1
|
Querl L, Krebber H. Defenders of the Transcriptome: Guard Protein-Mediated mRNA Quality Control in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:10241. [PMID: 39408571 PMCID: PMC11476243 DOI: 10.3390/ijms251910241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Cell survival depends on precise gene expression, which is controlled sequentially. The guard proteins surveil mRNAs from their synthesis in the nucleus to their translation in the cytoplasm. Although the proteins within this group share many similarities, they play distinct roles in controlling nuclear mRNA maturation and cytoplasmic translation by supporting the degradation of faulty transcripts. Notably, this group is continuously expanding, currently including the RNA-binding proteins Npl3, Gbp2, Hrb1, Hrp1, and Nab2 in Saccharomyces cerevisiae. Some of the human serine-arginine (SR) splicing factors (SRSFs) show remarkable similarities to the yeast guard proteins and may be considered as functional homologues. Here, we provide a comprehensive summary of their crucial mRNA surveillance functions and their implications for cellular health.
Collapse
Affiliation(s)
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
2
|
Wanat JJ, McCann JJ, Tingey M, Atkins J, Merlino CO, Lee-Soety JY. Yeast Npl3 regulates replicative senescence outside of TERRA R-loop resolution and co-transcriptional processing. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-21. [PMID: 38976968 DOI: 10.1080/15257770.2024.2374023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Eukaryotic cells without telomerase experience progressively shorter telomeres with each round of cell division until cell cycle arrest is initiated, leading to replicative senescence. When yeast TLC1, which encodes the RNA template of telomerase, is deleted, senescence is accompanied by increased expression of TERRA (non-coding telomere repeat-containing RNA). Deletion of Npl3, an RNA-processing protein with telomere maintenance functions, accelerates senescence in tlc1Δ cells and significantly increases TERRA levels. Using genetic approaches, we set out to determine how Npl3 is involved in regulating TERRA expression and maintaining telomere homeostasis. Even though Npl3 regulates hyperrecombination, we found that Npl3 does not help resolve RNA:DNA hybrids formed during TERRA synthesis in the same way as RNase H1 and H2. Furthermore, Rad52 is still required for cells to escape senescence by telomere recombination in the absence of Npl3. Npl3 also works separately from the THO/TREX pathway for processing nascent RNA for nuclear export. However, deleting Dot1, a histone methyltransferase involved in tethering telomeres to the nuclear periphery, rescued the accelerated senescence phenotype of npl3Δ cells. Thus, our study suggests that Npl3 plays an additional role in regulating cellular senescence outside of RNA:DNA hybrid resolution and co-transcriptional processing.
Collapse
Affiliation(s)
- Jennifer J Wanat
- Department of Biology, Washington College, Chestertown, Maryland, USA
| | - Jennifer J McCann
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Mark Tingey
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Jessica Atkins
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Corinne O Merlino
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Julia Y Lee-Soety
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Senn KA, Hoskins AA. Mechanisms and regulation of spliceosome-mediated pre-mRNA splicing in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1866. [PMID: 38972853 DOI: 10.1002/wrna.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pre-mRNA splicing, the removal of introns and ligation of flanking exons, is a crucial step in eukaryotic gene expression. The spliceosome, a macromolecular complex made up of five small nuclear RNAs (snRNAs) and dozens of proteins, assembles on introns via a complex pathway before catalyzing the two transesterification reactions necessary for splicing. All of these steps have the potential to be highly regulated to ensure correct mRNA isoform production for proper cellular function. While Saccharomyces cerevisiae (yeast) has a limited set of intron-containing genes, many of these genes are highly expressed, resulting in a large number of transcripts in a cell being spliced. As a result, splicing regulation is of critical importance for yeast. Just as in humans, yeast splicing can be influenced by protein components of the splicing machinery, structures and properties of the pre-mRNA itself, or by the action of trans-acting factors. It is likely that further analysis of the mechanisms and pathways of splicing regulation in yeast can reveal general principles applicable to other eukaryotes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Katherine Anne Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Gupta A, Kumar A, Singh N, Sudarshan N, Studitsky VM, Zhang KYJ, Akhtar MS. The Saccharomyces cerevisiae SR protein Npl3 interacts with hyperphosphorylated CTD of RNA Polymerase II. Int J Biol Macromol 2023; 253:127541. [PMID: 37858651 DOI: 10.1016/j.ijbiomac.2023.127541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
The catalytic subunit of RNA Polymerase II contains a highly conserved carboxy terminal domain (CTD) composed of multiple tandem heptad sequence Tyr1Ser2Pro3Thr4Ser5Pro6Ser7. The non-proline residues in CTD undergo posttranslational modifications, with Ser5 phosphorylation (Ser5P) predominating at the start of the transcription cycle and Ser2P at the end, while other phosphorylation levels are high all throughout. The differentially phosphorylated CTD is recognized by regulatory proteins, helpful during mRNA transcription and export. One such protein Npl3 is composed of two RNA binding domains and a C-terminus RGG/SR domain. The Ser411 of Npl3 is reported to make direct contact with Ser2P of CTD for its recruitment and function, while the Npl3 lacking of C-terminal 25 amino acids (Npl3Δ389-414) showed no apparent defects in mRNA synthesis. Here, we report that the RNA binding domains of Npl3 are separate folding units and interact also with the CTD. The interaction between Npl3 and CTD appears to involve not just Ser2P, but also the Ser5P and Ser7P. The Arg126 of the first RNA binding domain interacts with Ser2P whereas the Arg235 of the second RNA binding domain interacts with either Ser7P or Ser5P of another heptad. The finding provides new insight of Npl3 function for mRNA transcription.
Collapse
Affiliation(s)
- Adity Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-c7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Neha Singh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Nikita Sudarshan
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vasily M Studitsky
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-c7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Md Sohail Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Li J, Querl L, Coban I, Salinas G, Krebber H. Surveillance of 3' mRNA cleavage during transcription termination requires CF IB/Hrp1. Nucleic Acids Res 2023; 51:8758-8773. [PMID: 37351636 PMCID: PMC10484732 DOI: 10.1093/nar/gkad530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
CF IB/Hrp1 is part of the cleavage and polyadenylation factor (CPF) and cleavage factor (CF) complex (CPF-CF), which is responsible for 3' cleavage and maturation of pre-mRNAs. Although Hrp1 supports this process, its presence is not essential for the cleavage event. Here, we show that the main function of Hrp1 in the CPF-CF complex is the nuclear mRNA quality control of proper 3' cleavage. As such, Hrp1 acts as a nuclear mRNA retention factor that hinders transcripts from leaving the nucleus until processing is completed. Only after proper 3' cleavage, which is sensed through contacting Rna14, Hrp1 recruits the export receptor Mex67, allowing nuclear export. Consequently, its absence results in the leakage of elongated mRNAs into the cytoplasm. If cleavage is defective, the presence of Hrp1 on the mRNA retains these elongated transcripts until they are eliminated by the nuclear exosome. Together, we identify Hrp1 as the key quality control factor for 3' cleavage.
Collapse
Affiliation(s)
- Jing Li
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| | - Luisa Querl
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| | - Ivo Coban
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| | - Gabriela Salinas
- NGS-Serviceeinrichtung für Integrative Genomik (NIG), Institut für Humangenetik, Universitätsmedizin Göttingen, D-37075 Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
6
|
Querl L, Krebber H. The DEAD-box RNA helicase Dbp5 is a key protein that couples multiple steps in gene expression. Biol Chem 2023; 404:845-850. [PMID: 37436777 DOI: 10.1515/hsz-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Cell viability largely depends on the surveillance of mRNA export and translation. Upon pre-mRNA processing and nuclear quality control, mature mRNAs are exported into the cytoplasm via Mex67-Mtr2 attachment. At the cytoplasmic site of the nuclear pore complex, the export receptor is displaced by the action of the DEAD-box RNA helicase Dbp5. Subsequent quality control of the open reading frame requires translation. Our studies suggest an involvement of Dbp5 in cytoplasmic no-go-and non-stop decay. Most importantly, we have also identified a key function for Dbp5 in translation termination, which identifies this helicase as a master regulator of mRNA expression.
Collapse
Affiliation(s)
- Luisa Querl
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| |
Collapse
|
7
|
Chowdhury MN, Jin H. The RGG motif proteins: Interactions, functions, and regulations. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1748. [PMID: 35661420 PMCID: PMC9718894 DOI: 10.1002/wrna.1748] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/31/2023]
Abstract
Proteins with motifs rich in arginines and glycines were discovered decades ago and are functionally involved in a staggering range of essential processes in the cell. Versatile, specific, yet adaptable molecular interactions enabled by the unique combination of arginine and glycine, combined with multiplicity of molecular recognition conferred by repeated di-, tri-, and multiple peptide motifs, allow RGG motif proteins to interact with a broad range of proteins and nucleic acids. Furthermore, posttranslational modifications at the arginines in the motif extend the RGG protein's capacity for a fine-tuned regulation. In this review, we focus on the biochemical properties of the RGG motif, its molecular interactions with RNAs and proteins, and roles of the posttranslational modification in modulating their interactions. We discuss current knowledge of the RGG motif proteins involved in mRNA transport and translation, highlight our merging understanding of their molecular functions in translational regulation and summarize areas of research in the future critical in understanding this important family of proteins. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Mechanisms.
Collapse
Affiliation(s)
- Mashiat N. Chowdhury
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Corresponding author: Phone: (217)244-9493, Fax: (217)244-5858,
| |
Collapse
|
8
|
Garg M, Roy D, Rajyaguru PI. Low complexity RGG-motif containing proteins Scd6 and Psp2 act as suppressors of clathrin heavy chain deficiency. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119327. [PMID: 35901970 DOI: 10.1016/j.bbamcr.2022.119327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Clathrin, made up of the heavy- and light-chains, constitutes one of the most abundant proteins involved in intracellular protein trafficking and endocytosis. YPR129W, which encodes RGG-motif containing translation repressor was identified as a part of the multi-gene construct (SCD6) that suppressed clathrin deficiency. However, the contribution of YPR129W alone in suppressing clathrin deficiency has not been documented. This study identifies YPR129W as a necessary and sufficient gene in a multi-gene construct SCD6 that suppresses clathrin deficiency. Importantly, we also identify cytoplasmic RGG-motif protein encoding gene PSP2 as another novel suppressor of clathrin deficiency. Detailed domain analysis of the two suppressors reveals that the RGG-motif of both Scd6 and Psp2 is important for suppressing clathrin deficiency. Interestingly, the endocytosis function of clathrin heavy chain assayed by internalization of GFP-Snc1 and α-factor secretion activity are not complemented by either Scd6 or Psp2. We further observe that inhibition of TORC1 compromises the suppression activity of both SCD6 and PSP2 to different extent, suggesting that two suppressors are differentially regulated. Scd6 granules increased based on its RGG-motif upon Chc1 depletion. Strikingly, Psp2 overexpression increased the abundance of ubiquitin-conjugated proteins in Chc1 depleted cells in its RGG-motif dependent manner and also decreased the accumulation of GFP-Atg8 foci. Overall based on our results using SCD6 and PSP2, we identify a novel role of RGG-motif containing proteins in suppressing clathrin deficiency. Since both the suppressors are RNA-binding proteins, this study opens an exciting avenue for exploring the connection between clathrin function and post-transcriptional gene control processes.
Collapse
Affiliation(s)
- Mani Garg
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India
| | - Debadrita Roy
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India
| | - Purusharth I Rajyaguru
- Department of Biochemistry, Indian Institute of Science, C V Raman road, Bangalore 560012, India.
| |
Collapse
|
9
|
James SW, Palmer J, Keller NP, Brown ML, Dunworth MR, Francisco SG, Watson KG, Titchen B, Achimovich A, Mahoney A, Artemiou JP, Buettner KG, Class M, Sydenstricker AL, Anglin SL. A reciprocal translocation involving Aspergillus nidulans snxAHrb1/Gbp2 and gyfA uncovers a new regulator of the G2-M transition and reveals a role in transcriptional repression for the setBSet2 histone H3-lysine-36 methyltransferase. Genetics 2022; 222:iyac130. [PMID: 36005881 PMCID: PMC9526064 DOI: 10.1093/genetics/iyac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Aspergillus nidulans snxA, an ortholog of Saccharomyces cerevisiae Hrb1/Gbp2 messenger RNA shuttle proteins, is-in contrast to budding yeast-involved in cell cycle regulation, in which snxA1 and snxA2 mutations as well as a snxA deletion specifically suppress the heat sensitivity of mutations in regulators of the CDK1 mitotic induction pathway. snxA mutations are strongly cold sensitive, and at permissive temperature snxA mRNA and protein expression are strongly repressed. Initial attempts to identify the causative snxA mutations revealed no defects in the SNXA protein. Here, we show that snxA1/A2 mutations resulted from an identical chromosome I-II reciprocal translocation with breakpoints in the snxA first intron and the fourth exon of a GYF-domain gene, gyfA. Surprisingly, a gyfA deletion and a reconstructed gyfA translocation allele suppressed the heat sensitivity of CDK1 pathway mutants in a snxA+ background, demonstrating that 2 unrelated genes, snxA and gyfA, act through the CDK1-CyclinB axis to restrain the G2-M transition, and for the first time identifying a role in G2-M regulation for a GYF-domain protein. To better understand snxA1/A2-reduced expression, we generated suppressors of snxA cold sensitivity in 2 genes: (1) loss of the abundant nucleolar protein Nsr1/nucleolin bypassed the requirement for snxA and (2) loss of the Set2 histone H3 lysine36 (H3K36) methyltransferase or a nonmethylatable histone H3K36L mutant rescued hypomorphic snxA mutants by restoring full transcriptional proficiency, indicating that methylation of H3K36 acts normally to repress snxA transcription. These observations are in line with known Set2 functions in preventing excessive and cryptic transcription of active genes.
Collapse
Affiliation(s)
- Steven W James
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, USA
| | - Jonathan Palmer
- Data Analytics, Genencor Technology Center, IFF, Palo Alto, CA, 94306, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Morgan L Brown
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Dunworth
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Sarah G Francisco
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Katherine G Watson
- School of Medicine, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| | - Breanna Titchen
- Department of Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alecia Achimovich
- Department of Chemistry, Gettysburg College, Gettysburg, PA 17325, USA
| | - Andrew Mahoney
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Kyra G Buettner
- School of Medicine, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Madelyn Class
- School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
10
|
De Magistris P. The Great Escape: mRNA Export through the Nuclear Pore Complex. Int J Mol Sci 2021; 22:ijms222111767. [PMID: 34769195 PMCID: PMC8583845 DOI: 10.3390/ijms222111767] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Nuclear export of messenger RNA (mRNA) through the nuclear pore complex (NPC) is an indispensable step to ensure protein translation in the cytoplasm of eukaryotic cells. mRNA is not translocated on its own, but it forms ribonuclear particles (mRNPs) in association with proteins that are crucial for its metabolism, some of which; like Mex67/MTR2-NXF1/NXT1; are key players for its translocation to the cytoplasm. In this review, I will summarize our current body of knowledge on the basic characteristics of mRNA export through the NPC. To be granted passage, the mRNP cargo needs to bind transport receptors, which facilitate the nuclear export. During NPC transport, mRNPs undergo compositional and conformational changes. The interactions between mRNP and the central channel of NPC are described; together with the multiple quality control steps that mRNPs undergo at the different rings of the NPC to ensure only proper export of mature transcripts to the cytoplasm. I conclude by mentioning new opportunities that arise from bottom up approaches for a mechanistic understanding of nuclear export.
Collapse
|
11
|
Lu YY, Krebber H. Nuclear mRNA Quality Control and Cytoplasmic NMD Are Linked by the Guard Proteins Gbp2 and Hrb1. Int J Mol Sci 2021; 22:ijms222011275. [PMID: 34681934 PMCID: PMC8541090 DOI: 10.3390/ijms222011275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 12/23/2022] Open
Abstract
Pre-mRNA splicing is critical for cells, as defects in this process can lead to altered open reading frames and defective proteins, potentially causing neurodegenerative diseases and cancer. Introns are removed in the nucleus and splicing is documented by the addition of exon-junction-complexes (EJCs) at exon-exon boundaries. This “memory” of splicing events is important for the ribosome, which translates the RNAs in the cytoplasm. In case a stop codon was detected before an EJC, translation is blocked and the RNA is eliminated by the nonsense-mediated decay (NMD). In the model organism Saccharomyces cerevisiae, two guard proteins, Gbp2 and Hrb1, have been identified as nuclear quality control factors for splicing. In their absence, intron-containing mRNAs leak into the cytoplasm. Their presence retains transcripts until the process is completed and they release the mRNAs by recruitment of the export factor Mex67. On transcripts that experience splicing problems, these guard proteins recruit the nuclear RNA degradation machinery. Interestingly, they continue their quality control function on exported transcripts. They support NMD by inhibiting translation and recruiting the cytoplasmic degradation factors. In this way, they link the nuclear and cytoplasmic quality control systems. These discoveries are also intriguing for humans, as homologues of these guard proteins are present also in multicellular organisms. Here, we provide an overview of the quality control mechanisms of pre-mRNA splicing, and present Gbp2 and Hrb1, as well as their human counterparts, as important players in these pathways.
Collapse
|
12
|
Nwokoye EC, AlNaseem E, Crawford RA, Castelli LM, Jennings MD, Kershaw CJ, Pavitt GD. Overlapping regions of Caf20 mediate its interactions with the mRNA-5'cap-binding protein eIF4E and with ribosomes. Sci Rep 2021; 11:13467. [PMID: 34188131 PMCID: PMC8242001 DOI: 10.1038/s41598-021-92931-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
By interacting with the mRNA 5' cap, the translation initiation factor eIF4E plays a critical role in selecting mRNAs for protein synthesis in eukaryotic cells. Caf20 is a member of the family of proteins found across eukaryotes termed 4E-BPs, which compete with eIF4G for interaction with eIF4E. Caf20 independently interacts with ribosomes. Thus, Caf20 modulates the mRNA selection process via poorly understood mechanisms. Here we performed unbiased mutagenesis across Caf20 to characterise which regions of Caf20 are important for interaction with eIF4E and with ribosomes. Caf20 binding to eIF4E is entirely dependent on a canonical motif shared with other 4E-BPs. However, binding to ribosomes is weakened by mutations throughout the protein, suggesting an extended binding interface that partially overlaps with the eIF4E-interaction region. By using chemical crosslinking, we identify a potential ribosome interaction region on the ribosome surface that spans both small and large subunits and is close to a known interaction site of eIF3. The function of ribosome binding by Caf20 remains unclear.
Collapse
Affiliation(s)
- Ebelechukwu C Nwokoye
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,Department of Botany, Nnamdi Azikiwe University, Awka, Nigeria
| | - Eiman AlNaseem
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Robert A Crawford
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Lydia M Castelli
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
13
|
Poornima G, Srivastava G, Roy B, Kuttanda IA, Kurbah I, Rajyaguru PI. RGG-motif containing mRNA export factor Gbp2 acts as a translation repressor. RNA Biol 2021; 18:2342-2353. [PMID: 33910495 DOI: 10.1080/15476286.2021.1910403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Complex cascades of RNA-binding proteins regulate the mRNA metabolism and influence gene expression. Several distinct proteins act at different stages of mRNA life cycle. SR family proteins in yeast are implicated in mRNA processing and nuclear export. In this report, we uncover the role of an SR/RGG-motif containing mRNA export factor Gbp2 in mRNA translation regulation. We demonstrate that Gbp2 localizes to cytoplasmic granules upon heat shock and oxidative stress. Our pull-down assays demonstrate that Gbp2 directly binds to the conserved translation factor eIF4G1 via its RGG motif. We further mapped the region on eIF4G1 to which Gbp2 binds and observed that the binding region overlaps with another translation repressor Sbp1. We found that the RGG-motif deletion mutant is defective in localizing to polysome fractions. Upon tethering Gbp2 to a GFP reporter mRNA in vivo, translation of GFP reporter decreased significantly indicating that Gbp2 acts as a translation repressor. Consistent with these results, we show that Gbp2 can directly repress mRNA translation in the in vitro translation systems in an RGG-motif dependent manner. Taken together, our results establish that the mRNA export factor Gbp2 has a vital role in repressing translation of mRNA. We propose that Gbp2 is a multifaceted RGG-motif protein responsible for translational repression without affecting mRNA levels.
Collapse
Affiliation(s)
| | - Gaurav Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Brinta Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Iladeiti Kurbah
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
14
|
Sandhu R, Sinha A, Montpetit B. The SR-protein Npl3 is an essential component of the meiotic splicing regulatory network in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:2552-2568. [PMID: 33577675 PMCID: PMC7969001 DOI: 10.1093/nar/gkab071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/30/2023] Open
Abstract
The meiotic gene expression program in Saccharomyces cerevisiae involves regulated splicing of meiosis-specific genes via multiple splicing activators (e.g. Mer1, Nam8, Tgs1). Here, we show that the SR protein Npl3 is required for meiotic splicing regulation and is essential for proper execution of the meiotic cell cycle. The loss of Npl3, though not required for viability in mitosis, caused intron retention in meiosis-specific transcripts, inefficient meiotic double strand break processing and an arrest of the meiotic cell cycle. The targets of Npl3 overlapped in some cases with other splicing regulators, while also having unique target transcripts that were not shared. In the absence of Npl3, splicing defects for three transcripts (MER2, HOP2 and SAE3) were rescued by conversion of non-consensus splice sites to the consensus sequence. Methylation of Npl3 was further found to be required for splicing Mer1-dependent transcripts, indicating transcript-specific mechanisms by which Npl3 supports splicing. Together these data identify an essential function for the budding yeast SR protein Npl3 in meiosis as part of the meiotic splicing regulatory network.
Collapse
Affiliation(s)
- Rima Sandhu
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Aniketa Sinha
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Ben Montpetit
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| |
Collapse
|
15
|
Grosse S, Lu YY, Coban I, Neumann B, Krebber H. Nuclear SR-protein mediated mRNA quality control is continued in cytoplasmic nonsense-mediated decay. RNA Biol 2021; 18:1390-1407. [PMID: 33406982 PMCID: PMC8489946 DOI: 10.1080/15476286.2020.1851506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One important task of eukaryotic cells is to translate only mRNAs that were correctly processed to prevent the production of truncated proteins, found in neurodegenerative diseases and cancer. Nuclear quality control of splicing requires the SR-like proteins Gbp2 and Hrb1 in S. cerevisiae, where they promote the degradation of faulty pre-mRNAs. Here we show that Gbp2 and Hrb1 also function in nonsense mediated decay (NMD) of spliced premature termination codon (PTC)-containing mRNAs. Our data support a model in which they are in a complex with the Upf-proteins and help to transmit the Upf1-mediated PTC recognition to the transcripts ends. Most importantly they appear to promote translation repression of spliced transcripts that contain a PTC and to finally facilitate degradation of the RNA, presumably by supporting the recruitment of the degradation factors. Therefore, they seem to control mRNA quality beyond the nuclear border and may thus be global surveillance factors. Identification of SR-proteins as general cellular surveillance factors in yeast will help to understand the complex human system in which many diseases with defects in SR-proteins or NMD are known, but the proteins were not yet recognized as general RNA surveillance factors.
Collapse
Affiliation(s)
- Sebastian Grosse
- Abteilung Für Molekulare Genetik, Institut Für Mikrobiologie Und Genetik, Göttinger Zentrum Für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Yen-Yun Lu
- Abteilung Für Molekulare Genetik, Institut Für Mikrobiologie Und Genetik, Göttinger Zentrum Für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Ivo Coban
- Abteilung Für Molekulare Genetik, Institut Für Mikrobiologie Und Genetik, Göttinger Zentrum Für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Bettina Neumann
- Abteilung Für Molekulare Genetik, Institut Für Mikrobiologie Und Genetik, Göttinger Zentrum Für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung Für Molekulare Genetik, Institut Für Mikrobiologie Und Genetik, Göttinger Zentrum Für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Alpert T, Straube K, Carrillo Oesterreich F, Herzel L, Neugebauer KM. Widespread Transcriptional Readthrough Caused by Nab2 Depletion Leads to Chimeric Transcripts with Retained Introns. Cell Rep 2020; 33:108324. [PMID: 33113357 DOI: 10.1016/j.celrep.2020.108324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 01/26/2023] Open
Abstract
Nascent RNA sequencing has revealed that pre-mRNA splicing can occur shortly after introns emerge from RNA polymerase II (RNA Pol II). Differences in co-transcriptional splicing profiles suggest regulation by cis- and/or trans-acting factors. Here, we use single-molecule intron tracking (SMIT) to identify a cohort of regulators by machine learning in budding yeast. Of these, Nab2 displays reduced co-transcriptional splicing when depleted. Unexpectedly, these splicing defects are attributable to aberrant "intrusive" transcriptional readthrough from upstream genes, as revealed by long-read sequencing. Transcripts that originate from the intron-containing gene's own transcription start site (TSS) are efficiently spliced, indicating no direct role of Nab2 in splicing per se. This work highlights the coupling between transcription, splicing, and 3' end formation in the context of gene organization along chromosomes. We conclude that Nab2 is required for proper 3' end processing, which ensures gene-specific control of co-transcriptional RNA processing.
Collapse
Affiliation(s)
- Tara Alpert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Korinna Straube
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Mishra RK, Datey A, Hussain T. mRNA Recruiting eIF4 Factors Involved in Protein Synthesis and Its Regulation. Biochemistry 2019; 59:34-46. [DOI: 10.1021/acs.biochem.9b00788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rishi Kumar Mishra
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Ayushi Datey
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Xie Y, Ren Y. Mechanisms of nuclear mRNA export: A structural perspective. Traffic 2019; 20:829-840. [PMID: 31513326 DOI: 10.1111/tra.12691] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022]
Abstract
Export of mRNA from the nucleus to the cytoplasm is a critical process for all eukaryotic gene expression. As mRNA is synthesized, it is packaged with a myriad of RNA-binding proteins to form ribonucleoprotein particles (mRNPs). For each step in the processes of maturation and export, mRNPs must have the correct complement of proteins. Much of the mRNA export pathway revolves around the heterodimeric export receptor yeast Mex67•Mtr2/human NXF1•NXT1, which is recruited to signal the completion of nuclear mRNP assembly, mediates mRNP targeting/translocation through the nuclear pore complex (NPC), and is displaced at the cytoplasmic side of the NPC to release the mRNP into the cytoplasm. Directionality of the transport is governed by at least two DEAD-box ATPases, yeast Sub2/human UAP56 in the nucleus and yeast Dbp5/human DDX19 at the cytoplasmic side of the NPC, which respectively mediate the association and dissociation of Mex67•Mtr2/NXF1•NXT1 onto the mRNP. Here we review recent progress from structural studies of key constituents in different steps of nuclear mRNA export. These findings have laid the foundation for further studies to obtain a comprehensive mechanistic view of the mRNA export pathway.
Collapse
Affiliation(s)
- Yihu Xie
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
19
|
Shattuck JE, Paul KR, Cascarina SM, Ross ED. The prion-like protein kinase Sky1 is required for efficient stress granule disassembly. Nat Commun 2019; 10:3614. [PMID: 31399582 PMCID: PMC6688984 DOI: 10.1038/s41467-019-11550-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/19/2019] [Indexed: 01/14/2023] Open
Abstract
Stress granules are membraneless protein- and mRNA-rich organelles that form in response to perturbations in environmental conditions. Stress granule formation is reversible, and persistent stress granules have been implicated in a variety of neurodegenerative disorders, including amyotrophic lateral sclerosis. However, characterization of the factors involved in dissolving stress granules is incomplete. Many stress granule proteins contain prion-like domains (PrLDs), some of which have been linked to stress granule formation. Here, we demonstrate that the PrLD-containing yeast protein kinase Sky1 is a stress granule component. Sky1 is recruited to stress granules in part via its PrLD, and Sky1's kinase activity regulates timely stress granule disassembly during stress recovery. This effect is mediated by phosphorylation of the stress granule component Npl3. Sky1 can compensate for defects in chaperone-mediated stress granule disassembly and vice-versa, demonstrating that cells have multiple overlapping mechanisms for re-solubilizing stress granule components.
Collapse
Affiliation(s)
- Jenifer E Shattuck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Kacy R Paul
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
20
|
Wippel HH, Malgarin JS, Inoue AH, Leprevost FDV, Carvalho PC, Goldenberg S, Alves LR. Unveiling the partners of the DRBD2-mRNP complex, an RBP in Trypanosoma cruzi and ortholog to the yeast SR-protein Gbp2. BMC Microbiol 2019; 19:128. [PMID: 31185899 PMCID: PMC6560856 DOI: 10.1186/s12866-019-1505-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Background RNA-binding proteins (RBPs) are well known as key factors in gene expression regulation in eukaryotes. These proteins associate with mRNAs and other proteins to form mRNP complexes that ultimately determine the fate of target transcripts in the cell. This association is usually mediated by an RNA-recognition motif (RRM). In the case of trypanosomatids, these proteins play a paramount role, as gene expression regulation is mostly posttranscriptional. Despite their relevance in the life cycle of Trypanosoma cruzi, the causative agent of Chagas’ disease, to date, few RBPs have been characterized in this parasite. Results We investigated the role of DRBD2 in T. cruzi, an RBP with two RRM domains that is associated with cytoplasmic translational complexes. We show that DRBD2 is an ortholog of the Gbp2 in yeast, an SR-rich protein involved in mRNA quality control and export. We used an immunoprecipitation assay followed by shotgun proteomics and RNA-seq to assess the interaction partners of the DRBD2-mRNP complex in epimastigotes. The analysis identified mostly proteins involved in RNA metabolism and regulation, such as ALBA1, ALBA3, ALBA4, UBP1, UBP2, DRBD3, and PABP2. The RNA-seq results showed that most of the transcripts regulated by the DRBD2 complex mapped to hypothetical proteins related to multiple processes, such as to biosynthetic process, DNA metabolic process, protein modification, and response to stress. Conclusions The identification of regulatory proteins in the DRBD2-mRNP complex corroborates the important role of DRBD2 in gene expression regulation in T. cruzi. We consider these results an important contribution to future studies regarding gene expression regulation in T. cruzi, especially in the field of RNA-binding proteins. Electronic supplementary material The online version of this article (10.1186/s12866-019-1505-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helisa Helena Wippel
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | | | - Alexandre Haruo Inoue
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil.,Molecular Biology Institute-Paraná, Curitiba, Brazil
| | - Felipe da Veiga Leprevost
- Medical Science Unit I, Department of Pathology, University of Michigan, EUA, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Paulo Costa Carvalho
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | - Samuel Goldenberg
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | - Lysangela Ronalte Alves
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil.
| |
Collapse
|
21
|
Chia SZ, Lai YW, Yagoub D, Lev S, Hamey JJ, Pang CNI, Desmarini D, Chen Z, Djordjevic JT, Erce MA, Hart-Smith G, Wilkins MR. Knockout of the Hmt1p Arginine Methyltransferase in Saccharomyces cerevisiae Leads to the Dysregulation of Phosphate-associated Genes and Processes. Mol Cell Proteomics 2018; 17:2462-2479. [PMID: 30206180 PMCID: PMC6283299 DOI: 10.1074/mcp.ra117.000214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/14/2018] [Indexed: 11/06/2022] Open
Abstract
Hmt1p is the predominant arginine methyltransferase in Saccharomyces cerevisiae Its substrate proteins are involved in transcription, transcriptional regulation, nucleocytoplasmic transport and RNA splicing. Hmt1p-catalyzed methylation can also modulate protein-protein interactions. Hmt1p is conserved from unicellular eukaryotes through to mammals where its ortholog, PRMT1, is lethal upon knockout. In yeast, however, the effect of knockout on the transcriptome and proteome has not been described. Transcriptome analysis revealed downregulation of phosphate-responsive genes in hmt1Δ, including acid phosphatases PHO5, PHO11, and PHO12, phosphate transporters PHO84 and PHO89 and the vacuolar transporter chaperone VTC3 Analysis of the hmt1Δ proteome revealed decreased abundance of phosphate-associated proteins including phosphate transporter Pho84p, vacuolar alkaline phosphatase Pho8p, acid phosphatase Pho3p and subunits of the vacuolar transporter chaperone complex Vtc1p, Vtc3p and Vtc4p. Consistent with this, phosphate homeostasis was dysregulated in hmt1Δ cells, showing decreased extracellular phosphatase levels and decreased total Pi in phosphate-depleted medium. In vitro, we showed that transcription factor Pho4p can be methylated at Arg-241, which could explain phosphate dysregulation in hmt1Δ if interplay exists with phosphorylation at Ser-242 or Ser-243, or if Arg-241 methylation affects the capacity of Pho4p to homodimerize or interact with Pho2p. However, the Arg-241 methylation site was not validated in vivo and the localization of a Pho4p-GFP fusion in hmt1Δ was not different from wild type. To our knowledge, this is the first study to reveal an association between Hmt1p and phosphate homeostasis and one which suggests a regulatory link between S-adenosyl methionine and intracellular phosphate.
Collapse
Affiliation(s)
- Samantha Z Chia
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yu-Wen Lai
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daniel Yagoub
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute and Sydney Medical School, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Joshua J Hamey
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chi Nam Ignatius Pang
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute and Sydney Medical School, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Zhiliang Chen
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute and Sydney Medical School, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | - Melissa A Erce
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gene Hart-Smith
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
22
|
Zhang Y, Gao X, Sun M, Liu H, Xu JR. The FgSRP1 SR-protein gene is important for plant infection and pre-mRNA processing in Fusarium graminearum. Environ Microbiol 2017; 19:4065-4079. [PMID: 28654215 DOI: 10.1111/1462-2920.13844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
The versatile functions of SR (serine/arginine-rich) proteins in pre-mRNA splicing and processing are modulated by reversible phosphorylation. Previous studies showed that FgPrp4, the only protein kinase among spliceosome components, is important for intron splicing and the FgSrp1 SR protein is phosphorylated at five conserved sites in Fusarium graminearum. In this study, we showed that the Fgsrp1 deletion mutant rarely produced conidia and caused only limited symptoms on wheat heads and corn silks. Deletion of FgSRP1 also reduced ascospore ejection and deoxynivalenol (DON) production. Interestingly, FgSRP1 had two transcript isoforms due to alternative splicing and both of them were required for its normal functions in growth and DON biosynthesis. FgSrp1 localized to the nucleus and interacted with FgPrp4 in vivo. Deletion of all four conserved phosphorylation sites but not individual ones affected the FgSRP1 function, suggesting their overlapping functions. RNA-seq analysis showed that the expression of over thousands of genes and splicing efficiency in over 140 introns were affected. Taken together, FgSRP1 is important for conidiation, and pathogenesis and alternative splicing is important for its normal functions. The FgSrp1 SR protein is likely important for pre-mRNA processing or splicing of various genes in different developmental and infection processes.
Collapse
Affiliation(s)
- Yimei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
23
|
Ariyachet C, Beißel C, Li X, Lorrey S, Mackenzie O, Martin PM, O'Brien K, Pholcharee T, Sim S, Krebber H, McBride AE. Post-translational modification directs nuclear and hyphal tip localization of Candida albicans mRNA-binding protein Slr1. Mol Microbiol 2017; 104:499-519. [PMID: 28187496 PMCID: PMC5405739 DOI: 10.1111/mmi.13643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 12/21/2022]
Abstract
The morphological transition of the opportunistic fungal pathogen Candida albicans from budding to hyphal growth has been implicated in its ability to cause disease in animal models. Absence of SR‐like RNA‐binding protein Slr1 slows hyphal formation and decreases virulence in a systemic candidiasis model, suggesting a role for post‐transcriptional regulation in these processes. SR (serine–arginine)‐rich proteins influence multiple steps in mRNA metabolism and their localization and function are frequently controlled by modification. We now demonstrate that Slr1 binds to polyadenylated RNA and that its intracellular localization is modulated by phosphorylation and methylation. Wildtype Slr1‐GFP is predominantly nuclear, but also co‐fractionates with translating ribosomes. The non‐phosphorylatable slr1‐6SA‐GFP protein, in which six serines in SR/RS clusters are substituted with alanines, primarily localizes to the cytoplasm in budding cells. Intriguingly, hyphal cells display a slr1‐6SA‐GFP focus at the tip near the Spitzenkörper, a vesicular structure involved in molecular trafficking to the tip. The presence of slr1‐6SA‐GFP hyphal tip foci is reduced in the absence of the mRNA‐transport protein She3, suggesting that unphosphorylated Slr1 associates with mRNA–protein complexes transported to the tip. The impact of SLR1 deletion on hyphal formation and function thus may be partially due to a role in hyphal mRNA transport.
Collapse
Affiliation(s)
| | - Christian Beißel
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Xiang Li
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | - Selena Lorrey
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | | | | | | | | | - Sue Sim
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Anne E McBride
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| |
Collapse
|
24
|
Heinrich S, Derrer CP, Lari A, Weis K, Montpetit B. Temporal and spatial regulation of mRNA export: Single particle RNA-imaging provides new tools and insights. Bioessays 2017; 39. [PMID: 28052353 DOI: 10.1002/bies.201600124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transport of messenger RNAs (mRNAs) from the nucleus to cytoplasm is an essential step in the gene expression program of all eukaryotes. Recent technological advances in the areas of RNA-labeling, microscopy, and sequencing are leading to novel insights about mRNA biogenesis and export. This includes quantitative single molecule imaging (SMI) of RNA molecules in live cells, which is providing knowledge of the spatial and temporal dynamics of the export process. As this information becomes available, it leads to new questions, the reinterpretation of previous findings, and revised models of mRNA export. In this review, we will briefly highlight some of these recent findings and discuss how live cell SMI approaches may be used to further our current understanding of mRNA export and gene expression.
Collapse
Affiliation(s)
| | | | - Azra Lari
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Karsten Weis
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ben Montpetit
- Department of Cell Biology, University of Alberta, Edmonton, Canada.,Department of Viticulture and Enology, University of California, Davis, CA, USA
| |
Collapse
|
25
|
Neumann B, Wu H, Hackmann A, Krebber H. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export. PLoS One 2016; 11:e0149571. [PMID: 26872259 PMCID: PMC4752221 DOI: 10.1371/journal.pone.0149571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/01/2016] [Indexed: 11/28/2022] Open
Abstract
The DEAD-box RNA-helicase Dbp5/Rat8 is known for its function in nuclear mRNA export, where it displaces the export receptor Mex67 from the mRNA at the cytoplasmic side of the nuclear pore complex (NPC). Here we show that Dbp5 is also required for the nuclear export of both pre-ribosomal subunits. Yeast temperature-sensitive dbp5 mutants accumulate both ribosomal particles in their nuclei. Furthermore, Dbp5 genetically and physically interacts with known ribosomal transport factors such as Nmd3. Similar to mRNA export we show that also for ribosomal transport Dbp5 is required at the cytoplasmic side of the NPC. However, unlike its role in mRNA export, Dbp5 does not seem to undergo its ATPase cycle for this function, as ATPase-deficient dbp5 mutants that selectively inhibit mRNA export do not affect ribosomal transport. Furthermore, mutants of GLE1, the ATPase stimulating factor of Dbp5, show no major ribosomal export defects. Consequently, while Dbp5 uses its ATPase cycle to displace the export receptor Mex67 from the translocated mRNAs, Mex67 remains bound to ribosomal subunits upon transit to the cytoplasm, where it is detectable on translating ribosomes. Therefore, we propose a model, in which Dbp5 supports ribosomal transport by capturing ribosomal subunits upon their cytoplasmic appearance at the NPC, possibly by binding export factors such as Mex67. Thus, our findings reveal that although different ribonucleoparticles, mRNAs and pre-ribosomal subunits, use shared export factors, they utilize different transport mechanisms.
Collapse
Affiliation(s)
- Bettina Neumann
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Germany
| | - Haijia Wu
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Germany
| | - Alexandra Hackmann
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Germany
- * E-mail:
| |
Collapse
|
26
|
Martínez-Lumbreras S, Taverniti V, Zorrilla S, Séraphin B, Pérez-Cañadillas JM. Gbp2 interacts with THO/TREX through a novel type of RRM domain. Nucleic Acids Res 2015; 44:437-48. [PMID: 26602689 PMCID: PMC4705658 DOI: 10.1093/nar/gkv1303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 11/07/2015] [Indexed: 12/11/2022] Open
Abstract
Metazoan SR and SR-like proteins are important regulatory factors in RNA splicing, export, translation and RNA decay. We determined the NMR structures and nucleic acid interaction modes of Gbp2 and Hrb1, two paralogous budding yeast proteins with similarities to mammalian SR proteins. Gbp2 RRM1 and RRM2 recognise preferentially RNAs containing the core motif GGUG. Sequence selectivity resides in a non-canonical interface in RRM2 that is highly related to the SRSF1 pseudoRRM. The atypical Gbp2/Hrb1 C-terminal RRM domains (RRM3) do not interact with RNA/DNA, likely because of their novel N-terminal extensions that block the canonical RNA binding interface. Instead, we discovered that RRM3 is crucial for interaction with the THO/TREX complex and identified key residues essential for this interaction. Moreover, Gbp2 interacts genetically with Tho2 as the double deletion shows a synthetic phenotype and preventing Gbp2 interaction with the THO/TREX complex partly supresses gene expression defect associated with inactivation of the latter complex. These findings provide structural and functional insights into the contribution of SR-like proteins in the post-transcriptional control of gene expression.
Collapse
Affiliation(s)
- Santiago Martínez-Lumbreras
- Department of Biological Physical Chemistry, Instituto de Química-Física 'Rocasolano', CSIC, Serrano-119, 28006 Madrid, Spain
| | - Valerio Taverniti
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGMBC), Centre National de Recherche Scientifique (CNRS) UMR 7104/Institut National de Santé et de Recherche Médicale (INSERM) U964/Université de Strasbourg, 67404 Illkirch, France
| | - Silvia Zorrilla
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Bertrand Séraphin
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGMBC), Centre National de Recherche Scientifique (CNRS) UMR 7104/Institut National de Santé et de Recherche Médicale (INSERM) U964/Université de Strasbourg, 67404 Illkirch, France
| | - José Manuel Pérez-Cañadillas
- Department of Biological Physical Chemistry, Instituto de Química-Física 'Rocasolano', CSIC, Serrano-119, 28006 Madrid, Spain
| |
Collapse
|
27
|
Nerurkar P, Altvater M, Gerhardy S, Schütz S, Fischer U, Weirich C, Panse VG. Eukaryotic Ribosome Assembly and Nuclear Export. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:107-40. [DOI: 10.1016/bs.ircmb.2015.07.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Choder M. mRNA imprinting: Additional level in the regulation of gene expression. CELLULAR LOGISTICS 2014; 1:37-40. [PMID: 21686103 DOI: 10.4161/cl.1.1.14465] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 12/12/2022]
Abstract
Following its synthesis in the nucleus, mRNA undergoes various stages that are critical for the proper synthesis, localization and possibly functionality of its encoded protein. Recently, we have shown that two RNA polymerase II (Pol II) subunits, Rpb4p and Rpb7p, associate with the nascent transcript co-transcriptionally. This "mRNA imprinting" lasts throughout the mRNA lifetime and is required for proper regulation of all major stages that the mRNA undergoes. Other possible cases of co-transcriptional imprinting are discussed. Since mRNAs can be transported from the synthesizing cell to other cells, we propose that mRNA imprinting can also affect the phenotype of the recipient cells. This can be viewed as "mRNA-based epigenetics."
Collapse
Affiliation(s)
- Mordechai Choder
- Department of Molecular Microbiology; Rappaport Faculty of Medicine; Technion-Israel Institute of Technology; Haifa, Israel
| |
Collapse
|
29
|
Restraint of the G2/M transition by the SR/RRM family mRNA shuttling binding protein SNXAHRB1 in Aspergillus nidulans. Genetics 2014; 198:617-33. [PMID: 25104516 DOI: 10.1534/genetics.114.167445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Control of the eukaryotic G2/M transition by CDC2/CYCLINB is tightly regulated by protein-protein interactions, protein phosphorylations, and nuclear localization of CDC2/CYCLINB. We previously reported a screen, in Aspergillus nidulans, for extragenic suppressors of nimX2(cdc2) that resulted in the identification of the cold-sensitive snxA1 mutation. We demonstrate here that snxA1 suppresses defects in regulators of the CDK1 mitotic induction pathway, including nimX2(cdc) (2), nimE6(cyclinB), and nimT23(cdc) (25), but does not suppress G2-arresting nimA1/nimA5 mutations, the S-arresting nimE10(cyclinB) mutation, or three other G1/S phase mutations. snxA encodes the A. nidulans homolog of Saccharomyces cerevisiae Hrb1/Gbp2; nonessential shuttling messenger RNA (mRNA)-binding proteins belonging to the serine-arginine-rich (SR) and RNA recognition motif (RRM) protein family; and human heterogeneous ribonucleoprotein-M, a spliceosomal component involved in pre-mRNA processing and alternative splicing. snxA(Hrb) (1) is nonessential, its deletion phenocopies the snxA1 mutation, and its overexpression rescues snxA1 and ΔsnxA mutant phenotypes. snxA1 and a second allele isolated in this study, snxA2, are hypomorphic mutations that result from decreased transcript and protein levels, suggesting that snxA acts normally to restrain cell cycle progression. SNXA(HRB1) is predominantly nuclear, but is not retained in the nucleus during the partially closed mitosis of A. nidulans. We show that the snxA1 mutation does not suppress nimX2 by altering NIMX2(CDC2)/NIME(CYCLINB) kinase activity and that snxA1 or ΔsnxA alter localization patterns of NIME(CYCLINB) at the restrictive temperatures for snxA1 and nimX2. Together, these findings suggest a novel and previously unreported role of an SR/RRM family protein in cell cycle regulation, specifically in control of the CDK1 mitotic induction pathway.
Collapse
|
30
|
Rodríguez-Lombardero S, Vizoso-Vázquez Á, Lombardía LJ, Becerra M, González-Siso MI, Cerdán ME. Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin. MICROBIOLOGY-SGM 2014; 160:1357-1368. [PMID: 24763424 PMCID: PMC4076870 DOI: 10.1099/mic.0.078402-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cisplatin is commonly used in cancer therapy and yeast cells are also sensitive to this compound. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin treatment, which are dependent on or independent of SKY1 function – a gene whose deletion increases resistance to the drug. Gene expression changes produced by addition of cisplatin to W303 and W303-Δsky1 cells were recorded using DNA microarrays. The data, validated by quantitative PCR, revealed 122 differentially expressed genes: 69 upregulated and 53 downregulated. Among the upregulated genes, those related to sulfur metabolism were over-represented and partially dependent on Sky1. Deletions of MET4 or other genes encoding co-regulators of the expression of sulfur-metabolism-related genes, with the exception of MET28, did not modify the cisplatin sensitivity of yeast cells. One of the genes with the highest cisplatin-induced upregulation was SEO1, encoding a putative permease of sulfur compounds. We also measured the platinum, sulfur and glutathione content in W303, W303-Δsky1 and W303-Δseo1 cells after cisplatin treatment, and integration of the data suggested that these transcriptional changes might represent a cellular response that allowed chelation of cisplatin with sulfur-containing amino acids and also helped DNA repair by stimulating purine biosynthesis. The transcription pattern of stimulation of sulfur-containing amino acids and purine synthesis decreased, or even disappeared, in the W303-Δsky1 strain.
Collapse
Affiliation(s)
- Silvia Rodríguez-Lombardero
- Grupo EXPRELA, Departamento de Bioloxía e Celulare Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Grupo EXPRELA, Departamento de Bioloxía e Celulare Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - Luis J Lombardía
- Centro Nacional de Investigaciones Oncológicas (CNIO), C/Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Manuel Becerra
- Grupo EXPRELA, Departamento de Bioloxía e Celulare Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - M Isabel González-Siso
- Grupo EXPRELA, Departamento de Bioloxía e Celulare Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - M Esperanza Cerdán
- Grupo EXPRELA, Departamento de Bioloxía e Celulare Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| |
Collapse
|
31
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
32
|
Monosome formation during translation initiation requires the serine/arginine-rich protein Npl3. Mol Cell Biol 2013; 33:4811-23. [PMID: 24100011 DOI: 10.1128/mcb.00873-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast shuttling serine/arginine-rich protein Npl3 is required for the export of mRNAs and pre-60S ribosomal subunits from the nucleus to the cytoplasm. Here, we report a novel function of Npl3 in translation initiation. A mutation in its C terminus that prevents its dimerization (npl3Δ100) is lethal to cells and leads to translational defects, as shown by [(35)S]methionine incorporation assays and a hypersensitivity to the translational inhibitor cycloheximide. Moreover, this Npl3 mutant shows halfmers in polysomal profiles that are indicative of defects in monosome formation. Strikingly, the loss of the ability of Npl3 to dimerize does not affect mRNA and pre-60S export. In fact, the mRNA and rRNA binding capacities of npl3Δ100 and wild-type Npl3 are similar. Intriguingly, overexpression of the dimerization domain of Npl3 disturbs dimer formation and results in a dominant-negative effect, reflected in growth defects and a halfmer formation phenotype. In addition, we found specific genetic interactions with the ribosomal subunit joining factors Rpl10 and eukaryotic translation initiation factor 5B/Fun12 and detected a substantially decreased binding of npl3Δ100 to the Rpl10-containing complex. These findings indicate an essential novel function for Npl3 in the cytoplasm, which supports monosome formation for translation initiation.
Collapse
|
33
|
Genome-wide investigation of the role of the tRNA nuclear-cytoplasmic trafficking pathway in regulation of the yeast Saccharomyces cerevisiae transcriptome and proteome. Mol Cell Biol 2013; 33:4241-54. [PMID: 23979602 DOI: 10.1128/mcb.00785-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In eukaryotic cells, tRNAs are transcribed and partially processed in the nucleus before they are exported to the cytoplasm, where they have an essential role in protein synthesis. Surprisingly, mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm, and tRNA subcellular distribution is nutrient dependent. At least three members of the β-importin family, Los1, Mtr10, and Msn5, function in tRNA nuclear-cytoplasmic intracellular movement. To test the hypothesis that the tRNA retrograde pathway regulates the translation of particular transcripts, we compared the expression profiles from nontranslating mRNAs and polyribosome-associated translating mRNAs collected from msn5Δ, mtr10Δ, and wild-type cells under fed or acute amino acid depletion conditions. Our microarray data revealed that the methionine, arginine, and leucine biosynthesis pathways are targets of the tRNA retrograde process. We confirmed the microarray data by Northern and Western blot analyses. The levels of some of the particular target mRNAs were reduced, while others appeared not to be affected. However, the protein levels of all tested targets in these pathways were greatly decreased when tRNA nuclear import or reexport to the cytoplasm was disrupted. This study provides information that tRNA nuclear-cytoplasmic dynamics is connected to the biogenesis of proteins involved in amino acid biosynthesis.
Collapse
|
34
|
Erce MA, Abeygunawardena D, Low JKK, Hart-Smith G, Wilkins MR. Interactions affected by arginine methylation in the yeast protein-protein interaction network. Mol Cell Proteomics 2013; 12:3184-98. [PMID: 23918811 DOI: 10.1074/mcp.m113.031500] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein-protein interactions can be modulated by the methylation of arginine residues. As a means of testing this, we recently described a conditional two-hybrid system, based on the bacterial adenylate cyclase (BACTH) system. Here, we have used this conditional two-hybrid system to explore the effect of arginine methylation in modulating protein-protein interactions in a subset of the Saccharomyces cerevisiae arginine methylproteome network. Interactions between the yeast hub protein Npl3 and yeast proteins Air2, Ded1, Gbp2, Snp1, and Yra1 were first validated in the absence of methylation. The major yeast arginine methyltransferase Hmt1 was subsequently included in the conditional two-hybrid assay, initially to determine the degree of methylation that occurs. Proteins Snp1 and Yra1 were confirmed as Hmt1 substrates, with five and two novel arginine methylation sites mapped by ETD LC-MS/MS on these proteins, respectively. Proteins Ded1 and Gbp2, previously predicted but not confirmed as substrates of Hmt1, were also found to be methylated with five and seven sites mapped respectively. Air2 was found to be a novel substrate of Hmt1 with two sites mapped. Finally, we investigated the interactions of Npl3 with the five interaction partners in the presence of active Hmt1 and in the presence of Hmt1 with a G68R inactivation mutation. We found that the interaction between Npl3 and Air2, and Npl3 and Ded1, were significantly increased in the presence of active Hmt1; the interaction of Npl3 and Snp1 showed a similar degree of increase in interaction but this was not statistically significant. The interactions of Npl3 and Gbp2, along with Npl3 and Yra1, were not significantly increased or decreased by methylation. We conclude that methylarginine may be a widespread means by which the interactions of proteins are modulated.
Collapse
Affiliation(s)
- Melissa A Erce
- Systems Biology Laboratory, School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
35
|
SR-like RNA-binding protein Slr1 affects Candida albicans filamentation and virulence. Infect Immun 2013; 81:1267-76. [PMID: 23381995 DOI: 10.1128/iai.00864-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Candida albicans causes both mucosal and disseminated infections, and its capacity to grow as both yeast and hyphae is a key virulence factor. Hyphal formation is a type of polarized growth, and members of the SR (serine-arginine) family of RNA-binding proteins influence polarized growth of both Saccharomyces cerevisiae and Aspergillus nidulans. Therefore, we investigated whether SR-like proteins affect filamentous growth and virulence of C. albicans. BLAST searches with S. cerevisiae SR-like protein Npl3 (ScNpl3) identified two C. albicans proteins: CaNpl3, an apparent ScNpl3 ortholog, and Slr1, another SR-like RNA-binding protein with no close S. cerevisiae ortholog. Whereas ScNpl3 was critical for growth, deletion of NPL3 in C. albicans resulted in few phenotypic changes. In contrast, the slr1Δ/Δ mutant had a reduced growth rate in vitro, decreased filamentation, and impaired capacity to damage epithelial and endothelial cells in vitro. Mice infected intravenously with the slr1Δ/Δ mutant strain had significantly prolonged survival compared to that of mice infected with the wild-type or slr1Δ/Δ mutant complemented with SLR1 (slr1Δ/Δ+SLR1) strain, without a concomitant decrease in kidney fungal burden. Histopathology, however, revealed differential localization of slr1Δ/Δ hyphal and yeast morphologies within the kidney. Mice infected with slr1Δ/Δ cells also had an increased brain fungal burden, which correlated with increased invasion of brain, but not umbilical vein, endothelial cells in vitro. The enhanced brain endothelial cell invasion was likely due to the increased surface exposure of the Als3 adhesin on slr1Δ/Δ cells. Our results indicate that Slr1 is an SR-like protein that influences C. albicans growth, filamentation, host cell interactions, and virulence.
Collapse
|
36
|
Rojas M, Farr GW, Fernandez CF, Lauden L, McCormack JC, Wolin SL. Yeast Gis2 and its human ortholog CNBP are novel components of stress-induced RNP granules. PLoS One 2012; 7:e52824. [PMID: 23285195 PMCID: PMC3528734 DOI: 10.1371/journal.pone.0052824] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/23/2012] [Indexed: 11/19/2022] Open
Abstract
Although a CCTG expansion in the gene encoding the zinc knuckle protein CNBP causes a common form of muscular dystrophy, the function of both human CNBP and its putative budding yeast ortholog Gis2 remain poorly understood. Here we report the protein interactions of Gis2 and the subcellular locations of both Gis2 and CNBP. We found that Gis2 exhibits RNA-dependent interactions with two proteins involved in mRNA recognition, the poly(A) binding protein and the translation initiation factor eIF4G. We show that Gis2 is a component of two large RNA-protein granules, processing bodies and stress granules, which contain translationally repressed mRNAs. Consistent with a functional ortholog, CNBP also associates with the poly(A) binding protein and accumulates in stress granules during arsenite treatment of human cells. These results implicate both Gis2 and CNBP in mRNA handling during stress.
Collapse
Affiliation(s)
- Marta Rojas
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - George W. Farr
- Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Cesar F. Fernandez
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Lauden
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - John C. McCormack
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sandra L. Wolin
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
37
|
Tieg B, Krebber H. Dbp5 - from nuclear export to translation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:791-8. [PMID: 23128325 DOI: 10.1016/j.bbagrm.2012.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/17/2012] [Accepted: 10/26/2012] [Indexed: 12/17/2022]
Abstract
The DEAD-box RNA helicase Dbp5 is an essential and conserved mRNA export factor which functions in the ATP dependent remodeling of RNA/protein complexes. As such it displaces mRNA bound proteins at the cytoplasmic site of the nuclear pore complex. For the regulation of its RNA-dependent ATPase activity during late steps of nuclear transport, Dbp5 requires the nucleoporin Nup159 and its cofactors Gle1 and IP6. In addition to its role in mRNA export, a second important function of Dbp5 was identified in translation termination, where it acts together with eRF1 once the translation machinery has reached the stop codon. Similar to mRNA export, this function also requires Gle1-IP6, however, the counterpart of Nup159 is still missing. Potential other functions of the nucleo-cytoplasmic protein Dbp5 are discussed as well as its substrate specificity and details in its regulatory cycle that are based on recent biochemical and structural characterization. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Bettina Tieg
- Georg-August Universität Göttingen, Göttingen, Germany
| | | |
Collapse
|
38
|
Dahan N, Choder M. The eukaryotic transcriptional machinery regulates mRNA translation and decay in the cytoplasm. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:169-73. [PMID: 22982191 DOI: 10.1016/j.bbagrm.2012.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/28/2012] [Accepted: 08/29/2012] [Indexed: 11/29/2022]
Abstract
In eukaryotes, nuclear mRNA synthesis is physically separated from its cytoplasmic translation and degradation. Recent unexpected findings have revealed that, despite this separation, the transcriptional machinery can remotely control the cytoplasmic stages. Key to this coupling is the capacity of the transcriptional machinery to "imprint" the transcript with factors that escort it to the cytoplasm and regulate its localization, translation and decay. Some of these factors are known transcriptional regulators that also function in mRNA decay and are hence named "synthegradases". Imprinting can be carried out and/or regulated by RNA polymerase II or by promoter cis- and trans-acting elements. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Nili Dahan
- Department of Molecular Microbiology, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
39
|
Lee-Soety JY, Jones J, MacGibeny MA, Remaly EC, Daniels L, Ito A, Jean J, Radecki H, Spencer S. Yeast hnRNP-related proteins contribute to the maintenance of telomeres. Biochem Biophys Res Commun 2012; 426:12-7. [PMID: 22902537 DOI: 10.1016/j.bbrc.2012.07.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 01/06/2023]
Abstract
Telomeres protect the ends of linear chromosomes, which if eroded to a critical length can become uncapped and lead to replicative senescence. Telomerase maintains telomere length in some cells, but inappropriate expression facilitates the immortality of cancer cells. Recently, proteins involved in RNA processing and ribosome assembly, such as hnRNP (heterogeneous nuclear ribonucleoprotein) A1, have been found to participate in telomere maintenance in mammals. The Saccharomyces cerevisiae protein Npl3 shares significant amino acid sequence similarities with hnRNP A1. We found that deleting NPL3 accelerated the senescence of telomerase null cells. The highly conserved RNA recognition motifs (RRM) in Npl3 appear to be important for preventing faster senescence. Npl3 preferentially binds telomere sequences in vitro, suggesting that Npl3 may affect telomeres directly. Despite similarities between the two proteins, human hnRNP A1 is unable to complement the lack of Npl3 to rescue accelerated senescence in tlc1 npl3 cells. Deletion of CBC2, which encodes another hnRNP-related protein that associates with Npl3, also accelerates senescence. Potential mechanisms by which hnRNP-related proteins maintain telomeres are discussed.
Collapse
|
40
|
Richardson R, Denis CL, Zhang C, Nielsen MEO, Chiang YC, Kierkegaard M, Wang X, Lee DJ, Andersen JS, Yao G. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein. Mol Genet Genomics 2012; 287:711-730. [PMID: 22836166 DOI: 10.1007/s00438-012-0709-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/10/2012] [Indexed: 11/29/2022]
Abstract
Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made.
Collapse
Affiliation(s)
- Roy Richardson
- Department of Molecular, Cellular, and Biomedical Sciences, Rudman Hall, University of New Hampshire, Durham, NH 03824, USA
| | - Clyde L Denis
- Department of Molecular, Cellular, and Biomedical Sciences, Rudman Hall, University of New Hampshire, Durham, NH 03824, USA
| | - Chongxu Zhang
- Department of Molecular, Cellular, and Biomedical Sciences, Rudman Hall, University of New Hampshire, Durham, NH 03824, USA
| | - Maria E O Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, DK 5230, Denmark
| | - Yueh-Chin Chiang
- Department of Molecular, Cellular, and Biomedical Sciences, Rudman Hall, University of New Hampshire, Durham, NH 03824, USA
| | - Morten Kierkegaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, DK 5230, Denmark
| | - Xin Wang
- Department of Molecular, Cellular, and Biomedical Sciences, Rudman Hall, University of New Hampshire, Durham, NH 03824, USA
| | - Darren J Lee
- Department of Molecular, Cellular, and Biomedical Sciences, Rudman Hall, University of New Hampshire, Durham, NH 03824, USA
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, DK 5230, Denmark
| | - Gang Yao
- Department of Molecular, Cellular, and Biomedical Sciences, Rudman Hall, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
41
|
Rajyaguru P, She M, Parker R. Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. Mol Cell 2012; 45:244-54. [PMID: 22284680 DOI: 10.1016/j.molcel.2011.11.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/25/2011] [Accepted: 11/04/2011] [Indexed: 12/30/2022]
Abstract
The formation of mRNPs controls the interaction of the translation and degradation machinery with individual mRNAs. The yeast Scd6 protein and its orthologs regulate translation and mRNA degradation in yeast, C. elegans, D. melanogaster, and humans by an unknown mechanism. We demonstrate that Scd6 represses translation by binding the eIF4G subunit of eIF4F in a manner dependent on its RGG domain, thereby forming an mRNP repressed for translation initiation. Strikingly, several other RGG domain-containing proteins in yeast copurify with eIF4E/G and we demonstrate that two such proteins, Npl3 and Sbp1, also directly bind eIF4G and repress translation in a manner dependent on their RGG motifs. These observations identify the mechanism of Scd6 function through its RGG motif and indicate that eIF4G plays an important role as a scaffolding protein for the recruitment of translation repressors.
Collapse
Affiliation(s)
- Purusharth Rajyaguru
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
42
|
Erce MA, Pang CNI, Hart-Smith G, Wilkins MR. The methylproteome and the intracellular methylation network. Proteomics 2012; 12:564-86. [DOI: 10.1002/pmic.201100397] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/23/2011] [Accepted: 10/17/2011] [Indexed: 12/30/2022]
|
43
|
Garre E, Romero-Santacreu L, De Clercq N, Blasco-Angulo N, Sunnerhagen P, Alepuz P. Yeast mRNA cap-binding protein Cbc1/Sto1 is necessary for the rapid reprogramming of translation after hyperosmotic shock. Mol Biol Cell 2011; 23:137-50. [PMID: 22072789 PMCID: PMC3248893 DOI: 10.1091/mbc.e11-05-0419] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Global translation is inhibited in Saccharomyces cerevisiae cells under osmotic stress; nonetheless, osmostress-protective proteins are synthesized. We found that translation mediated by the mRNA cap-binding protein Cbc1 is stress-resistant and necessary for the rapid translation of osmostress-protective proteins under osmotic stress. In response to osmotic stress, global translation is inhibited, but the mRNAs encoding stress-protective proteins are selectively translated to allow cell survival. To date, the mechanisms and factors involved in the specific translation of osmostress-responsive genes in Saccharomyces cerevisiae are unknown. We find that the mRNA cap-binding protein Cbc1 is important for yeast survival under osmotic stress. Our results provide new evidence supporting a role of Cbc1 in translation initiation. Cbc1 associates with polysomes, while the deletion of the CBC1 gene causes hypersensitivity to the translation inhibitor cycloheximide and yields synthetic “sickness” in cells with limiting amounts of translation initiator factor eIF4E. In cbc1Δ mutants, translation drops sharply under osmotic stress, the subsequent reinitiation of translation is retarded, and “processing bodies” containing untranslating mRNAs remain for long periods. Furthermore, osmostress-responsive mRNAs are transcriptionally induced after osmotic stress in cbc1Δ cells, but their rapid association with polysomes is delayed. However, in cells containing a thermosensitive eIF4E allele, their inability to grow at 37ºC is suppressed by hyperosmosis, and Cbc1 relocalizes from nucleus to cytoplasm. These data support a model in which eIF4E-translation could be stress-sensitive, while Cbc1-mediated translation is necessary for the rapid translation of osmostress-protective proteins under osmotic stress.
Collapse
Affiliation(s)
- Elena Garre
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Friederichs JM, Ghosh S, Smoyer CJ, McCroskey S, Miller BD, Weaver KJ, Delventhal KM, Unruh J, Slaughter BD, Jaspersen SL. The SUN protein Mps3 is required for spindle pole body insertion into the nuclear membrane and nuclear envelope homeostasis. PLoS Genet 2011; 7:e1002365. [PMID: 22125491 PMCID: PMC3219597 DOI: 10.1371/journal.pgen.1002365] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/13/2011] [Indexed: 01/23/2023] Open
Abstract
The budding yeast spindle pole body (SPB) is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition.
Collapse
Affiliation(s)
| | - Suman Ghosh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Christine J. Smoyer
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Scott McCroskey
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Brandon D. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kyle J. Weaver
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kym M. Delventhal
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Brian D. Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
45
|
Yoshimura K, Mori T, Yokoyama K, Koike Y, Tanabe N, Sato N, Takahashi H, Maruta T, Shigeoka S. Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array. PLANT & CELL PHYSIOLOGY 2011; 52:1786-805. [PMID: 21862516 DOI: 10.1093/pcp/pcr115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have demonstrated that an Arabidopsis serine/arginine rich-like protein, atSR45a, interacts with other splicing factors and its expression is markedly induced by high-light stress, suggesting the involvement of atSR45a in the regulation of stress-responsive alternative splicing. A whole-genome tiling array identified the alternative splicing of genes regulated by atSR45a by comparing gene expression profiles in wild-type and knockout atSR45a (KO-sr45a) plants under high-light stress. The expression levels of genomic regions within 217 genes were significantly altered in the KO-sr45a plants compared with the wild-type plants. Many genes encoded factors involved in signal transduction, cell cycle and DNA processing, protein fate and transcription. A semi-quantitative reverse transcription-PCR (RT-PCR) analysis confirmed changes in the transcript levels and/or alternative splicing efficiency under high-light stress in 18 genes, suggesting that atSR45a affects directly or indirectly not only alternative splicing efficiency but also the transcription of these target genes. Changes in the expression of atSR45a in response to high-light stress temporally correlated with changes in the alternative splicing efficiency and transcript levels of three and one target genes, respectively. Sequencing of the alternatively spliced variants of three target genes showed that atSR45a suppresses the splicing efficiency of intron retention-type alternative splicing events. These findings indicated the importance of atSR45a to the diversification of the transcriptome under high-light stress.
Collapse
Affiliation(s)
- Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The mRNA export factor Npl3 mediates the nuclear export of large ribosomal subunits. EMBO Rep 2011; 12:1024-31. [PMID: 21852791 DOI: 10.1038/embor.2011.155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 06/21/2011] [Accepted: 06/28/2011] [Indexed: 12/27/2022] Open
Abstract
The nuclear export of large ribonucleoparticles is complex and requires specific transport factors. Messenger RNAs are exported through the RNA-binding protein Npl3 and the interacting export receptor Mex67. Export of large ribosomal subunits also requires Mex67; however, in this case, Mex67 binds directly to the 5S ribosomal RNA (rRNA) and does not require the Npl3 adaptor. Here, we have discovered a new function of Npl3 in mediating the export of pre-60S ribosomal subunit independently of Mex67. Npl3 interacts with the 25S rRNA, ribosomal and ribosome-associated proteins, as well as with the nuclear pore complex. Mutations in NPL3 lead to export defects of the large subunit and genetic interactions with other pre-60S export factors.
Collapse
|
47
|
Abstract
The cell nucleus is an intricate organelle that coordinates multiple activities that are associated with DNA replication and gene expression. In all eukaryotes, it stores the genetic information and the machineries that control the production of mature and export-competent messenger ribonucleoproteins (mRNPs), a multistep process that is regulated in a spatial and temporal manner. Recent studies suggest that post-translational modifications play a part in coordinating the co-transcriptional assembly, remodelling and export of mRNP complexes through nuclear pores, adding a new level of regulation to the process of gene expression.
Collapse
|
48
|
Dori-Bachash M, Shema E, Tirosh I. Coupled evolution of transcription and mRNA degradation. PLoS Biol 2011; 9:e1001106. [PMID: 21811398 PMCID: PMC3139634 DOI: 10.1371/journal.pbio.1001106] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 06/03/2011] [Indexed: 11/18/2022] Open
Abstract
mRNA levels are determined by the balance between transcription and mRNA degradation, and while transcription has been extensively studied, very little is known regarding the regulation of mRNA degradation and its coordination with transcription. Here we examine the evolution of mRNA degradation rates between two closely related yeast species. Surprisingly, we find that around half of the evolutionary changes in mRNA degradation were coupled to transcriptional changes that exert opposite effects on mRNA levels. Analysis of mRNA degradation rates in an interspecific hybrid further suggests that opposite evolutionary changes in transcription and in mRNA degradation are mechanistically coupled and were generated by the same individual mutations. Coupled changes are associated with divergence of two complexes that were previously implicated both in transcription and in mRNA degradation (Rpb4/7 and Ccr4-Not), as well as with sequence divergence of transcription factor binding motifs. These results suggest that an opposite coupling between the regulation of transcription and that of mRNA degradation has shaped the evolution of gene regulation in yeast.
Collapse
Affiliation(s)
- Mally Dori-Bachash
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Efrat Shema
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Itay Tirosh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
49
|
Tuteja R, Mehta J. A genomic glance at the components of the mRNA export machinery in Plasmodium falciparum. Commun Integr Biol 2011; 3:318-26. [PMID: 20798816 DOI: 10.4161/cib.3.4.11886] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 01/29/2023] Open
Abstract
Nuclear export of mRNAs is one of the steps critically important for gene expression and different steps of mRNA processing are linked to the export of the mRNA out of the nucleus. This coupling probably provides a quality control mechanism as well as a higher efficiency for the synthesis of mRNAs. The mRNA is synthesized in the nucleus and then exported to the cytoplasm through the nuclear pore complexes (NPCs), which are embedded in the nuclear envelope. The Mex67-Mtr2 complex in yeast and its counterpart Tap-p15 in higher eukaryotes function as an mRNA exporter through the NPC. Some of the DEAD box proteins such as UAP56 and Dbp5 have been implicated in mRNA export also. In this report using the bioinformatics approach we have analyzed the components of the mRNA export machinery in Plasmodium falciparum and also highlighted the salient features of some of the components. Further detailed studies on various components of nuclear mRNA export in Plasmodium falciparum will be essential to understand this important pathway.
Collapse
Affiliation(s)
- Renu Tuteja
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg, New Delhi India
| | | |
Collapse
|
50
|
Giannakouros T, Nikolakaki E, Mylonis I, Georgatsou E. Serine-arginine protein kinases: a small protein kinase family with a large cellular presence. FEBS J 2011; 278:570-86. [DOI: 10.1111/j.1742-4658.2010.07987.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|