 11 defined an inhibitory motif (IM) represented by its primary sequence rather than its secondary structure. IM was mapped to the 5' terminal 6-nucleotide long pyrimidine-rich tract 5'-GGY(U/A)UY-3'. The 5' terminal position within the mRNA was shown to be essentially required, as inhibitory activity was lost when IM was moved to an internal position. We identified two mutations (insertion of a G upstream the 5'UTR and the U to A mutation of the fifth nucleotide of IM) that render IM non-functional and increase the transcription and translation rate to levels that could considerably improve the efficiency of virus helper-free reverse genetics strategies.
Collapse
Affiliation(s)
- Giuditta De Lorenzo
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Marija Drikic
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Guido Papa
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Oscar R. Burrone
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- * E-mail: (FA); (OB)
| | - Francesca Arnoldi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- * E-mail: (FA); (OB)
| |
Collapse
|
41
|
Komar AA, Hatzoglou M. Exploring Internal Ribosome Entry Sites as Therapeutic Targets. Front Oncol 2015; 5:233. [PMID: 26539410 PMCID: PMC4611151 DOI: 10.3389/fonc.2015.00233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
Initiation of eukaryotic mRNA translation may proceed via several different routes, each requiring a different subset of factors and relying on different and specific interactions between the mRNA and the ribosome. Two modes predominate: (i) so-called cap-dependent initiation, which requires all canonical initiation factors and is responsible for about 95–97% of all initiation events in eukaryotic cells; and (ii) cap-independent internal initiation, which requires a reduced subset of initiation factors and accounts for up to 5% of the remaining initiation events. Internal initiation relies on the presence of so-called internal ribosome entry site (IRES) elements in the 5′ UTRs of some viral and cellular mRNAs. These elements (often possessing complex secondary and tertiary structures) promote efficient interaction of the mRNA with the 40S ribosome and allow for internal ribosome entry. Internal initiation of translation of specific mRNAs may contribute to development of severe disease and pathological states, such as hepatitis C and cancer. Therefore, this cellular mechanism represents an attractive target for pharmacological modulation. The purpose of this review is to provide insight into current strategies used to target viral and cellular IRESs and discuss the physiological consequences (and potential therapeutic implications) of abrogation/modulation of IRES-mediated translation.
Collapse
Affiliation(s)
- Anton A Komar
- Department of Biological, Geological and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University , Cleveland, OH , USA
| | - Maria Hatzoglou
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| |
Collapse
|
42
|
Cui Y, Rao S, Chang B, Wang X, Zhang K, Hou X, Zhu X, Wu H, Tian Z, Zhao Z, Yang C, Huang T. AtLa1 protein initiates IRES-dependent translation of WUSCHEL mRNA and regulates the stem cell homeostasis of Arabidopsis in response to environmental hazards. PLANT, CELL & ENVIRONMENT 2015; 38:2098-2114. [PMID: 25764476 DOI: 10.1111/pce.12535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Plant stem cells are hypersensitive to environmental hazards throughout their life cycle, but the mechanism by which plants safeguard stem cell homeostasis in response to environmental hazards is largely unknown. The homeodomain transcription factor WUSCHEL (WUS) protein maintains the stem cell pool in the shoot apical meristem of Arabidopsis. Here, we demonstrate that the translation of WUS mRNA is directed by an internal ribosomal entry site (IRES) located in the 5'-untranslated region. The AtLa1 protein, an RNA-binding factor, binds to the 5'-untranslated region and initiates the IRES-dependent translation of WUS mRNA. Knockdown of AtLa1 expression represses the WUS IRES-dependent translation and leads to the arrest of growth and development. The AtLa1 protein is mainly located in the nucleoplasm. However, environmental hazards promote the nuclear-to-cytoplasmic translocation of the AtLa1 protein, which further enhances the IRES-dependent translation of WUS mRNA. Genetic evidence indicates that the WUS protein increases the tolerance of the shoot apical meristem to environmental hazards. Based on these results, we conclude that the stem cell niche in Arabidopsis copes with environmental hazards by enhancing the IRES-dependent translation of WUS mRNA under the control of the AtLa1 protein.
Collapse
Affiliation(s)
- Yuchao Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Shaofei Rao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Beibei Chang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Xiaoshuang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Kaidian Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Xueliang Hou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Xueyi Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Haijun Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhaoxia Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Chengwei Yang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Tao Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| |
Collapse
|
43
|
Flather D, Semler BL. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Front Microbiol 2015; 6:594. [PMID: 26150805 PMCID: PMC4471892 DOI: 10.3389/fmicb.2015.00594] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/29/2015] [Indexed: 11/13/2022] Open
Abstract
The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review.
Collapse
Affiliation(s)
- Dylan Flather
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| |
Collapse
|
44
|
Lloyd RE. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses. Virology 2015; 479-480:457-74. [PMID: 25818028 PMCID: PMC4426963 DOI: 10.1016/j.virol.2015.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/12/2015] [Accepted: 03/03/2015] [Indexed: 01/18/2023]
Abstract
Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
45
|
Kuehnert J, Sommer G, Zierk AW, Fedarovich A, Brock A, Fedarovich D, Heise T. Novel RNA chaperone domain of RNA-binding protein La is regulated by AKT phosphorylation. Nucleic Acids Res 2015; 43:581-94. [PMID: 25520193 PMCID: PMC4288197 DOI: 10.1093/nar/gku1309] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/13/2023] Open
Abstract
The cellular function of the cancer-associated RNA-binding protein La has been linked to translation of viral and cellular mRNAs. Recently, we have shown that the human La protein stimulates IRES-mediated translation of the cooperative oncogene CCND1 in cervical cancer cells. However, there is little known about the underlying molecular mechanism by which La stimulates CCND1 IRES-mediated translation, and we propose that its RNA chaperone activity is required. Herein, we show that La binds close to the CCND1 start codon and demonstrate that La's RNA chaperone activity can change the folding of its binding site. We map the RNA chaperone domain (RCD) within the C-terminal region of La in close proximity to a novel AKT phosphorylation site (T389). Phosphorylation at T389 by AKT-1 strongly impairs its RNA chaperone activity. Furthermore, we demonstrate that the RCD as well as T389 is required to stimulate CCND1 IRES-mediated translation in cells. In summary, we provide a model whereby a novel interplay between RNA-binding, RNA chaperoning and AKT phosphorylation of La protein regulates CCND1 IRES-mediated translation.
Collapse
Affiliation(s)
- Julia Kuehnert
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gunhild Sommer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Avery W Zierk
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alena Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander Brock
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Dzmitry Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tilman Heise
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
46
|
Jefferson M, Donaszi-Ivanov A, Pollen S, Dalmay T, Saalbach G, Powell PP. Host factors that interact with the pestivirus N-terminal protease, Npro, are components of the ribonucleoprotein complex. J Virol 2014; 88:10340-53. [PMID: 24965446 PMCID: PMC4178888 DOI: 10.1128/jvi.00984-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/18/2014] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The viral N-terminal protease N(pro) of pestiviruses counteracts cellular antiviral defenses through inhibition of IRF3. Here we used mass spectrometry to identify a new role for N(pro) through its interaction with over 55 associated proteins, mainly ribosomal proteins and ribonucleoproteins, including RNA helicase A (DHX9), Y-box binding protein (YBX1), DDX3, DDX5, eIF3, IGF2BP1, multiple myeloma tumor protein 2, interleukin enhancer binding factor 3 (IEBP3), guanine nucleotide binding protein 3, and polyadenylate-binding protein 1 (PABP-1). These are components of the translation machinery, ribonucleoprotein particles (RNPs), and stress granules. Significantly, we found that stress granule formation was inhibited in MDBK cells infected with a noncytopathic bovine viral diarrhea virus (BVDV) strain, Kyle. However, ribonucleoproteins binding to N(pro) did not inhibit these proteins from aggregating into stress granules. N(pro) interacted with YBX1 though its TRASH domain, since the mutant C112R protein with an inactive TRASH domain no longer redistributed to stress granules. Interestingly, RNA helicase A and La autoantigen relocated from a nuclear location to form cytoplasmic granules with N(pro). To address a proviral role for N(pro) in RNP granules, we investigated whether N(pro) affected RNA interference (RNAi), since interacting proteins are involved in RISC function during RNA silencing. Using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) silencing with small interfering RNAs (siRNAs) followed by Northern blotting of GAPDH, expression of N(pro) had no effect on RNAi silencing activity, contrasting with other viral suppressors of interferon. We propose that N(pro) is involved with virus RNA translation in the cytoplasm for virus particle production, and when translation is inhibited following stress, it redistributes to the replication complex. IMPORTANCE Although the pestivirus N-terminal protease, N(pro), has been shown to have an important role in degrading IRF3 to prevent apoptosis and interferon production during infection, the function of this unique viral protease in the pestivirus life cycle remains to be elucidated. We used proteomic mass spectrometry to identify novel interacting proteins and have shown that N(pro) is present in ribosomal and ribonucleoprotein particles (RNPs), indicating a translational role in virus particle production. The virus itself can prevent stress granule assembly from these complexes, but this inhibition is not due to N(pro). A proviral role to subvert RNA silencing through binding of these host RNP proteins was not identified for this viral suppressor of interferon.
Collapse
Affiliation(s)
- Matthew Jefferson
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Andras Donaszi-Ivanov
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Sean Pollen
- Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tamas Dalmay
- Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Gerhard Saalbach
- John Innes Centre, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Penny P Powell
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| |
Collapse
|
47
|
Souii A, Ben M'hadheb-Gharbi M, Gharbi J. Role of RNA structure motifs in IRES-dependent translation initiation of the coxsackievirus B3: new insights for developing live-attenuated strains for vaccines and gene therapy. Mol Biotechnol 2014; 55:179-202. [PMID: 23881360 DOI: 10.1007/s12033-013-9674-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Internal ribosome entry site (IRES) elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, the mechanism of IRES-mediated translation initiation is still poorly understood. Translation initiation of the coxsackievirus B3 (CVB3), a causative agent of viral myocarditis, has been shown to be mediated by a highly ordered structure of the 5' untranslated region (5'UTR), which harbors an IRES. Taking into account that efficient initiation of mRNA translation depends on temporally and spatially orchestrated sequence of RNA-protein and RNA-RNA interactions, and that, at present, little is known about these interactions, we aimed to describe recent advances in our understanding of molecular structures and biochemical functions of the translation initiation process. Thus, this review will explore the IRES elements as important RNA structures and the significance of these structures in providing an alternative mechanism of translation initiation of the CVB3 RNA. Since translation initiation is the first intracellular step during the CVB3 infection cycle, the IRES region provides an ideal target for antiviral therapies. Interestingly, the 5' and 3'UTRs represent promising candidates for the study of CVB3 cardiovirulence and provide new insights for developing live-attenuated vaccines.
Collapse
Affiliation(s)
- Amira Souii
- Institut Supérieur de Biotechnologie de Monastir-Université de Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | | | | |
Collapse
|
48
|
Xu B, Zhang J, Strom J, Lee S, Chen QM. Myocardial ischemic reperfusion induces de novo Nrf2 protein translation. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1638-47. [PMID: 24915518 DOI: 10.1016/j.bbadis.2014.06.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 12/15/2022]
Abstract
Nrf2 is a bZIP transcription factor regulating the expression of antioxidant and detoxification genes. We have found that Nrf2 knockout mice have an increased infarction size in response to regional ischemic reperfusion and have a reduced degree of cardiac protection by means of ischemic preconditioning. With cycles of brief ischemia and reperfusion (5'I/5'R) that induce cardiac protection in wild type mice, an elevated Nrf2 protein was observed without prior increases of Nrf2 mRNA. When an mRNA species is being translated into a protein, it is occupied by multiple ribosomes. The level of ribosome-associated Nrf2 mRNA increased following cycles of 5'I/5'R, supporting de novo Nrf2 protein translation. A dicistronic reporter assay indicated a role of the 5' untranslated region (5' UTR) of Nrf2 mRNA in oxidative stress induced Nrf2 protein translation in isolated cardiomyocytes. Western blot analyses after isolation of proteins binding to biotinylated Nrf2 5' UTR from the myocardium or cultured cardiomyocytes demonstrated that cycles of 5'I/5'R or oxidants caused an increased association of La protein with Nrf2 5' UTR. Ribonucleoprotein complex immunoprecipitation assays confirmed such association indeed occurring in vivo. Knocking down La using siRNA was able to prevent Nrf2 protein elevation by oxidants in cultured cardiomyocytes and by cycles of 5'I/5'R in the myocardium. Our data point out a novel mechanism of cardiac protection by de novo Nrf2 protein translation involving interaction of La protein with 5' UTR of Nrf2 mRNA in cardiomyocytes.
Collapse
Affiliation(s)
- Beibei Xu
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA
| | - Jack Zhang
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA
| | - Joshua Strom
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA
| | - Sang Lee
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA
| | - Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA.
| |
Collapse
|
49
|
Karamichali E, Foka P, Tsitoura E, Kalliampakou K, Kazazi D, Karayiannis P, Georgopoulou U, Mavromara P. HCV NS5A co-operates with PKR in modulating HCV IRES-dependent translation. INFECTION GENETICS AND EVOLUTION 2014; 26:113-22. [PMID: 24815730 DOI: 10.1016/j.meegid.2014.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/15/2014] [Accepted: 04/19/2014] [Indexed: 12/11/2022]
Abstract
Translation initiation of the Hepatitis C virus (HCV) genome is driven by an internal ribosome entry site (IRES), located within the 5' non-coding region. Several studies have suggested that different cellular non canonical proteins or viral proteins can regulate the HCV IRES activity. However, the role of the viral proteins on HCV translation remains controversial. In this report, we confirmed previous studies showing that NS5A down-regulates IRES activity in HepG2 but not in Huh7 cells suggesting that the NS5A effect on HCV IRES is cell-type dependent. Additionally, we provide strong evidence that activated PKR up-regulates the IRES activity while silencing of endogenous PKR had the opposite effect. Furthermore, we present data indicating that the NS5A-mediated inhibitory effect on IRES-dependent translation could be linked with the PKR inactivation. Finally, we show that NS5A from GBV-C but not from GBV-B down-regulates HCV IRES activity in the absence or the presence of PKR over expression. Notably, HCV and GBV-C but not GBV-B NS5A contains a previously identified PKR interacting protein domain.
Collapse
Affiliation(s)
- Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece; University of Patras, School of Health Sciences, Department of Pharmacy, Greece
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Eliza Tsitoura
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | | - Dorothea Kazazi
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Peter Karayiannis
- Molecular Virology/Microbiology, University of Nicosia Medical School, Cyprus
| | | | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece.
| |
Collapse
|
50
|
Gaidamakov S, Maximova OA, Chon H, Blewett NH, Wang H, Crawford AK, Day A, Tulchin N, Crouch RJ, Morse HC, Blitzer RD, Maraia RJ. Targeted deletion of the gene encoding the La autoantigen (Sjögren's syndrome antigen B) in B cells or the frontal brain causes extensive tissue loss. Mol Cell Biol 2014; 34:123-31. [PMID: 24190965 PMCID: PMC3911279 DOI: 10.1128/mcb.01010-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/09/2013] [Accepted: 10/23/2013] [Indexed: 11/20/2022] Open
Abstract
La antigen (Sjögren's syndrome antigen B) is a phosphoprotein associated with nascent precursor tRNAs and other RNAs, and it is targeted by autoantibodies in patients with Sjögren's syndrome, systemic lupus erythematosus, and neonatal lupus. Increased levels of La are associated with leukemias and other cancers, and various viruses usurp La to promote their replication. Yeast cells (Saccharomyces cerevisiae and Schizosaccharomyces pombe) genetically depleted of La grow and proliferate, whereas deletion from mice causes early embryonic lethality, raising the question of whether La is required by mammalian cells generally or only to surpass a developmental stage. We developed a conditional La allele and used it in mice that express Cre recombinase in either B cell progenitors or the forebrain. B cell Mb1(Cre) La-deleted mice produce no B cells. Consistent with αCamKII Cre, which induces deletion in hippocampal CA1 cells in the third postnatal week and later throughout the neocortex, brains develop normally in La-deleted mice until ∼5 weeks and then lose a large amount of forebrain cells and mass, with evidence of altered pre-tRNA processing. The data indicate that La is required not only in proliferating cells but also in nondividing postmitotic cells. Thus, La is essential in different cell types and required for normal development of various tissue types.
Collapse
Affiliation(s)
- Sergei Gaidamakov
- Intramural Research Programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Olga A. Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyongi Chon
- Intramural Research Programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Nathan H. Blewett
- Intramural Research Programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongsheng Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Amanda K. Crawford
- Intramural Research Programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Amanda Day
- Intramural Research Programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Natalie Tulchin
- Department of Pathology, Mount Sinai School of Medicine, New York, New York, USA
| | - Robert J. Crouch
- Intramural Research Programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Herbert C. Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert D. Blitzer
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, USA
| | - Richard J. Maraia
- Intramural Research Programs of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Commissioned Corps, U.S. Public Health Service, Washington, DC, USA
| |
Collapse
|