1
|
Ramos-Velasco B, Naranjo R, Izquierdo JM. Bibliometric Overview on T-Cell Intracellular Antigens and Their Pathological Implications. BIOLOGY 2024; 13:195. [PMID: 38534464 DOI: 10.3390/biology13030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
T-cell intracellular antigen 1 (TIA1) and TIA1-like/related protein (TIAL1/TIAR) are two members of the classical family of RNA binding proteins. Through their selective interactions with distinct RNAs and proteins, these multifunctional regulators are involved in chromatin remodeling, RNA splicing and processing and translation regulation, linking them to a wide range of diseases including neuronal disorders, cancer and other pathologies. From their discovery to the present day, many studies have focused on the behavior of these proteins in order to understand their impact on molecular and cellular processes and to understand their relationship to human pathologies. The volume of research on these proteins in various fields, including molecular biology, biochemistry, cell biology, immunology and cancer, has steadily increased, indicating a growing interest in these gene expression regulators among researchers. This information can be used to know the most productive institutions working in the field, understand the focus of research, identify key areas of involvement, delve deeper into their relationship and impact on different diseases, and to establish the level of study associated with them.
Collapse
Affiliation(s)
- Beatriz Ramos-Velasco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Rocío Naranjo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - José M Izquierdo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
2
|
Hall RA, Wallace EW. Post-transcriptional control of fungal cell wall synthesis. Cell Surf 2022; 8:100074. [PMID: 35097244 PMCID: PMC8783092 DOI: 10.1016/j.tcsw.2022.100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022] Open
Abstract
Pathogenic fungi hide from their hosts by camouflage, obscuring immunogenic cell wall components such as beta-glucan with innocuous coverings such as mannoproteins and alpha-glucan that are less readily recognised by the host. Attempts to understand how such processes are regulated have met with varying success. Typically studies focus on understanding the transcriptional response of fungi to either their reservoir environment or the host. However, such approaches do not fully address this research question, due to the layers of post-transcriptional and post-translational regulation that occur within a cell. Although in animals the impact of post-transcriptional and post-translational regulation has been well characterised, our knowledge of these processes in the fungal kingdom is more limited. Mutations in RNA-binding proteins, like Ssd1 and Candida albicans Slr1, affect cell wall composition and fungal virulence indicating that post-transcriptional regulation plays a key role in these processes. Here, we review the current state of knowledge of fungal post-transcriptional regulation, and link this to potential mechanisms of immune evasion by drawing on studies from model yeast and plant pathogenic fungi. We highlight several RNA-binding proteins that regulate cell wall synthesis and could be involved in local translation of cell wall components. Expanding our knowledge on post-transcriptional regulation in human fungal pathogens is essential to fully comprehend fungal virulence strategies and for the design of novel antifungal therapies.
Collapse
Affiliation(s)
- Rebecca A. Hall
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Edward W.J. Wallace
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, EH9 3FF, United Kingdom
| |
Collapse
|
3
|
Velasco BR, Izquierdo JM. T-Cell Intracellular Antigen 1-Like Protein in Physiology and Pathology. Int J Mol Sci 2022; 23:ijms23147836. [PMID: 35887183 PMCID: PMC9318959 DOI: 10.3390/ijms23147836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
T-cell intracellular antigen 1 (TIA1)-related/like (TIAR/TIAL1) protein is a multifunctional RNA-binding protein (RBP) involved in regulating many aspects of gene expression, independently or in combination with its paralog TIA1. TIAR was first described in 1992 by Paul Anderson’s lab in relation to the development of a cell death phenotype in immune system cells, as it possesses nucleolytic activity against cytotoxic lymphocyte target cells. Similar to TIA1, it is characterized by a subcellular nucleo-cytoplasmic localization and ubiquitous expression in the cells of different tissues of higher organisms. In this paper, we review the relevant structural and functional information available about TIAR from a triple perspective (molecular, cellular and pathophysiological), paying special attention to its expression and regulation in cellular events and processes linked to human pathophysiology.
Collapse
|
4
|
Romero AM, García-Martínez J, Pérez-Ortín JE, Martínez-Pastor MT, Puig S. Changes in mRNA stability play an important role in the adaptation of yeast cells to iron deprivation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194800. [PMID: 35218933 DOI: 10.1016/j.bbagrm.2022.194800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Eukaryotic cells rely on iron as an indispensable cofactor for multiple biological functions including mitochondrial respiration and protein synthesis. The budding yeast Saccharomyces cerevisiae utilizes both transcriptional and posttranscriptional mechanisms to couple mRNA levels to the requirements of iron deprivation. Thus, in response to iron deficiency, transcription factors Aft1 and Aft2 activate the expression of genes implicated in iron acquisition and mobilization, whereas two mRNA-binding proteins, Cth1 and Cth2, posttranscriptionally control iron metabolism. By using a genome-wide approach, we describe here a global stabilization of mRNAs, including transcripts encoding ribosomal proteins (RPs), when iron bioavailability diminishes. mRNA decay assays indicate that the mRNA-binding protein Pub1 contributes to RP transcript stabilization during adaptation to iron limitation. In fact, Pub1 becomes critical for growth and translational repression in low-iron conditions. Remarkably, we observe that pub1Δ cells also exhibit an increase in the transcription of RP genes that evidences the crosstalk between transcription and degradation mechanisms to maintain the appropriate mRNA balance under iron deficiency conditions.
Collapse
Affiliation(s)
- Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| | - José García-Martínez
- Departamento de Genética, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain; Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - José Enrique Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain; Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| |
Collapse
|
5
|
The Multifunctional Faces of T-Cell Intracellular Antigen 1 in Health and Disease. Int J Mol Sci 2022; 23:ijms23031400. [PMID: 35163320 PMCID: PMC8836218 DOI: 10.3390/ijms23031400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein that is expressed in many tissues and in the vast majority of species, although it was first discovered as a component of human cytotoxic T lymphocytes. TIA1 has a dual localization in the nucleus and cytoplasm, where it plays an important role as a regulator of gene-expression flux. As a multifunctional master modulator, TIA1 controls biological processes relevant to the physiological functioning of the organism and the development and/or progression of several human pathologies. This review summarizes our current knowledge of the molecular aspects and cellular processes involving TIA1, with relevance for human pathophysiology.
Collapse
|
6
|
Hamey JJ, Nguyen A, Wilkins MR. Discovery of Arginine Methylation, Phosphorylation, and Their Co-occurrence in Condensate-Associated Proteins in Saccharomyces cerevisiae. J Proteome Res 2021; 20:2420-2434. [PMID: 33856219 DOI: 10.1021/acs.jproteome.0c00927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The formation of condensates in membraneless organelles is thought to be driven by protein phase separation. Arginine methylation and serine/threonine phosphorylation are important in the phase separation process; however, these post-translational modifications are often present in intrinsically disordered regions that are difficult to analyze with standard proteomic techniques. To understand their presence and co-occurrence in condensate-associated proteins, here, we use a multiprotease and multi-tandem mass spectrometry (MS/MS) fragmentation approach, coupled with heavy methyl stable isotope labeling of amino acids in cell culture (SILAC) and phospho- or methyl-peptide enrichment. For Saccharomyces cerevisiae, we report a 50% increase in the known arginine methylproteome, involving 15 proteins that are all condensate-associated. Importantly, some of these proteins have arginine methylation on all predicted sites-providing evidence that this modification can be pervasive. We explored whether arginine-methylated, condensate-associated proteins are also phosphorylated and found 12 such proteins to carry phosphorylated serine or threonine. In Npl3, Ded1, and Sbp1, single peptides were found to carry both modifications, indicating a co-occurrence in close proximity and on the same protein molecule. These co-modifications occur in regions of disorder, whereas arginine methylation is typically on regions of disorder that are also basic. For phosphorylation, its association with charged regions of condensate-associated proteins was less consistent, although some regions with multisite phosphorylation sites were strongly acidic. We conclude that arginine-methylated proteins associated with condensates are typically also modified with protein phosphorylation.
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Amy Nguyen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Reynaud K, Brothers M, Ly M, Ingolia NT. Dynamic post-transcriptional regulation by Mrn1 links cell wall homeostasis to mitochondrial structure and function. PLoS Genet 2021; 17:e1009521. [PMID: 33857138 PMCID: PMC8079021 DOI: 10.1371/journal.pgen.1009521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/27/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
The RNA-binding protein Mrn1 in Saccharomyces cerevisiae targets over 300 messenger RNAs, including many involved in cell wall biogenesis. The impact of Mrn1 on these target transcripts is not known, however, nor is the cellular role for this regulation. We have shown that Mrn1 represses target mRNAs through the action of its disordered, asparagine-rich amino-terminus. Its endogenous targets include the paralogous SUN domain proteins Nca3 and Uth1, which affect mitochondrial and cell wall structure and function. While loss of MRN1 has no effect on fermentative growth, we found that mrn1Δ yeast adapt more quickly to respiratory conditions. These cells also have enlarged mitochondria in fermentative conditions, mediated in part by dysregulation of NCA3, and this may explain their faster switch to respiration. Our analyses indicated that Mrn1 acts as a hub for integrating cell wall integrity and mitochondrial biosynthesis in a carbon-source responsive manner.
Collapse
Affiliation(s)
- Kendra Reynaud
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
| | - Molly Brothers
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Nicholas T. Ingolia
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
8
|
Abstract
Cells must make careful use of the resources available to them. A key area of cellular regulation involves the biogenesis of ribosomes. Transcriptional regulation of ribosome biogenesis factor genes through alterations in histone acetylation has been well studied. This work identifies a post-transcriptional mechanism of ribosome biogenesis regulation by Puf protein control of mRNA stability. Puf proteins are eukaryotic mRNA binding proteins that play regulatory roles in mRNA degradation and translation via association with specific conserved elements in the 3' untranslated region (UTR) of target mRNAs and with degradation and translation factors. We demonstrate that several ribosome biogenesis factor mRNAs in Saccharomyces cerevisiae containing a canonical Puf4p element in their 3' UTRs are destabilized by Puf2p, Puf4, and Puf5p, yet stabilized by Puf1p and Puf3p. In the absence of all Puf proteins, these ribosome biogenesis mRNAs are destabilized by a secondary mechanism involving the same 3' UTR element. Unlike other targets of Puf4p regulation, the decay of these transcripts is not altered by carbon source. Overexpression of Puf4p results in delayed ribosomal RNA processing and altered ribosomal subunit trafficking. These results represent a novel role for Puf proteins in yeast as regulators of ribosome biogenesis transcript stability.
Collapse
Affiliation(s)
- Anthony D Fischer
- a Department of Biology , University of Missouri-St. Louis , St. Louis , MO , USA
| | - Wendy M Olivas
- a Department of Biology , University of Missouri-St. Louis , St. Louis , MO , USA
| |
Collapse
|
9
|
Chan LY, Mugler CF, Heinrich S, Vallotton P, Weis K. Non-invasive measurement of mRNA decay reveals translation initiation as the major determinant of mRNA stability. eLife 2018; 7:32536. [PMID: 30192227 PMCID: PMC6152797 DOI: 10.7554/elife.32536] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
The cytoplasmic abundance of mRNAs is strictly controlled through a balance of production and degradation. Whereas the control of mRNA synthesis through transcription has been well characterized, less is known about the regulation of mRNA turnover, and a consensus model explaining the wide variations in mRNA decay rates remains elusive. Here, we combine non-invasive transcriptome-wide mRNA production and stability measurements with selective and acute perturbations to demonstrate that mRNA degradation is tightly coupled to the regulation of translation, and that a competition between translation initiation and mRNA decay -but not codon optimality or elongation- is the major determinant of mRNA stability in yeast. Our refined measurements also reveal a remarkably dynamic transcriptome with an average mRNA half-life of only 4.8 min - much shorter than previously thought. Furthermore, global mRNA destabilization by inhibition of translation initiation induces a dose-dependent formation of processing bodies in which mRNAs can decay over time.
Collapse
Affiliation(s)
- Leon Y Chan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Christopher F Mugler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | | | | | - Karsten Weis
- Department of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Kroschwald S, Munder MC, Maharana S, Franzmann TM, Richter D, Ruer M, Hyman AA, Alberti S. Different Material States of Pub1 Condensates Define Distinct Modes of Stress Adaptation and Recovery. Cell Rep 2018; 23:3327-3339. [DOI: 10.1016/j.celrep.2018.05.041] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/10/2018] [Accepted: 05/14/2018] [Indexed: 01/23/2023] Open
|
11
|
Cheng J, Maier KC, Avsec Ž, Rus P, Gagneur J. Cis-regulatory elements explain most of the mRNA stability variation across genes in yeast. RNA (NEW YORK, N.Y.) 2017; 23:1648-1659. [PMID: 28802259 PMCID: PMC5648033 DOI: 10.1261/rna.062224.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/31/2017] [Indexed: 05/09/2023]
Abstract
The stability of mRNA is one of the major determinants of gene expression. Although a wealth of sequence elements regulating mRNA stability has been described, their quantitative contributions to half-life are unknown. Here, we built a quantitative model for Saccharomyces cerevisiae based on functional mRNA sequence features that explains 59% of the half-life variation between genes and predicts half-life at a median relative error of 30%. The model revealed a new destabilizing 3' UTR motif, ATATTC, which we functionally validated. Codon usage proves to be the major determinant of mRNA stability. Nonetheless, single-nucleotide variations have the largest effect when occurring on 3' UTR motifs or upstream AUGs. Analyzing mRNA half-life data of 34 knockout strains showed that the effect of codon usage not only requires functional decapping and deadenylation, but also the 5'-to-3' exonuclease Xrn1, the nonsense-mediated decay genes, but not no-go decay. Altogether, this study quantitatively delineates the contributions of mRNA sequence features on stability in yeast, reveals their functional dependencies on degradation pathways, and allows accurate prediction of half-life from mRNA sequence.
Collapse
Affiliation(s)
- Jun Cheng
- Department of Informatics, Technical University of Munich, 85748 Garching, Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Kerstin C Maier
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Žiga Avsec
- Department of Informatics, Technical University of Munich, 85748 Garching, Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Petra Rus
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, 85748 Garching, Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, 81377 München, Germany
| |
Collapse
|
12
|
Urakov VN, Mitkevich OV, Safenkova IV, Ter‐Avanesyan MD. Ribosome‐bound Pub1 modulates stop codon decoding during translation termination in yeast. FEBS J 2017; 284:1914-1930. [DOI: 10.1111/febs.14099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Valery N. Urakov
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| | - Olga V. Mitkevich
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| | - Irina V. Safenkova
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| | - Michael D. Ter‐Avanesyan
- Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Bach Institute of Biochemistry Moscow Russia
| |
Collapse
|
13
|
Harigaya Y, Parker R. Analysis of the association between codon optimality and mRNA stability in Schizosaccharomyces pombe. BMC Genomics 2016; 17:895. [PMID: 27825301 PMCID: PMC5101800 DOI: 10.1186/s12864-016-3237-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023] Open
Abstract
Background Recent experiments have shown that codon optimality is a major determinant of mRNA stability in Saccharomyces cerevisiae and that this phenomenon may be conserved in Escherichia coli and some metazoans, although work in Neurospora crassa is not consistent with this model. Results We examined the association between codon optimality and mRNA stability in the fission yeast Schizosaccharomyces pombe. Our analysis revealed the following points. First, we observe a genome-wide association between codon optimality and mRNA stability also in S. pombe, suggesting evolutionary conservation of the phenomenon. Second, in both S. pombe and S. cerevisiae, mRNA synthesis rates are also correlated at the genome-wide analysis with codon optimality, suggesting that the long-appreciated association between codon optimality and mRNA abundance is due to regulation of both mRNA synthesis and degradation. However, when we examined correlation of codon optimality and either mRNA half-lives or synthesis rates controlling for mRNA abundance, codon optimality was still positively correlated with mRNA half-lives in S. cerevisiae, but the association was no longer significant for mRNA half-lives in S. pombe or for synthesis rates in either organism. This illustrates how only the pairwise analysis of multiple correlating variables may limit these types of analyses. Finally, in S. pombe, codon optimality is associated with known DNA/RNA sequence motifs that are associated with mRNA production/stability, suggesting these two features have been under similar selective pressures for optimal gene expression. Conclusions Consistent with the emerging body of studies, this study suggests that the association between codon optimality and mRNA stability may be a broadly conserved phenomenon. It also suggests that the association can be explained at least in part by independent adaptations of codon optimality and other transcript features for elevated expression during evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3237-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuriko Harigaya
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA. .,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, 80303, USA.
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
14
|
RNA binding protein Pub1p regulates glycerol production and stress tolerance by controlling Gpd1p activity during winemaking. Appl Microbiol Biotechnol 2016; 100:5017-27. [DOI: 10.1007/s00253-016-7340-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 12/18/2022]
|
15
|
Schikora-Tamarit MÀ, Toscano-Ochoa C, Domingo Espinós J, Espinar L, Carey LB. A synthetic gene circuit for measuring autoregulatory feedback control. Integr Biol (Camb) 2016; 8:546-55. [PMID: 26728081 DOI: 10.1039/c5ib00230c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Autoregulatory feedback loops occur in the regulation of molecules ranging from ATP to MAP kinases to zinc. Negative feedback loops can increase a system's robustness, while positive feedback loops can mediate transitions between cell states. Recent genome-wide experimental and computational studies predict hundreds of novel feedback loops. However, not all physical interactions are regulatory, and many experimental methods cannot detect self-interactions. Our understanding of regulatory feedback loops is therefore hampered by the lack of high-throughput methods to experimentally quantify the presence, strength and temporal dynamics of autoregulatory feedback loops. Here we present a mathematical and experimental framework for high-throughput quantification of feedback regulation and apply it to RNA binding proteins (RBPs) in yeast. Our method is able to determine the existence of both direct and indirect positive and negative feedback loops, and to quantify the strength of these loops. We experimentally validate our model using two RBPs which lack native feedback loops and by the introduction of synthetic feedback loops. We find that RBP Puf3 does not natively participate in any direct or indirect feedback regulation, but that replacing the native 3'UTR with that of COX17 generates an auto-regulatory negative feedback loop which reduces gene expression noise. Likewise, RBP Pub1 does not natively participate in any feedback loops, but a synthetic positive feedback loop involving Pub1 results in increased expression noise. Our results demonstrate a synthetic experimental system for quantifying the existence and strength of feedback loops using a combination of high-throughput experiments and mathematical modeling. This system will be of great use in measuring auto-regulatory feedback by RNA binding proteins, a regulatory motif that is difficult to quantify using existing high-throughput methods.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Experimental and Health Sciences, Universitat Pompeu Fabra, 88 Dr. Aiguader, UPF, PRBB, 3rd floor reception, Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
16
|
Hogan GJ, Brown PO, Herschlag D. Evolutionary Conservation and Diversification of Puf RNA Binding Proteins and Their mRNA Targets. PLoS Biol 2015; 13:e1002307. [PMID: 26587879 PMCID: PMC4654594 DOI: 10.1371/journal.pbio.1002307] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 10/23/2015] [Indexed: 12/31/2022] Open
Abstract
Reprogramming of a gene’s expression pattern by acquisition and loss of sequences recognized by specific regulatory RNA binding proteins may be a major mechanism in the evolution of biological regulatory programs. We identified that RNA targets of Puf3 orthologs have been conserved over 100–500 million years of evolution in five eukaryotic lineages. Focusing on Puf proteins and their targets across 80 fungi, we constructed a parsimonious model for their evolutionary history. This model entails extensive and coordinated changes in the Puf targets as well as changes in the number of Puf genes and alterations of RNA binding specificity including that: 1) Binding of Puf3 to more than 200 RNAs whose protein products are predominantly involved in the production and organization of mitochondrial complexes predates the origin of budding yeasts and filamentous fungi and was maintained for 500 million years, throughout the evolution of budding yeast. 2) In filamentous fungi, remarkably, more than 150 of the ancestral Puf3 targets were gained by Puf4, with one lineage maintaining both Puf3 and Puf4 as regulators and a sister lineage losing Puf3 as a regulator of these RNAs. The decrease in gene expression of these mRNAs upon deletion of Puf4 in filamentous fungi (N. crassa) in contrast to the increase upon Puf3 deletion in budding yeast (S. cerevisiae) suggests that the output of the RNA regulatory network is different with Puf4 in filamentous fungi than with Puf3 in budding yeast. 3) The coregulated Puf4 target set in filamentous fungi expanded to include mitochondrial genes involved in the tricarboxylic acid (TCA) cycle and other nuclear-encoded RNAs with mitochondrial function not bound by Puf3 in budding yeast, observations that provide additional evidence for substantial rewiring of post-transcriptional regulation. 4) Puf3 also expanded and diversified its targets in filamentous fungi, gaining interactions with the mRNAs encoding the mitochondrial electron transport chain (ETC) complex I as well as hundreds of other mRNAs with nonmitochondrial functions. The many concerted and conserved changes in the RNA targets of Puf proteins strongly support an extensive role of RNA binding proteins in coordinating gene expression, as originally proposed by Keene. Rewiring of Puf-coordinated mRNA targets and transcriptional control of the same genes occurred at different points in evolution, suggesting that there have been distinct adaptations via RNA binding proteins and transcription factors. The changes in Puf targets and in the Puf proteins indicate an integral involvement of RNA binding proteins and their RNA targets in the adaptation, reprogramming, and function of gene expression. A map of the evolutionary history of Puf proteins and their RNA targets shows that reprogramming of global gene expression programs via adaptive mutations that affect protein-RNA interactions is an important source of biological diversity. We set out to trace the evolutionary history of an RNA binding protein and how its interactions with targets change over evolution. Identifying this natural history is a step toward understanding the critical differences between organisms and how gene expression programs are rewired during evolution. Using bioinformatics and experimental approaches, we broadly surveyed the evolution of binding targets of a particular family of RNA binding proteins—the Puf proteins, whose protein sequences and target RNA sequences are relatively well-characterized—across 99 eukaryotic species. We found five groups of species in which targets have been conserved for at least 100 million years and then took advantage of genome sequences from a large number of fungal species to deeply investigate the conservation and changes in Puf proteins and their RNA targets. Our analyses identified multiple and extensive reconfigurations during the natural history of fungi and suggest that RNA binding proteins and their RNA targets are profoundly involved in evolutionary reprogramming of gene expression and help define distinct programs unique to each organism. Continuing to uncover the natural history of RNA binding proteins and their interactions will provide a unique window into the gene expression programs of present day species and point to new ways to engineer gene expression programs.
Collapse
Affiliation(s)
- Gregory J. Hogan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (POB); (DH)
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Chemistry, Stanford University, Stanford, California, United States of America
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- ChEM-H Institute, Stanford University, Stanford, California, United States of America
- * E-mail: (POB); (DH)
| |
Collapse
|
17
|
The yeast La related protein Slf1p is a key activator of translation during the oxidative stress response. PLoS Genet 2015; 11:e1004903. [PMID: 25569619 PMCID: PMC4287443 DOI: 10.1371/journal.pgen.1004903] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/19/2014] [Indexed: 12/22/2022] Open
Abstract
The mechanisms by which RNA-binding proteins control the translation of subsets of mRNAs are not yet clear. Slf1p and Sro9p are atypical-La motif containing proteins which are members of a superfamily of RNA-binding proteins conserved in eukaryotes. RIP-Seq analysis of these two yeast proteins identified overlapping and distinct sets of mRNA targets, including highly translated mRNAs such as those encoding ribosomal proteins. In paralell, transcriptome analysis of slf1Δ and sro9Δ mutant strains indicated altered gene expression in similar functional classes of mRNAs following loss of each factor. The loss of SLF1 had a greater impact on the transcriptome, and in particular, revealed changes in genes involved in the oxidative stress response. slf1Δ cells are more sensitive to oxidants and RIP-Seq analysis of oxidatively stressed cells enriched Slf1p targets encoding antioxidants and other proteins required for oxidant tolerance. To quantify these effects at the protein level, we used label-free mass spectrometry to compare the proteomes of wild-type and slf1Δ strains following oxidative stress. This analysis identified several proteins which are normally induced in response to hydrogen peroxide, but where this increase is attenuated in the slf1Δ mutant. Importantly, a significant number of the mRNAs encoding these targets were also identified as Slf1p-mRNA targets. We show that Slf1p remains associated with the few translating ribosomes following hydrogen peroxide stress and that Slf1p co-immunoprecipitates ribosomes and members of the eIF4E/eIF4G/Pab1p ‘closed loop’ complex suggesting that Slf1p interacts with actively translated mRNAs following stress. Finally, mutational analysis of SLF1 revealed a novel ribosome interacting domain in Slf1p, independent of its RNA binding La-motif. Together, our results indicate that Slf1p mediates a translational response to oxidative stress via mRNA-specific translational control. All organisms must respond to changes in their external environment such as exposure to different stresses. The availability of genome sequences and post-genomic technologies has enabled the analysis of these adaptive responses at the molecular level in terms of altered gene expression profiles. However, relatively few studies have focused on how cells regulate the translation of mRNA into protein in response to stress, despite its fundamental role in gene expression pathways. In this study, we show that a previously identified RNA-binding protein called Slf1p plays a major role in mRNA-specific regulation of translation during oxidative stress conditions and is necessary to promote the translation of stress-responsive mRNAs. This protein is a member of the so-called “La-related” family of proteins that have not been well characterized, although they are conserved throughout evolution. Exposure to oxidants is known to cause a general down-regulation of protein synthesis, although many stress response proteins are able to overcome this inhibition and increase their protein levels following stress by as yet unknown mechanisms. Our experiments offer one possible explanation, as they show that Slf1p plays a critical role in enhancing translation of many of these proteins, including many that are necessary for the cellular stress response.
Collapse
|
18
|
Baejen C, Torkler P, Gressel S, Essig K, Söding J, Cramer P. Transcriptome Maps of mRNP Biogenesis Factors Define Pre-mRNA Recognition. Mol Cell 2014; 55:745-57. [DOI: 10.1016/j.molcel.2014.08.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/08/2014] [Accepted: 07/31/2014] [Indexed: 12/15/2022]
|
19
|
Harnessing natural sequence variation to dissect posttranscriptional regulatory networks in yeast. G3-GENES GENOMES GENETICS 2014; 4:1539-53. [PMID: 24938291 PMCID: PMC4132183 DOI: 10.1534/g3.114.012039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding how genomic variation influences phenotypic variation through the molecular networks of the cell is one of the central challenges of biology. Transcriptional regulation has received much attention, but equally important is the posttranscriptional regulation of mRNA stability. Here we applied a systems genetics approach to dissect posttranscriptional regulatory networks in the budding yeast Saccharomyces cerevisiae. Quantitative sequence-to-affinity models were built from high-throughput in vivo RNA binding protein (RBP) binding data for 15 yeast RBPs. Integration of these models with genome-wide mRNA expression data allowed us to estimate protein-level RBP regulatory activity for individual segregants from a genetic cross between two yeast strains. Treating these activities as a quantitative trait, we mapped trans-acting loci (activity quantitative trait loci, or aQTLs) that act via posttranscriptional regulation of transcript stability. We predicted and experimentally confirmed that a coding polymorphism at the IRA2 locus modulates Puf4p activity. Our results also indicate that Puf3p activity is modulated by distinct loci, depending on whether it acts via the 5′ or the 3′ untranslated region of its target mRNAs. Together, our results validate a general strategy for dissecting the connectivity between posttranscriptional regulators and their upstream signaling pathways.
Collapse
|
20
|
Zhang C, Wang X, Park S, Chiang YC, Xi W, Laue TM, Denis CL. Only a subset of the PAB1-mRNP proteome is present in mRNA translation complexes. Protein Sci 2014; 23:1036-49. [PMID: 24838188 DOI: 10.1002/pro.2490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/29/2014] [Accepted: 05/14/2014] [Indexed: 01/02/2023]
Abstract
We have previously identified 55 nonribosomal proteins in PAB1-mRNP complexes in Saccharomyces cerevisiae using mass spectrometric analysis. Because one of the inherent limitations of mass spectrometry is that it does not inform as to the size or type of complexes in which the proteins are present, we consequently used analytical ultracentrifugation with fluorescent detection system (AU-FDS) to determine which proteins are present in the 77S monosomal translation complex that contains minimally the closed-loop structure components (eIF4E, eIF4G, and PAB1), mRNA, and the 40S and 60S ribosomes. We assayed by AU-FDS analysis 33 additional PAB1-mRNP factors but found that only five of these proteins were present in the 77S translation complex: eRF1, SLF1, SSD1, PUB1, and SBP1. eRF1 is involved in translation termination, SBP1 is a translational repressor, and SLF1, SSD1, and PUB1 are known mRNA binding proteins. Many of the known P body/stress granule proteins that associate with the PAB1-mRNP were not present in the 77S translation complex, implying that P body/stress granules result from significant protein additions after translational cessation. These data inform that AU-FDS can clarify protein complex identification that remains undetermined after typical immunoprecipitation and mass spectrometric analyses.
Collapse
Affiliation(s)
- Chongxu Zhang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, 03824
| | | | | | | | | | | | | |
Collapse
|
21
|
Geisberg JV, Moqtaderi Z, Fan X, Ozsolak F, Struhl K. Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell 2014; 156:812-24. [PMID: 24529382 DOI: 10.1016/j.cell.2013.12.026] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/05/2013] [Accepted: 12/13/2013] [Indexed: 12/01/2022]
Abstract
We measured half-lives of 21,248 mRNA 3' isoforms in yeast by rapidly depleting RNA polymerase II from the nucleus and performing direct RNA sequencing throughout the decay process. Interestingly, half-lives of mRNA isoforms from the same gene, including nearly identical isoforms, often vary widely. Based on clusters of isoforms with different half-lives, we identify hundreds of sequences conferring stabilization or destabilization upon mRNAs terminating downstream. One class of stabilizing element is a polyU sequence that can interact with poly(A) tails, inhibit the association of poly(A)-binding protein, and confer increased stability upon introduction into ectopic transcripts. More generally, destabilizing and stabilizing elements are linked to the propensity of the poly(A) tail to engage in double-stranded structures. Isoforms engineered to fold into 3' stem-loop structures not involving the poly(A) tail exhibit even longer half-lives. We suggest that double-stranded structures at 3' ends are a major determinant of mRNA stability.
Collapse
Affiliation(s)
- Joseph V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaochun Fan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fatih Ozsolak
- Helicos BioSciences Corporation, 1 Kendall Square, Cambridge, MA 02139, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Doh JH, Lutz S, Curcio MJ. Co-translational localization of an LTR-retrotransposon RNA to the endoplasmic reticulum nucleates virus-like particle assembly sites. PLoS Genet 2014; 10:e1004219. [PMID: 24603646 PMCID: PMC3945221 DOI: 10.1371/journal.pgen.1004219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/18/2014] [Indexed: 11/18/2022] Open
Abstract
The transcript of retrovirus-like transposons functions as an mRNA for synthesis of capsid and replication proteins and as the genomic RNA of virus-like particles (VLPs), wherein the genome is replicated. Retrotransposon RNA and proteins coalesce in a cytoplasmic focus, or retrosome, to initiate VLP assembly, but it is not known how the retrosome is nucleated. We determined how the RNA and Gag protein of the Saccharomyces cerevisiae Ty1 retrotransposon are directed to the retrosome. We found that Ty1 RNA is translated in association with signal recognition particle (SRP), a universally conserved chaperone that binds specific ribosome-nascent chain (RNC) complexes and targets the nascent peptide to the endoplasmic reticulum (ER). Gag is translocated to the ER lumen; yet, it is also found in the cytoplasm, associated with SRP-RNC complexes. In the absence of ER translocation, Gag is synthesized but rapidly degraded, and Ty1 RNA does not coalesce in retrosomes. These findings suggest that Gag adopts a stable conformation in the ER lumen, is retrotranslocated to the cytoplasm, binds to Ty1 RNA on SRP-RNC complexes and multimerizes to nucleate retrosomes. Consistent with this model, we show that slowing the rate of co-translational ER translocation by limiting SRP increases the prevalence of retrosomes, while suppressing the translocation defect of srp hypomorphs by slowing translational elongation rapidly decreases retrosome formation. Thus, retrosomes are dynamic foci of Ty1 RNA-RNC complexes whose formation is modulated by the rate of co-translational ER translocation. Together, these findings suggest that translating Ty1 mRNA and the genomic RNA of VLPs originate in a single pool and moreover, that co-translational localization of Ty1 RNA nucleates the presumptive VLP assembly site. The separation of nascent Gag from its RNA template by transit through the ER allows Gag to bind translating Ty1 RNA without displaying a cis-preference for its encoding RNA. Retrotransposons are mobile elements that have invaded the genomes of organisms from bacteria to humans. Facilitated by host co-factors, retrotransposon proteins copy their RNA genomes into DNA that integrates into the host genome, causing mutations and genome instability. The yeast Ty1 element belongs to a family of retrotransposons that are related to infectious retroviruses. Ty1 RNA and its coat protein, Gag, assemble into virus-like particles, wherein the RNA is copied into DNA. It was not previously known how Ty1 RNA and Gag are concentrated in a specific cellular location to initiate the assembly of virus-like particles. In this study, we show that Ty1 RNA is brought to the presumptive assembly site during translation by the protein chaperone, signal recognition particle. As Ty1 RNA is translated, the nascent Gag polypeptide enters the lumen of the endoplasmic reticulum, where Gag adopts a stable conformation before returning to the cytoplasm to bind to translating Ty1 RNA. An interaction between Gag molecules bound to translating Ty1 RNA results in the nucleation of the virus-like particle assembly site. Our findings identify new host co-factors in retrotransposon mobility and suggest potential approaches to controlling retrotransposon-associated genome instability in aging and cancer.
Collapse
Affiliation(s)
- Jung H. Doh
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Sheila Lutz
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - M. Joan Curcio
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Simpson CE, Lui J, Kershaw CJ, Sims PFG, Ashe MP. mRNA localization to P-bodies in yeast is bi-phasic with many mRNAs captured in a late Bfr1p-dependent wave. J Cell Sci 2014; 127:1254-62. [PMID: 24424022 PMCID: PMC3953815 DOI: 10.1242/jcs.139055] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The relocalization of translationally repressed mRNAs to mRNA processing bodies Pbodies is a key consequence of cellular stress across many systems. Pbodies harbor mRNA degradation components and are implicated in mRNA decay, but the relative timing and control of mRNA relocalization to Pbodies is poorly understood. We used the MS2GFP system to follow the movement of specific endogenous mRNAs in live Saccharomyces cerevisiae cells after nutritional stress. It appears that the relocalization of mRNA to Pbodies after stress is biphasic some mRNAs are present early, whereas others are recruited much later concomitant with recruitment of translation initiation factors, such as eIF4E. We also find that Bfr1p is a latephaselocalizing Pbody protein that is important for the delayed entry of certain mRNAS to Pbodies. Therefore, for the mRNAs tested, relocalization to Pbodies varies both in terms of the kinetics and factor requirements. This work highlights a potential new regulatory juncture in gene expression that would facilitate the overall rationalization of protein content required for adaptation to stress.
Collapse
Affiliation(s)
- Clare E Simpson
- Department of Biochemistry, Downing Site, The University of Cambridge, Cambridge CB2 1QW, UK
| | | | | | | | | |
Collapse
|
24
|
Yamanishi M, Ito Y, Kintaka R, Imamura C, Katahira S, Ikeuchi A, Moriya H, Matsuyama T. A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a ″terminatome″ toolbox. ACS Synth Biol 2013; 2:337-47. [PMID: 23654277 DOI: 10.1021/sb300116y] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The terminator regions of eukaryotes encode functional elements in the 3' untranslated region (3'-UTR) that influence the 3'-end processing of mRNA, mRNA stability, and translational efficiency, which can modulate protein production. However, the contribution of these terminator regions to gene expression remains unclear, and therefore their utilization in metabolic engineering or synthetic genetic circuits has been limited. Here, we comprehensively evaluated the activity of 5302 terminator regions from a total of 5880 genes in the budding yeast Saccharomyces cerevisiae by inserting each terminator region downstream of the P TDH3 - green fluorescent protein (GFP) reporter gene and measuring the fluorescent intensity of GFP. Terminator region activities relative to that of the PGK1 standard terminator ranged from 0.036 to 2.52, with a mean of 0.87. We thus could isolate the most and least active terminator regions. The activities of the terminator regions showed a positive correlation with mRNA abundance, indicating that the terminator region is a determinant of mRNA abundance. The least active terminator regions tended to encode longer 3'-UTRs, suggesting the existence of active degradation mechanisms for those mRNAs. The terminator regions of ribosomal protein genes tended to be the most active, suggesting the existence of a common regulator of those genes. The ″terminatome″ (the genome-wide set of terminator regions) thus not only provides valuable information to understand the modulatory roles of terminator regions on gene expression but also serves as a useful toolbox for the development of metabolically and genetically engineered yeast.
Collapse
Affiliation(s)
| | | | - Reiko Kintaka
- Research Core for Interdisciplinary
Sciences, Okayama University, 3-1-1 Tsushima-Naka,
Kita-ku, Okayama, 700-8530, Japan
| | | | | | | | - Hisao Moriya
- Research Core for Interdisciplinary
Sciences, Okayama University, 3-1-1 Tsushima-Naka,
Kita-ku, Okayama, 700-8530, Japan
| | | |
Collapse
|
25
|
Salzman J, Klass DM, Brown PO. Improved discovery of molecular interactions in genome-scale data with adaptive model-based normalization. PLoS One 2013; 8:e53930. [PMID: 23349766 PMCID: PMC3551948 DOI: 10.1371/journal.pone.0053930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
Background High throughput molecular-interaction studies using immunoprecipitations (IP) or affinity purifications are powerful and widely used in biology research. One of many important applications of this method is to identify the set of RNAs that interact with a particular RNA-binding protein (RBP). Here, the unique statistical challenge presented is to delineate a specific set of RNAs that are enriched in one sample relative to another, typically a specific IP compared to a non-specific control to model background. The choice of normalization procedure critically impacts the number of RNAs that will be identified as interacting with an RBP at a given significance threshold – yet existing normalization methods make assumptions that are often fundamentally inaccurate when applied to IP enrichment data. Methods In this paper, we present a new normalization methodology that is specifically designed for identifying enriched RNA or DNA sequences in an IP. The normalization (called adaptive or AD normalization) uses a basic model of the IP experiment and is not a variant of mean, quantile, or other methodology previously proposed. The approach is evaluated statistically and tested with simulated and empirical data. Results and Conclusions The adaptive (AD) normalization method results in a greatly increased range in the number of enriched RNAs identified, fewer false positives, and overall better concordance with independent biological evidence, for the RBPs we analyzed, compared to median normalization. The approach is also applicable to the study of pairwise RNA, DNA and protein interactions such as the analysis of transcription factors via chromatin immunoprecipitation (ChIP) or any other experiments where samples from two conditions, one of which contains an enriched subset of the other, are studied.
Collapse
Affiliation(s)
- Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Statistics, Stanford University, Stanford, California, United States of America
- * E-mail: (JS); (POB)
| | - Daniel M. Klass
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (JS); (POB)
| |
Collapse
|
26
|
Orozco H, Matallana E, Aranda A. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking. Microb Cell Fact 2013; 12:1. [PMID: 23282100 PMCID: PMC3583744 DOI: 10.1186/1475-2859-12-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/27/2012] [Indexed: 12/16/2022] Open
Abstract
Background Yeast viability and vitality are essential for different industrial processes where the yeast Saccharomyces cerevisiae is used as a biotechnological tool. Therefore, the decline of yeast biological functions during aging may compromise their successful biotechnological use. Life span is controlled by a variety of molecular mechanisms, many of which are connected to stress tolerance and genomic stability, although the metabolic status of a cell has proven a main factor affecting its longevity. Acetic acid and ethanol accumulation shorten chronological life span (CLS), while glycerol extends it. Results Different age-related gene classes have been modified by deletion or overexpression to test their role in longevity and metabolism. Overexpression of histone deacetylase SIR2 extends CLS and reduces acetate production, while overexpression of SIR2 homolog HST3 shortens CLS, increases the ethanol level, and reduces acetic acid production. HST3 overexpression also enhances ethanol tolerance. Increasing tolerance to oxidative stress by superoxide dismutase SOD2 overexpression has only a moderate positive effect on CLS. CLS during grape juice fermentation has also been studied for mutants on several mRNA binding proteins that are regulators of gene expression at the posttranscriptional level; we found that NGR1 and UTH4 deletions decrease CLS, while PUF3 and PUB1 deletions increase it. Besides, the pub1Δ mutation increases glycerol production and blocks stress granule formation during grape juice fermentation. Surprisingly, factors relating to apoptosis, such as caspase Yca1 or apoptosis-inducing factor Aif1, play a positive role in yeast longevity during winemaking as their deletions shorten CLS. Conclusions Manipulation of regulators of gene expression at both transcriptional (i.e., sirtuins) and posttranscriptional (i.e., mRNA binding protein Pub1) levels allows to modulate yeast life span during its biotechnological use. Due to links between aging and metabolism, it also influences the production profile of metabolites of industrial relevance.
Collapse
Affiliation(s)
- Helena Orozco
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos-CSIC, Av, Agustín Escardino, 7, Paterna 46980, Spain
| | | | | |
Collapse
|
27
|
Merret R, Martino L, Bousquet-Antonelli C, Fneich S, Descombin J, Billey É, Conte MR, Deragon JM. The association of a La module with the PABP-interacting motif PAM2 is a recurrent evolutionary process that led to the neofunctionalization of La-related proteins. RNA (NEW YORK, N.Y.) 2013; 19:36-50. [PMID: 23148093 PMCID: PMC3527725 DOI: 10.1261/rna.035469.112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/12/2012] [Indexed: 05/27/2023]
Abstract
La-related proteins (LARPs) are largely uncharacterized factors, well conserved throughout evolution. Recent reports on the function of human LARP4 and LARP6 suggest that these proteins fulfill key functions in mRNA metabolism and/or translation. We report here a detailed evolutionary history of the LARP4 and 6 families in eukaryotes. Genes coding for LARP4 and 6 were duplicated in the common ancestor of the vertebrate lineage, but one LARP6 gene was subsequently lost in the common ancestor of the eutherian lineage. The LARP6 gene was also independently duplicated several times in the vascular plant lineage. We observed that vertebrate LARP4 and plant LARP6 duplication events were correlated with the acquisition of a PABP-interacting motif 2 (PAM2) and with a significant reorganization of their RNA-binding modules. Using isothermal titration calorimetry (ITC) and immunoprecipitation methods, we show that the two plant PAM2-containing LARP6s (LARP6b and c) can, indeed, interact with the major plant poly(A)-binding protein (PAB2), while the third plant LARP6 (LARP6a) is unable to do so. We also analyzed the RNA-binding properties and the subcellular localizations of the two types of plant LARP6 proteins and found that they display nonredundant characteristics. As a whole, our results support a model in which the acquisition by LARP4 and LARP6 of a PAM2 allowed their targeting to mRNA 3' UTRs and led to their neofunctionalization.
Collapse
Affiliation(s)
- Rémy Merret
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Cécile Bousquet-Antonelli
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Sara Fneich
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Julie Descombin
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Élodie Billey
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Jean-Marc Deragon
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| |
Collapse
|
28
|
Abstract
All RNA species in yeast cells are subject to turnover. Work over the past 20 years has defined degradation mechanisms for messenger RNAs, transfer RNAs, ribosomal RNAs, and noncoding RNAs. In addition, numerous quality control mechanisms that target aberrant RNAs have been identified. Generally, each decay mechanism contains factors that funnel RNA substrates to abundant exo- and/or endonucleases. Key issues for future work include determining the mechanisms that control the specificity of RNA degradation and how RNA degradation processes interact with translation, RNA transport, and other cellular processes.
Collapse
Affiliation(s)
- Roy Parker
- Department of Molecular and Cellular Biology, University of Arizona and Howard Hughes Medical Institute, Tucson, AZ 85721, USA.
| |
Collapse
|
29
|
Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 2012; 109:2666-71. [PMID: 22308426 PMCID: PMC3289346 DOI: 10.1073/pnas.1118650109] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The arbuscular mycorrhizal (AM) symbiosis, formed between the majority of land plants and ubiquitous soil fungi of the phylum Glomeromycota, is responsible for massive nutrient transfer and global carbon sequestration. AM fungi take up nutrients from the soil and exchange them against photosynthetically fixed carbon (C) from the host. Recent studies have demonstrated that reciprocal reward strategies by plant and fungal partners guarantee a "fair trade" of phosphorus against C between partners [Kiers ET, et al. (2011) Science 333:880-882], but whether a similar reward mechanism also controls nitrogen (N) flux in the AM symbiosis is not known. Using mycorrhizal root organ cultures, we manipulated the C supply to the host and fungus and followed the uptake and transport of N sources in the AM symbiosis, the enzymatic activities of arginase and urease, and fungal gene expression in the extraradical and intraradical mycelium. We found that the C supply of the host plant triggers the uptake and transport of N in the symbiosis, and that the increase in N transport is orchestrated by changes in fungal gene expression. N transport in the symbiosis is stimulated only when the C is delivered by the host across the mycorrhizal interface, not when C is supplied directly to the fungal extraradical mycelium in the form of acetate. These findings support the importance of C flux from the root to the fungus as a key trigger for N uptake and transport and provide insight into the N transport regulation in the AM symbiosis.
Collapse
Affiliation(s)
- Carl R. Fellbaum
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
| | - Emma W. Gachomo
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
- Biology Department, Rutgers, State University of New Jersey, Camden, NJ 08102
| | - Yugandhar Beesetty
- Biology Department, Rutgers, State University of New Jersey, Camden, NJ 08102
| | - Sulbha Choudhari
- Biology Department, Rutgers, State University of New Jersey, Camden, NJ 08102
| | - Gary D. Strahan
- Agricultural Research Service, Eastern Regional Research Center, US Department of Agriculture, Wyndmoor, PA 19038; and
| | - Philip E. Pfeffer
- Agricultural Research Service, Eastern Regional Research Center, US Department of Agriculture, Wyndmoor, PA 19038; and
| | - E. Toby Kiers
- Department of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Heike Bücking
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
- Biology Department, Rutgers, State University of New Jersey, Camden, NJ 08102
| |
Collapse
|
30
|
Santiveri CM, Mirassou Y, Rico-Lastres P, Martínez-Lumbreras S, Pérez-Cañadillas JM. Pub1p C-terminal RRM domain interacts with Tif4631p through a conserved region neighbouring the Pab1p binding site. PLoS One 2011; 6:e24481. [PMID: 21931728 PMCID: PMC3169606 DOI: 10.1371/journal.pone.0024481] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 08/11/2011] [Indexed: 11/18/2022] Open
Abstract
Pub1p, a highly abundant poly(A)+ mRNA binding protein in Saccharomyces cerevisiae, influences the stability and translational control of many cellular transcripts, particularly under some types of environmental stresses. We have studied the structure, RNA and protein recognition modes of different Pub1p constructs by NMR spectroscopy. The structure of the C-terminal RRM domain (RRM3) shows a non-canonical N-terminal helix that packs against the canonical RRM fold in an original fashion. This structural trait is conserved in Pub1p metazoan homologues, the TIA-1 family, defining a new class of RRM-type domains that we propose to name TRRM (TIA-1 C-terminal domain-like RRM). Pub1p TRRM and the N-terminal RRM1-RRM2 tandem bind RNA with high selectivity for U-rich sequences, with TRRM showing additional preference for UA-rich ones. RNA-mediated chemical shift changes map to β-sheet and protein loops in the three RRMs. Additionally, NMR titration and biochemical in vitro cross-linking experiments determined that Pub1p TRRM interacts specifically with the N-terminal region (1-402) of yeast eIF4G1 (Tif4631p), very likely through the conserved Box1, a short sequence motif neighbouring the Pab1p binding site in Tif4631p. The interaction involves conserved residues of Pub1p TRRM, which define a protein interface that mirrors the Pab1p-Tif4631p binding mode. Neither protein nor RNA recognition involves the novel N-terminal helix, whose functional role remains unclear. By integrating these new results with the current knowledge about Pub1p, we proposed different mechanisms of Pub1p recruitment to the mRNPs and Pub1p-mediated mRNA stabilization in which the Pub1p/Tif4631p interaction would play an important role.
Collapse
Affiliation(s)
- Clara M. Santiveri
- Department of Biological Physical Chemistry, Instituto de Química-Física “Rocasolano”, CSIC, Madrid, Spain
| | - Yasmina Mirassou
- Department of Biological Physical Chemistry, Instituto de Química-Física “Rocasolano”, CSIC, Madrid, Spain
| | - Palma Rico-Lastres
- Department of Biological Physical Chemistry, Instituto de Química-Física “Rocasolano”, CSIC, Madrid, Spain
| | | | | |
Collapse
|
31
|
Dori-Bachash M, Shema E, Tirosh I. Coupled evolution of transcription and mRNA degradation. PLoS Biol 2011; 9:e1001106. [PMID: 21811398 PMCID: PMC3139634 DOI: 10.1371/journal.pbio.1001106] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 06/03/2011] [Indexed: 11/18/2022] Open
Abstract
mRNA levels are determined by the balance between transcription and mRNA degradation, and while transcription has been extensively studied, very little is known regarding the regulation of mRNA degradation and its coordination with transcription. Here we examine the evolution of mRNA degradation rates between two closely related yeast species. Surprisingly, we find that around half of the evolutionary changes in mRNA degradation were coupled to transcriptional changes that exert opposite effects on mRNA levels. Analysis of mRNA degradation rates in an interspecific hybrid further suggests that opposite evolutionary changes in transcription and in mRNA degradation are mechanistically coupled and were generated by the same individual mutations. Coupled changes are associated with divergence of two complexes that were previously implicated both in transcription and in mRNA degradation (Rpb4/7 and Ccr4-Not), as well as with sequence divergence of transcription factor binding motifs. These results suggest that an opposite coupling between the regulation of transcription and that of mRNA degradation has shaped the evolution of gene regulation in yeast.
Collapse
Affiliation(s)
- Mally Dori-Bachash
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Efrat Shema
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Itay Tirosh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
32
|
Castells-Roca L, García-Martínez J, Moreno J, Herrero E, Bellí G, Pérez-Ortín JE. Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities. PLoS One 2011; 6:e17272. [PMID: 21364882 PMCID: PMC3045430 DOI: 10.1371/journal.pone.0017272] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/25/2011] [Indexed: 11/18/2022] Open
Abstract
We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25 °C to 37 °C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins.
Collapse
Affiliation(s)
- Laia Castells-Roca
- Departament de Ciències Mèdiques Bàsiques and IRBLleida, Universitat de Lleida, Lleida, Catalunya, Spain
| | - José García-Martínez
- Sección de Chips de DNA-Servei Central de Suport a la Investigació Experimental, Universitat de València, Burjassot, Valencia, Spain
| | - Joaquín Moreno
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain
| | - Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques and IRBLleida, Universitat de Lleida, Lleida, Catalunya, Spain
| | - Gemma Bellí
- Departament de Ciències Mèdiques Bàsiques and IRBLleida, Universitat de Lleida, Lleida, Catalunya, Spain
- * E-mail: (GB); (JEP-O)
| | - José E. Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain
- * E-mail: (GB); (JEP-O)
| |
Collapse
|
33
|
Morris AR, Mukherjee N, Keene JD. Systematic analysis of posttranscriptional gene expression. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:162-180. [PMID: 20836020 DOI: 10.1002/wsbm.54] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent systems studies of gene expression have begun to dissect the layers of regulation that underlie the eukaryotic transcriptome, the combined consequence of transcriptional and posttranscriptional events. Among the regulatory layers of the transcriptome are those of the ribonome, a highly dynamic environment of ribonucleoproteins in which RNA-binding proteins (RBPs), noncoding regulatory RNAs (ncRNAs) and messenger RNAs (mRNAs) interact. While multiple mRNAs are coordinated together in groups within the ribonome of a eukaryotic cell, each individual type of mRNA consists of multiple copies, each of which has an opportunity to be a member of more than one modular group termed a posttranscriptional RNA operon or regulon (PTRO). The mRNAs associated with each PTRO encode functionally related proteins and are coordinated at the levels of RNA stability and translation by the actions of the specific RBPs and noncoding regulatory RNAs. This article examines the methods that led to the elucidation of PTROs and the coordinating mechanisms that appear to regulate the RNA components of PTROs. Moreover, the article considers the characteristics of the dynamic systems that drive PTROs and how mRNA components are bound collectively in physical 'states' to respond to cellular perturbations and diseases. In conclusion, these studies have challenged the extent to which cellular mRNA abundance can inform investigators of the functional status of a biological system. We argue that understanding the ribonome has greater potential for illuminating the underlying coordination principles of growth, differentiation, and disease.
Collapse
Affiliation(s)
- Adam R Morris
- University Program in Genetics and Genomics, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Neelanjan Mukherjee
- University Program in Genetics and Genomics, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jack D Keene
- University Program in Genetics and Genomics, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
34
|
RIP-Chip analysis: RNA-Binding Protein Immunoprecipitation-Microarray (Chip) Profiling. Methods Mol Biol 2011; 703:247-63. [PMID: 21125495 DOI: 10.1007/978-1-59745-248-9_17] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Post-transcriptional regulation of gene expression plays an important role in complex cellular processes. Just like transcription factors regulate gene expression through combinatorial binding to multiple, physically dispersed cis elements, mRNA binding proteins can regulate the translation of functionally related gene products by coordinately binding to subsets of mRNAs. The networks of mRNA binding proteins that facilitate this fine-tuning of gene expression are poorly understood. By combining genomic technologies with standard molecular biology tools, we have helped pioneer the development of high-throughput technologies for the global analysis of subsets of mRNAs bound to RNA-binding proteins. This technique is termed RIP-Chip and stands for RNA-Binding Protein Immunoprecipitation-Microarray (Chip) Profiling. This approach is also referred to as "ribonomic profiling" and has revealed valuable information about the workings of mRNP networks in the cell and the regulation of gene expression. In this chapter, we describe the latest advances that we have made in the RIP-CHIP technology.
Collapse
|
35
|
Park YD, Panepinto J, Shin S, Larsen P, Giles S, Williamson PR. Mating pheromone in Cryptococcus neoformans is regulated by a transcriptional/degradative "futile" cycle. J Biol Chem 2010; 285:34746-56. [PMID: 20801870 DOI: 10.1074/jbc.m110.136812] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sexual reproduction in fungi requires induction of signaling pheromones within environments that are conducive to mating. The fungus Cryptococcus neoformans is currently the fourth greatest cause of infectious death in regions of Africa and undergoes mating in phytonutrient-rich environments to create spores with infectious potential. Here we show that under conditions where sexual development is inhibited, a ∼17-fold excess of MFα pheromone transcript is synthesized and then degraded by a DEAD box protein, Vad1, resulting in low steady state transcript levels. Transfer to mating medium or deletion of the VAD1 gene resulted in high level accumulation of MFα transcripts and enhanced mating, acting in concert with the mating-related HOG1 pathway. We then investigated whether the high metabolic cost of this apparently futile transcriptional cycle could be justified by a more rapid induction of mating. Maintenance of Vad1 activity on inductive mating medium by constitutive expression resulted in repressed levels of MFα that did not prevent but rather prolonged the time to successful mating from 5-6 h to 15 h (p < 0.0001). In sum, these data suggest that VAD1 negatively regulates the sexual cell cycle via degradation of constitutive high levels of MFα transcripts in a synthetic/degradative cycle, providing a mechanism of mRNA induction for time-critical cellular events, such as mating induction.
Collapse
Affiliation(s)
- Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
36
|
Cridge AG, Castelli LM, Smirnova JB, Selley JN, Rowe W, Hubbard SJ, McCarthy JEG, Ashe MP, Grant CM, Pavitt GD. Identifying eIF4E-binding protein translationally-controlled transcripts reveals links to mRNAs bound by specific PUF proteins. Nucleic Acids Res 2010; 38:8039-50. [PMID: 20705650 PMCID: PMC3001062 DOI: 10.1093/nar/gkq686] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
eIF4E-binding proteins (4E-BPs) regulate translation of mRNAs in eukaryotes. However the extent to which specific mRNA targets are regulated by 4E-BPs remains unknown. We performed translational profiling by microarray analysis of polysome and monosome associated mRNAs in wild-type and mutant cells to identify mRNAs in yeast regulated by the 4E-BPs Caf20p and Eap1p; the first-global comparison of 4E-BP target mRNAs. We find that yeast 4E-BPs modulate the translation of >1000 genes. Most target mRNAs differ between the 4E-BPs revealing mRNA specificity for translational control by each 4E-BP. This is supported by observations that eap1Δ and caf20Δ cells have different nitrogen source utilization defects, implying different mRNA targets. To account for the mRNA specificity shown by each 4E-BP, we found correlations between our data sets and previously determined targets of yeast mRNA-binding proteins. We used affinity chromatography experiments to uncover specific RNA-stabilized complexes formed between Caf20p and Puf4p/Puf5p and between Eap1p and Puf1p/Puf2p. Thus the combined action of each 4E-BP with specific 3'-UTR-binding proteins mediates mRNA-specific translational control in yeast, showing that this form of translational control is more widely employed than previously thought.
Collapse
Affiliation(s)
- Andrew G Cridge
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells. PLoS One 2010; 5:e11201. [PMID: 20574513 PMCID: PMC2888570 DOI: 10.1371/journal.pone.0011201] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/27/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Dramatic changes in gene expression occur in response to extracellular stimuli and during differentiation. Although transcriptional effects are important, alterations in mRNA decay also play a major role in achieving rapid and massive changes in mRNA abundance. Moreover, just as transcription factor activity varies between different cell types, the factors influencing mRNA decay are also cell-type specific. PRINCIPAL FINDINGS We have established the rates of decay for over 7000 transcripts expressed in mouse C2C12 myoblasts. We found that GU-rich (GRE) and AU-rich (ARE) elements are over-represented in the 3'UTRs of short-lived mRNAs and that these mRNAs tend to encode factors involved in cell cycle and transcription regulation. Stabilizing elements were also identified. By comparing mRNA decay rates in C2C12 cells with those previously measured for pluripotent and differentiating embryonic stem (ES) cells, we identified several groups of transcripts that exhibit cell-type specific decay rates. Further, whereas in C2C12 cells the impact of GREs on mRNA decay appears to be greater than that of AREs, AREs are more significant in ES cells, supporting the idea that cis elements make a cell-specific contribution to mRNA stability. GREs are recognized by CUGBP1, an RNA-binding protein and instability factor whose function is affected in several neuromuscular diseases. We therefore utilized RNA immunoprecipitation followed by microarray (RIP-Chip) to identify CUGBP1-associated transcripts. These mRNAs also showed dramatic enrichment of GREs in their 3'UTRs and encode proteins linked with cell cycle, and intracellular transport. Interestingly several CUGBP1 substrate mRNAs, including those encoding the myogenic transcription factors Myod1 and Myog, are also bound by the stabilizing factor HuR in C2C12 cells. Finally, we show that several CUGBP1-associated mRNAs containing 3'UTR GREs, including Myod1, are stabilized in cells depleted of CUGBP1, consistent with the role of CUGBP1 as a destabilizing factor. CONCLUSIONS Taken together, our results systematically establish cis-acting determinants of mRNA decay rates in C2C12 myoblast cells and demonstrate that CUGBP1 associates with GREs to regulate decay of a wide range of mRNAs including several that are critical for muscle development.
Collapse
|
38
|
Li H, Shi H, Wang H, Zhu Z, Li X, Gao Y, Cui Y, Niu L, Teng M. Crystal structure of the two N-terminal RRM domains of Pub1 and the poly(U)-binding properties of Pub1. J Struct Biol 2010; 171:291-7. [PMID: 20438847 DOI: 10.1016/j.jsb.2010.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 11/18/2022]
Abstract
Yeast poly(U)-binding protein (Pub1) is a major nuclear and cytoplasmic protein that contains three RNA recognition motif (RRM) domains (termed Pub1RRM1, Pub1RRM2 and Pub1RRM3). Pub1 has been implicated as a regulator of cellular mRNA decay. Nearly 10% of all yeast mRNA decay occurs in a Pub1-dependent manner. Pub1 binds to and stabilizes AU-rich element (ARE) and ARE-like sequence-containing transcripts by protecting them from degradation through the deadenylation-dependent pathway, and also binds to and stabilizes stabilizer element (STE)-containing transcripts by preventing their degradation via the nonsense-mediated decay (NMD) pathway. RNA-binding analyses showed that Pub1 binds to poly(U) in vitro. Here we show the crystal structures of Pub1RRM2 and the first two tandem RRM domains (Pub1RRM12). Crystallography showed that the structure of Pub1RRM12 is a domain-swapped dimer. Size exclusion chromatography assay and analytical ultracentrifugation (AUC) showed that Pub1RRM12 is a monomer in solution. Kinetic analysis showed that all three individual RRM domains can bind to poly(U) with similar affinities and Pub1RRM12 binds to a long poly(U) segment with higher affinity. Mutagenesis analysis revealed that residues on the beta-sheets of Pub1RRM1 and Pub1RRM2 are critical for poly(U) binding.
Collapse
Affiliation(s)
- Heng Li
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Eukaryotic cells contain at least two types of cytoplasmic RNA-protein (RNP) granules that contain nontranslating mRNAs. One such RNP granule is a P-body, which contains translationally inactive mRNAs and proteins involved in mRNA degradation and translation repression. A second such RNP granule is a stress granule which also contains mRNAs, some RNA binding proteins and several translation initiation factors, suggesting these granules contain mRNAs stalled in translation initiation. In this chapter, we describe methods to analyze P-bodies and stress granules in Saccharomyces cerevisiae, including procedures to determine if a protein or mRNA can accumulate in either granule, if an environmental perturbation or mutation affects granule size and number, and granule quantification methods.
Collapse
|
40
|
Urakov VN, Vishnevskaya AB, Alexandrov IM, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Interdependence of amyloid formation in yeast: implications for polyglutamine disorders and biological functions. Prion 2010; 4:45-52. [PMID: 20118659 DOI: 10.4161/pri.4.1.11074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In eukaryotic cells amyloid aggregates may incorporate various functionally unrelated proteins. In mammalian diseases this may cause amyloid toxicity, while in yeast this could contribute to prion phenotypes. Insolubility of amyloids in the presence of strong ionic detergents, such as SDS or sarcosyl, allows discrimination between amorphous and amyloid aggregates. Here, we used this property of amyloids to study the interdependence of their formation in yeast. We observed that SDS-resistant polymers of proteins with extended polyglutamine domains caused the appearance of SDS or sarcosyl-insoluble polymers of three tested chromosomally-encoded Q/N-rich proteins, Sup35, Rnq1 and Pub1. These polymers were non-heritable, since they could not propagate in the absence of polyglutamine polymers. Sup35 prion polymers caused the appearance of non-heritable sarcosyl-resistant polymers of Pub1. Since eukaryotic genomes encode hundreds of proteins with long Q/N-rich regions, polymer interdependence suggests that conversion of a single protein into polymer form may significantly affect cell physiology by causing partial transfer of other Q/N-rich proteins into a non-functional polymer state.
Collapse
|
41
|
Dissecting the expression dynamics of RNA-binding proteins in posttranscriptional regulatory networks. Proc Natl Acad Sci U S A 2009; 106:20300-5. [PMID: 19918083 DOI: 10.1073/pnas.0906940106] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In eukaryotic organisms, gene expression requires an additional level of coordination that links transcriptional and posttranslational processes. Messenger RNAs have traditionally been viewed as passive molecules in the pathway from transcription to translation. However, it is now clear that RNA-binding proteins (RBPs) play an important role in cellular homeostasis by controlling gene expression at the posttranscriptional level. Here, we show that RBPs, as a class of proteins, show distinct gene expression dynamics compared to other protein coding genes in the eukaryote Sacchoromyces cerevisiae. We find that RBPs generally exhibit high protein stability, translational efficiency, and protein abundance but their encoding transcripts tend to have a low half-life. We show that RBPs are also most often posttranslationally modified, indicating their potential for regulation at the protein level to control diverse cellular processes. Further analysis of the RBP-RNA interaction network showed that the number of distinct targets bound by an RBP (connectivity) is strongly correlated with its protein stability, translational efficiency, and abundance. We also note that RBPs show less noise in their expression in a population of cells, with highly connected RBPs showing significantly lower noise. Our results indicate that highly connected RBPs are likely to be tightly regulated at the protein level as significant changes in their expression may bring about large-scale changes in global expression levels by affecting their targets. These observations might explain the molecular basis behind the cause of a number of disorders associated with misexpression or mutation in RBPs. Future studies uncovering the posttranscriptional networks in higher eukaryotes can help our understanding of the link between different levels of regulation and their role in pathological conditions.
Collapse
|
42
|
Romero-Santacreu L, Moreno J, Pérez-Ortín JE, Alepuz P. Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2009; 15:1110-20. [PMID: 19369426 PMCID: PMC2685517 DOI: 10.1261/rna.1435709] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 02/27/2009] [Indexed: 05/23/2023]
Abstract
Hyperosmotic stress yields reprogramming of gene expression in Saccharomyces cerevisiae cells. Most of this response is orchestrated by Hog1, a stress-activated, mitogen-activated protein kinase (MAPK) homologous to human p38. We investigated, on a genomic scale, the contribution of changes in transcription rates and mRNA stabilities to the modulation of mRNA amounts during the response to osmotic stress in wild-type and hog1 mutant cells. Mild osmotic shock induces a broad mRNA destabilization; however, osmo-mRNAs are up-regulated by increasing both transcription rates and mRNA half-lives. In contrast, mild or severe osmotic stress in hog1 mutants, or severe osmotic stress in wild-type cells, yields global mRNA stabilization and sequestration of mRNAs into P-bodies. After adaptation, the absence of Hog1 affects the kinetics of P-bodies disassembly and the return of mRNAs to translation. Our results indicate that regulation of mRNA turnover contributes to coordinate gene expression upon osmotic stress, and that there are both specific and global controls of mRNA stability depending on the strength of the osmotic stress.
Collapse
Affiliation(s)
- Lorena Romero-Santacreu
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, E-46100 Burjassot, Spain
| | | | | | | |
Collapse
|
43
|
Molin C, Jauhiainen A, Warringer J, Nerman O, Sunnerhagen P. mRNA stability changes precede changes in steady-state mRNA amounts during hyperosmotic stress. RNA (NEW YORK, N.Y.) 2009; 15:600-14. [PMID: 19223440 PMCID: PMC2661839 DOI: 10.1261/rna.1403509] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/19/2008] [Indexed: 05/23/2023]
Abstract
Under stress, cells need to optimize the activity of a wide range of gene products during the response phases: shock, adaptation, and recovery. This requires coordination of several levels of regulation, including turnover and translation efficiencies of mRNAs. Mitogen-activated protein (MAP) kinase pathways are implicated in many aspects of the environmental stress response, including initiation of transcription, translation efficiency, and mRNA turnover. In this study, we analyze mRNA turnover rates and mRNA steady-state levels at different time points following mild hyperosmotic shock in Saccharomyces cerevisiae cells. The regulation of mRNA stability is transient and affects most genes for which there is a change in transcript level. These changes precede and prepare for the changes in steady-state levels, both regarding the initial increase and the later decline of stress-induced mRNAs. The inverse is true for stress-repressed genes, which become stabilized during hyperosmotic stress in preparation of an increase as the cells recover. The MAP kinase Hog1 affects both steady-state levels and stability of stress-responsive transcripts, whereas the Hog1-activated kinase Rck2 influences steady-state levels without a major effect on stability. Regulation of mRNA stability is a wide-spread, but not universal, effect on stress-responsive transcripts during transient hyperosmotic stress. By destabilizing stress-induced mRNAs when their steady-state levels have reached a maximum, the cell prepares for the subsequent recovery phase when these transcripts are to return to normal levels. Conversely, stabilization of stress-repressed mRNAs permits their rapid accumulation in the recovery phase. Our results show that mRNA turnover is coordinated with transcriptional induction.
Collapse
Affiliation(s)
- Claes Molin
- Department of Cell and Molecular Biology, University of Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
44
|
Cui Y, Li H, Li X, Li Y, Zhou H, Niu L, Teng M. Crystallization and preliminary crystallographic analysis of the second RRM of Pub1 from Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:108-10. [PMID: 19193997 DOI: 10.1107/s1744309108040682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 12/03/2008] [Indexed: 11/10/2022]
Abstract
mRNA stability is elaborately regulated by elements in the mRNA transcripts and their cognate RNA-binding proteins, which play important roles in regulating gene expression at the post-transcriptional level in eukaryotes. Poly(U)-binding protein 1 (Pub1), which is a major nuclear and cytoplasmic polyadenylated RNA-binding protein in Saccharomyces cerevisiae, is involved in the regulation of mRNA turnover as a trans-acting factor. It binds to transcripts containing the AU-rich element in order to protect them from degradation. Pub1 contains three RNA-recognition motifs (RRMs) which play significant roles in mRNA binding at AU-rich elements and stabilizer elements. In this study, the second RRM of Pub1 was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 4000 as a precipitant at 283 K. An X-ray diffraction data set was collected using a single flash-cooled crystal that belonged to space group H3.
Collapse
Affiliation(s)
- Yingji Cui
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
RNA-protein interactions profoundly impact organismal development and function through their contributions to the basal gene expression machineries and their regulation of post-transcriptional processes. The repertoire of predicted RNA binding proteins (RBPs) in plants is particularly large, suggesting that the RNA-protein interactome in plants may be more complex and dynamic even than that in metazoa. To dissect RNA-protein interaction networks, it is necessary to identify the RNAs with which each RBP interacts and to determine how those interactions influence RNA fate and downstream processes. Identification of the native RNA ligands of RBPs remains a challenge, but several high-throughput methods for the analysis of RNAs that copurify with specific RBPs from cell extract have been reported recently. This chapter reviews approaches for defining the native RNA ligands of RBPs on a genome-wide scale and provides a protocol for a method that has been used to this end for RBPs that localize to the chloroplast.
Collapse
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
46
|
Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 2008; 6:e255. [PMID: 18959479 PMCID: PMC2573929 DOI: 10.1371/journal.pbio.0060255] [Citation(s) in RCA: 477] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 09/11/2008] [Indexed: 11/19/2022] Open
Abstract
RNA-binding proteins (RBPs) have roles in the regulation of many post-transcriptional steps in gene expression, but relatively few RBPs have been systematically studied. We searched for the RNA targets of 40 proteins in the yeast Saccharomyces cerevisiae: a selective sample of the approximately 600 annotated and predicted RBPs, as well as several proteins not annotated as RBPs. At least 33 of these 40 proteins, including three of the four proteins that were not previously known or predicted to be RBPs, were reproducibly associated with specific sets of a few to several hundred RNAs. Remarkably, many of the RBPs we studied bound mRNAs whose protein products share identifiable functional or cytotopic features. We identified specific sequences or predicted structures significantly enriched in target mRNAs of 16 RBPs. These potential RNA-recognition elements were diverse in sequence, structure, and location: some were found predominantly in 3′-untranslated regions, others in 5′-untranslated regions, some in coding sequences, and many in two or more of these features. Although this study only examined a small fraction of the universe of yeast RBPs, 70% of the mRNA transcriptome had significant associations with at least one of these RBPs, and on average, each distinct yeast mRNA interacted with three of the RBPs, suggesting the potential for a rich, multidimensional network of regulation. These results strongly suggest that combinatorial binding of RBPs to specific recognition elements in mRNAs is a pervasive mechanism for multi-dimensional regulation of their post-transcriptional fate. Regulation of gene transcription has been extensively studied, but much less is known about how the fates of the resulting mRNA transcripts are regulated. We were intrigued by the fact that while most eukaryotic genomes encode hundreds of RNA-binding proteins (RBPs), the targets and regulatory roles of only a small fraction of these proteins have been characterized. In this study, we systematically identified the RNAs associated with a select sample of 40 of the approximately 600 predicted RBPs in the budding yeast, Saccharomyces cerevisiae. We found that most of these RBPs bound specific sets of mRNAs whose protein products share physiological themes or similar locations within the cell. For 16 of the 40 RBPs, we identified sequence motifs significantly enriched in their RNA targets that presumably mediate recognition of the target by the RBP. The intricate, overlapping patterns of mRNAs associated with RBPs suggest an extensive combinatorial system for post-transcriptional regulation, involving dozens or even hundreds of RBPs. The organization and molecular mechanisms involved in this regulatory system, including how RBP–mRNA interactions are integrated with signal transduction systems and how they affect the fates of their RNA targets, provide abundant opportunities for investigation and discovery. A systematic study of the RNA targets of 40 known or predicted RNA-binding proteins in yeast suggests that an extensive system of dozens or hundreds of specific RNA-binding proteins may act to regulate the post-transcriptional fate of most or all RNAs in the yeast cell.
Collapse
|
47
|
Noé G, De Gaudenzi JG, Frasch AC. Functionally related transcripts have common RNA motifs for specific RNA-binding proteins in trypanosomes. BMC Mol Biol 2008; 9:107. [PMID: 19063746 PMCID: PMC2637893 DOI: 10.1186/1471-2199-9-107] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 12/08/2008] [Indexed: 02/08/2023] Open
Abstract
Background Trypanosomes mostly control gene expression by post-transcriptional events such as modulation of mRNA stability and translational efficiency. These mechanisms involve RNA-binding proteins (RBPs), which associate with transcripts to form messenger ribonucleoprotein (mRNP) complexes. Results In this study, we report the identification of mRNA targets for Trypanosoma cruzi U-rich RBP 1 (TcUBP1) and T. cruzi RBP 3 (TcRBP3), two phylogenetically conserved proteins among Kinetoplastids. Co-immunoprecipitated RBP-associated RNAs were extracted from mRNP complexes and binding of RBPs to several targets was confirmed by independent experimental assays. Analysis of target transcript sequences allowed the identification of different signature RNA motifs for each protein. Cis-elements for RBP binding have a stem-loop structure of 30–35 bases and are more frequently represented in the 3'-untranslated region (UTR) of mRNAs. Insertion of the correctly folded RNA elements to a non-specific mRNA rendered it into a target transcript, whereas substitution of the RNA elements abolished RBP interaction. In addition, RBPs competed for RNA-binding sites in accordance with the distribution of different and overlapping motifs in the 3'-UTRs of common mRNAs. Conclusion Functionally related transcripts were preferentially associated with a given RBP; TcUBP1 targets were enriched in genes encoding proteins involved in metabolism, whereas ribosomal protein-encoding transcripts were the largest group within TcRBP3 targets. Together, these results suggest coordinated control of different mRNA subsets at the post-transcriptional level by specific RBPs.
Collapse
Affiliation(s)
- Griselda Noé
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, UNSAM-CONICET, Av, Gral, Paz 5445, INTI, Edificio 24, 1650 San Martín, Provincia de Buenos Aires, Argentina.
| | | | | |
Collapse
|
48
|
Buchan JR, Muhlrad D, Parker R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2008; 183:441-55. [PMID: 18981231 PMCID: PMC2575786 DOI: 10.1083/jcb.200807043] [Citation(s) in RCA: 399] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent results indicate that nontranslating mRNAs in eukaryotic cells exist in distinct biochemical states that accumulate in P bodies and stress granules, although the nature of interactions between these particles is unknown. We demonstrate in Saccharomyces cerevisiae that RNA granules with similar protein composition and assembly mechanisms as mammalian stress granules form during glucose deprivation. Stress granule assembly is dependent on P-body formation, whereas P-body assembly is independent of stress granule formation. This suggests that stress granules primarily form from mRNPs in preexisting P bodies, which is also supported by the kinetics of P-body and stress granule formation both in yeast and mammalian cells. These observations argue that P bodies are important sites for decisions of mRNA fate and that stress granules, at least in yeast, primarily represent pools of mRNAs stalled in the process of reentry into translation from P bodies.
Collapse
Affiliation(s)
- J Ross Buchan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
49
|
Soong TT, Wrzeszczynski KO, Rost B. Physical protein-protein interactions predicted from microarrays. ACTA ACUST UNITED AC 2008; 24:2608-14. [PMID: 18829707 PMCID: PMC2579715 DOI: 10.1093/bioinformatics/btn498] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Motivation: Microarray expression data reveal functionally associated proteins. However, most proteins that are associated are not actually in direct physical contact. Predicting physical interactions directly from microarrays is both a challenging and important task that we addressed by developing a novel machine learning method optimized for this task. Results: We validated our support vector machine-based method on several independent datasets. At the same levels of accuracy, our method recovered more experimentally observed physical interactions than a conventional correlation-based approach. Pairs predicted by our method to very likely interact were close in the overall network of interaction, suggesting our method as an aid for functional annotation. We applied the method to predict interactions in yeast (Saccharomyces cerevisiae). A Gene Ontology function annotation analysis and literature search revealed several probable and novel predictions worthy of future experimental validation. We therefore hope our new method will improve the annotation of interactions as one component of multi-source integrated systems. Contact:ts2186@columbia.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ta-Tsen Soong
- Columbia University Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA.
| | | | | |
Collapse
|
50
|
Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes. Proc Natl Acad Sci U S A 2008; 105:14885-90. [PMID: 18815376 DOI: 10.1073/pnas.0803169105] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Messenger RNA molecules are tightly regulated, mostly through interactions with proteins and other RNAs, but the mechanisms that confer the specificity of such interactions are poorly understood. It is clear, however, that this specificity is determined by both the nucleotide sequence and secondary structure of the mRNA. Here, we develop RNApromo, an efficient computational tool for identifying structural elements within mRNAs that are involved in specifying posttranscriptional regulations. By analyzing experimental data on mRNA decay rates, we identify common structural elements in fast-decaying and slow-decaying mRNAs and link them with binding preferences of several RNA binding proteins. We also predict structural elements in sets of mRNAs with common subcellular localization in mouse neurons and fly embryos. Finally, by analyzing pre-microRNA stem-loops, we identify structural differences between pre-microRNAs of animals and plants, which provide insights into the mechanism of microRNA biogenesis. Together, our results reveal unexplored layers of posttranscriptional regulations in groups of RNAs and are therefore an important step toward a better understanding of the regulatory information conveyed within RNA molecules. Our new RNA motif discovery tool is available online.
Collapse
|