1
|
Fallahee I, Hawiger D. Episomal Vectors for Stable Production of Recombinant Proteins and Engineered Antibodies. Antibodies (Basel) 2024; 13:18. [PMID: 38534208 PMCID: PMC10967652 DOI: 10.3390/antib13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
There is tremendous interest in the production of recombinant proteins, particularly bispecific antibodies and antibody-drug conjugates for research and therapeutic use. Here, we demonstrate a highly versatile plasmid system that allows the rapid generation of stable Expi293 cell pools by episomal retention of transfected DNA. By linking protein expression to puromycin resistance through an attenuated internal ribosome entry site, we achieve stable cell pools producing proteins of interest. In addition, split intein-split puromycin-mediated selection of two separate protein expression cassettes allows the stable production of bispecific antibody-like molecules or antibodies with distinct C-terminal heavy chain modifications, such as an antigen on one chain and a sortase tag on the other chain. We also use this novel expression system to generate stable Expi293 cell pools that secrete sortase A Δ59 variant Srt4M. Using these reagents, we prepared a site-specific drug-to-antibody ratio of 1 antibody-siRNA conjugate. We anticipate the simple, robust, and rapid stable protein expression systems described here being useful for a wide variety of applications.
Collapse
Affiliation(s)
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
2
|
Fallahee I, Hawiger D. EPISOMAL VECTORS FOR STABLE PRODUCTION OF RECOMBINANT PROTEINS AND ENGINEERED ANTIBODIES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574076. [PMID: 38260603 PMCID: PMC10802304 DOI: 10.1101/2024.01.03.574076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
There is tremendous interest in the production of recombinant proteins, particularly bispecific antibodies and antibody-drug conjugates for research and therapeutic use. Here, we demonstrate a highly versatile plasmid system that allows rapid generation of stable Expi293 cell pools by episomal retention of transfected DNA. By linking protein expression to puromycin resistance though an attenuated internal ribosome entry site, we achieve stable cell pools producing proteins of interest. In addition, split intein-split puromycin-mediated selection of two separate protein expression cassettes allows the stable production of bispecific antibody-like molecules or antibodies with distinct C-terminal heavy chain modifications, such as an antigen on one chain and a sortase tag on the other chain. We also use this novel expression system to generate stable Expi293 cell pools that secrete sortase A Δ59 variant Srt4M. Using these reagents, we prepared a site-specific drug-to-antibody ratio of 1 antibody-siRNA conjugate. We anticipate the simple, robust, and rapid stable protein expression systems described here being useful for a wide variety of applications.
Collapse
|
3
|
Lee CSK, Weiβ M, Hamperl S. Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes. Nucleus 2023; 14:2229642. [PMID: 37469113 PMCID: PMC10361152 DOI: 10.1080/19491034.2023.2229642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
In eukaryotic genomes, hundreds to thousands of potential start sites of DNA replication named origins are dispersed across each of the linear chromosomes. During S-phase, only a subset of origins is selected in a stochastic manner to assemble bidirectional replication forks and initiate DNA synthesis. Despite substantial progress in our understanding of this complex process, a comprehensive 'identity code' that defines origins based on specific nucleotide sequences, DNA structural features, the local chromatin environment, or 3D genome architecture is still missing. In this article, we review the genetic and epigenetic features of replication origins in yeast and metazoan chromosomes and highlight recent insights into how this flexibility in origin usage contributes to nuclear organization, cell growth, differentiation, and genome stability.
Collapse
Affiliation(s)
- Clare S K Lee
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Weiβ
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
4
|
The genetic architecture of DNA replication timing in human pluripotent stem cells. Nat Commun 2021; 12:6746. [PMID: 34799581 PMCID: PMC8604924 DOI: 10.1038/s41467-021-27115-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
DNA replication follows a strict spatiotemporal program that intersects with chromatin structure but has a poorly understood genetic basis. To systematically identify genetic regulators of replication timing, we exploited inter-individual variation in human pluripotent stem cells from 349 individuals. We show that the human genome's replication program is broadly encoded in DNA and identify 1,617 cis-acting replication timing quantitative trait loci (rtQTLs) - sequence determinants of replication initiation. rtQTLs function individually, or in combinations of proximal and distal regulators, and are enriched at sites of histone H3 trimethylation of lysines 4, 9, and 36 together with histone hyperacetylation. H3 trimethylation marks are individually repressive yet synergistically associate with early replication. We identify pluripotency-related transcription factors and boundary elements as positive and negative regulators of replication timing, respectively. Taken together, human replication timing is controlled by a multi-layered mechanism with dozens of effectors working combinatorially and following principles analogous to transcription regulation.
Collapse
|
5
|
Mulia GE, Picanço-Castro V, Stavrou EF, Athanassiadou A, Figueiredo ML. Advances in the Development and the Applications of Non-viral, Episomal Vectors for Gene Therapy. Hum Gene Ther 2021; 32:1076-1095. [PMID: 34348480 PMCID: PMC8819515 DOI: 10.1089/hum.2020.310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nonviral and nonintegrating episomal vectors are reemerging as a valid, alternative technology to integrating viral vectors for gene therapy, due to their more favorable safety profile, significantly lower risk for insertional mutagenesis, and a lesser potential for innate immune reactions, in addition to their low production cost. Over the past few years, attempts have been made to generate highly functional nonviral vectors that display long-term maintenance within cells and promote more sustained gene expression relative to conventional plasmids. Extensive research into the parameters that stabilize the episomal DNA within dividing and nondividing cells has shed light into the genetic and epigenetic mechanisms that govern replication and transcription of episomal DNA within a mammalian nucleus in long-term cell culture. Episomal vectors based on scaffold/matrix attachment regions (S/MARs) do not integrate into the genomic DNA and address the serious problem of plasmid loss during mitosis by providing mitotic stability to established plasmids, which results in long-term transfection and transgene expression. The inclusion, in such vectors, of an origin of replication—initiation region—from the human genome has greatly enhanced their performance in primary cell culture. A number of vectors that function as episomes have arisen, which are either devoid or depleted of harmful CpG sequences and bacterial genes, and their effectiveness, as well as that of nonintegrating viral episomes, is enhanced when combined with S/MAR elements. As a result of these advances, an “S/MAR technology” has emerged for the production of efficient episomal vectors. Significant research continues in this field and innovations, in combination with promising systems based on nanoparticles and potentially combined with physical delivery methods, will enable the generation of optimized systems with scale-up and clinical application suitability utilizing episomal vectors.
Collapse
Affiliation(s)
- Grace E Mulia
- Purdue University, Basic Medical Sciences, West Lafayette, Indiana, United States;
| | - Virginia Picanço-Castro
- University of Sao Paulo Faculty of Medicine of Ribeirao Preto, 54539, Center for Cell-based Therapy, Ribeirao Preto, São Paulo, Brazil;
| | - Eleana F Stavrou
- University of Patras, Department of General Biology, Patras, Greece;
| | - Aglaia- Athanassiadou
- University of Patras Medical School, General Biology, Asklepiou str, University Campus, Rion Patras, Greece, 26504;
| | - Marxa L Figueiredo
- Purdue University, Basic Medical Sciences, 625 Harrison St., LYNN 2177, West Lafayette, Indiana, United States, 47907;
| |
Collapse
|
6
|
Zhang Y, Huang L, Fu H, Smith OK, Lin CM, Utani K, Rao M, Reinhold WC, Redon CE, Ryan M, Kim R, You Y, Hanna H, Boisclair Y, Long Q, Aladjem MI. A replicator-specific binding protein essential for site-specific initiation of DNA replication in mammalian cells. Nat Commun 2016; 7:11748. [PMID: 27272143 PMCID: PMC4899857 DOI: 10.1038/ncomms11748] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/26/2016] [Indexed: 12/28/2022] Open
Abstract
Mammalian chromosome replication starts from distinct sites; however, the principles governing initiation site selection are unclear because proteins essential for DNA replication do not exhibit sequence-specific DNA binding. Here we identify a replication-initiation determinant (RepID) protein that binds a subset of replication-initiation sites. A large fraction of RepID-binding sites share a common G-rich motif and exhibit elevated replication initiation. RepID is required for initiation of DNA replication from RepID-bound replication origins, including the origin at the human beta-globin (HBB) locus. At HBB, RepID is involved in an interaction between the replication origin (Rep-P) and the locus control region. RepID-depleted murine embryonic fibroblasts exhibit abnormal replication fork progression and fewer replication-initiation events. These observations are consistent with a model, suggesting that RepID facilitates replication initiation at a distinct group of human replication origins. Origins of mammalian DNA replication are poorly characterised because they lack an Identifiable consensus sequence. Here the authors identify RepID, a protein that binds to a subset of G-rich replication origins and facilitates initiation from those origins.
Collapse
Affiliation(s)
- Ya Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Liang Huang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Owen K Smith
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chii Mei Lin
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Koichi Utani
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mishal Rao
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Ryan
- In Silico Solutions, Fairfax, Virginia 22033, USA
| | - RyangGuk Kim
- In Silico Solutions, Fairfax, Virginia 22033, USA
| | - Yang You
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Harlington Hanna
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yves Boisclair
- Department of Animal Science, Cornell University, Ithaca, New York 14853-4801, USA
| | - Qiaoming Long
- Department of Animal Science, Cornell University, Ithaca, New York 14853-4801, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
7
|
Bartholdy B, Mukhopadhyay R, Lajugie J, Aladjem MI, Bouhassira EE. Allele-specific analysis of DNA replication origins in mammalian cells. Nat Commun 2015; 6:7051. [PMID: 25987481 PMCID: PMC4479011 DOI: 10.1038/ncomms8051] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/26/2015] [Indexed: 01/01/2023] Open
Abstract
The mechanisms that control the location and timing of firing of replication origins are poorly understood. Using a novel functional genomic approach based on the analysis of SNPs and indels in phased human genomes, we observe that replication asynchrony is associated with small cumulative variations in the initiation efficiency of multiple origins between the chromosome homologues, rather than with the activation of dormant origins. Allele-specific measurements demonstrate that the presence of G-quadruplex-forming sequences does not correlate with the efficiency of initiation. Sequence analysis reveals that the origins are highly enriched in sequences with profoundly asymmetric G/C and A/T nucleotide distributions and are almost completely depleted of antiparallel triplex-forming sequences. We therefore propose that although G4-forming sequences are abundant in replication origins, an asymmetry in nucleotide distribution, which increases the propensity of origins to unwind and adopt non-B DNA structure, rather than the ability to form G4, is directly associated with origin activity.
Collapse
Affiliation(s)
- Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Rituparna Mukhopadhyay
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Julien Lajugie
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Mirit I. Aladjem
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Eric E. Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| |
Collapse
|
8
|
Fu H, Martin MM, Regairaz M, Huang L, You Y, Lin CM, Ryan M, Kim R, Shimura T, Pommier Y, Aladjem MI. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage. Nat Commun 2015; 6:6746. [PMID: 25879486 PMCID: PMC4400873 DOI: 10.1038/ncomms7746] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 02/24/2015] [Indexed: 12/31/2022] Open
Abstract
The Mus81 endonuclease resolves recombination intermediates and mediates cellular responses to exogenous replicative stress. Here, we show that Mus81 also regulates the rate of DNA replication during normal growth by promoting replication fork progression while reducing the frequency of replication initiation events. In the absence of Mus81 endonuclease activity, DNA synthesis is slowed and replication initiation events are more frequent. In addition, Mus81-deficient cells fail to recover from exposure to low doses of replication inhibitors and cell viability is dependent on the XPF endonuclease. Despite an increase in replication initiation frequency, cells lacking Mus81 use the same pool of replication origins as Mus81-expressing cells. Therefore, decelerated DNA replication in Mus81-deficient cells does not initiate from cryptic or latent origins not used during normal growth. These results indicate that Mus81 plays a key role in determining the rate of DNA replication without activating a novel group of replication origins.
Collapse
Affiliation(s)
- Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melvenia M. Martin
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie Regairaz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liang Huang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang You
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chi-Mei Lin
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Ryan
- InSilico Solutions, 11781 Lee Jackson Highway, Fairfax, VA 22033, USA
| | - RyangGuk Kim
- InSilico Solutions, 11781 Lee Jackson Highway, Fairfax, VA 22033, USA
| | - Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Urban JM, Foulk MS, Casella C, Gerbi SA. The hunt for origins of DNA replication in multicellular eukaryotes. F1000PRIME REPORTS 2015; 7:30. [PMID: 25926981 PMCID: PMC4371235 DOI: 10.12703/p7-30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Origins of DNA replication (ORIs) occur at defined regions in the genome. Although DNA sequence defines the position of ORIs in budding yeast, the factors for ORI specification remain elusive in metazoa. Several methods have been used recently to map ORIs in metazoan genomes with the hope that features for ORI specification might emerge. These methods are reviewed here with analysis of their advantages and shortcomings. The various factors that may influence ORI selection for initiation of DNA replication are discussed.
Collapse
Affiliation(s)
- John M. Urban
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| | - Michael S. Foulk
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Department of Biology, Mercyhurst University501 East 38th Street, Erie, PA 16546USA
| | - Cinzia Casella
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Institute for Molecular Medicine, University of Southern DenmarkJB Winsloews Vej 25, 5000 Odense CDenmark
| | - Susan A. Gerbi
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| |
Collapse
|
10
|
Hyrien O. Peaks cloaked in the mist: the landscape of mammalian replication origins. J Cell Biol 2015; 208:147-60. [PMID: 25601401 PMCID: PMC4298691 DOI: 10.1083/jcb.201407004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/16/2014] [Indexed: 12/23/2022] Open
Abstract
Replication of mammalian genomes starts at sites termed replication origins, which historically have been difficult to locate as a result of large genome sizes, limited power of genetic identification schemes, and rareness and fragility of initiation intermediates. However, origins are now mapped by the thousands using microarrays and sequencing techniques. Independent studies show modest concordance, suggesting that mammalian origins can form at any DNA sequence but are suppressed by read-through transcription or that they can overlap the 5' end or even the entire gene. These results require a critical reevaluation of whether origins form at specific DNA elements and/or epigenetic signals or require no such determinants.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique UMR8197 and Institut National de la Santé et de la Recherche Médicale U1024, 75005 Paris, France
| |
Collapse
|
11
|
Smith OK, Aladjem MI. Chromatin structure and replication origins: determinants of chromosome replication and nuclear organization. J Mol Biol 2014; 426:3330-41. [PMID: 24905010 DOI: 10.1016/j.jmb.2014.05.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 12/29/2022]
Abstract
The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review, we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome's three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication.
Collapse
Affiliation(s)
- Owen K Smith
- DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Valton AL, Hassan-Zadeh V, Lema I, Boggetto N, Alberti P, Saintomé C, Riou JF, Prioleau MN. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J 2014; 33:732-46. [PMID: 24521668 DOI: 10.1002/embj.201387506] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA replication ensures the accurate duplication of the genome at each cell cycle. It begins at specific sites called replication origins. Genome-wide studies in vertebrates have recently identified a consensus G-rich motif potentially able to form G-quadruplexes (G4) in most replication origins. However, there is no experimental evidence to demonstrate that G4 are actually required for replication initiation. We show here, with two model origins, that G4 motifs are required for replication initiation. Two G4 motifs cooperate in one of our model origins. The other contains only one critical G4, and its orientation determines the precise position of the replication start site. Point mutations affecting the stability of this G4 in vitro also impair origin function. Finally, this G4 is not sufficient for origin activity and must cooperate with a 200-bp cis-regulatory element. In conclusion, our study strongly supports the predicted essential role of G4 in replication initiation.
Collapse
Affiliation(s)
- Anne-Laure Valton
- Institut Jacques Monod, CNRS UMR7592 Université Paris Diderot Equipe Labellisée Ligue contre le cancer, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Okada N, Shimizu N. Dissection of the beta-globin replication-initiation region reveals specific requirements for replicator elements during gene amplification. PLoS One 2013; 8:e77350. [PMID: 24124615 PMCID: PMC3790722 DOI: 10.1371/journal.pone.0077350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022] Open
Abstract
Gene amplification plays a pivotal role in malignant transformation of human cells. A plasmid with both a mammalian replication-initiation region (IR)/origin/replicator and a nuclear matrix-attachment region (MAR) is spontaneously amplified in transfected cells by a mechanism that involves amplification at the extrachromosomal site, followed by amplification at the chromosomal arm, ultimately generating a long homogeneously staining region (HSR). Several observations suggest that replication initiation from IR sequences might mediate amplification. To test this idea, we previously dissected c-myc and DHFR IRs to identify the minimum sequence required to support amplification. In this study, we applied an improved analysis that discriminates between two amplification steps to the ß-globin RepP IR, which contains separate elements already known to be essential for initiation on the chromosome arm. The IR sequence was required at least for the extrachromosomal amplification step. In addition to the vector-encoded MAR, amplification also required an AT-rich region and a MAR-like element, consistent with the results regarding replicator activity on the chromosome. However, amplification did not require the AG-rich tract necessary for replicator activity, but instead required a novel sequence containing another AG-rich tract. The differential sequence requirement might be a consequence of extrachromosomal replication.
Collapse
Affiliation(s)
- Naoya Okada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
14
|
Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle. PLoS Genet 2013; 9:e1003542. [PMID: 23754963 PMCID: PMC3674996 DOI: 10.1371/journal.pgen.1003542] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/19/2013] [Indexed: 12/15/2022] Open
Abstract
Mammalian DNA replication starts at distinct chromosomal sites in a tissue-specific pattern coordinated with transcription, but previous studies have not yet identified a chromatin modification that correlates with the initiation of DNA replication at particular genomic locations. Here we report that a distinct fraction of replication initiation sites in the human genome are associated with a high frequency of dimethylation of histone H3 lysine K79 (H3K79Me2). H3K79Me2-containing chromatin exhibited the highest genome-wide enrichment for replication initiation events observed for any chromatin modification examined thus far (23.39% of H3K79Me2 peaks were detected in regions adjacent to replication initiation events). The association of H3K79Me2 with replication initiation sites was independent and not synergistic with other chromatin modifications. H3K79 dimethylation exhibited wider distribution on chromatin during S-phase, but only regions with H3K79 methylation in G1 and G2 were enriched in replication initiation events. H3K79 was dimethylated in a region containing a functional replicator (a DNA sequence capable of initiating DNA replication), but the methylation was not evident in a mutant replicator that could not initiate replication. Depletion of DOT1L, the sole enzyme responsible for H3K79 methylation, triggered limited genomic over-replication although most cells could continue to proliferate and replicate DNA in the absence of methylated H3K79. Thus, prevention of H3K79 methylation might affect regulatory processes that modulate the order and timing of DNA replication. These data are consistent with the hypothesis that dimethylated H3K79 associates with some replication origins and marks replicated chromatin during S-phase to prevent re-replication and preserve genomic stability.
Collapse
|
15
|
Kholodii G, Dantsevich O, Tarantul V. Transfecting DNA is frequently inserted near DNA replication origins. Cell Cycle 2012; 11:2956-8. [PMID: 22801542 DOI: 10.4161/cc.20950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
Martin MM, Ryan M, Kim R, Zakas AL, Fu H, Lin CM, Reinhold WC, Davis SR, Bilke S, Liu H, Doroshow JH, Reimers MA, Valenzuela MS, Pommier Y, Meltzer PS, Aladjem MI. Genome-wide depletion of replication initiation events in highly transcribed regions. Genome Res 2011; 21:1822-32. [PMID: 21813623 DOI: 10.1101/gr.124644.111] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This report investigates the mechanisms by which mammalian cells coordinate DNA replication with transcription and chromatin assembly. In yeast, DNA replication initiates within nucleosome-free regions, but studies in mammalian cells have not revealed a similar relationship. Here, we have used genome-wide massively parallel sequencing to map replication initiation events, thereby creating a database of all replication initiation sites within nonrepetitive DNA in two human cell lines. Mining this database revealed that genomic regions transcribed at moderate levels were generally associated with high replication initiation frequency. In genomic regions with high rates of transcription, very few replication initiation events were detected. High-resolution mapping of replication initiation sites showed that replication initiation events were absent from transcription start sites but were highly enriched in adjacent, downstream sequences. Methylation of CpG sequences strongly affected the location of replication initiation events, whereas histone modifications had minimal effects. These observations suggest that high levels of transcription interfere with formation of pre-replication protein complexes. Data presented here identify replication initiation sites throughout the genome, providing a foundation for further analyses of DNA-replication dynamics and cell-cycle progression.
Collapse
Affiliation(s)
- Melvenia M Martin
- Laboratory of Molecular Pharmacology, CCR, NCI, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ding Q, MacAlpine DM. Defining the replication program through the chromatin landscape. Crit Rev Biochem Mol Biol 2011; 46:165-79. [PMID: 21417598 DOI: 10.3109/10409238.2011.560139] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA replication is an essential cell cycle event required for the accurate and timely duplication of the chromosomes. It is essential that the genome is replicated accurately and completely within the confines of S-phase. Failure to completely copy the genome has the potential to result in catastrophic genomic instability. Replication initiates in a coordinated manner from multiple locations, termed origins of replication, distributed across each of the chromosomes. The selection of these origins of replication is a dynamic process responding to both developmental and tissue-specific signals. In this review, we explore the role of the local chromatin environment in regulating the DNA replication program at the level of origin selection and activation. Finally, there is increasing molecular evidence that the DNA replication program itself affects the chromatin landscape, suggesting that DNA replication is critical for both genetic and epigenetic inheritance.
Collapse
Affiliation(s)
- Queying Ding
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
18
|
Prevention of transcriptional silencing by a replicator-binding complex consisting of SWI/SNF, MeCP1, and hnRNP C1/C2. Mol Cell Biol 2011; 31:3472-84. [PMID: 21690294 DOI: 10.1128/mcb.05587-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional silencing selectively impedes gene expression. Silencing is often accompanied by replication delay and can be prevented by replicator sequences. Here we report a replicator-binding protein complex involved in the prevention of transcriptional silencing. The protein complex interacts with an essential asymmetric region within the human β-globin Rep-P replicator and includes hnRNP C1/C2, SWI/SNF complex, and MeCP1, which are members of the locus control region (LCR)-associated remodeling complex (LARC). Interaction between LARC and Rep-P prevented transcriptional silencing and replication delay. Transgenes that did not contain the asymmetric LARC-binding region of Rep-P replicated late and exhibited stable silencing that could not be affected by a DNA methylation inhibitor. In contrast, transgenes that contain a mutation of the asymmetric region of Rep-P that could not bind LARC exhibited a silent state that could transiently be reactivated by DNA demethylation. The effect of DNA demethylation was transient, and prolonged exposure to a methylation inhibitor induced distinct, stable, methylation-independent silencing. These observations suggest that the interaction of LARC complex with replicators plays a role in preventing gene silencing and provides support for a novel, epigenetic mechanism of resistance to methylation inhibitors.
Collapse
|
19
|
Mesner LD, Valsakumar V, Karnani N, Dutta A, Hamlin JL, Bekiranov S. Bubble-chip analysis of human origin distributions demonstrates on a genomic scale significant clustering into zones and significant association with transcription. Genome Res 2010; 21:377-89. [PMID: 21173031 DOI: 10.1101/gr.111328.110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have used a novel bubble-trapping procedure to construct nearly pure and comprehensive human origin libraries from early S- and log-phase HeLa cells, and from log-phase GM06990, a karyotypically normal lymphoblastoid cell line. When hybridized to ENCODE tiling arrays, these libraries illuminated 15.3%, 16.4%, and 21.8% of the genome in the ENCODE regions, respectively. Approximately half of the origin fragments cluster into zones, and their signals are generally higher than those of isolated fragments. Interestingly, initiation events are distributed about equally between genic and intergenic template sequences. While only 13.2% and 14.0% of genes within the ENCODE regions are actually transcribed in HeLa and GM06990 cells, 54.5% and 25.6% of zonal origin fragments overlap transcribed genes, most with activating chromatin marks in their promoters. Our data suggest that cell synchronization activates a significant number of inchoate origins. In addition, HeLa and GM06990 cells activate remarkably different origin populations. Finally, there is only moderate concordance between the log-phase HeLa bubble map and published maps of small nascent strands for this cell line.
Collapse
Affiliation(s)
- Larry D Mesner
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
20
|
Karmakar S, Mahajan MC, Schulz V, Boyapaty G, Weissman SM. A multiprotein complex necessary for both transcription and DNA replication at the β-globin locus. EMBO J 2010; 29:3260-71. [PMID: 20808282 DOI: 10.1038/emboj.2010.204] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 07/29/2010] [Indexed: 12/17/2022] Open
Abstract
DNA replication, repair, transcription and chromatin structure are intricately associated nuclear processes, but the molecular links between these events are often obscure. In this study, we have surveyed the protein complexes that bind at β-globin locus control region, and purified and characterized the function of one such multiprotein complex from human erythroleukemic K562 cells. We further validated the existence of this complex in human CD34+ cell-derived normal erythroid cells. This complex contains ILF2/ILF3 transcription factors, p300 acetyltransferase and proteins associated with DNA replication, transcription and repair. RNAi knockdown of ILF2, a DNA-binding component of this complex, abrogates the recruitment of the complex to its cognate DNA sequence and inhibits transcription, histone acetylation and usage of the origin of DNA replication at the β-globin locus. These results imply a direct link between mammalian DNA replication, transcription and histone acetylation mediated by a single multiprotein complex.
Collapse
Affiliation(s)
- Subhradip Karmakar
- Department of Genetics, The Anlyan Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
21
|
Regulation of DNA replication by chromatin structures: accessibility and recruitment. Chromosoma 2010; 120:39-46. [DOI: 10.1007/s00412-010-0287-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 06/22/2010] [Accepted: 07/17/2010] [Indexed: 01/22/2023]
|
22
|
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 2010; 79:89-130. [PMID: 20373915 DOI: 10.1146/annurev.biochem.052308.103205] [Citation(s) in RCA: 370] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA replication is central to cell proliferation. Studies in the past six decades since the proposal of a semiconservative mode of DNA replication have confirmed the high degree of conservation of the basic machinery of DNA replication from prokaryotes to eukaryotes. However, the need for replication of a substantially longer segment of DNA in coordination with various internal and external signals in eukaryotic cells has led to more complex and versatile regulatory strategies. The replication program in higher eukaryotes is under a dynamic and plastic regulation within a single cell, or within the cell population, or during development. We review here various regulatory mechanisms that control the replication program in eukaryotes and discuss future directions in this dynamic field.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Studies in our laboratory over the last three decades have shown that the Chinese hamster dihydrofolate reductase (DHFR) origin of replication corresponds to a broad zone of inefficient initiation sites distributed throughout the spacer between the convergently transcribed DHFR and 2BE2121 genes. It is clear from mutational analysis that none of these sites is genetically required for controlling origin activity. However, the integrity of the promoter of the DHFR gene is needed to activate the downstream origin, while the 3' processing signals prevent invasion and inactivation of the downstream origin by transcription forks. Several other origins in metazoans have been shown to correspond to zones of inefficient sites, while a different subset appears to be similar to the fixed replicators that characterize origins in S. cerevisiae and lower organisms. These observations have led us to suggest a model in which the mammalian genome is dotted with a hierarchy of degenerate, redundant, and inefficient replicators at intervals of a kilobase or less, some of which may have evolved to be highly circumscribed and efficient. The activities of initiation sites are proposed to be largely regulated by local transcription and chromatin architecture. Recently, we and others have devised strategies for identifying active origins on a genome-wide scale in order to define their distributions between fixed and dispersive origin types and to detect relationships among origins, genes, and epigenetic markers. The global pictures emerging are suggestive but far from complete and appear to be plagued by some of the same uncertainties that have led to conflicting views of individual origins in the past (particularly DHFR). In this paper, we will trace the history of origin discovery in mammalian genomes, primarily using the well-studied DHFR origin as a model, because it has been analyzed by nearly every available origin mapping technique in several different laboratories, while many origins have been identified by only one. We will address the strengths and shortcomings of the various methods utilized to identify and characterize origins in complex genomes and will point out how we and others were sometimes led astray by false assumptions and biases, as well as insufficient information. The goal is to help guide future experiments that will provide a truly comprehensive and accurate portrait of origins and their regulation. After all, in the words of George Santayana, "Those who do not learn from history are doomed to repeat it."
Collapse
|
24
|
Conti C, Leo E, Eichler GS, Sordet O, Martin MM, Fan A, Aladjem MI, Pommier Y. Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res 2010; 70:4470-80. [PMID: 20460513 DOI: 10.1158/0008-5472.can-09-3028] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein acetylation is a reversible process regulated by histone deacetylases (HDAC) that is often altered in human cancers. Suberoylanilide hydroxamic acid (SAHA) is the first HDAC inhibitor to be approved for clinical use as an anticancer agent. Given that histone acetylation is a key determinant of chromatin structure, we investigated how SAHA may affect DNA replication and integrity to gain deeper insights into the basis for its anticancer activity. Nuclear replication factories were visualized with confocal immunofluorescence microscopy and single-replicon analyses were conducted by genome-wide molecular combing after pulse labeling with two thymidine analogues. We found that pharmacologic concentrations of SAHA induce replication-mediated DNA damage with activation of histone gammaH2AX. Single DNA molecule analyses indicated slowdown in replication speed along with activation of dormant replication origins in response to SAHA. Similar results were obtained using siRNA-mediated depletion of HDAC3 expression, implicating this HDAC member as a likely target in the SAHA response. Activation of dormant origins was confirmed by molecular analyses of the beta-globin locus control region. Our findings demonstrate that SAHA produces profound alterations in DNA replication that cause DNA damage, establishing a critical link between robust chromatin acetylation and DNA replication in human cancer cells.
Collapse
Affiliation(s)
- Chiara Conti
- Laboratory of Molecular Pharmacology, National Cancer Institute, NIH, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rampakakis E, Zannis-Hadjopoulos M. Transient dsDNA breaks during pre-replication complex assembly. Nucleic Acids Res 2009; 37:5714-24. [PMID: 19638425 PMCID: PMC2761281 DOI: 10.1093/nar/gkp617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Initiation of DNA replication involves the ordered assembly of the multi-protein pre-replicative complex (pre-RC) during G1 phase. Previously, DNA topoisomerase II (topo II) was shown to associate with the DNA replication origin located in the lamin B2 gene locus in a cell-cycle-modulated manner. Here we report that activation of both the early-firing lamin B2 and the late-firing hOrs8 human replication origins involves DNA topo II-dependent, transient, site-specific dsDNA-break formation. Topo IIβ in complex with the DNA repair protein Ku associates in vivo and in vitro with the pre-RC region, introducing dsDNA breaks in a biphasic manner, during early and mid-G1 phase. Inhibition of topo II activity interferes with the pre-RC assembly resulting in prolonged G1 phase. The data mechanistically link DNA topo IIβ-dependent dsDNA breaks and the components of the DNA repair machinery with the initiation of DNA replication and suggest an important role for DNA topology in origin activation.
Collapse
Affiliation(s)
- Emmanouil Rampakakis
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A3
| | | |
Collapse
|
26
|
Rampakakis E, Arvanitis DN, Di Paola D, Zannis-Hadjopoulos M. Metazoan origins of DNA replication: regulation through dynamic chromatin structure. J Cell Biochem 2009; 106:512-20. [PMID: 19173303 DOI: 10.1002/jcb.22070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA replication in eukaryotes is initiated at multiple replication origins distributed over the entire genome, which are normally activated once per cell cycle. Due to the complexity of the metazoan genome, the study of metazoan replication origins and their activity profiles has been less advanced than in simpler genome systems. DNA replication in eukaryotes involves many protein-protein and protein-DNA interactions, occurring in multiple stages. As in prokaryotes, control over the timing and frequency of initiation is exerted at the initiation site. A prerequisite for understanding the regulatory mechanisms of eukaryotic DNA replication is the identification and characterization of the cis-acting sequences that serve as replication origins and the trans-acting factors (proteins) that interact with them. Furthermore, in order to understand how DNA replication may become deregulated in malignant cells, the distinguishing features between normal and malignant origins of DNA replication as well as the proteins that interact with them must be determined. Based on advances that were made using simple genome model systems, several proteins involved in DNA replication have been identified. This review summarizes the current findings about metazoan origins of DNA replication and their interacting proteins as well as the role of chromatin structure in their regulation. Furthermore, progress in origin identification and isolation procedures as well as potential mechanisms to inhibit their activation in cancer development and progression are discussed.
Collapse
Affiliation(s)
- E Rampakakis
- Department of Biochemistry, Goodman Cancer Centre, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
27
|
Donti TR, Datta S, Sandoval PY, Kapler GM. Differential targeting of Tetrahymena ORC to ribosomal DNA and non-rDNA replication origins. EMBO J 2009; 28:223-33. [PMID: 19153611 DOI: 10.1038/emboj.2008.282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/02/2008] [Indexed: 11/09/2022] Open
Abstract
The Tetrahymena thermophila origin recognition complex (ORC) contains an integral RNA subunit, 26T RNA, which confers specificity to the amplified ribosomal DNA (rDNA) origin by base pairing with an essential cis-acting replication determinant--the type I element. Using a plasmid maintenance assay, we identified a 6.7 kb non-rDNA fragment containing two closely associated replicators, ARS1-A (0.8 kb) and ARS1-B (1.2 kb). Both replicators lack type I elements and hence complementarity to 26T RNA, suggesting that ORC is recruited to these sites by an RNA-independent mechanism. Consistent with this prediction, although ORC associated exclusively with origin sequences in the 21 kb rDNA minichromosome, the interaction between ORC and the non-rDNA ARS1 chromosome changed across the cell cycle. In G(2) phase, ORC bound to all tested sequences in a 60 kb interval spanning ARS1-A/B. Remarkably, ORC and Mcm6 associated with just the ARS1-A replicator in G(1) phase when pre-replicative complexes assemble. We propose that ORC is stochastically deposited onto newly replicated non-rDNA chromosomes and subsequently targeted to preferred initiation sites prior to the next S phase.
Collapse
Affiliation(s)
- Taraka R Donti
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of prereplication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage.
Collapse
Affiliation(s)
- R A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | |
Collapse
|
29
|
Goren A, Tabib A, Hecht M, Cedar H. DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin. Genes Dev 2008; 22:1319-24. [PMID: 18443145 DOI: 10.1101/gad.468308] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The human beta-globin genes constitute a large chromosomal domain that is developmentally regulated. In nonerythroid cells, these genes replicate late in S phase, while in erythroid cells, replication is early. The replication origin is packaged with acetylated histones in erythroid cells, yet is associated with deacetylated histones in nonerythroid cells. Recruitment of histone acetylases to this origin brings about a transcription-independent shift to early replication in lymphocytes. In contrast, tethering of a histone deacetylase in erythroblasts causes a shift to late replication. These results suggest that histone modification at the origin serves as a binary switch for controlling replication timing.
Collapse
Affiliation(s)
- Alon Goren
- Department of Cellular Biochemistry and Human Genetics, Hebrew University Medical School, Ein Kerem, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
30
|
Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy. PLoS Genet 2008; 4:e1000051. [PMID: 18404216 PMCID: PMC2271131 DOI: 10.1371/journal.pgen.1000051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 03/11/2008] [Indexed: 12/15/2022] Open
Abstract
The Locus Control Region (LCR) requires intronic elements within β-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional β-globin intron 2 elements that rescue LCR activity directed by 5′HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igμ 3′MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igμ 3′MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5′HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5′HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of hemoglobinopathies using single copy vectors. Expression of the β-globin gene is regulated by interactions between a distant Locus Control Region (LCR) and regulatory elements in or near the gene. We previously showed that LCR activity requires specific β-globin intron elements to consistently activate transgene expression in mice. These important intronic elements fail to transmit through lentivirus vectors designed for gene therapy of Sickle Cell Anemia. In this study, we identify intron modifications that reveal functional cooperation between the β-globin intronic enhancer and an intronic Oct-1 site. LCR activity in transgenic mice is also potentiated by an intronically located Igμ 3′MAR element. During induction of erythroid gene expression, the modified intron directs relocalization of the transgene away from the nuclear periphery towards more central neighbourhoods, and this movement mimics relocalization by the endogenous β-globin locus. Lentivirus vectors with the modified intron produce high titer virus stocks that express the transgene to therapeutic levels in erythroid cells. These findings have implications for understanding the mechanism of LCR activity, and for designing safe and effective lentivirus vectors for gene therapy.
Collapse
|
31
|
Karnani N, Taylor C, Malhotra A, Dutta A. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res 2007; 17:865-76. [PMID: 17568004 PMCID: PMC1891345 DOI: 10.1101/gr.5427007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In eukaryotes, accurate control of replication time is required for the efficient completion of S phase and maintenance of genome stability. We present a high-resolution genome-tiling array-based profile of replication timing for approximately 1% of the human genome studied by The ENCODE Project Consortium. Twenty percent of the investigated segments replicate asynchronously (pan-S). These areas are rich in genes and CpG islands, features they share with early-replicating loci. Interphase FISH showed that pan-S replication is a consequence of interallelic variation in replication time and is not an artifact derived from a specific cell cycle synchronization method or from aneuploidy. The interallelic variation in replication time is likely due to interallelic variation in chromatin environment, because while the early- or late-replicating areas were exclusively enriched in activating or repressing histone modifications, respectively, the pan-S areas had both types of histone modification. The replication profile of the chromosomes identified contiguous chromosomal segments of hundreds of kilobases separated by smaller segments where the replication time underwent an acute transition. Close examination of one such segment demonstrated that the delay of replication time was accompanied by a decrease in level of gene expression and appearance of repressive chromatin marks, suggesting that the transition segments are boundary elements separating chromosomal domains with different chromatin environments.
Collapse
Affiliation(s)
- Neerja Karnani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Christopher Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Computer Science, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Ankit Malhotra
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Computer Science, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
- Corresponding author.E-mail ; fax (434) 924-5069
| |
Collapse
|
32
|
Aladjem MI. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 2007; 8:588-600. [PMID: 17621316 DOI: 10.1038/nrg2143] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replication in eukaryotes initiates from discrete genomic regions according to a strict, often tissue-specific temporal programme. However, the locations of initiation events within initiation regions vary, show sequence disparity and are affected by interactions with distal elements. Increasing evidence suggests that specification of replication sites and the timing of replication are dynamic processes that are regulated by tissue-specific and developmental cues, and are responsive to epigenetic modifications. Dynamic specification of replication patterns might serve to prevent or resolve possible spatial and/or temporal conflicts between replication, transcription and chromatin assembly, and facilitate subtle or extensive changes of gene expression during differentiation and development.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Building 37, Room 5056, 37 Convent Drive, Bethesda, Maryland 20892-4255, USA.
| |
Collapse
|
33
|
Irene C, Maciariello C, Micheli G, Theis JF, Newlon CS, Fabiani L. DNA elements modulating the KARS12 chromosomal replicator in Kluyveromyces lactis. Mol Genet Genomics 2006; 277:287-99. [PMID: 17136349 DOI: 10.1007/s00438-006-0188-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 10/21/2006] [Indexed: 12/24/2022]
Abstract
Eukaryotic chromosomal DNA replication is initiated by a highly conserved set of proteins that interact with cis-acting elements on chromosomes called replicators. Despite the conservation of replication initiation proteins, replicator sequences show little similarity from species to species in the small number of organisms that have been examined. Examination of replicators in other species is likely to reveal common features of replicators. We have examined a Kluyeromyces lactis replicator, KARS12, that functions as origin of DNA replication on plasmids and in the chromosome. It contains a 50-bp region with similarity to two other K. lactis replicators, KARS101 and the pKD1 replication origin. Replacement of the 50-bp sequence with an EcoRI site completely abrogated the ability of KARS12 to support plasmid and chromosomal DNA replication origin activity, demonstrating this sequence is a common feature of K. lactis replicators and is essential for function, possibly as the initiator protein binding site. Additional sequences up to 1 kb in length are required for efficient KARS12 function. Within these sequences are a binding site for a global regulator, Abf1p, and a region of bent DNA, both of which contribute to the activity of KARS12. These elements may facilitate protein binding, protein/protein interaction and/or nucleosome positioning as has been proposed for other eukaryotic origins of DNA replication.
Collapse
Affiliation(s)
- Carmela Irene
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Piazzale A. Moro, 5, Roma, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Gray SJ, Liu G, Altman AL, Small LE, Fanning E. Discrete functional elements required for initiation activity of the Chinese hamster dihydrofolate reductase origin beta at ectopic chromosomal sites. Exp Cell Res 2006; 313:109-20. [PMID: 17078947 PMCID: PMC1810229 DOI: 10.1016/j.yexcr.2006.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 01/06/2023]
Abstract
The Chinese hamster dihydrofolate reductase (DHFR) DNA replication initiation region, the 5.8 kb ori-beta, can function as a DNA replicator at random ectopic chromosomal sites in hamster cells. We report a detailed genetic analysis of the DiNucleotide Repeat (DNR) element, one of several sequence elements necessary for ectopic ori-beta activity. Deletions within ori-beta identified a 132 bp core region within the DNR element, consisting mainly of dinucleotide repeats, and a downstream region that are required for ori-beta initiation activity at non-specific ectopic sites in hamster cells. Replacement of the DNR element with Xenopus or mouse transcriptional elements from rDNA genes restored full levels of initiation activity, but replacement with a nucleosome positioning element or a viral intron sequence did not. The requirement for the DNR element and three other ori-beta sequence elements was conserved when ori-beta activity was tested at either random sites or at a single specific ectopic chromosomal site in human cells. These results confirm the importance of specific cis-acting elements in directing the initiation of DNA replication in mammalian cells, and provide new evidence that transcriptional elements can functionally substitute for one of these elements in ori-beta.
Collapse
Affiliation(s)
- Steven J. Gray
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Guoqi Liu
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Amy L. Altman
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Lawrence E. Small
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Ellen Fanning
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
- * To whom correspondence should be addressed: Department of Biological Sciences, Vanderbilt University, VU Station B 351634 Nashville, TN 37235-1634 Tel: (615) 343-5677 Fax: (615) 343-6707
| |
Collapse
|
35
|
Minami H, Takahashi J, Suto A, Saitoh Y, Tsutsumi KI. Binding of AlF-C, an Orc1-binding transcriptional regulator, enhances replicator activity of the rat aldolase B origin. Mol Cell Biol 2006; 26:8770-80. [PMID: 16982680 PMCID: PMC1636824 DOI: 10.1128/mcb.00949-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A region encompassing the rat aldolase B gene (aldB) promoter acts as a chromosomal origin of DNA replication (origin) in rat aldolase B-nonexpressing hepatoma cells. To examine replicator function of the aldB origin, we constructed recombinant mouse cell lines in which the rat aldB origin and the mutant derivatives were inserted into the same position at the mouse chromosome 8 by cre-mediated recombination. Nascent strand abundance assays revealed that the rat origin acts as a replicator at the ectopic mouse locus. Mutation of site C in the rat origin, which binds an Orc1-binding protein AlF-C in vitro, resulted in a significant reduction of the replicator activity in the mouse cells. Chromatin immunoprecipitation (ChIP) assays indicated that the reduction of replicator activity was paralleled with the reduced binding of AlF-C and Orc1, suggesting that sequence-specific binding of AlF-C to the ectopic rat origin leads to enhanced replicator activity in cooperation with Orc1. Involvement of AlF-C in replication in vivo was further examined for the aldB origin at its original rat locus and for a different rat origin identified in the present study, which contained an AlF-C-binding site. ChIP assays revealed that both replication origins bind AlF-C and Orc1. We think that the results presented here may represent one mode of origin recognition in mammalian cells.
Collapse
Affiliation(s)
- Hiroyuki Minami
- Cryobiosystem Research Center, Iwate University, Ueda, Morioka, Iwate 020-8550, Japan
| | | | | | | | | |
Collapse
|
36
|
Wang L, Lin CM, Lopreiato JO, Aladjem MI. Cooperative sequence modules determine replication initiation sites at the human beta-globin locus. Hum Mol Genet 2006; 15:2613-22. [PMID: 16877501 DOI: 10.1093/hmg/ddl187] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human beta globin locus contains two adjacent replicators, each capable of initiating DNA replication when transferred from its native locus to ectopic sites. Here, we report a detailed analysis of the sequence requirements for replication initiation from these replicators. In both replicators, initiation required a combination of an asymmetric purine:pyrimidine sequence and several AT-rich stretches. Modules from the two replicators could combine to initiate replication. AT-rich sequences were essential for replicator activity: a low frequency of initiation was observed in DNA fragments that included a short stretch of AT-rich sequences, whereas inclusion of additional AT-rich stretches increased initiation efficiency. By contrast, replication initiated at a low level without the asymmetric purine:pyrimidine modules but they were required in synergy to achieve efficient initiation. These data support a combinatorial model for replicator activity and suggest that the initiation of DNA replication requires interaction between at least two distinct sequence modules.
Collapse
Affiliation(s)
- Lixin Wang
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
37
|
Grégoire D, Brodolin K, Méchali M. HoxB domain induction silences DNA replication origins in the locus and specifies a single origin at its boundary. EMBO Rep 2006; 7:812-6. [PMID: 16845368 PMCID: PMC1525151 DOI: 10.1038/sj.embor.7400758] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/23/2006] [Accepted: 06/23/2006] [Indexed: 11/09/2022] Open
Abstract
In multicellular organisms, changes in the DNA replication programme could act to integrate differentiation with cell division in various developmental and transcriptional contexts. Here, we have addressed the use of DNA replication origins during differentiation in the HoxB domain-a cluster of nine genes developmentally regulated in a collinear manner. In undifferentiated mouse P19 cells, we detected several DNA replication origins in the 100 kb HoxB locus, indicating a relaxed origin use when the locus is transcriptionally silent. By contrast, in retinoic-acid-induced differentiated cells, when HoxB transcription is activated, a general silencing of DNA replication origins occurs in the locus except one located downstream of Hoxb1, at the 3' boundary of the HoxB domain. Silencing of the replication origins is associated with histone hyperacetylation, whereas the active Hoxb1 origin persists as a hypoacetylated island. These findings provide direct evidence for the differentiated use of origins in HoxB genes, and we suggest that this regulation might contribute to the regulated expression of HoxB genes during development.
Collapse
Affiliation(s)
- Damien Grégoire
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Konstantin Brodolin
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Marcel Méchali
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
- Tel: +33 499 619 917; Fax: +33 499 619 920; E-mail:
| |
Collapse
|
38
|
Abstract
Regulation of DNA replication is critical for accurate and timely dissemination of genomic material to daughter cells. The cell uses a variety of mechanisms to control this aspect of the cell cycle. There are various determinants of origin identification, as well as a large number of proteins required to load replication complexes at these defined genomic regions. A pre-Replication Complex (pre-RC) associates with origins in the G1 phase. This complex includes the Origin Recognition Complex (ORC), which serves to recognize origins, the putative helicase MCM2-7, and other factors important for complex assembly. Following pre-RC loading, a pre-Initiation Complex (pre-IC) builds upon the helicase with factors required for eventual loading of replicative polymerases. The chromatin association of these two complexes is temporally distinct, with pre-RC being inhibited, and pre-IC being activated by cyclin-dependent kinases (Cdks). This regulation is the basis for replication licensing, which allows replication to occur at a specific time once, and only once, per cell cycle. By preventing extra rounds of replication within a cell cycle, or by ensuring the cell cycle cannot progress until the environmental and intracellular conditions are most optimal, cells are able to carry out a successful replication cycle with minimal mutations.
Collapse
Affiliation(s)
- Jamie K Teer
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Fu H, Wang L, Lin CM, Singhania S, Bouhassira EE, Aladjem MI. Preventing gene silencing with human replicators. Nat Biotechnol 2006; 24:572-6. [PMID: 16604060 DOI: 10.1038/nbt1202] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 02/09/2006] [Indexed: 11/09/2022]
Abstract
Transcriptional silencing, one of the major impediments to gene therapy in humans, is often accompanied by replication during late S-phase. We report that transcriptional silencing and late replication were prevented by DNA sequences that can initiate DNA replication (replicators). When replicators were included in silencing-prone transgenes, they did not undergo transcriptional silencing, replicated early and maintained histone acetylation patterns characteristic of euchromatin. A mutant replicator, which could not initiate replication, could not prevent gene silencing and replicated late when included in identical transgenes and inserted at identical locations. These observations suggest that replicators introduce epigenetic chromatin changes that facilitate initiation of DNA replication and affect gene silencing. Inclusion of functional replicators in gene therapy vectors may provide a tool for stabilizing gene expression patterns.
Collapse
Affiliation(s)
- Haiqing Fu
- Laboratory of Molecular Pharmacology, NCI, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
40
|
Shimotai Y, Minami H, Saitoh Y, Onodera Y, Mishima Y, Kelm RJ, Tsutsumi KI. A binding site for Pur alpha and Pur beta is structurally unstable and is required for replication in vivo from the rat aldolase B origin. Biochem Biophys Res Commun 2005; 340:517-25. [PMID: 16376299 DOI: 10.1016/j.bbrc.2005.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/06/2005] [Indexed: 11/27/2022]
Abstract
The rat aldolase B promoter acts as a replication origin in vivo, as well as an autonomously replicating sequence (ARS). Here, we examined roles of a polypurine stretch (site PPu) in this origin, which is indispensable to the ARS activity. Purification of site PPu-binding protein revealed that site PPu binds Puralpha and Purbeta, i.e., single-stranded DNA-binding proteins whose roles in replication have been implicated, but less clear. Biochemical analyses showed that site PPu even in a longer DNA fragment is unstable in terms of double-helix, implying that Puralpha/beta may stabilize single-stranded state. Deletion of site PPu from the origin DNA, which was ectopically positioned in the mouse chromosome, significantly reduced replicator activity. Chromatin immunoprecipitation experiments showed that deletion of site PPu abolishes binding of the Puralpha/beta proteins to the origin. These observations suggest functional roles of site PPu and Puralpha/beta proteins in replication initiation.
Collapse
Affiliation(s)
- Yoshitaka Shimotai
- Laboratory of Functional Genomics, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
DNA replication is tightly regulated at the initiation step by both the cell cycle machinery and checkpoint pathways. Here, we discuss recent advances in understanding how replication is initiated in metazoans at the correct chromosome positions, at the appropriate time, and only once per cell cycle.
Collapse
Affiliation(s)
- Yuichi J Machida
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
42
|
Buzina A, Aladjem MI, Kolman JL, Wahl GM, Ellis J. Initiation of DNA replication at the human beta-globin 3' enhancer. Nucleic Acids Res 2005; 33:4412-24. [PMID: 16085752 PMCID: PMC1183104 DOI: 10.1093/nar/gki747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The origin of DNA replication in the human β-globin gene contains an initiation region (IR) and two flanking auxiliary elements. Two replicator modules are located within the upstream auxiliary sequence and the IR core, but the functional sequences in the downstream auxiliary element are unknown. Here, we use a combination of benzoylated-naphthoylated DEAE (BND) cellulose purification and nascent strand abundance assays to show that replication initiation occurs at the β-globin 3′ enhancer on human chromosome 11 in the Hu11 hybrid murine erythroleukemia (MEL) cell line. To examine replicator function, 3′ enhancer fragments were inserted into an ectopic site in MEL cells via an optimized FRT/EGFP-FLP integration system. These experiments demonstrate that the 1.6 kb downstream auxiliary element is a third replicator module called bGRep-E in erythroid cells. The minimal 260 bp 3′ enhancer is required but not sufficient to initiate efficient replication, suggesting cooperation with adjacent sequences. The minimal 3′ enhancer also cooperates with elements in an expressing HS3β/γ-globin construct to initiate replication. These data indicate that the β-globin replicator has multiple initiation sites in three closely spaced replicator modules. We conclude that a mammalian enhancer can cooperate with adjacent sequences to create an efficient replicator module.
Collapse
Affiliation(s)
- Alla Buzina
- Developmental Biology Program, Hospital for Sick ChildrenToronto, Ontario, Canada
| | | | - John L. Kolman
- Gene Expression Laboratory, The Salk InstituteSan Diego, CA
| | | | - James Ellis
- Developmental Biology Program, Hospital for Sick ChildrenToronto, Ontario, Canada
- Department of Molecular and Medical Genetics, University of TorontoToronto, Ontario, Canada
- To whom correspondence should be addressed. Tel: 416 813 7295; Fax: 416 813 8883;
| |
Collapse
|
43
|
Aladjem MI, Fanning E. The replicon revisited: an old model learns new tricks in metazoan chromosomes. EMBO Rep 2005; 5:686-91. [PMID: 15229645 PMCID: PMC1299096 DOI: 10.1038/sj.embor.7400185] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 05/12/2004] [Indexed: 01/09/2023] Open
Abstract
The origins of DNA replication were proposed in the replicon model to be specified genetically by replicator elements that coordinate the initiation of DNA synthesis with gene expression and cell growth. Recent studies have identified DNA sequences in mammalian cells that fulfil the genetic criteria for replicators and are beginning to uncover the sequence requirements for the initiation of DNA replication. Mammalian replicators are com- posed of non-redundant modules that cooperate to direct initiation to specific chromosomal sites. Conversely, replicators do not show strong sequence similarity, and their ability to initiate replication depends on the chromosomal context and epigenetic factors, as well as their primary sequence. Here, we review the properties of metazoan replicators, and discuss the genetic and epigenetic factors that determine where and when DNA replication is initiated.
Collapse
Affiliation(s)
- Mirit I. Aladjem
- Laboratory of Molecular Pharmacology, DSB, National Cancer Institute, National Institutes of Health, Building 37, Room 5056, 37 Convent Drive, Bethesda, Maryland 20892-4255, USA
- Tel: +1 301 435 4255; Fax: +1 301 402 9752;
| | - Ellen Fanning
- Department of Biological Sciences and Vanderbilt–Ingram Cancer Center, Vanderbilt University Station B-351634, Vanderbilt University, Nashville, Tennessee 327232-1634, USA
- Tel: +1 615 343 5677; Fax: +1 615 343 6707;
| |
Collapse
|
44
|
Abstract
Eukaryotic DNA replication begins at numerous but often poorly characterized sequences called origins, which are distributed fairly regularly along chromosomes. The elusive and idiosyncratic nature of origins in higher eukaryotes is now understood as resulting from a strong epigenetic influence on their specification, which provides flexibility in origin selection and allows for tailoring the dynamics of chromosome replication to the specific needs of cells. By contrast, the factors that assemble in trans to make these origins competent for replication and the kinases that trigger initiation are well conserved. Genome-wide and single-molecule approaches are being developed to elucidate the dynamics of chromosome replication. The notion that a well-coordinated progression of replication forks is crucial for many aspects of the chromosome cycle besides simply duplication begins to be appreciated.
Collapse
Affiliation(s)
- Etienne Schwob
- Institute of Molecular Genetics, CNRS UMR5535 and University Montpellier 2, 1919, route de Mende, 34293 Montpellier, France
| |
Collapse
|
45
|
Casper JM, Kemp MG, Ghosh M, Randall GM, Vaillant A, Leffak M. The c-myc DNA-unwinding element-binding protein modulates the assembly of DNA replication complexes in vitro. J Biol Chem 2005; 280:13071-83. [PMID: 15653697 DOI: 10.1074/jbc.m404754200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of DNA-unwinding elements (DUEs) at eukaryotic replicators has raised the question of whether these elements contribute to origin activity by their intrinsic helical instability, as protein-binding sites, or both. We used the human c-myc DUE as bait in a yeast one-hybrid screen and identified a DUE-binding protein, designated DUE-B, with a predicted mass of 23.4 kDa. Based on homology to yeast proteins, DUE-B was previously classified as an aminoacyl-tRNA synthetase; however, the human protein is approximately 60 amino acids longer than its orthologs in yeast and worms and is primarily nuclear. In vivo, chromatin-bound DUE-B localized to the c-myc DUE region. DUE-B levels were constant during the cell cycle, although the protein was preferentially phosphorylated in cells arrested early in S phase. Inhibition of DUE-B protein expression slowed HeLa cell cycle progression from G1 to S phase and induced cell death. DUE-B extracted from HeLa cells or expressed from baculovirus migrated as a dimer during gel filtration and co-purified with ATPase activity. In contrast to endogenous DUE-B, baculovirus-expressed DUE-B efficiently formed high molecular mass complexes in Xenopus egg and HeLa extracts. In Xenopus extracts, baculovirus-expressed DUE-B inhibited chromatin replication and replication protein A loading in the presence of endogenous DUE-B, suggesting that differential covalent modification of these proteins can alter their effect on replication. Recombinant DUE-B expressed in HeLa cells restored replication activity to egg extracts immunodepleted with anti-DUE-B antibody, suggesting that DUE-B plays an important role in replication in vivo.
Collapse
Affiliation(s)
- John M Casper
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kemp MG, Ghosh M, Liu G, Leffak M. The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells. Nucleic Acids Res 2005; 33:325-36. [PMID: 15653633 PMCID: PMC546162 DOI: 10.1093/nar/gki177] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic chromatin structure limits the initiation of DNA replication spatially to chromosomal origin zones and temporally to the ordered firing of origins during S phase. Here, we show that the level of histone H4 acetylation correlates with the frequency of replication initiation as measured by the abundance of short nascent DNA strands within the human c-myc and lamin B2 origins, but less well with the frequency of initiation across the β-globin locus. Treatment of HeLa cells with trichostatin A (TSA) reversibly increased the acetylation level of histone H4 globally and at these initiation sites. At all three origins, TSA treatment transiently promoted a more dispersive pattern of initiations, decreasing the abundance of nascent DNA at previously preferred initiation sites while increasing the nascent strand abundance at lower frequency genomic initiation sites. When cells arrested in late G1 were released into TSA, they completed S phase more rapidly than untreated cells, possibly due to the earlier initiation from late-firing origins, as exemplified by the β-globin origin. Thus, TSA may modulate replication origin activity through its effects on chromatin structure, by changing the selection of initiation sites, and by advancing the time at which DNA synthesis can begin at some initiation sites.
Collapse
Affiliation(s)
| | | | | | - Michael Leffak
- To whom correspondence should be addressed. Tel: +1 937 775 3125; Fax: +1 937 775 3730;
| |
Collapse
|
47
|
Ghosh M, Liu G, Randall G, Bevington J, Leffak M. Transcription factor binding and induced transcription alter chromosomal c-myc replicator activity. Mol Cell Biol 2005; 24:10193-207. [PMID: 15542830 PMCID: PMC529035 DOI: 10.1128/mcb.24.23.10193-10207.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The observation that transcriptionally active genes generally replicate early in S phase and observations of the interaction between transcription factors and replication proteins support the thesis that promoter elements may have a role in DNA replication. To test the relationship between transcription and replication we constructed HeLa cell lines in which inducible green fluorescent protein (GFP)-encoding genes replaced the proximal approximately 820-bp promoter region of the c-myc gene. Without the presence of an inducer, basal expression occurred from the GFP gene in either orientation and origin activity was restored to the mutant c-myc replicator. In contrast, replication initiation was repressed upon induction of transcription. When basal or induced transcription complexes were slowed by the presence of alpha-amanitin, origin activity depended on the orientation of the transcription unit. To test mechanistically whether basal transcription or transcription factor binding was sufficient for replication rescue by the uninduced GFP genes, a GAL4p binding cassette was used to replace all regulatory sequences within approximately 1,400 bp 5' to the c-myc gene. In these cells, expression of a CREB-GAL4 fusion protein restored replication origin activity. These results suggest that transcription factor binding can enhance replication origin activity and that high levels of expression or the persistence of transcription complexes can repress it.
Collapse
Affiliation(s)
- M Ghosh
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
After 40 years of searching for the eukaryotic replicator sequence, it is time to abandon the concept of 'the' replicator as a single genetic entity. Here I propose a 'relaxed replicon model' in which a positive initiator-replicator interaction is facilitated by a combination of several complex features of chromatin. An important question for the future is whether the positions of replication origins are simply a passive result of local chromatin structure or are actively localized to coordinate replication with other chromosomal activities.
Collapse
Affiliation(s)
- David M Gilbert
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NewYork 13210, USA.
| |
Collapse
|
49
|
Huang Y, Kowalski D. PATTERNFINDER: combined analysis of DNA regulatory sequences and double-helix stability. BMC Bioinformatics 2004; 5:134. [PMID: 15383143 PMCID: PMC520813 DOI: 10.1186/1471-2105-5-134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022] Open
Abstract
Background Regulatory regions that function in DNA replication and gene transcription contain specific sequences that bind proteins as well as less-specific sequences in which the double helix is often easy to unwind. Progress towards predicting and characterizing regulatory regions could be accelerated by computer programs that perform a combined analysis of specific sequences and DNA unwinding properties. Results Here we present PATTERNFINDER, a web server that searches DNA sequences for matches to specific or flexible patterns, and analyzes DNA helical stability. A batch mode of the program generates a tabular map of matches to multiple, different patterns. Regions flanking pattern matches can be targeted for helical stability analysis to identify sequences with a minimum free energy for DNA unwinding. As an example application, we analyzed a regulatory region of the human c-myc proto-oncogene consisting of a single-strand-specific protein binding site within a DNA region that unwindsin vivo. The predicted region of minimal helical stability overlapped both the protein binding site and the unwound DNA region identified experimentally. Conclusions The PATTERNFINDER web server permits localization of known functional elements or landmarks in DNA sequences as well as prediction of potential new elements. Batch analysis of multiple patterns facilitates the annotation of DNA regulatory regions. Identifying specific pattern matches linked to DNA with low helical stability is useful in characterizing regulatory regions for transcription, replication and other processes and may predict functional DNA unwinding elements. PATTERNFINDER can be accessed freely at:
Collapse
Affiliation(s)
- Yanlin Huang
- Cancer Genetics Department, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Microsoft Corp., Redmond, WA 98052, USA
| | - David Kowalski
- Cancer Genetics Department, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|