1
|
Papp D, Hernandez LA, Mai TA, Haanen TJ, O’Donnell MA, Duran AT, Hernandez SM, Narvanto JE, Arguello B, Onwukwe MO, Mirkin SM, Kim JC. Massive contractions of myotonic dystrophy type 2-associated CCTG tetranucleotide repeats occur via double-strand break repair with distinct requirements for DNA helicases. G3 (BETHESDA, MD.) 2024; 14:jkad257. [PMID: 37950892 PMCID: PMC10849350 DOI: 10.1093/g3journal/jkad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/06/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables the selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are involved in these massive contractions, indicating a mechanism that uses homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a short-track control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.
Collapse
Affiliation(s)
- David Papp
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Luis A Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Theresa A Mai
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Terrance J Haanen
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Meghan A O’Donnell
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Ariel T Duran
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Sophia M Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Jenni E Narvanto
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Berenice Arguello
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Marvin O Onwukwe
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Jane C Kim
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| |
Collapse
|
2
|
Meir A, Raina VB, Rivera CE, Marie L, Symington LS, Greene EC. The separation pin distinguishes the pro- and anti-recombinogenic functions of Saccharomyces cerevisiae Srs2. Nat Commun 2023; 14:8144. [PMID: 38065943 PMCID: PMC10709652 DOI: 10.1038/s41467-023-43918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Srs2 is an Sf1a helicase that helps maintain genome stability in Saccharomyces cerevisiae through its ability to regulate homologous recombination. Srs2 downregulates HR by stripping Rad51 from single-stranded DNA, and Srs2 is also thought to promote synthesis-dependent strand annealing by unwinding D-loops. However, it has not been possible to evaluate the relative contributions of these two distinct activities to any aspect of recombination. Here, we used a structure-based approach to design an Srs2 separation-of-function mutant that can dismantle Rad51-ssDNA filaments but is incapable of disrupting D-loops, allowing us to assess the relative contributions of these pro- and anti-recombinogenic functions. We show that this separation-of-function mutant phenocopies wild-type SRS2 in vivo, suggesting that the ability of Srs2 to remove Rad51 from ssDNA is its primary role during HR.
Collapse
Affiliation(s)
- Aviv Meir
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Vivek B Raina
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Carly E Rivera
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Léa Marie
- Department of Microbiology & Immunology, Columbia University, New York, NY, 10032, USA
- Institute of Pharmacology and Structural Biology (IPBS), French National Centre for Scientific Research (CNRS), Université Toulouse III, Toulouse, France
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University, New York, NY, 10032, USA
- Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Papp D, Hernandez LA, Mai TA, Haanen TJ, O'Donnell MA, Duran AT, Hernandez SM, Narvanto JE, Arguello B, Onwukwe MO, Kolar K, Mirkin SM, Kim JC. Massive contractions of Myotonic Dystrophy Type 2-associated CCTG tetranucleotide repeats occur via double strand break repair with distinct requirements for helicases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548036. [PMID: 37461657 PMCID: PMC10350092 DOI: 10.1101/2023.07.06.548036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Myotonic Dystrophy Type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75-11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are required for these massive contractions, indicating a mechanism that involves homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a low-repeat control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.
Collapse
Affiliation(s)
- David Papp
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Luis A Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Theresa A Mai
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Terrance J Haanen
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Meghan A O'Donnell
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Ariel T Duran
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Sophia M Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Jenni E Narvanto
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Berenice Arguello
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Marvin O Onwukwe
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Kara Kolar
- Department of Biology, Tufts University, Medford, MA 02155
| | | | - Jane C Kim
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
| |
Collapse
|
4
|
Abstract
At fifteen different genomic locations, the expansion of a CAG/CTG repeat causes a neurodegenerative or neuromuscular disease, the most common being Huntington's disease and myotonic dystrophy type 1. These disorders are characterized by germline and somatic instability of the causative CAG/CTG repeat mutations. Repeat lengthening, or expansion, in the germline leads to an earlier age of onset or more severe symptoms in the next generation. In somatic cells, repeat expansion is thought to precipitate the rate of disease. The mechanisms underlying repeat instability are not well understood. Here we review the mammalian model systems that have been used to study CAG/CTG repeat instability, and the modifiers identified in these systems. Mouse models have demonstrated prominent roles for proteins in the mismatch repair pathway as critical drivers of CAG/CTG instability, which is also suggested by recent genome-wide association studies in humans. We draw attention to a network of connections between modifiers identified across several systems that might indicate pathway crosstalk in the context of repeat instability, and which could provide hypotheses for further validation or discovery. Overall, the data indicate that repeat dynamics might be modulated by altering the levels of DNA metabolic proteins, their regulation, their interaction with chromatin, or by direct perturbation of the repeat tract. Applying novel methodologies and technologies to this exciting area of research will be needed to gain deeper mechanistic insight that can be harnessed for therapies aimed at preventing repeat expansion or promoting repeat contraction.
Collapse
Affiliation(s)
- Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| | - Vincent Dion
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| |
Collapse
|
5
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
6
|
Crickard JB, Kaniecki K, Kwon Y, Sung P, Greene EC. Meiosis-specific recombinase Dmc1 is a potent inhibitor of the Srs2 antirecombinase. Proc Natl Acad Sci U S A 2018; 115:E10041-E10048. [PMID: 30301803 PMCID: PMC6205449 DOI: 10.1073/pnas.1810457115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cross-over recombination products are a hallmark of meiosis because they are necessary for accurate chromosome segregation and they also allow for increased genetic diversity during sexual reproduction. However, cross-overs can also cause gross chromosomal rearrangements and are therefore normally down-regulated during mitotic growth. The mechanisms that enhance cross-over product formation upon entry into meiosis remain poorly understood. In Saccharomyces cerevisiae, the Superfamily 1 (Sf1) helicase Srs2, which is an ATP hydrolysis-dependent motor protein that actively dismantles recombination intermediates, promotes synthesis-dependent strand annealing, the result of which is a reduction in cross-over recombination products. Here, we show that the meiosis-specific recombinase Dmc1 is a potent inhibitor of Srs2. Biochemical and single-molecule assays demonstrate that Dmc1 acts by inhibiting Srs2 ATP hydrolysis activity, which prevents the motor protein from undergoing ATP hydrolysis-dependent translocation on Dmc1-bound recombination intermediates. We propose a model in which Dmc1 helps contribute to cross-over formation during meiosis by antagonizing the antirecombinase activity of Srs2.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032
| | - Kyle Kaniecki
- Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032;
| |
Collapse
|
7
|
McGinty RJ, Mirkin SM. Cis- and Trans-Modifiers of Repeat Expansions: Blending Model Systems with Human Genetics. Trends Genet 2018; 34:448-465. [PMID: 29567336 PMCID: PMC5959756 DOI: 10.1016/j.tig.2018.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
Over 30 hereditary diseases are caused by the expansion of microsatellite repeats. The length of the expandable repeat is the main hereditary determinant of these disorders. They are also affected by numerous genomic variants that are either nearby (cis) or physically separated from (trans) the repetitive locus, which we review here. These genetic variants have largely been elucidated in model systems using gene knockouts, while a few have been directly observed as single-nucleotide polymorphisms (SNPs) in patients. There is a notable disconnect between these two bodies of knowledge: knockouts poorly approximate the SNP-level variation in human populations that gives rise to medically relevant cis- and trans-modifiers, while the rarity of these diseases limits the statistical power of SNP-based analysis in humans. We propose that high-throughput SNP-based screening in model systems could become a useful approach to quickly identify and characterize modifiers of clinical relevance for patients.
Collapse
Affiliation(s)
- Ryan J McGinty
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
8
|
Qiu Y, Koh HR, Myong S. Probing Dynamic Assembly and Disassembly of Rad51 Tuned by Srs2 Using smFRET. Methods Enzymol 2018; 600:321-345. [PMID: 29458765 DOI: 10.1016/bs.mie.2018.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The integrity of DNA is critical for sustaining the life of any living organism, as DNA is a reservoir of its genetic information. However, DNA is continuously damaged by either normal metabolic pathways or environmental insults such as ultraviolet exposure or chemicals. Double-stranded DNA break is one of the most common types of DNA damage that requires activation of homologous recombination (HR) pathway mediated by Rad51 in eukaryotes (Paques & Haber, 1999; Symington, 2002). Rad51 protein forms a helical nucleoprotein filament on resected DNA to initiate homology search but also can interact with other single-stranded DNA (ssDNA)-binding proteins including Srs2. Srs2, a well-known antirecombinase in HR, is an ATP-dependent 3'-5' DNA helicase in the budding yeast Saccharomyces cerevisiae as well as an ssDNA translocase. It disrupts Rad51 filaments, preventing HR (Krejci et al., 2003; Le Breton et al., 2008; Veaute et al., 2003). In the following text, we provide detailed experimental platforms employed to investigate the activity of Rad51 and Srs2 using single-molecule Forster resonance energy transfer and protein-induced fluorescence enhancement. First, we demonstrate how to detect Rad51 filament formation to address the binding site size binding kinetic of the Rad51, as well as the directionality of the filament formation. Next, we explain how to visualize ATP-dependent translocation and unwinding activities of Srs2 on DNA. Lastly, we demonstrate the filament forming activity by Rad51 which is counteracted by the filament removal activity of Srs2.
Collapse
Affiliation(s)
- Yupeng Qiu
- Johns Hopkins University, Baltimore, MD, United States
| | - Hye Ran Koh
- Johns Hopkins University, Baltimore, MD, United States; Chung-Ang University, Seoul, South Korea
| | - Sua Myong
- Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
9
|
Break-induced replication promotes formation of lethal joint molecules dissolved by Srs2. Nat Commun 2017; 8:1790. [PMID: 29176630 PMCID: PMC5702615 DOI: 10.1038/s41467-017-01987-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Break-induced replication (BIR) is a DNA double-strand break repair pathway that leads to genomic instabilities similar to those observed in cancer. BIR proceeds by a migrating bubble where asynchrony between leading and lagging strand synthesis leads to accumulation of long single-stranded DNA (ssDNA). It remains unknown how this ssDNA is prevented from unscheduled pairing with the template, which can lead to genomic instability. Here, we propose that uncontrolled Rad51 binding to this ssDNA promotes formation of toxic joint molecules that are counteracted by Srs2. First, Srs2 dislodges Rad51 from ssDNA preventing promiscuous strand invasions. Second, it dismantles toxic intermediates that have already formed. Rare survivors in the absence of Srs2 rely on structure-specific endonucleases, Mus81 and Yen1, that resolve toxic joint-molecules. Overall, we uncover a new feature of BIR and propose that tight control of ssDNA accumulated during this process is essential to prevent its channeling into toxic structures threatening cell viability. Break-induced replication (BIR) is a double-strand break repair pathway that can lead to genomic instability. Here the authors show that the absence of Srs2 helicase during BIR leads to uncontrolled binding of Rad51 to single-stranded DNA, which promotes the formation of toxic intermediates that need to be resolved by Mus81 or Yen1.
Collapse
|
10
|
Kramara J, Osia B, Malkova A. Break-induced replication: an unhealthy choice for stress relief? Nat Struct Mol Biol 2017; 24:11-12. [PMID: 28054567 DOI: 10.1038/nsmb.3361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juraj Kramara
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| | - Beth Osia
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
11
|
Nguyen JHG, Viterbo D, Anand RP, Verra L, Sloan L, Richard GF, Freudenreich CH. Differential requirement of Srs2 helicase and Rad51 displacement activities in replication of hairpin-forming CAG/CTG repeats. Nucleic Acids Res 2017; 45:4519-4531. [PMID: 28175398 PMCID: PMC5416882 DOI: 10.1093/nar/gkx088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/31/2017] [Indexed: 12/25/2022] Open
Abstract
Trinucleotide repeats are a source of genome instability, causing replication fork stalling, chromosome fragility, and impaired repair. Specialized helicases play an important role in unwinding DNA structures to maintain genome stability. The Srs2 helicase unwinds DNA hairpins, facilitates replication, and prevents repeat instability and fragility. However, since Srs2 is a multifunctional protein with helicase activity and the ability to displace Rad51 recombinase, it was unclear which functions were required for its various protective roles. Here, using SRS2 separation-of-function alleles, we show that in the absence of Srs2 recruitment to PCNA or in helicase-deficient mutants, breakage at a CAG/CTG repeat increases. We conclude that Srs2 interaction with PCNA allows the helicase activity to unwind fork-blocking CAG/CTG hairpin structures to prevent breaks. Independently of PCNA binding, Srs2 also displaces Rad51 from nascent strands to prevent recombination-dependent repeat expansions and contractions. By 2D gel electrophoresis, we detect two different kinds of structured intermediates or joint molecules (JMs). Some JMs are Rad51-independent and exhibit properties of reversed forks, including being processed by the Exo1 nuclease. In addition, in a helicase-deficient mutant, Rad51-dependent JMs are detected, probably corresponding to recombination between sisters. These results clarify the many roles of Srs2 in facilitating replication through fork-blocking hairpin lesions.
Collapse
Affiliation(s)
| | - David Viterbo
- Institut Pasteur, Department Genomes & Genetics, CNRS, UMR3525, Université Pierre et Marie Curie, UFR927, 25 rue du Dr Roux, F-75015 Paris, France
| | - Ranjith P Anand
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Lauren Verra
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Laura Sloan
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Guy-Franck Richard
- Institut Pasteur, Department Genomes & Genetics, CNRS, UMR3525, Université Pierre et Marie Curie, UFR927, 25 rue du Dr Roux, F-75015 Paris, France
| | | |
Collapse
|
12
|
Niu H, Klein HL. Multifunctional roles of Saccharomyces cerevisiae Srs2 protein in replication, recombination and repair. FEMS Yeast Res 2017; 17:fow111. [PMID: 28011904 DOI: 10.1093/femsyr/fow111] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/22/2016] [Indexed: 11/12/2022] Open
Abstract
The Saccharomyces cerevisiae Srs2 DNA helicase has important roles in DNA replication, recombination and repair. In replication, Srs2 aids in repair of gaps by repair synthesis by preventing gaps from being used to initiate recombination. This is considered to be an anti-recombination role. In recombination, Srs2 plays both prorecombination and anti-recombination roles to promote the synthesis-dependent strand annealing recombination pathway and to inhibit gaps from initiating homologous recombination. In repair, the Srs2 helicase actively promotes gap repair through an interaction with the Exo1 nuclease to enlarge a gap for repair and to prevent Rad51 protein from accumulating on single-stranded DNA. Finally, Srs2 helicase can unwind hairpin-forming repeat sequences to promote replication and prevent repeat instability. The Srs2 activities can be controlled by phosphorylation, SUMO modification and interaction with key partners at DNA damage or lesions sites, which include PCNA and Rad51. These interactions can also limit DNA polymerase function during recombinational repair independent of the Srs2 translocase or helicase activity, further highlighting the importance of the Srs2 protein in regulating recombination. Here we review the myriad roles of Srs2 that have been documented in genome maintenance and distinguish between the translocase, helicase and additional functions of the Srs2 protein.
Collapse
Affiliation(s)
- Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Hannah L Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
13
|
Abstract
Eukaryotic genomes contain many repetitive DNA sequences that exhibit size instability. Some repeat elements have the added complication of being able to form secondary structures, such as hairpin loops, slipped DNA, triplex DNA or G-quadruplexes. Especially when repeat sequences are long, these DNA structures can form a significant impediment to DNA replication and repair, leading to DNA nicks, gaps, and breaks. In turn, repair or replication fork restart attempts within the repeat DNA can lead to addition or removal of repeat elements, which can sometimes lead to disease. One important DNA repair mechanism to maintain genomic integrity is recombination. Though early studies dismissed recombination as a mechanism driving repeat expansion and instability, recent results indicate that mitotic recombination is a key pathway operating within repetitive DNA. The action is two-fold: first, it is an important mechanism to repair nicks, gaps, breaks, or stalled forks to prevent chromosome fragility and protect cell health; second, recombination can cause repeat expansions or contractions, which can be deleterious. In this review, we summarize recent developments that illuminate the role of recombination in maintaining genome stability at DNA repeats.
Collapse
|
14
|
Madireddy A, Gerhardt J. Replication Through Repetitive DNA Elements and Their Role in Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:549-581. [PMID: 29357073 DOI: 10.1007/978-981-10-6955-0_23] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human cells contain various repetitive DNA sequences, which can be a challenge for the DNA replication machinery to travel through and replicate correctly. Repetitive DNA sequence can adopt non-B DNA structures, which could block the DNA replication. Prolonged stalling of the replication fork at the endogenous repeats in human cells can have severe consequences such as genome instability that includes repeat expansions, contractions, and chromosome fragility. Several neurological and muscular diseases are caused by a repeat expansion. Furthermore genome instability is the major cause of cancer. This chapter describes some of the important classes of repetitive DNA sequences in the mammalian genome, their ability to form secondary DNA structures, their contribution to replication fork stalling, and models for repeat expansion as well as chromosomal fragility. Included in this chapter are also some of the strategies currently employed to detect changes in DNA replication and proteins that could prevent the repeat-mediated disruption of DNA replication in human cells. Additionally summarized are the consequences of repeat-associated perturbation of the DNA replication, which could lead to specific human diseases.
Collapse
|
15
|
The role of break-induced replication in large-scale expansions of (CAG) n/(CTG) n repeats. Nat Struct Mol Biol 2016; 24:55-60. [PMID: 27918542 PMCID: PMC5215974 DOI: 10.1038/nsmb.3334] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Expansions of (CAG)n•(CTG)n trinucleotide repeats are responsible for over a dozen neuromuscular and neurodegenerative disorders. Large-scale expansions are typical for human pedigrees and may be explained by iterative small-scale events such as strand slippage during replication or repair DNA synthesis. Alternatively, a distinct mechanism could lead to a large-scale repeat expansion at a step. To distinguish between these possibilities, we developed a novel experimental system specifically tuned to analyze large-scale expansions of (CAG)n•(CTG)n repeats in Saccharomyces cerevisiae. The median size of repeat expansions was ~60 triplets, though additions in excess of 150 triplets were also observed. Genetic analysis revealed that Rad51, Rad52, Mre11, Pol32, Pif1, and Mus81 and/or Yen1 proteins are required for large-scale expansions, whereas proteins previously implicated in small-scale expansions are not involved. Based on these results, we propose a new model for large-scale expansions based on recovery of replication forks broken at (CAG)n•(CTG)n repeats via break-induced replication.
Collapse
|
16
|
Gadgil R, Barthelemy J, Lewis T, Leffak M. Replication stalling and DNA microsatellite instability. Biophys Chem 2016; 225:38-48. [PMID: 27914716 DOI: 10.1016/j.bpc.2016.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
Abstract
Microsatellites are short, tandemly repeated DNA motifs of 1-6 nucleotides, also termed simple sequence repeats (SRSs) or short tandem repeats (STRs). Collectively, these repeats comprise approximately 3% of the human genome Subramanian et al. (2003), Lander and Lander (2001) [1,2], and represent a large reservoir of loci highly prone to mutations Sun et al. (2012), Ellegren (2004) [3,4] that contribute to human evolution and disease. Microsatellites are known to stall and reverse replication forks in model systems Pelletier et al. (2003), Samadashwily et al. (1997), Kerrest et al. (2009) [5-7], and are hotspots of chromosomal double strand breaks (DSBs). We briefly review the relationship of these repeated sequences to replication stalling and genome instability, and present recent data on the impact of replication stress on DNA fragility at microsatellites in vivo.
Collapse
Affiliation(s)
- R Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - J Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - T Lewis
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - M Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
17
|
The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination. DNA Repair (Amst) 2016; 43:1-8. [PMID: 27173583 DOI: 10.1016/j.dnarep.2016.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 11/24/2022]
Abstract
Trinucleotide repeats (TNRs) are tandem arrays of three nucleotides that can expand in length to cause at least 17 inherited human diseases. Somatic expansions in patients can occur in differentiated tissues where DNA replication is limited and cannot be a primary source of somatic mutation. Instead, mouse models of TNR diseases have shown that both inherited and somatic expansions can be suppressed by the loss of certain DNA repair factors. It is generally believed that these repair factors cause misprocessing of TNRs, leading to expansions. Here we extend this idea to show that the Mre11-Rad50-Xrs2 (MRX) complex of Saccharomyces cerevisiae is a causative factor in expansions of short TNRs. Mutations that eliminate MRX subunits led to significant suppression of expansions whereas mutations that inactivate Rad51 had only a minor effect. Coupled with previous evidence, this suggests that MRX drives expansions of short TNRs through a process distinct from homologous recombination. The nuclease function of Mre11 was dispensable for expansions, suggesting that expansions do not occur by Mre11-dependent nucleolytic processing of the TNR. Epistasis between MRX and post-replication repair (PRR) was tested. PRR protects against expansions, so a rad5 mutant gave a high expansion rate. In contrast, the mre11 rad5 double mutant gave a suppressed expansion rate, indistinguishable from the mre11 single mutant. This suggests that MRX creates a TNR substrate for PRR. Protein acetylation was also tested as a mechanism regulating MRX activity in expansions. Six acetylation sites were identified in Rad50. Mutation of all six lysine residues to arginine gave partial bypass of a sin3 HDAC mutant, suggesting that Rad50 acetylation is functionally important for Sin3-mediated expansions. Overall we conclude that yeast MRX helps drive expansions of short TNRs by a mechanism distinct from its role in homologous recombination and independent of the nuclease function of Mre11.
Collapse
|
18
|
Engineered Nucleases and Trinucleotide Repeat Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Aksenova AY, Han G, Shishkin AA, Volkov KV, Mirkin SM. Expansion of Interstitial Telomeric Sequences in Yeast. Cell Rep 2015; 13:1545-51. [PMID: 26586439 DOI: 10.1016/j.celrep.2015.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 08/07/2015] [Accepted: 10/08/2015] [Indexed: 11/18/2022] Open
Abstract
Telomeric repeats located within chromosomes are called interstitial telomeric sequences (ITSs). They are polymorphic in length and are likely hotspots for initiation of chromosomal rearrangements that have been linked to human disease. Using our S. cerevisiae system to study repeat-mediated genome instability, we have previously shown that yeast telomeric (Ytel) repeats induce various gross chromosomal rearrangements (GCR) when their G-rich strands serve as the lagging strand template for replication (G orientation). Here, we show that interstitial Ytel repeats in the opposite C orientation prefer to expand rather than cause GCR. A tract of eight Ytel repeats expands at a rate of 4 × 10(-4) per replication, ranking them among the most expansion-prone DNA microsatellites. A candidate-based genetic analysis implicates both post-replication repair and homologous recombination pathways in the expansion process. We propose a model for Ytel repeat expansions and discuss its applications for genome instability and alternative telomere lengthening (ALT).
Collapse
Affiliation(s)
- Anna Y Aksenova
- Department of Biology, Tufts University, Medford, MA 02155, USA; Department of Genetics, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Gil Han
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | | - Kirill V Volkov
- Department of Genetics, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
20
|
Qiu Y, Niu H, Vukovic L, Sung P, Myong S. Molecular mechanism of resolving trinucleotide repeat hairpin by helicases. Structure 2015; 23:1018-27. [PMID: 26004439 DOI: 10.1016/j.str.2015.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/19/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
Trinucleotide repeat (TNR) expansion is the root cause for many known congenital neurological and muscular disorders in human including Huntington's disease, fragile X syndrome, and Friedreich's ataxia. The stable secondary hairpin structures formed by TNR may trigger fork stalling during replication, causing DNA polymerase slippage and TNR expansion. Srs2 and Sgs1 are two helicases in yeast that resolve TNR hairpins during DNA replication and prevent genome expansion. Using single-molecule fluorescence, we investigated the unwinding mechanism by which Srs2 and Sgs1 resolves TNR hairpin and compared it with unwinding of duplex DNA. While Sgs1 unwinds both structures indiscriminately, Srs2 displays repetitive unfolding of TNR hairpin without fully unwinding it. Such activity of Srs2 shows dependence on the folding strength and the total length of TNR hairpin. Our results reveal a disparate molecular mechanism of Srs2 and Sgs1 that may contribute differently to efficient resolving of the TNR hairpin.
Collapse
Affiliation(s)
- Yupeng Qiu
- Bioengineering Department, University of Illinois, 1304 West Springfield Avenue, Urbana, IL 61801, USA
| | - Hengyao Niu
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, PO Box 208024, New Haven, CT 06520, USA
| | - Lela Vukovic
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Physics Frontier Center (Center of Physics for Living Cells), University of Illinois, 1110 West Green Street, Urbana, IL 61801, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, PO Box 208024, New Haven, CT 06520, USA
| | - Sua Myong
- Bioengineering Department, University of Illinois, 1304 West Springfield Avenue, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois, 1206 West Gregory Street, Urbana, IL 61801, USA; Physics Frontier Center (Center of Physics for Living Cells), University of Illinois, 1110 West Green Street, Urbana, IL 61801, USA; Biophysics and Computational Biology, University of Illinois, 1110 West Green Street, Urbana, IL 61801, USA.
| |
Collapse
|
21
|
Usdin K, House NCM, Freudenreich CH. Repeat instability during DNA repair: Insights from model systems. Crit Rev Biochem Mol Biol 2015; 50:142-67. [PMID: 25608779 DOI: 10.3109/10409238.2014.999192] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expansion of repeated sequences is the cause of over 30 inherited genetic diseases, including Huntington disease, myotonic dystrophy (types 1 and 2), fragile X syndrome, many spinocerebellar ataxias, and some cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat expansions are dynamic, and disease inheritance and progression are influenced by the size and the rate of expansion. Thus, an understanding of the various cellular mechanisms that cooperate to control or promote repeat expansions is of interest to human health. In addition, the study of repeat expansion and contraction mechanisms has provided insight into how repair pathways operate in the context of structure-forming DNA, as well as insights into non-canonical roles for repair proteins. Here we review the mechanisms of repeat instability, with a special emphasis on the knowledge gained from the various model systems that have been developed to study this topic. We cover the repair pathways and proteins that operate to maintain genome stability, or in some cases cause instability, and the cross-talk and interactions between them.
Collapse
Affiliation(s)
- Karen Usdin
- Laboratory of Cell and Molecular Biology, NIDDK, NIH , Bethesda, MD , USA
| | | | | |
Collapse
|
22
|
León-Ortiz AM, Svendsen J, Boulton SJ. Metabolism of DNA secondary structures at the eukaryotic replication fork. DNA Repair (Amst) 2014; 19:152-62. [PMID: 24815912 DOI: 10.1016/j.dnarep.2014.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DNA secondary structures are largely advantageous for numerous cellular processes but can pose specific threats to the progression of the replication machinery and therefore genome duplication and cell division. A number of specialized enzymes dismantle these structures to allow replication fork progression to proceed faithfully. In this review, we discuss the in vitro and in vivo data that has lead to the identification of these enzymes in eukaryotes, and the evidence that suggests that they act specifically at replication forks to resolve secondary structures. We focus on the role of helicases, which catalyze the dissociation of nucleotide complexes, and on the role of nucleases, which cleave secondary structures to allow replication fork progression at the expense of local rearrangements. Finally, we discuss outstanding questions in terms of dismantling DNA secondary structures, as well as the interplay between diverse enzymes that act upon specific types of structures.
Collapse
Affiliation(s)
- Ana María León-Ortiz
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Jennifer Svendsen
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Simon J Boulton
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK.
| |
Collapse
|
23
|
Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms. Nature 2014; 511:251-4. [PMID: 24896181 PMCID: PMC4140095 DOI: 10.1038/nature13292] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/28/2014] [Indexed: 11/09/2022]
Abstract
Srs2 helicase is known to dismantle nucleofilaments of Rad51 recombinase to prevent spurious recombination events and unwind trinucleotide sequences that are prone to hairpin formation. Here we document a new, unexpected genome maintenance role of Srs2 in the suppression of mutations arising from mis-insertion of ribonucleoside monophosphates during DNA replication. In cells lacking RNase H2, Srs2 unwinds DNA from the 5' side of a nick generated by DNA topoisomerase I at a ribonucleoside monophosphate residue. In addition, Srs2 interacts with and enhances the activity of the nuclease Exo1, to generate a DNA gap in preparation for repair. Srs2-Exo1 thus functions in a new pathway of nick processing-gap filling that mediates tolerance of ribonucleoside monophosphates in the genome. Our results have implications for understanding the basis of Aicardi-Goutières syndrome, which stems from inactivation of the human RNase H2 complex.
Collapse
|
24
|
Lytle AK, Origanti SS, Qiu Y, VonGermeten J, Myong S, Antony E. Context-Dependent Remodeling of Rad51–DNA Complexes by Srs2 Is Mediated by a Specific Protein–Protein Interaction. J Mol Biol 2014; 426:1883-97. [DOI: 10.1016/j.jmb.2014.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 02/10/2014] [Accepted: 02/16/2014] [Indexed: 10/25/2022]
|
25
|
Richard GF, Viterbo D, Khanna V, Mosbach V, Castelain L, Dujon B. Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast. PLoS One 2014; 9:e95611. [PMID: 24748175 PMCID: PMC3991675 DOI: 10.1371/journal.pone.0095611] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/28/2014] [Indexed: 12/22/2022] Open
Abstract
Trinucleotide repeat expansions are responsible for more than two dozens severe neurological disorders in humans. A double-strand break between two short CAG/CTG trinucleotide repeats was formerly shown to induce a high frequency of repeat contractions in yeast. Here, using a dedicated TALEN, we show that induction of a double-strand break into a CAG/CTG trinucleotide repeat in heterozygous yeast diploid cells results in gene conversion of the repeat tract with near 100% efficacy, deleting the repeat tract. Induction of the same TALEN in homozygous yeast diploids leads to contractions of both repeats to a final length of 3–13 triplets, with 100% efficacy in cells that survived the double-strand breaks. Whole-genome sequencing of surviving yeast cells shows that the TALEN does not increase mutation rate. No other CAG/CTG repeat of the yeast genome showed any length alteration or mutation. No large genomic rearrangement such as aneuploidy, segmental duplication or translocation was detected. It is the first demonstration that induction of a TALEN in an eukaryotic cell leads to shortening of trinucleotide repeat tracts to lengths below pathological thresholds in humans, with 100% efficacy and very high specificity.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
- * E-mail:
| | - David Viterbo
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| | - Varun Khanna
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| | - Valentine Mosbach
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| | - Lauriane Castelain
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| |
Collapse
|
26
|
Frizzell A, Nguyen JHG, Petalcorin MIR, Turner KD, Boulton SJ, Freudenreich CH, Lahue RS. RTEL1 inhibits trinucleotide repeat expansions and fragility. Cell Rep 2014; 6:827-35. [PMID: 24561255 PMCID: PMC5783307 DOI: 10.1016/j.celrep.2014.01.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/20/2013] [Accepted: 01/24/2014] [Indexed: 02/06/2023] Open
Abstract
Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG) repeat expansions and fragility, likely by unwinding problematic hairpins.
Collapse
Affiliation(s)
- Aisling Frizzell
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Newcastle Road, Galway, Ireland
| | | | - Mark I R Petalcorin
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Katherine D Turner
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Newcastle Road, Galway, Ireland; NCBES Galway Neuroscience Centre, National University of Ireland Galway, Newcastle Road, Galway, Ireland
| | - Simon J Boulton
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | | | - Robert S Lahue
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Newcastle Road, Galway, Ireland; NCBES Galway Neuroscience Centre, National University of Ireland Galway, Newcastle Road, Galway, Ireland.
| |
Collapse
|
27
|
Zhang Y, Saini N, Sheng Z, Lobachev KS. Genome-wide screen reveals replication pathway for quasi-palindrome fragility dependent on homologous recombination. PLoS Genet 2013; 9:e1003979. [PMID: 24339793 PMCID: PMC3855049 DOI: 10.1371/journal.pgen.1003979] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/12/2013] [Indexed: 02/07/2023] Open
Abstract
Inverted repeats capable of forming hairpin and cruciform structures present a threat to chromosomal integrity. They induce double strand breaks, which lead to gross chromosomal rearrangements, the hallmarks of cancers and hereditary diseases. Secondary structure formation at this motif has been proposed to be the driving force for the instability, albeit the mechanisms leading to the fragility are not well-understood. We carried out a genome-wide screen to uncover the genetic players that govern fragility of homologous and homeologous Alu quasi-palindromes in the yeast Saccharomyces cerevisiae. We found that depletion or lack of components of the DNA replication machinery, proteins involved in Fe-S cluster biogenesis, the replication-pausing checkpoint pathway, the telomere maintenance complex or the Sgs1-Top3-Rmi1 dissolvasome augment fragility at Alu-IRs. Rad51, a component of the homologous recombination pathway, was found to be required for replication arrest and breakage at the repeats specifically in replication-deficient strains. These data demonstrate that Rad51 is required for the formation of breakage-prone secondary structures in situations when replication is compromised while another mechanism operates in DSB formation in replication-proficient strains. Inverted repeats are found in many eukaryotic genomes including humans. They have a potential to cause chromosomal breakage and rearrangements that contribute to genome polymorphism and the development of diseases. Instability of inverted repeats is accounted for by their propensity to adopt DNA secondary structures that is negatively affected by the distance between the repeats and level of sequence divergence. However, the genetic factors that promote the abnormal structure formation or affect the ability of the repeats to break are largely unknown. Here, using a genome-wide screen we identified 38 mutants that destabilize imperfect human inverted Alu repeats and predispose them to breakage. The proteins that are required to maintain repeat stability belong to the core of the DNA replication machinery and to the accessory proteins that help replication fork to move through the difficult templates. Remarkably, when replication machinery is compromised, the proteins involved in homologous recombination promote the formation of secondary structures and replication block thereby triggering breakage at the inverted repeats. These results reveal a powerful pathway for the destabilization of chromosomes containing inverted repeats that requires the activity of homologous recombination.
Collapse
Affiliation(s)
- Yu Zhang
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Natalie Saini
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ziwei Sheng
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Kim JC, Mirkin SM. The balancing act of DNA repeat expansions. Curr Opin Genet Dev 2013; 23:280-8. [PMID: 23725800 DOI: 10.1016/j.gde.2013.04.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
Expansions of microsatellite DNA repeats contribute to the inheritance of nearly 30 developmental and neurological disorders. Significant progress has been made in elucidating the molecular mechanisms of repeat expansions using various model organisms and mammalian cell culture, and models implicating nearly all DNA transactions such as replication, repair, recombination, and transcription have been proposed. It is likely that different models of repeat expansions are not mutually exclusive and may explain repeat instability for different developmental stages and tissues. This review focuses on the contributions from studies in budding yeast toward unraveling the mechanisms and genetic control of repeat expansions, highlighting similarities and differences of replication models and describing a balancing act hypothesis to account for apparent discrepancies.
Collapse
Affiliation(s)
- Jane C Kim
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | | |
Collapse
|
29
|
Vasquez KM, Wang G. The yin and yang of repair mechanisms in DNA structure-induced genetic instability. Mutat Res 2013; 743-744:118-131. [PMID: 23219604 PMCID: PMC3661696 DOI: 10.1016/j.mrfmmm.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 01/14/2023]
Abstract
DNA can adopt a variety of secondary structures that deviate from the canonical Watson-Crick B-DNA form. More than 10 types of non-canonical or non-B DNA secondary structures have been characterized, and the sequences that have the capacity to adopt such structures are very abundant in the human genome. Non-B DNA structures have been implicated in many important biological processes and can serve as sources of genetic instability, implicating them in disease and evolution. Non-B DNA conformations interact with a wide variety of proteins involved in replication, transcription, DNA repair, and chromatin architectural regulation. In this review, we will focus on the interactions of DNA repair proteins with non-B DNA and their roles in genetic instability, as the proteins and DNA involved in such interactions may represent plausible targets for selective therapeutic intervention.
Collapse
Affiliation(s)
- Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
30
|
Bosshard M, Markkanen E, van Loon B. Base excision repair in physiology and pathology of the central nervous system. Int J Mol Sci 2012. [PMID: 23203191 PMCID: PMC3546685 DOI: 10.3390/ijms131216172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Relatively low levels of antioxidant enzymes and high oxygen metabolism result in formation of numerous oxidized DNA lesions in the tissues of the central nervous system. Accumulation of damage in the DNA, due to continuous genotoxic stress, has been linked to both aging and the development of various neurodegenerative disorders. Different DNA repair pathways have evolved to successfully act on damaged DNA and prevent genomic instability. The predominant and essential DNA repair pathway for the removal of small DNA base lesions is base excision repair (BER). In this review we will discuss the current knowledge on the involvement of BER proteins in the maintenance of genetic stability in different brain regions and how changes in the levels of these proteins contribute to aging and the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthias Bosshard
- Institute for Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | | | |
Collapse
|
31
|
Gannon AMM, Frizzell A, Healy E, Lahue RS. MutSβ and histone deacetylase complexes promote expansions of trinucleotide repeats in human cells. Nucleic Acids Res 2012; 40:10324-33. [PMID: 22941650 PMCID: PMC3488247 DOI: 10.1093/nar/gks810] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Trinucleotide repeat (TNR) expansions cause at least 17 heritable neurological diseases, including Huntington’s disease. Expansions are thought to arise from abnormal processing of TNR DNA by specific trans-acting proteins. For example, the DNA repair complex MutSβ (MSH2–MSH3 heterodimer) is required in mice for on-going expansions of long, disease-causing alleles. A distinctive feature of TNR expansions is a threshold effect, a narrow range of repeat units (∼30–40 in humans) at which mutation frequency rises dramatically and disease can initiate. The goal of this study was to identify factors that promote expansion of threshold-length CTG•CAG repeats in a human astrocytic cell line. siRNA knockdown of the MutSβ subunits MSH2 or MSH3 impeded expansions of threshold-length repeats, while knockdown of the MutSα subunit MSH6 had no effect. Chromatin immunoprecipitation experiments indicated that MutSβ, but not MutSα, was enriched at the TNR. These findings imply a direct role for MutSβ in promoting expansion of threshold-length CTG•CAG tracts. We identified the class II deacetylase HDAC5 as a novel promoting factor for expansions, joining the class I deacetylase HDAC3 that was previously identified. Double knockdowns were consistent with the possibility that MutSβ, HDAC3 and HDAC5 act through a common pathway to promote expansions of threshold-length TNRs.
Collapse
Affiliation(s)
- Anne-Marie M Gannon
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
32
|
Marini V, Krejci L. Unwinding of synthetic replication and recombination substrates by Srs2. DNA Repair (Amst) 2012; 11:789-98. [PMID: 22921573 PMCID: PMC3484393 DOI: 10.1016/j.dnarep.2012.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 12/30/2022]
Abstract
The budding yeast Srs2 protein possesses 3′ to 5′ DNA helicase activity and channels untimely recombination to post-replication repair by removing Rad51 from ssDNA. However, it also promotes recombination via a synthesis-dependent strand-annealing pathway (SDSA). Furthermore, at the replication fork, Srs2 is required for fork progression and prevents the instability of trinucleotide repeats. To better understand the multiple roles of the Srs2 helicase during these processes, we analysed the ability of Srs2 to bind and unwind various DNA substrates that mimic structures present during DNA replication and recombination. While leading or lagging strands were efficiently unwound, the presence of ssDNA binding protein RPA presented an obstacle for Srs2 translocation. We also tested the preferred directionality of unwinding of various substrates and studied the effect of Rad51 and Mre11 proteins on Srs2 helicase activity. These biochemical results help us understand the possible role of Srs2 in the processing of stalled or blocked replication forks as a part of post-replication repair as well as homologous recombination (HR).
Collapse
Affiliation(s)
- Victoria Marini
- Department of Biology, Masaryk University, Kamenice, Brno, Czech Republic
| | | |
Collapse
|
33
|
Chan NLS, Hou C, Zhang T, Yuan F, Machwe A, Huang J, Orren DK, Gu L, Li GM. The Werner syndrome protein promotes CAG/CTG repeat stability by resolving large (CAG)(n)/(CTG)(n) hairpins. J Biol Chem 2012; 287:30151-6. [PMID: 22787159 DOI: 10.1074/jbc.m112.389791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expansion of CAG/CTG repeats causes certain neurological and neurodegenerative disorders, and the formation and subsequent persistence of stable DNA hairpins within these repeats are believed to contribute to CAG/CTG repeat instability. Human cells possess a DNA hairpin repair (HPR) pathway, which removes various (CAG)(n) and (CTG)(n) hairpins in a nick-directed and strand-specific manner. Interestingly, this HPR system processes a (CTG)(n) hairpin on the template DNA strand much less efficiently than a (CAG)(n) hairpin on the same strand (Hou, C., Chan, N. L., Gu, L., and Li, G. M. (2009) Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts. Nat. Struct. Mol. Biol. 16, 869-875), suggesting the involvement of an additional component for (CTG)(n) HPR. To identify this activity, a functional in vitro HPR assay was used to screen partially purified HeLa nuclear fractions for their ability to stimulate (CTG)(n) HPR. We demonstrate here that the stimulating activity is the Werner syndrome protein (WRN). Although WRN contains both a 3'→5' helicase activity and a 3'→5' exonuclease activity, the stimulating activity was found to be the helicase activity, as a WRN helicase mutant failed to enhance (CTG)(n) HPR. Consistently, WRN efficiently unwound large (CTG)(n) hairpins and promoted DNA polymerase δ-catalyzed DNA synthesis using a (CTG)(n) hairpin as a template. We, therefore, conclude that WRN stimulates (CTG)(n) HPR on the template DNA strand by resolving the hairpin so that it can be efficiently used as a template for repair or replicative synthesis.
Collapse
Affiliation(s)
- Nelson L S Chan
- Graduate Center for Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Histone deacetylase complexes (HDACs) are powerful regulators of the epigenome. It is now clear that a subset of HDACs also regulate the stability of the genome itself, but not primarily through transcription. Instead, these key HDACs control genome stability more directly by stabilizing enzymes important for DNA mutagenesis and repair, or by modifying histones at sites of DNA damage. Surprisingly, certain HDACs in budding yeast and human cells accelerate the pace of genetic expansions in trinucleotide repeats, the type of mutation that causes Huntington disease. In other words, HDACs promote mutagenesis in some settings. At double-strand breaks, however, the same HDACs in budding yeast help stabilize the genome by facilitating homology-dependent repair. Double-strand breaks can also be repaired without the requirement for homology, and two specific human HDACs are now known to promote this event. These new findings highlight certain HDACs as caretakers of genome stability, and also underscore the potential medical complexities in using HDAC inhibitors for treatment of disease.
Collapse
Affiliation(s)
- Robert S Lahue
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | | |
Collapse
|
35
|
Kolesar P, Sarangi P, Altmannova V, Zhao X, Krejci L. Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res 2012; 40:7831-43. [PMID: 22705796 PMCID: PMC3439891 DOI: 10.1093/nar/gks484] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Srs2 DNA helicase of Saccharomyces cerevisiae affects recombination in multiple ways. Srs2 not only inhibits recombination at stalled replication forks but also promotes the synthesis-dependent strand annealing (SDSA) pathway of recombination. Both functions of Srs2 are regulated by sumoylation--sumoylated PCNA recruits Srs2 to the replication fork to disfavor recombination, and sumoylation of Srs2 can be inhibitory to SDSA in certain backgrounds. To understand Srs2 function, we characterize the mechanism of its sumoylation in vitro and in vivo. Our data show that Srs2 is sumoylated at three lysines, and its sumoylation is facilitated by the Siz SUMO ligases. We also show that Srs2 binds to SUMO via a C-terminal SUMO-interacting motif (SIM). The SIM region is required for Srs2 sumoylation, likely by binding to SUMO-charged Ubc9. Srs2's SIM also cooperates with an adjacent PCNA-specific interaction site in binding to sumoylated PCNA to ensure the specificity of the interaction. These two functions of Srs2's SIM exhibit a competitive relationship: sumoylation of Srs2 decreases the interaction between the SIM and SUMO-PCNA, and the SUMO-PCNA-SIM interaction disfavors Srs2 sumoylation. Our findings suggest a potential mechanism for the equilibrium of sumoylated and PCNA-bound pools of Srs2 in cells.
Collapse
Affiliation(s)
- Peter Kolesar
- Department of Biology, National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
36
|
Liu G, Leffak M. Instability of (CTG)n•(CAG)n trinucleotide repeats and DNA synthesis. Cell Biosci 2012; 2:7. [PMID: 22369689 PMCID: PMC3310812 DOI: 10.1186/2045-3701-2-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/27/2012] [Indexed: 12/21/2022] Open
Abstract
Expansion of (CTG)n•(CAG)n trinucleotide repeat (TNR) microsatellite sequences is the cause of more than a dozen human neurodegenerative diseases. (CTG)n and (CAG)n repeats form imperfectly base paired hairpins that tend to expand in vivo in a length-dependent manner. Yeast, mouse and human models confirm that (CTG)n•(CAG)n instability increases with repeat number, and implicate both DNA replication and DNA damage response mechanisms in (CTG)n•(CAG)n TNR expansion and contraction. Mutation and knockdown models that abrogate the expression of individual genes might also mask more subtle, cumulative effects of multiple additional pathways on (CTG)n•(CAG)n instability in whole animals. The identification of second site genetic modifiers may help to explain the variability of (CTG)n•(CAG)n TNR instability patterns between tissues and individuals, and offer opportunities for prognosis and treatment.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| | | |
Collapse
|
37
|
Debacker K, Frizzell A, Gleeson O, Kirkham-McCarthy L, Mertz T, Lahue RS. Histone deacetylase complexes promote trinucleotide repeat expansions. PLoS Biol 2012; 10:e1001257. [PMID: 22363205 PMCID: PMC3283555 DOI: 10.1371/journal.pbio.1001257] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/20/2011] [Indexed: 11/29/2022] Open
Abstract
Genetic analysis in budding yeast and in cultured human astrocytes reveals that specific histone deacetylase complexes accelerate expansion mutations in DNA triplet repeats. Expansions of DNA trinucleotide repeats cause at least 17 inherited neurodegenerative diseases, such as Huntington's disease. Expansions can occur at frequencies approaching 100% in affected families and in transgenic mice, suggesting that specific cellular proteins actively promote (favor) expansions. The inference is that expansions arise due to the presence of these promoting proteins, not their absence, and that interfering with these proteins can suppress expansions. The goal of this study was to identify novel factors that promote expansions. We discovered that specific histone deacetylase complexes (HDACs) promote CTG•CAG repeat expansions in budding yeast and human cells. Mutation or inhibition of yeast Rpd3L or Hda1 suppressed up to 90% of expansions. In cultured human astrocytes, expansions were suppressed by 75% upon inhibition or knockdown of HDAC3, whereas siRNA against the histone acetyltransferases CBP/p300 stimulated expansions. Genetic and molecular analysis both indicated that HDACs act at a distance from the triplet repeat to promote expansions. Expansion assays with nuclease mutants indicated that Sae2 is one of the relevant factors regulated by Rpd3L and Hda1. The causal relationship between HDACs and expansions indicates that HDACs can promote mutagenesis at some DNA sequences. This relationship further implies that HDAC3 inhibitors being tested for relief of expansion-associated gene silencing may also suppress somatic expansions that contribute to disease progression. The human genome contains numerous DNA trinucleotide repeats, which mutate infrequently in most situations. However, in families affected by certain inherited neurological diseases such as Huntington's, a trinucleotide repeat has undergone an expansion mutation that lengthens the repeat tract. This expansion is generally sufficient to cause disease. Further germline and somatic expansions in affected families occur at very high frequencies—approaching 100% in some cases—suggesting that mutation of the trinucleotide repeat becomes the norm rather than the exception, while the rest of the genome remains genetically stable. These observations indicate that trinucleotide repeat expansions are localized in the genome and occur by novel mutational mechanisms. We searched for proteins that favor expansions and identified specific histone deacetylase complexes (HDACs)—comprising enzymes that remove acetyl groups from histones—in budding yeast and in human astrocytes. Interfering with these HDACs by mutation, RNA interference, or small molecule inhibitors blocked 50%–90% of expansion events. We also found that yeast HDACs promote expansions via a downstream deacetylation target, the nuclease Sae2. These results indicate that HDACs promote trinucleotide repeat expansions by modulating key proteins, which in turn catalyze the expansion. We postulate that HDAC inhibitors, currently being tested for relief of the transcription-related consequences of expansions, may have the beneficial side effect of reducing the risk of further somatic expansion.
Collapse
Affiliation(s)
- Kim Debacker
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aisling Frizzell
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Olive Gleeson
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Lucy Kirkham-McCarthy
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Tony Mertz
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Robert S. Lahue
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| |
Collapse
|
38
|
Entezam A, Lokanga AR, Le W, Hoffman G, Usdin K. Potassium bromate, a potent DNA oxidizing agent, exacerbates germline repeat expansion in a fragile X premutation mouse model. Hum Mutat 2010; 31:611-6. [PMID: 20213777 DOI: 10.1002/humu.21237] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tandem repeat expansion is responsible for the Repeat Expansion Diseases, a group of human genetic disorders that includes Fragile X syndrome (FXS). FXS results from expansion of a premutation (PM) allele having 55-200 CGG.CCG-repeats in the 5' UTR of the FMR1 gene. The mechanism of expansion is unknown. We have treated FX PM mice with potassium bromate (KBrO(3)), a potent DNA oxidizing agent. We then monitored the germline and somatic expansion frequency in the progeny of these animals. We show here that KBrO(3) increased both the level of 8-oxoG in the oocytes of treated animals and the germline expansion frequency. Our data thus suggest that oxidative damage may be a factor that could affect expansion risk in humans.
Collapse
Affiliation(s)
- Ali Entezam
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
39
|
Kang YH, Lee CH, Seo YS. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit Rev Biochem Mol Biol 2010; 45:71-96. [PMID: 20131965 DOI: 10.3109/10409230903578593] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA replication is a primary mechanism for maintaining genome integrity, but it serves this purpose best by cooperating with other proteins involved in DNA repair and recombination. Unlike leading strand synthesis, lagging strand synthesis has a greater risk of faulty replication for several reasons: First, a significant part of DNA is synthesized by polymerase alpha, which lacks a proofreading function. Second, a great number of Okazaki fragments are synthesized, processed and ligated per cell division. Third, the principal mechanism of Okazaki fragment processing is via generation of flaps, which have the potential to form a variety of structures in their sequence context. Finally, many proteins for the lagging strand interact with factors involved in repair and recombination. Thus, lagging strand DNA synthesis could be the best example of a converging place of both replication and repair proteins. To achieve the risky task with extraordinary fidelity, Okazaki fragment processing may depend on multiple layers of redundant, but connected pathways. An essential Dna2 endonuclease/helicase plays a pivotal role in processing common structural intermediates that occur during diverse DNA metabolisms (e.g. lagging strand synthesis and telomere maintenance). Many roles of Dna2 suggest that the preemptive removal of long or structured flaps ultimately contributes to genome maintenance in eukaryotes. In this review, we describe the function of Dna2 in Okazaki fragment processing, and discuss its role in the maintenance of genome integrity with an emphasis on its functional interactions with other factors required for genome maintenance.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | |
Collapse
|
40
|
Abstract
Homologous recombination plays a key role in the maintenance of genome integrity, especially during DNA replication and the repair of double-stranded DNA breaks (DSBs). Just a single un-repaired break can lead to aneuploidy, genetic aberrations or cell death. DSBs are caused by a vast number of both endogenous and exogenous agents including genotoxic chemicals or ionizing radiation, as well as through replication of a damaged template DNA or the replication fork collapse. It is essential for cell survival to recognise and process DSBs as well as other toxic intermediates and launch most appropriate repair mechanism. Many helicases have been implicated to play role in these processes, however their detail roles, specificities and co-operativity in the complex protein-protein interaction networks remain unclear. In this review we summarize the current knowledge about Saccharomyces cerevisiae helicase Srs2 and its effect on multiple DNA metabolic processes that generally affect genome stability. It would appear that Srs2 functions as an “Odd-Job Man” in these processes to make sure that the jobs proceed when and where they are needed.
Collapse
Affiliation(s)
- Victoria Marini
- Department of Biology, Faculty of Medicine, Masaryk University, Brno CZ-625 00, Czech Republic
| | | |
Collapse
|
41
|
Colavito S, Macris-Kiss M, Seong C, Gleeson O, Greene EC, Klein HL, Krejci L, Sung P. Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption. Nucleic Acids Res 2009; 37:6754-64. [PMID: 19745052 PMCID: PMC2777448 DOI: 10.1093/nar/gkp748] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SRS2 (Suppressor of RAD Six screen mutant 2) gene encodes an ATP-dependent DNA helicase that regulates homologous recombination in Saccharomyces cerevisiae. Mutations in SRS2 result in a hyper-recombination phenotype, sensitivity to DNA damaging agents and synthetic lethality with mutations that affect DNA metabolism. Several of these phenotypes can be suppressed by inactivating genes of the RAD52 epistasis group that promote homologous recombination, implicating inappropriate recombination as the underlying cause of the mutant phenotype. Consistent with the genetic data, purified Srs2 strongly inhibits Rad51-mediated recombination reactions by disrupting the Rad51-ssDNA presynaptic filament. Srs2 interacts with Rad51 in the yeast two-hybrid assay and also in vitro. To investigate the functional relevance of the Srs2-Rad51 complex, we have generated srs2 truncation mutants that retain full ATPase and helicase activities, but differ in their ability to interact with Rad51. Importantly, the srs2 mutant proteins attenuated for Rad51 interaction are much less capable of Rad51 presynaptic filament disruption. An internal deletion in Srs2 likewise diminishes Rad51 interaction and anti-recombinase activity. We also present evidence that deleting the Srs2 C-terminus engenders a hyper-recombination phenotype. These results highlight the importance of Rad51 interaction in the anti-recombinase function of Srs2, and provide evidence that this Srs2 function can be uncoupled from its helicase activity.
Collapse
Affiliation(s)
- Sierra Colavito
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Shishkin AA, Voineagu I, Matera R, Cherng N, Chernet BT, Krasilnikova MM, Narayanan V, Lobachev KS, Mirkin SM. Large-scale expansions of Friedreich's ataxia GAA repeats in yeast. Mol Cell 2009; 35:82-92. [PMID: 19595718 PMCID: PMC2722067 DOI: 10.1016/j.molcel.2009.06.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 01/07/2009] [Accepted: 06/18/2009] [Indexed: 12/12/2022]
Abstract
Large-scale expansions of DNA repeats are implicated in numerous hereditary disorders in humans. We describe a yeast experimental system to analyze large-scale expansions of triplet GAA repeats responsible for the human disease Friedreich's ataxia. When GAA repeats were placed into an intron of the chimeric URA3 gene, their expansions caused gene inactivation, which was detected on the selective media. We found that the rates of expansions of GAA repeats increased exponentially with their lengths. These rates were only mildly dependent on the repeat's orientation within the replicon, whereas the repeat-mediated replication fork stalling was exquisitely orientation dependent. Expansion rates were significantly elevated upon inactivation of the replication fork stabilizers, Tof1 and Csm3, but decreased in the knockouts of postreplication DNA repair proteins, Rad6 and Rad5, and the DNA helicase Sgs1. We propose a model for large-scale repeat expansions based on template switching during replication fork progression through repetitive DNA.
Collapse
Affiliation(s)
| | - Irina Voineagu
- Department of Biology, Tufts University, Medford, MA 02155
| | - Robert Matera
- Department of Biology, Tufts University, Medford, MA 02155
| | - Nicole Cherng
- Department of Biology, Tufts University, Medford, MA 02155
| | | | - Maria M. Krasilnikova
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802
| | - Vidhya Narayanan
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | |
Collapse
|
43
|
Lin Y, Wilson JH. Diverse effects of individual mismatch repair components on transcription-induced CAG repeat instability in human cells. DNA Repair (Amst) 2009; 8:878-85. [PMID: 19497791 DOI: 10.1016/j.dnarep.2009.04.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 04/19/2009] [Accepted: 04/30/2009] [Indexed: 11/27/2022]
Abstract
Several neurodegerative diseases are caused by expansion of a trinucleotide repeat tract in a critical gene. The mechanism of repeat instability is not yet defined, but in mice it requires MutSbeta, a complex of MSH2 and MSH3. We showed previously that transcription through a CAG repeat tract induces repeat instability in human cells via a pathway that requires the mismatch repair (MMR) components, MSH2 and MSH3, and the entire transcription-coupled nucleotide excision repair pathway [Y. Lin, V. Dion, J.H. Wilson, Transcription promotes contraction of CAG repeat tracts in human cells, Nat. Struct. Mol. Biol. 13 (2006) 179-180; Y. Lin, J.H. Wilson, Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair, Mol. Cell Biol. 27 (2007) 6209-6217]. Here, we examine the role of downstream MMR processing components on transcription-induced CAG instability, using our selection assay for repeat contraction. In contrast to knockdowns of MSH2 or MSH3, which reduce repeat contractions, we show that siRNA-mediated depletion of MLH1 or PMS2 increases contraction frequency. Knockdown of DNMT1, which has been identified as an MMR factor in genetic studies, also elevates the frequency of contraction. Simultaneous knockdowns of MLH1 or DNMT1 along with MSH2, XPA, or BRCA1, whose individual knockdowns each decrease CAG contraction, yield intermediate frequencies. In sharp contrast, double knockdown of MLH1 and DNMT1 additively increases the frequency of CAG contraction. These results show that MMR components can alter repeat stability in diverse ways, either enhancing or suppressing CAG contraction, and they provide insight into the influence of MMR components on transcription-induced CAG repeat instability.
Collapse
Affiliation(s)
- Yunfu Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
44
|
Abstract
Triplet repeat expansion is the molecular basis for several human diseases. Intensive studies using systems in bacteria, yeast, flies, mammalian cells, and mice have provided important insights into the molecular processes that are responsible for mediating repeat instability. The age-dependent, ongoing repeat instability in somatic tissues, especially in terminally differentiated neurons, strongly suggests a robust role for pathways that are independent of DNA replication. Several genetic studies have indicated that transcription can play a critical role in repeat instability, potentially providing a basis for the instability observed in neurons. Transcription-induced repeat instability can be modulated by several DNA repair proteins, including those involved in mismatch repair (MMR) and transcription-coupled nucleotide excision repair (TC-NER). Though the mechanism is unclear, it is likely that transcription facilitates the formation of repeat-specific secondary structures, which act as intermediates to trigger DNA repair, eventually leading to changes in the length of the repeat tract. In addition, other processes associated with transcription can also modulate repeat instability, as shown in a variety of different systems. Overall, the mechanisms underlying repeat instability in humans are unexpectedly complicated. Because repeat-disease genes are widely expressed, transcription undoubtedly contributes to the repeat instability observed in many diseases, but it may be especially important in nondividing cells. Transcription-induced instability is likely to involve an extensive interplay not only of the core transcription machinery and DNA repair proteins, but also of proteins involved in chromatin remodeling, regulation of supercoiling, and removal of stalled RNA polymerases, as well as local DNA sequence effects.
Collapse
Affiliation(s)
- Yunfu Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
45
|
SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nat Struct Mol Biol 2009; 16:159-67. [PMID: 19136956 DOI: 10.1038/nsmb.1544] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 12/04/2008] [Indexed: 01/30/2023]
Abstract
Several molecular mechanisms have been proposed to explain trinucleotide repeat expansions. Here we show that in yeast srs2Delta cells, CTG repeats undergo both expansions and contractions, and they show increased chromosomal fragility. Deletion of RAD52 or RAD51 suppresses these phenotypes, suggesting that recombination triggers trinucleotide repeat instability in srs2Delta cells. In sgs1Delta cells, CTG repeats undergo contractions and increased fragility by a mechanism partially dependent on RAD52 and RAD51. Analysis of replication intermediates revealed abundant joint molecules at the CTG repeats during S phase. These molecules migrate similarly to reversed replication forks, and their presence is dependent on SRS2 and SGS1 but not RAD51. Our results suggest that Srs2 promotes fork reversal in repetitive sequences, preventing repeat instability and fragility. In the absence of Srs2 or Sgs1, DNA damage accumulates and is processed by homologous recombination, triggering repeat rearrangements.
Collapse
|
46
|
Richard GF, Kerrest A, Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 2008; 72:686-727. [PMID: 19052325 PMCID: PMC2593564 DOI: 10.1128/mmbr.00011-08] [Citation(s) in RCA: 338] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeated elements can be widely abundant in eukaryotic genomes, composing more than 50% of the human genome, for example. It is possible to classify repeated sequences into two large families, "tandem repeats" and "dispersed repeats." Each of these two families can be itself divided into subfamilies. Dispersed repeats contain transposons, tRNA genes, and gene paralogues, whereas tandem repeats contain gene tandems, ribosomal DNA repeat arrays, and satellite DNA, itself subdivided into satellites, minisatellites, and microsatellites. Remarkably, the molecular mechanisms that create and propagate dispersed and tandem repeats are specific to each class and usually do not overlap. In the present review, we have chosen in the first section to describe the nature and distribution of dispersed and tandem repeats in eukaryotic genomes in the light of complete (or nearly complete) available genome sequences. In the second part, we focus on the molecular mechanisms responsible for the fast evolution of two specific classes of tandem repeats: minisatellites and microsatellites. Given that a growing number of human neurological disorders involve the expansion of a particular class of microsatellites, called trinucleotide repeats, a large part of the recent experimental work on microsatellites has focused on these particular repeats, and thus we also review the current knowledge in this area. Finally, we propose a unified definition for mini- and microsatellites that takes into account their biological properties and try to point out new directions that should be explored in a near future on our road to understanding the genetics of repeated sequences.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, URA2171, Université Pierre et Marie Curie, UFR927, 25 rue du Dr. Roux, F-75015, Paris, France.
| | | | | |
Collapse
|
47
|
Erlich RL, Fry RC, Begley TJ, Daee DL, Lahue RS, Samson LD. Anc1, a protein associated with multiple transcription complexes, is involved in postreplication repair pathway in S. cerevisiae. PLoS One 2008; 3:e3717. [PMID: 19005567 PMCID: PMC2579579 DOI: 10.1371/journal.pone.0003717] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/21/2008] [Indexed: 11/18/2022] Open
Abstract
Yeast strains lacking Anc1, a member of the YEATS protein family, are sensitive to several DNA damaging agents. The YEATS family includes two human genes that are common fusion partners with MLL in human acute leukemias. Anc1 is a member of seven multi-protein complexes involved in transcription, and the damage sensitivity observed in anc1Δ cells is mirrored in strains deleted for some other non-essential members of several of these complexes. Here we show that ANC1 is in the same epistasis group as SRS2 and RAD5, members of the postreplication repair (PRR) pathway, but has additive or synergistic interactions with several other members of this pathway. Although PRR is traditionally divided into an “error-prone” and an “error-free” branch, ANC1 is not epistatic with all members of either established branch, and instead defines a new error-free branch of the PRR pathway. Like several genes involved in PRR, an intact ANC1 gene significantly suppresses spontaneous mutation rates, including the expansion of (CAG)25 repeats. Anc1's role in the PRR pathway, as well as its role in suppressing triplet repeats, point to a possible mechanism for a protein of potential medical interest.
Collapse
Affiliation(s)
- Rachel L. Erlich
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Rebecca C. Fry
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Thomas J. Begley
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Danielle L. Daee
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Robert S. Lahue
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Leona D. Samson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
Dhar A, Lahue RS. Rapid unwinding of triplet repeat hairpins by Srs2 helicase of Saccharomyces cerevisiae. Nucleic Acids Res 2008; 36:3366-73. [PMID: 18440969 PMCID: PMC2425488 DOI: 10.1093/nar/gkn225] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Expansions of trinucleotide repeats cause at least 15 heritable human diseases. Single-stranded triplet repeat DNA in vitro forms stable hairpins in a sequence-dependent manner that correlates with expansion risk in vivo. Hairpins are therefore considered likely intermediates during the expansion process. Unwinding of a hairpin by a DNA helicase would help protect against expansions. Yeast Srs2, but not the RecQ homolog Sgs1, blocks expansions in vivo in a manner largely dependent on its helicase function. The current study tested the idea that Srs2 would be faster at unwinding DNA substrates with an extrahelical triplet repeat hairpin embedded in a duplex context. These substrates should mimic the relevant intermediate structure thought to occur in vivo. Srs2 was faster than Sgs1 at unwinding several substrates containing triplet repeat hairpins or another structured loop. In contrast, control substrates with an unstructured loop or a Watson–Crick duplex were unwound equally well by both enzymes. Results with a fluorescently labeled, three-way junction showed that Srs2 unwinding proceeds unabated through extrahelical triplet repeats. In summary, Srs2 maintains its facile unwinding of triplet repeat hairpins embedded within duplex DNA, supporting the genetic evidence that Srs2 is a key helicase in Saccharomyces cerevisiae for preventing expansions.
Collapse
Affiliation(s)
- Alok Dhar
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Box 986805, Omaha, NE 68198-6805, USA
| | | |
Collapse
|
49
|
Razidlo DF, Lahue RS. Mrc1, Tof1 and Csm3 inhibit CAG.CTG repeat instability by at least two mechanisms. DNA Repair (Amst) 2008; 7:633-40. [PMID: 18321795 DOI: 10.1016/j.dnarep.2008.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 01/07/2008] [Indexed: 01/22/2023]
Abstract
Trinucleotide repeats frequently expand and contract in humans and model organisms. Protein factors that modulate this process have been found by candidate gene approaches or mutant screens for increased expansion rates. To extend this effort, Saccharomyces cerevisiae mutants with higher CAG.CTG repeat contraction rates were sought using a disruption library. This screen identified Mrc1, the homolog of human Claspin, which mediates the replication and DNA damage checkpoints, and also couples the replicative helicase and polymerase. Genetic analysis showed that Mrc1, along with Tof1 and Csm3, inhibits instability in two distinct ways. Contraction rates of (CAG)(20) tracts are elevated by loss of Mrc1, Tof1 or Csm3, but not by defects in most replication checkpoint or DNA damage checkpoint proteins. The three proteins likely inhibit contractions primarily through their coupling activity, which would prevent accumulation of single-strand template DNA prior to the formation of aberrant secondary structure. In contrast, expansion rates of (CTG)(13) are elevated in strains defective for Mrc1, Tof1, Csm3, Mec1, Ddc2, Rad24, Ddc1, Mec3, Rad17, Rad9, Rad53 or Chk1, suggesting that the DNA damage checkpoint inhibits expansions after formation of repeat-dependent structures. Together, these results indicate that at least two Mrc1-dependent mechanisms function to reduce CAG.CTG repeat instability.
Collapse
Affiliation(s)
- David F Razidlo
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Box 986805, Omaha, NE 68198-6805, USA
| | | |
Collapse
|
50
|
Entezam A, Usdin K. ATR protects the genome against CGG.CCG-repeat expansion in Fragile X premutation mice. Nucleic Acids Res 2007; 36:1050-6. [PMID: 18160412 PMCID: PMC2241920 DOI: 10.1093/nar/gkm1136] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fragile X mental retardation syndrome is a repeat expansion disease caused by expansion of a CGG.CCG-repeat tract in the 5' UTR of the FMR1 gene. In humans, small expansions occur more frequently on paternal transmission while large expansions are exclusively maternal in origin. It has been suggested that expansion is the result of aberrant DNA replication, repair or recombination. To distinguish amongst these possibilities we crossed mice containing 120 CGG.CCG-repeats in the 5' UTR of the mouse Fmr1 gene to mice with mutations in ATR, a protein important in the cellular response to stalled replication forks and bulky DNA lesions. We show here that ATR heterozygosity results in increased expansion rates of maternally, but not paternally, transmitted alleles. In addition, age-related somatic expansions occurred in mice of both genders that were not seen in ATR wild-type animals. Some ATR-sensitive expansion occurs in postmitotic cells including haploid gametes suggesting that aberrant DNA repair is responsible. Our data suggest that two mechanisms of repeat expansion exist that may explain the small and large expansions seen in humans. In addition, our data provide an explanation for the maternal bias of large expansions in humans and the lower incidence of these expansions in mice.
Collapse
Affiliation(s)
- Ali Entezam
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | |
Collapse
|