1
|
Chatterjee C, Singh SK. Peptide and protein chemistry approaches to study the tumor suppressor protein p53. Org Biomol Chem 2022; 20:5500-5509. [PMID: 35786742 PMCID: PMC10112546 DOI: 10.1039/d2ob00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tumor suppressor and master gene regulator protein p53 has been the subject of intense investigation for several decades due to its mutation in about half of all human cancers. However, mechanistic studies of p53 in cells are complicated by its many dynamic binding partners and heterogeneous post-translational modifications. The design of therapeutics that rescue p53 functions in cells requires a mechanistic understanding of its protein-protein interactions in specific protein complexes and identifying changes in p53 activity by diverse post-translational modifications. This review highlights the important roles that peptide and protein chemistry have played in biophysical and biochemical studies aimed at elucidating p53 regulation by several key binding partners. The design of various peptide inhibitors that rescue p53 function in cells and new opportunities in targeting p53-protein interactions are discussed. In addition, the review highlights the importance of a protein semisynthesis approach to comprehend the role of site-specific PTMs in p53 regulation.
Collapse
Affiliation(s)
- Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Sumeet K Singh
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Mustafi P, Hu M, Kumari S, Das C, Li G, Kundu T. Phosphorylation-dependent association of human chromatin protein PC4 to linker histone H1 regulates genome organization and transcription. Nucleic Acids Res 2022; 50:6116-6136. [PMID: 35670677 PMCID: PMC9226532 DOI: 10.1093/nar/gkac450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Human Positive Coactivator 4 (PC4) is a multifaceted chromatin protein involved in diverse cellular processes including genome organization, transcription regulation, replication, DNA repair and autophagy. PC4 exists as a phospho-protein in cells which impinges on its acetylation by p300 and thereby affects its transcriptional co-activator functions via double-stranded DNA binding. Despite the inhibitory effects, the abundance of phosphorylated PC4 in cells intrigued us to investigate its role in chromatin functions in a basal state of the cell. We found that casein kinase-II (CKII)-mediated phosphorylation of PC4 is critical for its interaction with linker histone H1. By employing analytical ultracentrifugation and electron microscopy imaging of in vitro reconstituted nucleosomal array, we observed that phospho-mimic (PM) PC4 displays a superior chromatin condensation potential in conjunction with linker histone H1. ATAC-sequencing further unveiled the role of PC4 phosphorylation to be critical in inducing chromatin compaction of a wide array of coding and non-coding genes in vivo. Concordantly, phospho-PC4 mediated changes in chromatin accessibility led to gene repression and affected global histone modifications. We propose that the abundance of PC4 in its phosphorylated state contributes to genome compaction contrary to its co-activator function in driving several cellular processes like gene transcription and autophagy.
Collapse
Affiliation(s)
- Pallabi Mustafi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Mingli Hu
- National laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Sujata Kumari
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Chandrima Das
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Guohong Li
- National laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Jankipuram Extension, Lucknow 226031, India
| |
Collapse
|
3
|
Li M, Yang X, Zhang G, Wang L, Zhu Z, Zhang W, Huang H, Gao R. Heterogeneous nuclear ribonucleoprotein K promotes the progression of lung cancer by inhibiting the p53‐dependent signaling pathway. Thorac Cancer 2022; 13:1311-1321. [PMID: 35352475 PMCID: PMC9058298 DOI: 10.1111/1759-7714.14387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a nucleic acid‐binding protein. Reportedly, hnRNPK is overexpressed in many human tumors, and such overexpression is associated with poor prognosis, implicating the role of hnRNPK as an oncogene during tumorigenesis. In this study, hnRNPK expression in lung cancer tissues was investigated. Methods Briefly, hnRNPK was knocked down in lung cancer cell lines, and effects of knockdown on the cell proliferation, migration, and cell cycle were assessed using a cell counting kit‐8 (CCK‐8) assay, colony formation assay, transwell assay and flow cytometry. The effects of hnRNPK knockdown on the p53‐dependent signaling pathway were examined using western blotting. Finally, the effect of hnRNPK knockdown on tumor growth was verified in vivo using a lung cancer xenograft mouse model. Results hnRNPK knockdown inhibited the cell proliferation, migration and cell cycle. In addition to phenotypic changes, hnRNPK knockdown upregulated expressions of pCHK1, pCHK2, and p53,p21,cyclin D1, thereby mediating the DNA damage response (DDR). The regulatory function of hnRNPK during p53/p21/cyclin D1 signaling in hnRNPK‐knockdown A549 cells was confirmed by suppressed the protein expression of associated signaling pathways, which inhibited DDR. Conclusion hnRNPK plays a crucial role in the progression of lung cancer, ultimately affecting survival rate. Inhibition of progression of lung cancer cells induced by hnRNPK‐knockdown is dependent on activation of p53 by the p53/p21/cyclin D1 pathway.
Collapse
Affiliation(s)
- Mengyuan Li
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Xingjiu Yang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Guoxin Zhang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Le Wang
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Ziwei Zhu
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Wenlong Zhang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Hao Huang
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Ran Gao
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| |
Collapse
|
4
|
Pandey B, Dev A, Chakravorty D, Bhandare VV, Polley S, Roy S, Basu G. Insights on the disruption of the complex between human positive coactivator 4 and p53 by small molecules. Biochem Biophys Res Commun 2021; 578:15-20. [PMID: 34534740 DOI: 10.1016/j.bbrc.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Interaction between human positive coactivator 4 (PC4), an abundant nuclear protein, and the tumor suppressor protein p53 plays a crucial role in initiating apoptosis. In certain neurodegenerative diseases PC4 assisted-p53-dependent apoptosis may play a central role. Thus, disruption of p53-PC4 interaction may be a good drug target for certain disease pathologies. A p53-derived short peptide (AcPep) that binds the C-terminal domain of PC4 (C-PC4) is known to disrupt PC4-p53 interaction. To fully characterize its binding mode and binding site on PC4, we co-crystallized C-PC4 with the peptide and determined its structure. The crystal, despite exhibiting mass spectrometric signature of the peptide, lacked peptide electron density and showed a novel crystal lattice, when compared to C-PC4 crystals without the peptide. Using peptide-docked models of crystal lattices, corresponding to our structure and the peptide-devoid structure we show the origin of the novel crystal lattice to be dynamically bound peptide at the previously identified putative binding site. The weak binding is proposed to be due to the lack of the N-terminal domain of PC4 (N-PC4), which we experimentally show to be disordered with no effect on PC4 stability. Taking cue from the structure, virtual screening of ∼18.6 million small molecules from the ZINC15 database was performed, followed by toxicity and binding free energy filtering. The novel crystal lattice of C-PC4 in presence of the peptide, the role of the disordered N-PC4 and the high throughput identification of potent small molecules will allow a better understanding and control of p53-PC4 interaction.
Collapse
Affiliation(s)
- Bhawna Pandey
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Aditya Dev
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Debamitra Chakravorty
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | | | - Smarajit Polley
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Siddhartha Roy
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India.
| |
Collapse
|
5
|
Vickers TA, Migawa MT, Seth PP, Crooke ST. Interaction of ASOs with PC4 Is Highly Influenced by the Cellular Environment and ASO Chemistry. J Am Chem Soc 2020; 142:9661-9674. [PMID: 32374993 DOI: 10.1021/jacs.0c01808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The activity of PS-ASOs is strongly influenced by association with both inter- and intracellular proteins. The sequence, chemical nature, and structure of the ASO can have profound influences on the interaction of PS-ASOs with specific proteins. A more thorough understanding of how these pharmacological agents interact with various proteins and how chemical modifications, sequence, and structure influence interactions with proteins is needed to inform future ASO design efforts. To better understand the chemistry of PS-ASO interactions, we have focused on human positive cofactor 4 (PC4). Although several studies have investigated the in vitro binding properties of PC4 with endogenous nucleic acids, little is known about the chemistry of interaction of PS-ASOs with this protein. Here we examine in detail the impact of ASO backbone chemistry, 2'-modifications, and buffer environment on the binding affinity of PC4. In addition, using site-directed mutagenesis, we identify those amino acids that are specifically required for ASO binding interactions, and by substitution of abasic nucleotides we identify the positions on the ASO that most strongly influence affinity for PC4. Finally, to confirm that the interactions observed in vitro are biologically relevant, we use a recently developed complementation reporter system to evaluate the kinetics and subcellular localization of the interaction of ASO and PC4 in live cells.
Collapse
Affiliation(s)
- Timothy A Vickers
- Department of Core Antisense Research, IONIS Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Michael T Migawa
- Department of Medicinal ChemistryIONIS Pharmaceuticals, Inc.2855 Gazelle CourtCarlsbadCalifornia92010United States
| | - Punit P Seth
- Department of Medicinal ChemistryIONIS Pharmaceuticals, Inc.2855 Gazelle CourtCarlsbadCalifornia92010United States
| | - Stanley T Crooke
- Department of Core Antisense Research, IONIS Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| |
Collapse
|
6
|
Sikder S, Kumari S, Kumar M, Sen S, Singhal NB, Chellappan S, Godbole M, Chandrani P, Dutt A, Gopinath KS, Kundu TK. Chromatin protein PC4 is downregulated in breast cancer to promote disease progression: Implications of miR-29a. Oncotarget 2019; 10:6855-6869. [PMID: 31839879 PMCID: PMC6901337 DOI: 10.18632/oncotarget.27325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/19/2019] [Indexed: 02/05/2023] Open
Abstract
The human transcriptional coactivator PC4 has numerous roles to play in the cell. Other than its transcriptional coactivation function, it facilitates chromatin organization, DNA damage repair, viral DNA replication, etc. Although it was found to be an essential protein in vivo, the importance of this multifunctional protein in the regulation of different cellular pathways has not been investigated in details, particularly in oncogenesis. In this study, PC4 downregulation was observed in a significant proportion of mammary tissues obtained from Breast cancer patient samples as well as in a subset of highly invasive and metastatic Breast cancer patient-derived cell lines. We have identified a miRNA, miR-29a which potentially reduce the expression of PC4 both in RNA and protein level. This miR-29a was found to be indeed overexpressed in a substantial number of Breast cancer patient samples and cell lines as well, suggesting one of the key mechanisms of PC4 downregulation. Stable Knockdown of PC4 in MCF7 cells induced its migratory as well as invasive properties. Furthermore, in an orthotopic breast cancer mice model system; we have shown that reduced expression of PC4 enhances the tumorigenic potential substantially. Absence of PC4 led to the upregulation of several genes involved in Epithelial to Mesenchymal Transition (EMT), indicating the possible mechanism of uniform tumour progression in the orthotropic mice. Collectively these data establish the role of PC4 in tumour suppression.
Collapse
Affiliation(s)
- Sweta Sikder
- 1Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Sujata Kumari
- 1Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Manoj Kumar
- 1Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Shrinka Sen
- 1Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | - Mukul Godbole
- 3Integrated Cancer Genomics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| | - Pratik Chandrani
- 3Integrated Cancer Genomics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| | - Amit Dutt
- 3Integrated Cancer Genomics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| | | | - Tapas K. Kundu
- 1Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
7
|
Mondal P, Saleem S, Sikder S, Kundu TK, Biswas SC, Roy S. Multifunctional transcriptional coactivator PC4 is a global co-regulator of p53-dependent stress response and gene regulation. J Biochem 2019; 166:403-413. [PMID: 31236588 DOI: 10.1093/jb/mvz050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/19/2019] [Indexed: 01/26/2023] Open
Abstract
Human positive coactivator 4 (PC4), a multifunctional chromatin-associated protein, is known to directly interact with p53 and modulate expressions of a few p53-dependent genes. However, the role of PC4 in p53's myriad of other regulatory functions is not known. The p53-PC4 interaction was selectively perturbed by a small peptide which led to abrogation of genotoxic stress-induced up-regulation of many p53-dependent genes and reduction of apoptosis in A549 cells. Over-expression of a PC4 point mutant, incapable of binding p53, recapitulated many of the effects of the peptide. Global gene expression profiling in A549 cells, upon peptide treatment, revealed PC4's involvement in the regulation of many p53-dependent pathways, including the Hippo pathway. Introduction of the peptide in neuronal cells significantly reduced its amyloid-β-induced death. Thus, PC4 emerges as a global co-regulator of p53 and a therapeutic target against pathogeneses where the p53-dependent cell death process plays a crucial role.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biophysics, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata, West Bengal
| | - Suraiya Saleem
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, West Bengal
| | - Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Subhas Chandra Biswas
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, West Bengal
| | - Siddhartha Roy
- Department of Biophysics, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata, West Bengal
| |
Collapse
|
8
|
Megger DA, Abou-Eid S, Zülch B, Sitek B. Systematic analysis of synergistic proteome modulations in a drug combination of cisplatin and MLN4924. Mol Omics 2019; 14:450-457. [PMID: 30255909 DOI: 10.1039/c8mo00115d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemotherapeutic treatment regimens often take advantage of synergistic effects of drug combinations. Anticipating that synergistic effects on the cell biological level likely manifest on the proteome level, the analysis of proteome modulations represents an appropriate strategy to study drug combinations on a molecular level. More specifically, the detection of single proteins exhibiting synergistic abundance changes could be helpful to shed light on key molecules, which contribute in mechanisms facilitating the synergistic interaction and therefore represent potential targets for specific therapeutic approaches. In the reported study we aimed to provide evidence for this assumption and investigated the drug combination of cisplatin and the neddylation inhibitor MLN4924 in HCT-116 cells via cell biological analyses and mass spectrometry-based quantitative proteomics. From 1789 proteins quantified with two unique peptides, activated RNA polymerase II transcriptional coactivator p15 (SUB1) was highlighted as the most synergistically regulated protein using a synergistic scoring approach. Western blotting and analyses of cellular processes associated with this protein (DNA damage, oxidative stress and apoptosis) revealed supporting evidence for the synergistic regulation. Whereas the distinct role of SUB1 in the investigated drug combination needs to be elucidated in future studies, the presented results demonstrated the benefit and feasibility of synergistic scoring of proteome alterations to highlight proteins that likely contribute to the underlying molecular mechanisms of synergistic effects. Data are available via ProteomeXchange with identifier PXD009185.
Collapse
Affiliation(s)
- Dominik Andre Megger
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | | | | | | |
Collapse
|
9
|
Abstract
Long noncoding RNAs (lncRNAs) have recently considered as central regulators in diverse biological processes and emerged as vital players controlling tumorigenesis. Several lncRNAs can be classified into oncogenes and tumor suppressor genes depending on their function in cancer. A maternally expressed gene 3 (MEG3) gene transcripts a 1.6 kb lncRNA whose act as an antitumor component in different cancer cells, such as breast, liver, glioma, colorectal, cervical, gastric, lung, ovarian and osteosarcoma cancer cells. The present review highlights biological function of MEG3 to repress tumor through regulating the major tumor suppressor genes p53 and Rb, inhibiting angiogenesis-related factor, or controlling miRNAs. On the other hand, previous studies have also suggested that MEG3 mediates epithelial-mesenchymal transition (EMT). However, deregulation of MEG3 is associated with the development and progression of cancer, suggesting that MEG3 may function as a potential biomarker and therapeutic target for human cancers.
Collapse
|
10
|
Interaction of positive coactivator 4 with histone 3.3 protein is essential for transcriptional activation of the luteinizing hormone receptor gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:971-981. [PMID: 30496042 DOI: 10.1016/j.bbagrm.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
Abstract
The luteinizing hormone receptor (LHR) is essential for sexual development and reproduction in mammals. We have established that Sp1 has a central role in derepression of LHR gene transcription induced by Trichostatin A (TSA) in MCF7 cells. Moreover, the co-activator PC4 which associates directly with Sp1 at the LHR promoter is essential for TSA-mediated LHR transcription. This study explores interactions of PC4 with histone proteins, which presumably triggers chromatin modifications during LHR transcriptional activation. TSA treatment of MCF7 cells expressing PC4-Flag protein induces acetylation of histone 3 (H3) and immunoprecipitation (IP) studies revealed its interaction with PC4-Flag protein. MS/MS analysis of the protein complex obtained after IP from TSA treated samples detected H3.3 acetylated at K9, K14, K18, K23 and K27 as a PC4 interacting protein. The association of PC4 with H3.3 was corroborated by IP and re-ChIP using H3.3 antibody. Similarly, IP and re-ChIP showed association of PC4 with H3 acetylated protein. Knockdown of PC4 in MCF7 cells reduced H3.3 enrichment, H3 acetylation at the Lys sites and LHR promoter activity in TSA treated cells despite an increase in H3 and H3.3 protein induced by TSA, linking PC4 to H3 acetylation and LHR transcription. Depletion of H3.3 A/B in MCF7 cells impair chromatin accessibility and enrichment of Pol II and TFIIB at the LHR promoter and its activation, resulting in marked reduction of LHR gene expression. Together, these findings point to the critical role of PC4 and its association with acetylated H3.3 in TSA-induced LHR gene transcription.
Collapse
|
11
|
Shanmugam MK, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS, Sethi G, Lakshmanan M. Role of novel histone modifications in cancer. Oncotarget 2018; 9:11414-11426. [PMID: 29541423 PMCID: PMC5834259 DOI: 10.18632/oncotarget.23356] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023] Open
Abstract
Oncogenesis is a multistep process mediated by a variety of factors including epigenetic modifications. Global epigenetic post-translational modifications have been detected in almost all cancers types. Epigenetic changes appear briefly and do not involve permanent changes to the primary DNA sequence. These epigenetic modifications occur in key oncogenes, tumor suppressor genes, and transcription factors, leading to cancer initiation and progression. The most commonly observed epigenetic changes include DNA methylation, histone lysine methylation and demethylation, histone lysine acetylation and deacetylation. However, there are several other novel post-translational modifications that have been observed in recent times such as neddylation, sumoylation, glycosylation, phosphorylation, poly-ADP ribosylation, ubiquitination as well as transcriptional regulation and these have been briefly discussed in this article. We have also highlighted the diverse epigenetic changes that occur during the process of tumorigenesis and described the role of histone modifications that can occur on tumor suppressor genes as well as oncogenes, which regulate tumorigenesis and can thus form the basis of novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Surendar Arumugam
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Bian Jinsong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, India
| | - Ling Zhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
- Department of Pathology, National University Hospital Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Sub1/PC4, a multifaceted factor: from transcription to genome stability. Curr Genet 2017; 63:1023-1035. [DOI: 10.1007/s00294-017-0715-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
|
13
|
Griffin WC, Gao J, Byrd AK, Chib S, Raney KD. A biochemical and biophysical model of G-quadruplex DNA recognition by positive coactivator of transcription 4. J Biol Chem 2017; 292:9567-9582. [PMID: 28416612 DOI: 10.1074/jbc.m117.776211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/14/2017] [Indexed: 12/22/2022] Open
Abstract
DNA sequences that are guanine-rich have received considerable attention because of their potential to fold into a secondary, four-stranded DNA structure termed G-quadruplex (G4), which has been implicated in genomic instability and some human diseases. We have previously identified positive coactivator of transcription (PC4), a single-stranded DNA (ssDNA)-binding protein, as a novel G4 interactor. Here, to expand on these previous observations, we biochemically and biophysically characterized the interaction between PC4 and G4DNA. PC4 can bind alternative G4DNA topologies with a low nanomolar Kd value of ∼2 nm, similar to that observed for ssDNA. In consideration of the different structural features between G4DNA and ssDNA, these binding data indicated that PC4 can interact with G4DNA in a manner distinct from ssDNA. The stoichiometry of the PC4-G4 complex was 1:1 for PC4 dimer:G4 substrate. PC4 did not enhance the rate of folding of G4DNA, and formation of the PC4-G4DNA complex did not result in unfolding of the G4DNA structure. We assembled a G4DNA structure flanked by duplex DNA. We find that PC4 can interact with this G4DNA, as well as the complementary C-rich strand. Molecular docking simulations and DNA footprinting experiments suggest a model where a PC4 dimer accommodates the DNA with one monomer on the G4 strand and the second monomer bound to the C-rich strand. Collectively, these data provide a novel mode of PC4 binding to a DNA secondary structure that remains within the framework of the model for binding to ssDNA. Additionally, consideration of the PC4-G4DNA interaction could provide insight into the biological functions of PC4, which remain incompletely understood.
Collapse
Affiliation(s)
- Wezley C Griffin
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| | - Jun Gao
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| | - Alicia K Byrd
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| | - Shubeena Chib
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| | - Kevin D Raney
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| |
Collapse
|
14
|
Li N, Richard S. Sam68 functions as a transcriptional coactivator of the p53 tumor suppressor. Nucleic Acids Res 2016; 44:8726-8741. [PMID: 27365047 PMCID: PMC5062974 DOI: 10.1093/nar/gkw582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/18/2016] [Indexed: 02/07/2023] Open
Abstract
Sam68 is a known sequence-specific RNA binding protein that regulates alternative splicing events during the cell cycle and apoptosis. Sam68 has also been shown to influence transcription, but the molecular mechanism remains undefined. Herein we identify Sam68 as a transcriptional coactivator of the p53 tumor suppressor in response to DNA damage. Using CRISPR/Cas9 generated isogenic HCT116 Sam68−/− cell lines wild type or deficient for p53, we show that Sam68 is required for the efficient transactivation of p53 target genes. Consistently, Sam68 depletion caused defects in DNA damage-induced cell cycle arrest and apoptosis mediated by p53. Mechanistically, we demonstrate that Sam68 physically interacted with p53 in an RNA-dependent manner, and that this interaction was essential for the coactivator function of Sam68. Furthermore, we show that both Sam68 and p53 were recruited to promoters of p53-responsive genes, suggesting interdependence. Finally, Sam68 acted in concert with the p53 long noncoding RNA (lncRNA) target PR-lncRNA-1 for p53 recruitment, implicating a positive-feedback mechanism in which lncRNAs induced by the Sam68/p53 complex can enhance p53 transcriptional activity. These findings define a hitherto novel mechanism of action for Sam68 in governing p53 transcriptional activation, and represent the first report of Sam68 in the regulation of tumor suppressor activities.
Collapse
Affiliation(s)
- Naomi Li
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Sir Mortimer B Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada Department of Medicine and Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Sir Mortimer B Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada Department of Medicine and Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| |
Collapse
|
15
|
Cruz OHDL, Marchat LA, Guillén N, Weber C, Rosas IL, Díaz-Chávez J, Herrera L, Rojo-Domínguez A, Orozco E, López-Camarillo C. Multinucleation and Polykaryon Formation is Promoted by the EhPC4 Transcription Factor in Entamoeba histolytica. Sci Rep 2016; 6:19611. [PMID: 26792358 PMCID: PMC4726151 DOI: 10.1038/srep19611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 12/14/2015] [Indexed: 02/01/2023] Open
Abstract
Entamoeba histolytica is the intestinal parasite responsible for human amoebiasis that is a leading cause of death in developing countries. In this protozoan, heterogeneity in DNA content, polyploidy and genome plasticity have been associated to alterations in mechanisms controlling DNA replication and cell division. Studying the function of the transcription factor EhPC4, we unexpectedly found that it is functionally related to DNA replication, and multinucleation. Site-directed mutagenesis on the FRFPKG motif revealed that the K127 residue is required for efficient EhPC4 DNA-binding activity. Remarkably, overexpression of EhPC4 significantly increased cell proliferation, DNA replication and DNA content of trophozoites. A dramatically increase in cell size resulting in the formation of giant multinucleated trophozoites (polykaryon) was also found. Multinucleation event was associated to cytokinesis failure leading to abortion of ongoing cell division. Consistently, genome-wide profiling of EhPC4 overexpressing trophozoites revealed the up-regulation of genes involved in carbohydrates and nucleic acids metabolism, chromosome segregation and cytokinesis. Forced overexpression of one of these genes, EhNUDC (nuclear movement protein), led to alterations in cytokinesis and partially recapitulated the multinucleation phenotype. These data indicate for the first time that EhPC4 is associated with events related to polyploidy and genome stability in E. histolytica.
Collapse
Affiliation(s)
| | - Laurence A. Marchat
- National Polytechnic Institute, National School of Medicine and Homeopathy, Institutional Program of Molecular Biomedicine, Biotechnology Program, Mexico City, Mexico
| | - Nancy Guillén
- Institut Pasteur, Cellular Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
| | - Christian Weber
- Institut Pasteur, Cellular Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
| | - Itzel López Rosas
- Universidad Autonoma de la Ciudad de Mexico, Genomics Sciences Program, Mexico City, Mexico
| | - José Díaz-Chávez
- National Institute of Cancerology, Carcinogenesis Laboratory, Mexico City, Mexico
| | - Luis Herrera
- National Institute of Cancerology, Carcinogenesis Laboratory, Mexico City, Mexico
| | - Arturo Rojo-Domínguez
- Metropolitan Autonomous University, Natural Sciences Department, Mexico City, Mexico
| | - Esther Orozco
- Center for Research and Advanced Studies of the National Polytechnic Institute, Department of Infectomics and Molecular Pathogenesis, Mexico City, Mexico
| | - César López-Camarillo
- Universidad Autonoma de la Ciudad de Mexico, Genomics Sciences Program, Mexico City, Mexico
| |
Collapse
|
16
|
Wang X, Xu J, Liu C, Chen Y. Specific interaction of platinated DNA and proteins by surface plasmon resonance imaging. RSC Adv 2016. [DOI: 10.1039/c5ra27719a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A surface plasmon resonance imaging method to differentiate the interaction between the protein human high mobility group box 1 or human nuclear protein positive cofactor 4 (PC4) and DNAs has been developed.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jiying Xu
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Chanjuan Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Yi Chen
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
17
|
Identification and characterization of nonhistone chromatin proteins: human positive coactivator 4 as a candidate. Methods Mol Biol 2015; 1288:245-72. [PMID: 25827884 DOI: 10.1007/978-1-4939-2474-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The highly dynamic nucleoprotein structure of eukaryotic genome is organized in an ordered fashion, the unit of which is the nucleosome. The nucleosome is composed of core histones and DNA of variable size wrapped around it. Apart from the histone proteins, several nonhistone proteins also interact with the complex consisting of the DNA, the core and linker histones conferring highly regulated fluidity on the chromatin and permitting fine tuning of its functions. The nonhistone proteins are multifunctional and accentuate diverse cellular outcomes. In spite of the technical challenges, the architectural role of the nonhistone proteins altering the topology of the chromatin has been studied extensively. To appreciate the significance of the chromatin for genome function, it is essential to examine the role of the nonhistone proteins in different physiological conditions. Here, taking the example of a highly abundant chromatin protein, PC4 (Positive coactivator 4), we describe strategies for the identification of the chromatin-associated proteins and their structural and functional characterization.
Collapse
|
18
|
Chen L, Du C, Wang L, Yang C, Zhang JR, Li N, Li Y, Xie XD, Gao GD. Human positive coactivator 4 (PC4) is involved in the progression and prognosis of astrocytoma. J Neurol Sci 2014; 346:293-8. [DOI: 10.1016/j.jns.2014.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 08/17/2014] [Accepted: 09/12/2014] [Indexed: 02/02/2023]
|
19
|
Mulvey CM, Tudzarova S, Crawford M, Williams GH, Stoeber K, Godovac-Zimmermann J. Subcellular proteomics reveals a role for nucleo-cytoplasmic trafficking at the DNA replication origin activation checkpoint. J Proteome Res 2013; 12:1436-53. [PMID: 23320540 PMCID: PMC4261602 DOI: 10.1021/pr3010919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Depletion of DNA replication initiation factors such as CDC7 kinase triggers the origin activation checkpoint in healthy cells and leads to a protective cell cycle arrest at the G1 phase of the mitotic cell division cycle. This protective mechanism is thought to be defective in cancer cells. To investigate how this checkpoint is activated and maintained in healthy cells, we conducted a quantitative SILAC analysis of the nuclear- and cytoplasmic-enriched compartments of CDC7-depleted fibroblasts and compared them to a total cell lysate preparation. Substantial changes in total abundance and/or subcellular location were detected for 124 proteins, including many essential proteins associated with DNA replication/cell cycle. Similar changes in protein abundance and subcellular distribution were observed for various metabolic processes, including oxidative stress, iron metabolism, protein translation and the tricarboxylic acid cycle. This is accompanied by reduced abundance of two karyopherin proteins, suggestive of reduced nuclear import. We propose that altered nucleo-cytoplasmic trafficking plays a key role in the regulation of cell cycle arrest. The results increase understanding of the mechanisms underlying maintenance of the DNA replication origin activation checkpoint and are consistent with our proposal that cell cycle arrest is an actively maintained process that appears to be distributed over various subcellular locations.
Collapse
Affiliation(s)
- Claire M. Mulvey
- Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Slavica Tudzarova
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Mark Crawford
- Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Gareth H. Williams
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, United Kingdom
| | - Kai Stoeber
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
20
|
Peng Y, Yang J, Zhang E, Sun H, Wang Q, Wang T, Su Y, Shi C. Human positive coactivator 4 is a potential novel therapeutic target in non-small cell lung cancer. Cancer Gene Ther 2012; 19:690-6. [PMID: 22918472 DOI: 10.1038/cgt.2012.52] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transcriptional positive coactivator 4 (PC4) is a multifunctional nuclear protein that has important roles in DNA transcription, replication, repair and heterochromatinization. However, the role of PC4 in cancer remains to be clarified. Several studies propose that PC4 may act as a putative tumor suppressor. Here, we demonstrate for the first time that PC4 may represent a potential therapeutic target in non-small cell lung cancer (NSCLC). PC4 protein expression is significantly upregulated in NSCLC carcinoma tissues compared with their adjacent noncancerous counterparts as shown by immunohistochemical staining and western blotting in 104 pairs of formalin-fixed human NSCLC specimens and 6 fresh NSCLC samples. Knockdown of PC4 expression by sequence-specific small interfering RNA (siRNA) in human NSCLC cells (A549, H460 and H358) significantly inhibits the growth of cancer cells by the induction of cell cycle arrest and the increase of cell apoptosis in vitro. Interrupting the PC4 signaling pathway by injection of the PC4 siRNA liposome complex produced an effective regression of pre-established A549 cell xenografts in mice through growth inhibition and increased apoptosis. These results indicated that PC4 could be an attractive new therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Y Peng
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Research Center of Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
The transcription cycle in eukaryotes: From productive initiation to RNA polymerase II recycling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:391-400. [DOI: 10.1016/j.bbagrm.2012.01.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 01/11/2012] [Accepted: 01/14/2012] [Indexed: 01/03/2023]
|
22
|
Zhang ZJ, Tong YQ, Wang JJ, Yang C, Zhou GH, Li YH, Xie PL, Hu JY, Li GC. Spaceflight alters the gene expression profile of cervical cancer cells. CHINESE JOURNAL OF CANCER 2011; 30:842-52. [PMID: 22098948 PMCID: PMC4013332 DOI: 10.5732/cjc.011.10174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our previous study revealed that spaceflight induced biological changes in human cervical carcinoma Caski cells. Here, we report that 48A9 cells, which were subcloned from Caski cells, experienced significant growth suppression and exhibited low tumorigenic ability after spaceflight. To further understand the potential mechanism at the transcriptional level, we compared gene expression between 48A9 cells and ground control Caski cells with suppression subtractive hybridization (SSH) and reverse Northern blotting methods, and analyzed the relative gene network and molecular functions with the Ingenuity Pathways Analysis (IPA) program. We found 5 genes, SUB1, SGEF, MALAT-1, MYL6, and MT-CO2, to be up-regulated and identified 3 new cDNAs, termed B4, B5, and C4, in 48A9 cells. In addition, we also identified the two most significant gene networks to indicate the function of these genes using the IPA program. To our knowledge, our results show for the first time that spaceflight can reduce the growth of tumor cells, and we also provide a new model for oncogenesis study.
Collapse
Affiliation(s)
- Zhi-Jie Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Debnath S, Chatterjee S, Arif M, Kundu TK, Roy S. Peptide-protein interactions suggest that acetylation of lysines 381 and 382 of p53 is important for positive coactivator 4-p53 interaction. J Biol Chem 2011; 286:25076-87. [PMID: 21586571 DOI: 10.1074/jbc.m110.205328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human transcriptional positive coactivator 4 (PC4) activates several p53-dependent genes. It has been demonstrated that this is a consequence of direct interaction with p53. Previously, we have concluded that PC4 interacts mainly with the C-terminal negative regulatory domain of p53 through its DNA binding C-terminal half. NMR chemical shift perturbation studies with peptide fragments indicated that amino acids 380-386 of p53 are crucial for interaction with PC4. This was verified by fluorescence anisotropy and sedimentation velocity studies. A peptide consisting of p53-(380-386) sequence, when attached to a cell penetration tag and nuclear localization signal, localizes to the nucleus and inhibits luciferase gene expression from a transfected plasmid carrying a Luc gene under a p53-dependent promoter. Acetylation of lysine 382/381 enhanced the binding of this peptide to PC4 by about an order of magnitude. NMR and mutagenesis studies indicated that serine 73 of PC4 is an important residue for recognition of p53. Intermolecular nuclear Overhauser effect placed aspartate 76 in the vicinity of lysine 381, indicating that the region around residues 73-76 of PC4 is important for p53 recognition. We conclude that the 380-386 region of p53 interacts with the region around residues 73-76 of PC4, and acetylation of lysine 382/381 of p53 may play an important role in modulating p53-PC4 interaction and as a consequence PC4 mediated activation of p53 target genes.
Collapse
Affiliation(s)
- Subrata Debnath
- Division of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research (India), 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | | | | | |
Collapse
|
24
|
Liao M, Zhang Y, Kang JH, Dufau ML. Coactivator function of positive cofactor 4 (PC4) in Sp1-directed luteinizing hormone receptor (LHR) gene transcription. J Biol Chem 2010; 286:7681-91. [PMID: 21193408 DOI: 10.1074/jbc.m110.188532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The LHR has an essential role in sexual development and reproductive function, and its transcription is subjected to several modes of regulation. In this study, we investigated PC4 coactivator function in the control of LHR transcription. Knockdown of PC4 by siRNA inhibited the LHR basal promoter activity and trichostatin A (TSA)-induced gene transcriptional activation and expression in MCF-7 cells. While overexpression of PC4 alone had no effect on the LHR gene, it significantly enhanced Sp1- but not Sp3-mediated LHR transcriptional activity. PC4 directly interacts with Sp1 at the LHR promoter, and this interaction is negatively regulated by PC4 phosphorylation. The coactivator domain (22-91 aa) of PC4 and DNA binding domain of Sp1 are essential for PC4/Sp1 interaction. ChIP assay revealed significant occupancy of PC4 at the LHR promoter that increased upon TSA treatment. Disruption of PC4 expression significantly reduced TSA-induced recruitment of TFIIB and RNAP II, at the promoter. PC4 functions are beyond TSA-induced phosphatase release, PI3K-mediated Sp1 phosphorylation, and HDAC1/2/mSin3A co-repressor release indicating its role as linker coactivator of Sp1 and the transcriptional machinery. These findings demonstrated a critical aspect of LHR modulation whereby PC4 acts as a coactivator of Sp1 to contribute to the human of LHR transcription.
Collapse
Affiliation(s)
- Mingjuan Liao
- Molecular Endocrinology Section, Program of Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
25
|
Arif M, Senapati P, Shandilya J, Kundu TK. Protein lysine acetylation in cellular function and its role in cancer manifestation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:702-16. [PMID: 20965294 DOI: 10.1016/j.bbagrm.2010.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 01/05/2023]
Abstract
Lysine acetylation appears to be crucial for diverse biological phenomena, including all the DNA-templated processes, metabolism, cytoskeleton dynamics, cell signaling, and circadian rhythm. A growing number of cellular proteins have now been identified to be acetylated and constitute the complex cellular acetylome. Cross-talk among protein acetylation together with other post-translational modifications fine-tune the cellular functions of different protein machineries. Dysfunction of acetylation process is often associated with several diseases, especially cancer. This review focuses on the recent advances in the role of protein lysine acetylation in diverse cellular functions and its implications in cancer manifestation.
Collapse
Affiliation(s)
- Mohammed Arif
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur (P.O.), Bangalore-560 064, Karnataka, India
| | | | | | | |
Collapse
|
26
|
Fernandez-Fernandez MR, Sot B. The relevance of protein-protein interactions for p53 function: the CPE contribution. Protein Eng Des Sel 2010; 24:41-51. [PMID: 20952436 DOI: 10.1093/protein/gzq074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The relevance of p53 as a tumour suppressor is evident from the fact that more than 50% of the human cancers hold mutations in the gene coding for p53, and of the remaining cancers a considerable number have alterations in the p53 pathway. From its discovery 30 years ago, the importance of p53 as an essential transcription factor for tumour suppression has become clear. More recently, new and seemingly diverse roles of p53 have been discovered. It soon became clear that protein-protein interactions play an important role in the regulation of the p53 function at different levels. Here we review the contribution by Prof. Fersht and his group towards understanding the basis and functional relevance of p53 protein-protein interactions, and the important role that protein science, biophysics and structural biology have played in the science produced in the Centre for Protein Engineering over the years.
Collapse
|
27
|
Singh BN, Zhang G, Hwa YL, Li J, Dowdy SC, Jiang SW. Nonhistone protein acetylation as cancer therapy targets. Expert Rev Anticancer Ther 2010; 10:935-54. [PMID: 20553216 DOI: 10.1586/era.10.62] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acetylation and deacetylation are counteracting, post-translational modifications that affect a large number of histone and nonhistone proteins. The significance of histone acetylation in the modification of chromatin structure and dynamics, and thereby gene transcription regulation, has been well recognized. A steadily growing number of nonhistone proteins have been identified as acetylation targets and reversible lysine acetylation in these proteins plays an important role(s) in the regulation of mRNA stability, protein localization and degradation, and protein-protein and protein-DNA interactions. The recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation, differentiation and apoptosis. Many nonhistone proteins targeted by acetylation are the products of oncogenes or tumor-suppressor genes and are directly involved in tumorigenesis, tumor progression and metastasis. Aberrant activity of HDACs has been documented in several types of cancers and HDAC inhibitors (HDACi) have been employed for therapeutic purposes. Here we review the published literature in this field and provide updated information on the regulation and function of nonhistone protein acetylation. While concentrating on the molecular mechanism and pathways involved in the addition and removal of the acetyl moiety, therapeutic modalities of HDACi are also discussed.
Collapse
Affiliation(s)
- Brahma N Singh
- Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | | | | | | | | | | |
Collapse
|
28
|
Das C, Gadad SS, Kundu TK. Human Positive Coactivator 4 Controls Heterochromatinization and Silencing of Neural Gene Expression by Interacting with REST/NRSF and CoREST. J Mol Biol 2010; 397:1-12. [DOI: 10.1016/j.jmb.2009.12.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 12/29/2009] [Accepted: 12/30/2009] [Indexed: 10/20/2022]
|
29
|
Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells. Blood 2009; 115:975-84. [PMID: 19965633 DOI: 10.1182/blood-2009-06-227017] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BCL6 is a transcriptional repressor required for mature B-cell germinal center (GC) formation and implicated in lymphomagenesis. BCL6's physiologic function is only partially known because the complete set of its targets in GC B cells has not been identified. To address this issue, we used an integrated biochemical-computational-functional approach to identify BCL6 direct targets in normal GC B cells. This approach includes (1) identification of BCL6-bound promoters by genome-wide chromatin immunoprecipitation, (2) inference of transcriptional relationships by the use of a regulatory network reverse engineering approach (ARACNe), and (3) validation of physiologic relevance of the candidate targets down-regulated in GC B cells. Our approach demonstrated that a large set of promoters (> 4000) is physically bound by BCL6 but that only a fraction of them is repressed in GC B cells. This set of 1207 targets identifies several cellular functions directly controlled by BCL6 during GC development, including activation, survival, DNA-damage response, cell cycle arrest, cytokine signaling, Toll-like receptor signaling, and differentiation. These results define a broad role of BCL6 in preventing centroblasts from responding to signals leading to exit from the GC before they complete the phase of proliferative expansion and of antibody affinity maturation.
Collapse
|
30
|
Barrier-to-autointegration factor proteome reveals chromatin-regulatory partners. PLoS One 2009; 4:e7050. [PMID: 19759913 PMCID: PMC2739719 DOI: 10.1371/journal.pone.0007050] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 08/10/2009] [Indexed: 01/06/2023] Open
Abstract
Nuclear lamin filaments and associated proteins form a nucleoskeletal (“lamina”) network required for transcription, replication, chromatin organization and epigenetic regulation in metazoans. Lamina defects cause human disease (“laminopathies”) and are linked to aging. Barrier-to-autointegration factor (BAF) is a mobile and essential component of the nuclear lamina that binds directly to histones, lamins and LEM-domain proteins, including the inner nuclear membrane protein emerin, and has roles in chromatin structure, mitosis and gene regulation. To understand BAF's mechanisms of action, BAF associated proteins were affinity-purified from HeLa cell nuclear lysates using BAF-conjugated beads, and identified by tandem mass spectrometry or independently identified and quantified using the iTRAQ method. We recovered A- and B-type lamins and core histones, all known to bind BAF directly, plus four human transcription factors (Requiem, NonO, p15, LEDGF), disease-linked proteins (e.g., Huntingtin, Treacle) and several proteins and enzymes that regulate chromatin. Association with endogenous BAF was independently validated by co-immunoprecipitation from HeLa cells for seven candidates including Requiem, poly(ADP-ribose) polymerase 1 (PARP1), retinoblastoma binding protein 4 (RBBP4), damage-specific DNA binding protein 1 (DDB1) and DDB2. Interestingly, endogenous BAF and emerin each associated with DDB2 and CUL4A in a UV- and time-dependent manner, suggesting BAF and emerin have dynamic roles in genome integrity and might help couple DNA damage responses to the nuclear lamina network. We conclude this proteome is a rich source of candidate partners for BAF and potentially also A- and B-type lamins, which may reveal how chromatin regulation and genome integrity are linked to nuclear structure.
Collapse
|
31
|
Rajagopalan S, Andreeva A, Teufel DP, Freund SM, Fersht AR. Interaction between the transactivation domain of p53 and PC4 exemplifies acidic activation domains as single-stranded DNA mimics. J Biol Chem 2009; 284:21728-37. [PMID: 19525231 PMCID: PMC2755895 DOI: 10.1074/jbc.m109.006429] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/11/2009] [Indexed: 12/03/2022] Open
Abstract
The tumor suppressor p53 regulates cell cycle arrest and apoptosis by transactivating several genes that are critical for these processes. The transcriptional activity of p53 is often regulated by post-translational modifications and its interactions with various transcriptional coactivators. Here we report a physical interaction between the N-terminal transactivation domain (TAD) of p53 and the C-terminal DNA-binding domain of positive cofactor 4 (PC4(CTD)). Using NMR spectroscopy, we showed that residues 35-57 (TAD2) interact with PC4. (15)N,(1)H HSQC and fluorescence competition experiments indicated that TAD binds to the DNA-binding site of PC4. Hepta-phosphorylation of the TAD peptide increased its binding affinity. Computer modeling of the p53N-PC4 complex revealed several important interactions that are reminiscent of those in the single-stranded DNA-PC4 complex. The ubiquitous nature of the acidic transactivation domain of p53 in mediating interactions with several transcription cofactors is also manifested as a DNA mimetic.
Collapse
Affiliation(s)
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | | | | | | |
Collapse
|
32
|
Mortusewicz O, Roth W, Li N, Cardoso MC, Meisterernst M, Leonhardt H. Recruitment of RNA polymerase II cofactor PC4 to DNA damage sites. ACTA ACUST UNITED AC 2008; 183:769-76. [PMID: 19047459 PMCID: PMC2592824 DOI: 10.1083/jcb.200808097] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The multifunctional nuclear protein positive cofactor 4 (PC4) is involved in various cellular processes including transcription, replication, and chromatin organization. Recently, PC4 has been identified as a suppressor of oxidative mutagenesis in Escherichia coli and Saccharomyces cerevisiae. To investigate a potential role of PC4 in mammalian DNA repair, we used a combination of live cell microscopy, microirradiation, and fluorescence recovery after photobleaching analysis. We found a clear accumulation of endogenous PC4 at DNA damage sites introduced by either chemical agents or laser microirradiation. Using fluorescent fusion proteins and specific mutants, we demonstrated that the rapid recruitment of PC4 to laser-induced DNA damage sites is independent of poly(ADP-ribosyl)ation and γH2AX but depends on its single strand binding capacity. Furthermore, PC4 showed a high turnover at DNA damages sites compared with the repair factors replication protein A and proliferating cell nuclear antigen. We propose that PC4 plays a role in the early response to DNA damage by recognizing single-stranded DNA and may thus initiate or facilitate the subsequent steps of DNA repair.
Collapse
Affiliation(s)
- Oliver Mortusewicz
- Department of Biology II, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Batta K, Yokokawa M, Takeyasu K, Kundu TK. Human transcriptional coactivator PC4 stimulates DNA end joining and activates DSB repair activity. J Mol Biol 2008; 385:788-99. [PMID: 19038270 DOI: 10.1016/j.jmb.2008.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/25/2008] [Accepted: 11/03/2008] [Indexed: 12/01/2022]
Abstract
Human transcriptional coactivator PC4 is a highly abundant nuclear protein that is involved in diverse cellular processes ranging from transcription to chromatin organization. Earlier, we have shown that PC4, a positive activator of p53, overexpresses upon genotoxic insult in a p53-dependent manner. In the present study, we show that PC4 stimulates ligase-mediated DNA end joining irrespective of the source of DNA ligase. Pull-down assays reveal that PC4 helps in the association of DNA ends through its C-terminal domain. In vitro nonhomologous end-joining assays with cell-free extracts show that PC4 enhances the joining of noncomplementary DNA ends. Interestingly, we found that PC4 activates double-strand break (DSB) repair activity through stimulation of DSB rejoining in vivo. Together, these findings demonstrate PC4 as an activator of nonhomologous end joining and DSB repair activity.
Collapse
Affiliation(s)
- Kiran Batta
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, PO Bangalore 560064, India
| | | | | | | |
Collapse
|
34
|
Arginine methylation of hnRNP K enhances p53 transcriptional activity. FEBS Lett 2008; 582:1761-5. [DOI: 10.1016/j.febslet.2008.04.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/24/2008] [Accepted: 04/27/2008] [Indexed: 01/18/2023]
|
35
|
Contreras-Levicoy J, Urbina F, Maldonado E. Schizosaccharomyces pombe positive cofactor 4 stimulates basal transcription from TATA-containing and TATA-less promoters through Mediator and transcription factor IIA. FEBS J 2008; 275:2873-83. [DOI: 10.1111/j.1742-4658.2008.06429.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Kishore A, Batta K, Das C, Agarwal S, Kundu T. p53 regulates its own activator: transcriptional co-activator PC4, a new p53-responsive gene. Biochem J 2007; 406:437-44. [PMID: 17555406 PMCID: PMC2049034 DOI: 10.1042/bj20070390] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tumour suppressor protein p53 regulates the expression of several genes that mediate cell cycle arrest, apoptosis, DNA repair and other cellular responses. Recently, we have shown that human transcriptional co-activator PC4 is a unique activator of p53 function. In the present study, we report that PC4 is a p53-inducible gene. Bioinformatics analysis reveals multiple p53-binding sites in the PC4 promoter. We have found that indeed p53 binds to all the identified sites in vitro and in vivo with varying affinities. p53 acts as an activator of PC4 transcription. Both PC4 mRNA and protein levels increase in response to stimuli that result in p53 induction. Furthermore, PC4 enhances p53 recruitment to the PC4 promoter. Our results thus establish the first report of a positively regulated feedback loop to control p53 function.
Collapse
Affiliation(s)
- A. Hari Kishore
- *Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560066, India
| | - Kiran Batta
- *Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560066, India
| | - Chandrima Das
- *Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560066, India
| | - Shipra Agarwal
- †Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560066, India
| | - Tapas K. Kundu
- *Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560066, India
- To whom correspondence should be addressed (email )
| |
Collapse
|
37
|
Batta K, Kundu TK. Activation of p53 function by human transcriptional coactivator PC4: role of protein-protein interaction, DNA bending, and posttranslational modifications. Mol Cell Biol 2007; 27:7603-14. [PMID: 17785449 PMCID: PMC2169069 DOI: 10.1128/mcb.01064-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tumor suppressor p53 controls cell cycle checkpoints and apoptosis via the transactivation of several genes that are involved in these processes. The functions of p53 are regulated by a wide variety of proteins, which interact with it either directly or indirectly. The multifunctional human transcriptional coactivator PC4 interacts with p53 in vivo and in vitro and regulates its function. Here we report the molecular mechanisms of the PC4-mediated activation of p53 function. PC4 interacts with the DNA binding and C-terminal domains of p53 through its DNA binding domain, which is essential for the stimulation of p53 DNA binding. Remarkably, ligation-mediated circularization assays reveal that PC4 induces significant bending in the DNA double helix. Deletion mutants defective in DNA bending are found to be impaired in activating p53-mediated DNA binding and apoptosis. Furthermore, acetylation of PC4 enhances, while phosphorylation abolishes, its ability to bend DNA, activate p53 DNA binding, and, thereby, regulate p53 functions. In conclusion, PC4 activates p53 recruitment to p53-responsive promoters (Bax and p21) in vivo through its interaction with p53 and by providing bent substrate for p53 recruitment. These results elucidate the general molecular mechanisms of activation of p53 function, mediated by its coactivators.
Collapse
Affiliation(s)
- Kiran Batta
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, P.O. Bangalore-560064, India
| | | |
Collapse
|
38
|
Jakobs A, Himstedt F, Funk M, Korn B, Gaestel M, Niedenthal R. Ubc9 fusion-directed SUMOylation identifies constitutive and inducible SUMOylation. Nucleic Acids Res 2007; 35:e109. [PMID: 17709345 PMCID: PMC2034454 DOI: 10.1093/nar/gkm617] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Constitutive and induced protein SUMOylation is involved in the regulation of a variety of cellular processes, such as regulation of gene expression and protein transport, and proceeds mainly in the nucleus of the cell. So far, several hundred SUMOylation targets have been identified, but presumably they represent only a part of the total of proteins which are regulated by SUMOylation. Here, we used the Ubc9 fusion-dependent SUMOylation system (UFDS) to screen for constitutive and induced SUMOylation of 46 randomly chosen proteins with proven or potential nuclear localization. Fourteen new UFDS-substrate proteins were identified of which eight could be demonstrated to be SUMOylated in a UFDS-independent manner in vivo. Of these, three were constitutively SUMOylated (FOS, CRSP9 and CDC37) while the remaining five substrates (CSNK2B, TAF10, HSF2BP, PSMC3 and DRG1) showed a stimulation-dependent SUMOylation induced by the MAP3 kinase MEKK1. Hence, UFDS is appropriate for the identification and characterization of constitutive and, more importantly, induced protein SUMOylation in vivo.
Collapse
Affiliation(s)
- Astrid Jakobs
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Fabian Himstedt
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Martin Funk
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Bernhard Korn
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Matthias Gaestel
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Rainer Niedenthal
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- *To whom correspondence should be addressed. +0511 532 2826+0511 532 2827
| |
Collapse
|
39
|
Yang M, Wu S, Su X, May WS. JAZ mediates G1 cell-cycle arrest and apoptosis by positively regulating p53 transcriptional activity. Blood 2006; 108:4136-45. [PMID: 16931621 PMCID: PMC1895452 DOI: 10.1182/blood-2006-06-029645] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 08/01/2006] [Indexed: 12/19/2022] Open
Abstract
We previously identified JAZ as a novel zinc finger (ZF) protein by screening a murine interleukin-3 (IL-3)-dependent NFS/N1.H7 myeloid cell cDNA library. JAZ is a member of a new class of ZFPs that is evolutionarily conserved and preferentially binds to dsRNA, but its function was unknown. Now, we report that the stress of IL-3 growth factor withdrawal up-regulates JAZ expression in hematopoietic cells in association with p53 activation and induction of cell death. Biochemical analysis reveals that JAZ associates with p53 to stimulate its transcriptional activity in p53-expressing cells, but not in p53-null cells unless complemented with p53. JAZ functions to mediate G1 cell-cycle arrest followed by apoptosis in a p53-dependent mechanism that is associated with up-regulation of p21 and BAX, dephosphorylation of Rb, and repression of cyclin A. Of importance, siRNA "knockdown" of endogenous JAZ inhibits p53 transcriptional activity, decreases the G1/G0 population, and attenuates stress-induced cell death. While JAZ directly binds p53 in vitro in a mechanism requiring p53's C-terminal regulatory domain but independent of dsRNA, the dsRNA-binding ZF domains are required for JAZ's stimulatory role of p53 in vivo by dictating its nuclear localization. Thus, JAZ is a novel negative regulator of cell growth by positively regulating p53.
Collapse
Affiliation(s)
- Mingli Yang
- University of Florida Shands Cancer Center, Department of Medicine, University of Florida, 1376 Mowry Rd, Gainesville, FL 32610-3633, USA
| | | | | | | |
Collapse
|
40
|
Mayelzadeh F, Martinez JD. DNA binding and selective gene induction by different forms of the p53 protein. Oncogene 2006; 26:2955-63. [PMID: 17130840 DOI: 10.1038/sj.onc.1210110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
P53 is a tumor suppressor gene that plays a crucial role in suppressing tumorigenesis by inducing either cell cycle arrest or apoptosis in cells with DNA damage. In more than 50% of tumors p53 is inactivated by gene mutations. However, there have also been reports of tumor cells in which p53 remains wild type and is present in elevated concentrations. Here we utilized a set of mutant cell lines, which, unlike the parental A1-5 cell line, which expresses a mouse tsp53 and becomes growth arrested at 32 degrees C, are capable of growth at this same incubation temperature. We found that the tsp53 in the two cell lines, ALTR-17 and ALTR-24, was identical to the parental A1-5s and concentrated in the nucleus at 32 degrees C. Examination of both lines revealed that p21 was induced at 32 degrees C, although to a lesser extent than in parental cells and that the p21 genes were not mutated. Interestingly, evaluation of the conformation of tsp53 using conformation-specific antibodies showed that the protein existed in different forms, which were found to bind DNA using chromatin immunoprecipitation assays and which we showed could induce expression of a p21 reporter construct. We conclude that the tsp53 may exist in various forms capable of binding DNA.
Collapse
Affiliation(s)
- F Mayelzadeh
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|
41
|
Das C, Hizume K, Batta K, Kumar BRP, Gadad SS, Ganguly S, Lorain S, Verreault A, Sadhale PP, Takeyasu K, Kundu TK. Transcriptional coactivator PC4, a chromatin-associated protein, induces chromatin condensation. Mol Cell Biol 2006; 26:8303-15. [PMID: 16982701 PMCID: PMC1636769 DOI: 10.1128/mcb.00887-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human transcriptional coactivator PC4 is a highly abundant multifunctional protein which plays diverse important roles in cellular processes, including transcription, replication, and repair. It is also a unique activator of p53 function. Here we report that PC4 is a bona fide component of chromatin with distinct chromatin organization ability. PC4 is predominantly associated with the chromatin throughout the stages of cell cycle and is broadly distributed on the mitotic chromosome arms in a punctate manner except for the centromere. It selectively interacts with core histones H3 and H2B; this interaction is essential for PC4-mediated chromatin condensation, as demonstrated by micrococcal nuclease (MNase) accessibility assays, circular dichroism spectroscopy, and atomic force microscopy (AFM). The AFM images show that PC4 compacts the 100-kb reconstituted chromatin distinctly compared to the results seen with the linker histone H1. Silencing of PC4 expression in HeLa cells results in chromatin decompaction, as evidenced by the increase in MNase accessibility. Knocking down of PC4 up-regulates several genes, leading to the G2/M checkpoint arrest of cell cycle, which suggests its physiological role as a chromatin-compacting protein. These results establish PC4 as a new member of chromatin-associated protein family, which plays an important role in chromatin organization.
Collapse
Affiliation(s)
- Chandrima Das
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
43
|
Moumen A, Masterson P, O'Connor MJ, Jackson SP. hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell 2005; 123:1065-78. [PMID: 16360036 DOI: 10.1016/j.cell.2005.09.032] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 08/10/2005] [Accepted: 09/07/2005] [Indexed: 02/04/2023]
Abstract
In response to DNA damage, mammalian cells trigger the p53-dependent transcriptional induction of factors that regulate DNA repair, cell-cycle progression, or cell survival. Through differential proteomics, we identify heterogeneous nuclear ribonucleoprotein K (hnRNP K) as being rapidly induced by DNA damage in a manner that requires the DNA-damage signaling kinases ATM or ATR. Induction of hnRNP K ensues through the inhibition of its ubiquitin-dependent proteasomal degradation mediated by the ubiquitin E3 ligase HDM2/MDM2. Strikingly, hnRNP K depletion abrogates transcriptional induction of p53 target genes and causes defects in DNA-damage-induced cell-cycle-checkpoint arrests. Furthermore, in response to DNA damage, p53 and hnRNP K are recruited to the promoters of p53-responsive genes in a mutually dependent manner. These findings establish hnRNP K as a new HDM2 target and show that, by serving as a cofactor for p53, hnRNP K plays key roles in coordinating transcriptional responses to DNA damage.
Collapse
Affiliation(s)
- Abdeladim Moumen
- The Wellcome Trust and Cancer Research UK Gurdon Institute and Department of Zoology, Cambridge University, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | | | | | | |
Collapse
|
44
|
Shakib K, Norman JT, Fine LG, Brown LR, Godovac-Zimmermann J. Proteomics profiling of nuclear proteins for kidney fibroblasts suggests hypoxia, meiosis, and cancer may meet in the nucleus. Proteomics 2005; 5:2819-38. [PMID: 15942958 DOI: 10.1002/pmic.200401108] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteomics methods were used to characterize proteins that change their form or abundance in the nucleus of NRK49F rat kidney fibroblasts during prolonged hypoxia (1% O(2), 12 h). Of the 791 proteins that were monitored, about 20% showed detectable changes. The 51 most abundant proteins were identified by mass spectrometry. Changes in nuclear receptor transcription factors (THRalpha1, RORalpha4, HNF4alpha, NUR77), other transcription factors (GATA1, AP-2alpha, OCT1, ATF6alpha, ZFP161, ZNF354A, PDCD2), and transcription cofactors (PC4, PCAF, MTA1, TCEA1, JMY) are indicative of major, co-ordinated changes in transcription. Proteins involved in DNA repair/recombination, ribosomal RNA synthesis, RNA processing, nuclear transport, nuclear organization, protein translation, glycolysis, lipid metabolism, several protein kinases (PKCdelta, MAP3K4, GRK3), as well as proteins with no established functional role were also observed. The observed proteins suggest nuclear regulatory roles for proteins involved in cytosolic processes such as glycolysis and fatty acid metabolism, and roles in overall nuclear structure/organization for proteins previously associated with meiosis and/or spermatogenesis (synaptonemal complex proteins 1 and 2 (SYCP1, SYCP2), meiosis-specific nuclear structural protein 1 (MNS1), LMNC2, zinc finger protein 99 (ZFP99)). Proteins associated with cytoplasmic membrane functions (ACTN4, hyaluronan mediated motility receptor (RHAMM), VLDLR, GRK3) and/or endocytosis (DNM2) were also seen. For 30% of the identified proteins, new isoforms indicative of alternative transcription were detected (e.g., GATA1, ATF6alpha, MTA1, MLH1, MYO1C, UBF, SYCP2, EIF3S10, MAP3K4, ZFP99). Comparison with proteins involved in cell death, cancer, and testis/meiosis/spermatogenesis suggests commonalities, which may reflect fundamental mechanisms for down-regulation of cellular function.
Collapse
Affiliation(s)
- Kaveh Shakib
- Department of Medicine, Rayne Institute, University College London, London, UK
| | | | | | | | | |
Collapse
|
45
|
Marroquin CE, Wai PY, Kuo PC, Guo H. Redox-mediated upregulation of hepatocyte iNOS transcription requires coactivator PC4. Surgery 2005; 138:93-9. [PMID: 16003322 DOI: 10.1016/j.surg.2005.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Redox-mediated upregulation of transcription of hepatocyte inducible nitric oxide synthase (iNOS) requires hepatocyte nuclear factor IV-alpha (HNF-4alpha). In this setting, PC4 is often isolated with HNF-4alpha in DNA-protein pull-down studies. Transcriptional coactivator PC4 facilitates activator-dependent transcription via interactions with basal transcriptional machinery that are independent of PC4-DNA binding. We hypothesized that PC4 is a necessary component of HNF-4alpha-regulated redox-sensitive hepatocyte iNOS transcription. METHODS Murine CCL9.1 hepatocytes were stimulated with interleukin-1beta (IL-1beta; 1000 U/mL) in the presence and absence of peroxide (H(2)O(2); 50 nmol/L). Antisense and sense oligonucleotides to HNF-4alpha and PC4 were added selectively. Coimmunoprecipitation (Co-IP) studies determined the association between HNF-4alpha and PC4. Transient transfection was performed with the use of a luciferase reporter construct containing the murine iNOS promoter (1.8 kb). Chromatin immunoprecipitation assays determined in vivo binding of PC4 and HNF-4alpha to the iNOS promoter region. RESULTS Ablation of either HNF-4alpha or PC4 blunted the peroxide-mediated increase in the activation of the iNOS promoter. In IL-1beta+H(2)O(2) only, co-IP studies demonstrated the presence of an HNF-4alpha-PC4 protein complex, and chromatin immunoprecipitation assays demonstrated that this complex binds to the genomic iNOS promoter. CONCLUSIONS Redox-mediated upregulation of hepatocyte iNOS transcription requires an HNF-4alpha-PC4 transcriptional complex.
Collapse
Affiliation(s)
- Carlos E Marroquin
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|