1
|
Slight Variations in the Sequence Downstream of the Polyadenylation Signal Significantly Increase Transgene Expression in HEK293T and CHO Cells. Int J Mol Sci 2022; 23:ijms232415485. [PMID: 36555130 PMCID: PMC9779314 DOI: 10.3390/ijms232415485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Compared to transcription initiation, much less is known about transcription termination. In particular, large-scale mutagenesis studies have, so far, primarily concentrated on promoter and enhancer, but not terminator sequences. Here, we used a massively parallel reporter assay (MPRA) to systematically analyze the influence of short (8 bp) sequence variants (mutations) located downstream of the polyadenylation signal (PAS) on the steady-state mRNA level of the upstream gene, employing an eGFP reporter and human HEK293T cells as a model system. In total, we evaluated 227,755 mutations located at different overlapping positions within +17..+56 bp downstream of the PAS for their ability to regulate the reporter gene expression. We found that the positions +17..+44 bp downstream of the PAS are more essential for gene upregulation than those located more distal to the PAS, and that the mutation sequences ensuring high levels of eGFP mRNA expression are extremely T-rich. Next, we validated the positive effect of a couple of mutations identified in the MPRA screening on the eGFP and luciferase protein expression. The most promising mutation increased the expression of the reporter proteins 13-fold and sevenfold on average in HEK293T and CHO cells, respectively. Overall, these findings might be useful for further improving the efficiency of production of therapeutic products, e.g., recombinant antibodies.
Collapse
|
2
|
Ma Y, Zhan L, Yang J, Zhang J. SLC11A1 associated with tumor microenvironment is a potential biomarker of prognosis and immunotherapy efficacy for colorectal cancer. Front Pharmacol 2022; 13:984555. [PMID: 36438826 PMCID: PMC9681808 DOI: 10.3389/fphar.2022.984555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal cancers of the digestive system. The tumor microenvironment (TME) plays a central role in the initiation and development of CRC. However, little is known about the modulation mechanism of the TME in CRC. In our study, we attempted to identify a biomarker related to the TME modulation that could serve as a potential prognostic biomarker for CRC. We identified differentially expressed genes between the ImmuneScore high/low and StromalScore high/low groups. Using univariate COX regression analysis and hub gene analysis (cytoHubba), SLC11A1 was identified as the only candidate gene for subsequent analysis. CIBERSORT, EPIC, MCPcounter, and immunogenic cell death were performed to evaluate the effect of SLC11A1 on the TME. We also collected samples and performed Real-time quantitative PCR to verify the expression levels of SLC11A1 in CRC and adjacent normal tissues. The IMvigor210 cohort, TIDE score, and immunophenoscore (IPS) were used to analyze the association between SLC11A1 and immunotherapy efficacy. SLC11A1 was highly expressed in CRC tissues compared with its expression in normal colorectal tissues and was associated with poor prognosis and advanced clinicopathological stages. Gene set enrichment analysis showed that TGF-β pathways, JAK-STAT pathways, and angiogenesis were significantly enriched in the high-SLC11A1 group. Single-cell analysis validated the correlation between SLC11A1 and the TME. Using CIBERSORT, EPIC, and MCPcounter algorithms, we found that there was more macrophage and fibroblast infiltration in the SLC11A1 high-expression group. Meanwhile, high-SLC11A1 patients had lower IPS scores, higher TIDE scores, and fewer immunotherapy benefits than those of low-SLC11A1 patients. In conclusion, SLC11A1 plays a crucial role in the TME and could serve as a potential biomarker for poor prognosis and immunotherapy efficacy in CRC.
Collapse
Affiliation(s)
- Yiming Ma
- Medical Oncology Department of Gastrointestinal Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Lei Zhan
- Medical Oncology Department of Gastrointestinal Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jun Yang
- Medical Oncology Department of Breast Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
3
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
4
|
Al-Habeeb F, Aloufi N, Traboulsi H, Liu X, Nair P, Haston C, Azuelos I, Huang SK, White ES, Gallouzi IE, Di Marco S, Eidelman DH, Baglole CJ. Human antigen R promotes lung fibroblast differentiation to myofibroblasts and increases extracellular matrix production. J Cell Physiol 2021; 236:6836-6851. [PMID: 33855709 DOI: 10.1002/jcp.30380] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 01/12/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease of progressive scarring caused by excessive extracellular matrix (ECM) deposition and activation of α-SMA-expressing myofibroblasts. Human antigen R (HuR) is an RNA binding protein that promotes protein translation. Upon translocation from the nucleus to the cytoplasm, HuR functions to stabilize messenger RNA (mRNA) to increase protein levels. However, the role of HuR in promoting ECM production, myofibroblast differentiation, and lung fibrosis is unknown. Human lung fibroblasts (HLFs) treated with transforming growth factor β1 (TGF-β1) showed a significant increase in translocation of HuR from the nucleus to the cytoplasm. TGF-β-treated HLFs that were transfected with HuR small interfering RNA had a significant reduction in α-SMA protein as well as the ECM proteins COL1A1, COL3A, and FN1. HuR was also bound to mRNA for ACTA2, COL1A1, COL3A1, and FN. HuR knockdown affected the mRNA stability of ACTA2 but not that of the ECM genes COL1A1, COL3A1, or FN. In mouse models of pulmonary fibrosis, there was higher cytoplasmic HuR in lung structural cells compared to control mice. In human IPF lungs, there was also more cytoplasmic HuR. This study is the first to show that HuR in lung fibroblasts controls their differentiation to myofibroblasts and consequent ECM production. Further research on HuR could assist in establishing the basis for the development of new target therapy for fibrotic diseases, such as IPF.
Collapse
Affiliation(s)
- Fatmah Al-Habeeb
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Noof Aloufi
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Departments of Pathology, McGill University, Montreal, Quebec, Canada
| | - Hussein Traboulsi
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Xingxing Liu
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Parameswaran Nair
- Department of Medicine, McMaster University & St Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Christina Haston
- Department of Computer Science, Mathematics, Physics and Statistics, University of British Columbia, British Columbia, Canada
| | - Ilan Azuelos
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Imed E Gallouzi
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Faculty of Medicine, Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Sergio Di Marco
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Faculty of Medicine, Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - David H Eidelman
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Carolyn J Baglole
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Departments of Pathology, McGill University, Montreal, Quebec, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Wang L, Wen Z, Ma H, Wu L, Chen H, Zhu Y, Niu L, Wu Q, Li H, Shi L, Li L, Wan L, Wang J, Wong KW, Song Y. Long non-coding RNAs ENST00000429730.1 and MSTRG.93125.4 are associated with metabolic activity in tuberculosis lesions of sputum-negative tuberculosis patients. Aging (Albany NY) 2021; 13:8228-8247. [PMID: 33686954 PMCID: PMC8034958 DOI: 10.18632/aging.202634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
Accurate diagnosis of complete inactivation of tuberculosis lesions is still a challenge with respect to sputum-negative tuberculosis. RNA-sequencing was conducted to uncover potential lncRNA indicators of metabolic activity in tuberculosis lesions. Lung tissues with high metabolic activity and low metabolic activity demonstrated by fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography were collected from five sputum-negative tuberculosis patients for RNA-sequencing. Differentially-expressed mRNAs and lncRNAs were identified. Their correlations were evaluated to construct lncRNA-mRNA co-expression network, in which lncRNAs and mRNAs with high degrees were confirmed by quantitative real-time PCR using samples collected from 11 patients. Prediction efficiencies of lncRNA indicators were assessed by receiver operating characteristic curve analysis. Bioinformatics analysis was performed for potential lncRNAs. 386 mRNAs and 44 lncRNAs were identified to be differentially expressed. Differentially-expressed mRNAs in lncRNA-mRNA co-expression network were significantly associated with fibrillar collagen, platelet-derived growth factor binding, and leukocyte migration involved in inflammatory response. Seven mRNAs (C1QB, CD68, CCL5, CCL19, MMP7, HLA-DMB, and CYBB) and two lncRNAs (ENST00000429730.1 and MSTRG.93125.4) were validated to be significantly up-regulated. The area under the curve of ENST00000429730.1 and MSTRG.93125.4 was 0.750 and 0.813, respectively. Two lncRNAs ENST00000429730.1 and MSTRG.93125.4 might be considered as potential indicators of metabolic activity in tuberculosis lesions for sputum-negative tuberculosis.
Collapse
Affiliation(s)
- Lin Wang
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zilu Wen
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hui Ma
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liwei Wu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hui Chen
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yijun Zhu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liangfei Niu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qihang Wu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongwei Li
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lei Shi
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Leilei Li
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Leiyi Wan
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Wang
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ka-Wing Wong
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanzheng Song
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Triciribine Engages ZFP36L1 and HuR to Stabilize LDLR mRNA. Molecules 2020; 25:molecules25194505. [PMID: 33019656 PMCID: PMC7583736 DOI: 10.3390/molecules25194505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
An increased understanding of low-density lipoprotein receptor (LDLR) and its regulation may facilitate drug development for the treatment of hypercholesterolemia. Triciribine (TCN), which is a highly selective AKT inhibitor, increases the stability of LDLR mRNA downstream of extracellular signal-regulated kinase (ERK) in human hepatoma cells (HepG2). Here, a candidate approach was used in order to determine whether the RNA-binding proteins (RBPs) ZFP36 ring finger protein like 1 (ZFP36L1) and Hu antigen R (HuR) play a role in TCN-mediated stabilization of LDLR mRNA. The depletion of HuR led to a reduction of LDLR mRNA stability, an event that was more pronounced in TCN-treated cells. TCN was found to induce the translocation of nuclear HuR to cytoplasm in an ERK-dependent manner. ZFP36L1 depletion increased the stability of LDLR mRNA consistent with its destabilizing role. However, in contrast to HuR, TCN had no effect on LDLR mRNA turnover in ZFP36L1-depleted cells. TCN induced the phosphorylation of ZFP36L1 in an ERK/RSK-dependent manner and promoted its dissociation from the CCR4-NOT complex. In sum, these data suggest that TCN utilizes ERK signaling to increase the activity of HuR and inhibit ZFP36L1 to stabilize LDLR mRNA in HepG2 cells.
Collapse
|
7
|
Xu YZ, Thuraisingam T, Kanagaratham C, Tao S, Radzioch D. c-Src kinase is involved in the tyrosine phosphorylation and activity of SLC11A1 in differentiating macrophages. PLoS One 2018; 13:e0196230. [PMID: 29723216 PMCID: PMC5933793 DOI: 10.1371/journal.pone.0196230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/09/2018] [Indexed: 11/18/2022] Open
Abstract
Studies have demonstrated that the solute carrier family 11 member 1 (SLC11A1) is heavily glycosylated and phosphorylated in macrophages. However, the mechanisms of SLC11A1 phosphorylation, and the effects of phosphorylation on SLC11A1 activity remain largely unknown. Here, the tyrosine phosphorylation of SLC11A1 is observed in SLC11A1-expressing U937 cells when differentiated into macrophages by phorbol myristate acetate (PMA). The phosphorylation of SLC11A1 is almost completely blocked by treatment with PP2, a selective inhibitor of Src family kinases. Furthermore, we found that SLC11A1 is a direct substrate for active c-Src kinase and siRNA-mediated knockdown of cellular Src (c-Src) expression results in a significant decrease in tyrosine phosphorylation. We found that PMA induces the interaction of SLC11A1 with c-Src kinase. We demonstrated that SLC11A1 is phosphorylated by Src family kinases at tyrosine 15 and this type of phosphorylation is required for SLC11A1-mediated modulation of NF-κB activation and nitric oxide (NO) production induced by LPS. Our results demonstrate important roles for c-Src tyrosine kinase in phosphorylation and activation of SLC11A1 in macrophages.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Thusanth Thuraisingam
- Division of Dermatology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Cynthia Kanagaratham
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Shao Tao
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
8
|
Gronland GR, Ramos A. The devil is in the domain: understanding protein recognition of multiple RNA targets. Biochem Soc Trans 2017; 45:1305-1311. [PMID: 29150526 DOI: 10.1042/bst20160362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2024]
Abstract
RNA regulation provides a finely tuned and highly co-ordinated control of gene expression. Regulation is mediated by hundreds to thousands of multi-functional RNA-binding proteins which often interact with large sets of RNAs. In this brief review, we focus on a recent work that highlights how the proteins use multiple RNA-binding domains to interact selectively with the different RNA targets. Deconvoluting the molecular complexity of the RNA regulatory network is essential to understanding cell differentiation and function, and requires accurate models for protein-RNA recognition and protein target selectivity. We discuss that the structural and molecular understanding of the key determinant of recognition, together with the availability of methods to examine protein-RNA interactions at the transcriptome level, may provide an avenue to establish these models.
Collapse
Affiliation(s)
- Glen R Gronland
- Institute of Structural and Molecular Biology, University College London, London WC1E 6XA, U.K
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, London WC1E 6XA, U.K.
| |
Collapse
|
9
|
Developmental Control of NRAMP1 (SLC11A1) Expression in Professional Phagocytes. BIOLOGY 2017; 6:biology6020028. [PMID: 28467369 PMCID: PMC5485475 DOI: 10.3390/biology6020028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022]
Abstract
NRAMP1 (SLC11A1) is a professional phagocyte membrane importer of divalent metals that contributes to iron recycling at homeostasis and to nutritional immunity against infection. Analyses of data generated by several consortia and additional studies were integrated to hypothesize mechanisms restricting NRAMP1 expression to mature phagocytes. Results from various epigenetic and transcriptomic approaches were collected for mesodermal and hematopoietic cell types and compiled for combined analysis with results of genetic studies associating single nucleotide polymorphisms (SNPs) with variations in NRAMP1 expression (eQTLs). Analyses establish that NRAMP1 is part of an autonomous topologically associated domain delimited by ubiquitous CCCTC-binding factor (CTCF) sites. NRAMP1 locus contains five regulatory regions: a predicted super-enhancer (S-E) key to phagocyte-specific expression; the proximal promoter; two intronic areas, including 3' inhibitory elements that restrict expression during development; and a block of upstream sites possibly extending the S-E domain. Also the downstream region adjacent to the 3' CTCF locus boundary may regulate expression during hematopoiesis. Mobilization of the locus 14 predicted transcriptional regulatory elements occurs in three steps, beginning with hematopoiesis; at the onset of myelopoiesis and through myelo-monocytic differentiation. Basal expression level in mature phagocytes is further influenced by genetic variation, tissue environment, and in response to infections that induce various epigenetic memories depending on microorganism nature. Constitutively associated transcription factors (TFs) include CCAAT enhancer binding protein beta (C/EBPb), purine rich DNA binding protein (PU.1), early growth response 2 (EGR2) and signal transducer and activator of transcription 1 (STAT1) while hypoxia-inducible factors (HIFs) and interferon regulatory factor 1 (IRF1) may stimulate iron acquisition in pro-inflammatory conditions. Mouse orthologous locus is generally conserved; chromatin patterns typify a de novo myelo-monocytic gene whose expression is tightly controlled by TFs Pu.1, C/ebps and Irf8; Irf3 and nuclear factor NF-kappa-B p 65 subunit (RelA) regulate expression in inflammatory conditions. Functional differences in the determinants identified at these orthologous loci imply that species-specific mechanisms control gene expression.
Collapse
|
10
|
Upregulation of the host SLC11A1 gene by Clostridium difficile toxin B facilitates glucosylation of Rho GTPases and enhances toxin lethality. Infect Immun 2013; 81:2724-32. [PMID: 23690404 DOI: 10.1128/iai.01177-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pseudomembranous enterocolitis associated with Clostridium difficile infection is an important cause of morbidity and mortality in patients being treated with antibiotics. Two closely related large protein toxins produced by C. difficile, TcdA and TcdB, which act identically but at different efficiencies to glucosylate low-molecular-weight Rho GTPases, underlie the microbe's pathogenicity. Using antisense RNA encoded by a library of human expressed sequence tags (ESTs), we randomly inactivated host chromosomal genes in HeLa cells and isolated clones that survived exposure to ordinarily lethal doses of TcdB. This phenotypic screening and subsequent analysis identified solute carrier family 11 member 1 (SLC11A1; formerly NRAMP1), a divalent cation transporter crucial to host defense against certain microbes, as an enhancer of TcdB lethality. Whereas SLC11A1 normally is poorly expressed in human cells of nonmyeloid lineage, TcdB increased SLC11A1 mRNA abundance in such cells through the actions of the RNA-binding protein HuR. We show that short hairpin RNA (shRNA) directed against SLC11A1 reduced TcdB glucosylation of small Rho GTPases and, consequently, toxin lethality. Consistent with the previously known role of SLC11A1 in cation transport, these effects were enhanced by elevation of Mn(2+) in media; conversely, they were decreased by treatment with a chelator of divalent cations. Our findings reveal an unsuspected role for SLC11A1 in determining C. difficile pathogenicity, demonstrate the novel ability of a bacterial toxin to increase its cytotoxicity, establish a mechanistic basis for these effects, and suggest a therapeutic approach to mitigate cell killing by C. difficile toxins A and B.
Collapse
|
11
|
Cellier MFM. Cell-Type Specific Determinants of NRAMP1 Expression in Professional Phagocytes. BIOLOGY 2013; 2:233-83. [PMID: 24832660 PMCID: PMC4009858 DOI: 10.3390/biology2010233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 01/10/2023]
Abstract
The Natural resistance-associated macrophage protein 1 (Nramp1 or Solute carrier 11 member 1, Slc11a1) transports divalent metals across the membrane of late endosomes and lysosomes in professional phagocytes. Nramp1 represents an ancient eukaryotic cell-autonomous defense whereas the gene duplication that yielded Nramp1 and Nramp2 predated the origin of Sarcopterygians (lobe-finned fishes and tetrapods). SLC11A1 genetic polymorphisms associated with human resistance to tuberculosis consist of potential regulatory variants. Herein, current knowledge of the regulation of SLC11A1 gene expression is reviewed and comprehensive analysis of ENCODE data available for hematopoietic cell-types suggests a hypothesis for the regulation of SLC11A1 expression during myeloid development and phagocyte functional polarization. SLC11A1 is part of a 34.6 kb CTCF-insulated locus scattered with predicted regulatory elements: a 3' enhancer, a large 5' enhancer domain and four elements spread around the transcription start site (TSS), including several C/EBP and PU.1 sites. SLC11A1 locus ends appear mobilized by ETS-related factors early during myelopoiesis; activation of both 5' and 3' enhancers in myelo-monocytic cells correlate with transcription factor binding at the TSS. Characterizing the corresponding cis/trans determinants functionally will establish the mechanisms involved and possibly reveal genetic variation that impacts susceptibility to infectious or immune diseases.
Collapse
Affiliation(s)
- Mathieu F M Cellier
- Inrs-Institut Armand-Frappier, 531, Bd des prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
12
|
Damgaard CK, Lykke-Andersen J. Regulation of ARE-mRNA Stability by Cellular Signaling: Implications for Human Cancer. Cancer Treat Res 2013; 158:153-80. [PMID: 24222358 DOI: 10.1007/978-3-642-31659-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During recent years, it has become clear that regulation of mRNA stability is an important event in the control of gene expression. The stability of a large class of mammalian mRNAs is regulated by AU-rich elements (AREs) located in the mRNA 3' UTRs. mRNAs with AREs are inherently labile but as a response to different cellular cues they can become either stabilized, allowing expression of a given gene, or further destabilized to silence their expression. These tightly regulated mRNAs include many that encode growth factors, proto-oncogenes, cytokines, and cell cycle regulators. Failure to properly regulate their stability can therefore lead to uncontrolled expression of factors associated with cell proliferation and has been implicated in several human cancers. A number of transfactors that recognize AREs and regulate the translation and degradation of ARE-mRNAs have been identified. These transfactors are regulated by signal transduction pathways, which are often misregulated in cancers. This chapter focuses on the function of ARE-binding proteins with an emphasis on their regulation by signaling pathways and the implications for human cancer.
Collapse
|
13
|
Masuda K, Kuwano Y, Nishida K, Rokutan K. General RBP expression in human tissues as a function of age. Ageing Res Rev 2012; 11:423-31. [PMID: 22326651 DOI: 10.1016/j.arr.2012.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Gene expression patterns vary dramatically in a tissue-specific and age-dependent manner. RNA-binding proteins that regulate mRNA turnover and/or translation (TTR-RBPs) critically affect the subsets of expressed proteins. Although many proteins implicated in age-related processes are encoded by mRNAs that are targets of TTR-RBPs, very little is known regarding the tissue- and age-dependent expression of TTR-RBPs in humans. Recent analysis of TTR-RBPs expression using human tissue microarray has provided us interesting insight into their possibly physiologic roles as a function of age. This analysis has also revealed striking discrepancies between the levels of TTR-RBPs in senescent human diploid fibroblasts (HDFs), widely used as an in vitro model of aging, and the levels of TTR-RBPs in tissues from individuals of advancing age. In this article, we will review our knowledge of human TTR-RBP expression in different tissues as a function of age.
Collapse
|
14
|
Stellato C. Posttranscriptional Gene Regulation: Novel Pathways for Glucocorticoids' Anti-inflammatory Action. Transl Med UniSa 2012; 3:67-73. [PMID: 23905055 PMCID: PMC3728791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Posttranscriptional gene regulation (PTR) is a fundamental biological process that integrates with the master transcriptional control of gene expression, in ways that only in the last decade have been increasingly understood [1, 2]. While epigenetic and transcriptional events shape cell response qualitatively, deciding the pattern of gene expression to 'switch on or off' in response to endogenous or environmental triggers, the key task of PTR is to act as a 'rheostat' and rapidly adapt the cellular response by providing the appropriate amplitude and timing to the protein expression patterns [3, 4]. The pivotal role of this mechanism comes to the forefront in inflammatory and immune response, where the changes in amplitude and duration in the expression of dangerous and protective genes are in delicate balance, and are critical in determining either the successful resolution of the immune response or its chronic overexpression [5]. This brief review introduces members of the main classes of molecules mediating the cytoplasmic arm of gene regulation, namely RNA-binding proteins and micro-RNA (miRNA), and summarizes experimental data that underscore the role of these molecules in the pathophysiology of chronic inflammation, as well as their promising value as mechanisms conveying the anti-inflammatory effect of synthetic glucocorticoids.
Collapse
|
15
|
Qi MY, Wang ZZ, Zhang Z, Shao Q, Zeng A, Li XQ, Li WQ, Wang C, Tian FJ, Li Q, Zou J, Qin YW, Brewer G, Huang S, Jing Q. AU-rich-element-dependent translation repression requires the cooperation of tristetraprolin and RCK/P54. Mol Cell Biol 2012; 32:913-928. [PMID: 22203041 PMCID: PMC3295194 DOI: 10.1128/mcb.05340-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 12/20/2011] [Indexed: 11/20/2022] Open
Abstract
AU-rich elements (AREs), residing in the 3' untranslated region (UTR) of many labile mRNAs, are important cis-acting elements that modulate the stability of these mRNAs by collaborating with trans-acting factors such as tristetraprolin (TTP). AREs also regulate translation, but the underlying mechanism is not fully understood. Here we examined the function and mechanism of TTP in ARE-mRNA translation. Through a luciferase-based reporter system, we used knockdown, overexpression, and tethering assays in 293T cells to demonstrate that TTP represses ARE reporter mRNA translation. Polyribosome fractionation experiments showed that TTP shifts target mRNAs to lighter fractions. In murine RAW264.7 macrophages, knocking down TTP produces significantly more tumor necrosis factor alpha (TNF-α) than the control, while the corresponding mRNA level has a marginal change. Furthermore, knockdown of TTP increases the rate of biosynthesis of TNF-α, suggesting that TTP can exert effects at translational levels. Finally, we demonstrate that the general translational repressor RCK may cooperate with TTP to regulate ARE-mRNA translation. Collectively, our studies reveal a novel function of TTP in repressing ARE-mRNA translation and that RCK is a functional partner of TTP in promoting TTP-mediated translational repression.
Collapse
Affiliation(s)
- Mei-Yan Qi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhi-Zhang Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhuo Zhang
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Qin Shao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - An Zeng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xiang-Qi Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Wen-Qing Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Chen Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Fu-Ju Tian
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qing Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jun Zou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yong-Wen Qin
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Gary Brewer
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Department of Molecular Genetics, Microbiology & Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Shuang Huang
- Department of Cardiology, Changhai Hospital, Shanghai, China
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Department of Cardiology, Changhai Hospital, Shanghai, China
| |
Collapse
|
16
|
Stellato C, Gubin MM, Magee JD, Fang X, Fan J, Tartar DM, Chen J, Dahm GM, Calaluce R, Mori F, Jackson GA, Casolaro V, Franklin CL, Atasoy U. Coordinate regulation of GATA-3 and Th2 cytokine gene expression by the RNA-binding protein HuR. THE JOURNAL OF IMMUNOLOGY 2011; 187:441-9. [PMID: 21613615 DOI: 10.4049/jimmunol.1001881] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The posttranscriptional mechanisms whereby RNA-binding proteins (RBPs) regulate T cell differentiation remain unclear. RBPs can coordinately regulate the expression of functionally related genes via binding to shared regulatory sequences, such as the adenylate-uridylate-rich elements (AREs) present in the 3' untranslated region (UTR) of mRNA. The RBP HuR posttranscriptionally regulates IL-4, IL-13, and other Th2 cell-restricted transcripts. We hypothesized that the ARE-bearing GATA-3 gene, a critical regulator of Th2 polarization, is under HuR control as part of its coordinate posttranscriptional regulation of the Th2 program. We report that in parallel with stimulus-induced increase in GATA-3 mRNA and protein levels, GATA-3 mRNA half-life is increased after restimulation in the human T cell line Jurkat, in human memory and Th2 cells, and in murine Th2-skewed cells. We demonstrate by immunoprecipitation of ribonucleoprotein complexes that HuR associates with the GATA-3 endogenous transcript in human T cells and found, using biotin pulldown assay, that HuR specifically interacts with its 3'UTR. Using both loss-of-function and gain-of-function approaches in vitro and in animal models, we show that HuR is a critical mediator of stimulus-induced increase in GATA-3 mRNA and protein expression and that it positively influences GATA-3 mRNA turnover, in parallel with selective promotion of Th2 cytokine overexpression. These results suggest that HuR-driven posttranscriptional control plays a significant role in T cell development and effector function in both murine and human systems. A better understanding of HuR-mediated control of Th2 polarization may have utility in altering allergic airway inflammation in human asthmatic patients.
Collapse
Affiliation(s)
- Cristiana Stellato
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xu YZ, Thuraisingam T, Marino R, Radzioch D. Recruitment of SWI/SNF complex is required for transcriptional activation of the SLC11A1 gene during macrophage differentiation of HL-60 cells. J Biol Chem 2011; 286:12839-49. [PMID: 21300803 DOI: 10.1074/jbc.m110.185637] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The solute carrier family 11 member 1 (SLC11A1) gene is strictly regulated and exclusively expressed in myeloid lineage cells. However, little is known about the transcriptional regulation of the SLC11A1 gene during myeloid development. In this study, we used HL-60 cells as a model to investigate the regulatory elements/factors involved in the transactivation of the SLC11A1 gene during phorbol 12-myristate 13-acetate (PMA)-induced macrophage differentiation of HL-60 cells. Promoter deletion analysis showed that a 7-base AP-1-like element (TGACTCT) was critical for the responsiveness of the SLC11A1 promoter to PMA. Stimulation by PMA induced the binding of ATF-3 and the recruitment of two components of the SWI/SNF complex, BRG1 and β-actin, to this element in an ATF-3-dependent manner. RNAi-mediated depletion of ATF-3 or BRG1 markedly decreased SLC11A1 gene expression and its promoter activity induced by PMA. Luciferase reporter experiments demonstrated that ATF-3 cooperated with BRG1 and β-actin to activate the SLC11A1 promoter. Furthermore, we showed that PMA can induce the proximal (GT/AC)(n) repeat sequence to convert to the Z-DNA structure in the SLC11A1 gene promoter, and depletion of BRG1 resulted in a significant decrease of Z-DNA formation. Our results demonstrated that recruitment of the SWI/SNF complex initiated Z-DNA formation and subsequently helped to transactivate the SLC11A1 gene.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Division of Experimental Medicine, Department of Medicine, Montreal General Hospital Research Institute, McGill University, Montreal, Quebec H3G 1A4, Canada
| | | | | | | |
Collapse
|
18
|
Feng S, Chen W, Cao D, Bian J, Gong FY, Cheng W, Cheng S, Xu Q, Hua ZC, Yin W. Involvement of Na(+), K (+)-ATPase and its inhibitors in HuR-mediated cytokine mRNA stabilization in lung epithelial cells. Cell Mol Life Sci 2011; 68:109-24. [PMID: 20614158 PMCID: PMC11115110 DOI: 10.1007/s00018-010-0444-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 02/02/2023]
Abstract
Increasing evidence demonstrates that Na(+), K(+)-ATPase plays an important role in pulmonary inflammation, but the mechanism remains largely unknown. In this study, we used cardiotonic steroids as Na(+), K(+)-ATPase inhibitors to explore the possible involvement of Na(+), K(+)-ATPase in pulmonary epithelial inflammation. The results demonstrated that mice after ouabain inhalation developed cyclooxygenase-2-dependent acute lung inflammation. The in vitro experiments further confirmed that Na(+), K(+)-ATPase inhibitors significantly stimulated cyclooxygenase-2 expression in lung epithelial cells of human or murine origin, the process of which was participated by multiple cis-elements and trans-acting factors. Most importantly, we first described here that Na(+), K(+)-ATPase inhibitors could evoke a significant Hu antigen R nuclear export in lung epithelial cells, which stabilized cyclooxygenase-2 mRNA by binding with a proximal AU-rich element within its 3'-untranslated region. In conclusion, HuR-mediated mRNA stabilization opens new avenues in understanding the importance of Na(+), K(+)-ATPase, as well as its inhibitors in inflammation.
Collapse
Affiliation(s)
- Su Feng
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Wei Chen
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Dan Cao
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Jinjun Bian
- Department of Anesthesia and Intensive Care Unit, Changhai Hospital, Affiliated Hospital of the Second Military Medical University, Shanghai, 200433 China
| | - Fang-Yuan Gong
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Wei Cheng
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Shun Cheng
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Qiang Xu
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Zi-Chun Hua
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| |
Collapse
|
19
|
Xu YZ, Heravi M, Thuraisingam T, Di Marco S, Muanza T, Radzioch D. Brg-1 mediates the constitutive and fenretinide-induced expression of SPARC in mammary carcinoma cells via its interaction with transcription factor Sp1. Mol Cancer 2010; 9:210. [PMID: 20687958 PMCID: PMC2924311 DOI: 10.1186/1476-4598-9-210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 08/05/2010] [Indexed: 02/08/2023] Open
Abstract
Background Secreted protein, acidic and rich in cysteine (SPARC) is a matricellular protein that mediates cell-matrix interactions. It has been shown, depending on the type of cancer, to possess either pro- or anti-tumorigenic properties. The transcriptional regulation of the SPARC gene expression has not been fully elucidated and the effects of anti-cancer drugs on this process have not been explored. Results In the present study, we demonstrated that chromatin remodeling factor Brg-1 is recruited to the proximal SPARC promoter region (-130/-56) through an interaction with transcription factor Sp1. We identified Brg-1 as a critical regulator for the constitutive expression levels of SPARC mRNA and protein in mammary carcinoma cell lines and for SPARC secretion into culture media. Furthermore, we found that Brg-1 cooperates with Sp1 to enhance SPARC promoter activity. Interestingly, fenretinide [N-4(hydroxyphenyl) retinamide, 4-HPR], a synthetic retinoid with anti-cancer properties, was found to up-regulate the transcription, expression and secretion of SPARC via induction of the Brg-1 in a dose-dependent manner. Finally, our results demonstrated that fenretinide-induced expression of SPARC contributes significantly to a decreased invasion of mammary carcinoma cells. Conclusions Overall, our results reveal a novel cooperative role of Brg-1 and Sp1 in mediating the constitutive and fenretinide-induced expression of SPARC, and provide new insights for the understanding of the anti-cancer effects of fenretinide.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Xu YZ, Thuraisingam T, Morais DADL, Rola-Pleszczynski M, Radzioch D. Nuclear translocation of beta-actin is involved in transcriptional regulation during macrophage differentiation of HL-60 cells. Mol Biol Cell 2010; 21:811-20. [PMID: 20053683 PMCID: PMC2828967 DOI: 10.1091/mbc.e09-06-0534] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The functional significance of nuclear translocation of β-actin remains unclear. Here, we demonstrate that PMA induces β-actin accumulation in the nucleus and binding to various target genes with different functions. We also find that accumulated nuclear β-actin is involved in recruitment of RNA polymerase II and in transcription regulation. Studies have shown that nuclear translocation of actin occurs under certain conditions of cellular stress; however, the functional significance of actin import remains unclear. Here, we demonstrate that during the phorbol 12-myristate 13-acetate (PMA)-induced differentiation of HL-60 cells toward macrophages, β-actin translocates from the cytoplasm to the nucleus and that this process is dramatically inhibited by pretreatment with p38 mitogen-activated protein kinase inhibitors. Using chromatin immunoprecipitation-on-chip assays, the genome-wide maps of β-actin binding to gene promoters in response to PMA treatment is analyzed in HL-60 cells. A gene ontology-based analysis shows that the identified genes belong to a broad spectrum of functional categories such as cell growth and differentiation, signal transduction, response to external stimulus, ion channel activity, and immune response. We also demonstrate a correlation between β-actin occupancy and the recruitment of RNA polymerase II at six selected target genes, and β-actin knockdown decreases the mRNA expression levels of these target genes induced by PMA. We further show that nuclear β-actin is required for PMA-induced transactivation of one target gene, solute carrier family 11 member 1, which is important for macrophage activation. Our data provide novel evidence that nuclear accumulation of β-actin is involved in transcriptional regulation during macrophage-like differentiation of HL-60 cells.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Department of Medicine and Human Genetics and Department of Biology, Bioinformatics Centre, McGill University, McGill University Health Centre, Montreal General Hospital Research Institute, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
21
|
Meisner NC, Filipowicz W. Properties of the regulatory RNA-binding protein HuR and its role in controlling miRNA repression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 700:106-23. [PMID: 21627034 DOI: 10.1007/978-1-4419-7823-3_10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gene expression in eukaryotes is subject to extensive regulation at posttranscriptional levels. One of the most important sites of control involves mRNA 3' untranslated regions (3'UTRs), which are recognized by RNA-binding proteins (RBPs) and microRNAs (miRNAs). These factors greatly influence translational efficiency and stability of target mRNAs and often also determine their cellular localization. HuR, a ubiquitously expressed member of the ELAV family of RBPs, has been implicated in regulation of stability and translation of over one hundred mRNAs in mammalian cells. Recent data indicate that some of the effects of HuR can be explained by its interplay with miRNAs. Binding of HuR may suppress the inhibitory effect of miRNAs interacting with the 3'UTR and redirect the repressed mRNA to polysomes for active translation. However, HuR can also synergize with miRNAs. The finding that HuR is able to disengage miRNAs from the repressed mRNA, or render them inactive, provides evidence that miRNA regulation is much more dynamic then originally anticipated. In this chapter we review properties of HuR and describe examples of the cross-talk between the protein and miRNAs, with emphasis on response of the regulation to cellular stress.
Collapse
|
22
|
Tissue- and age-dependent expression of RNA-binding proteins that influence mRNA turnover and translation. Aging (Albany NY) 2009; 1:681-98. [PMID: 20157551 PMCID: PMC2806049 DOI: 10.18632/aging.100073] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/24/2009] [Indexed: 12/25/2022]
Abstract
Gene expression
patterns vary dramatically in a tissue-specific and age-dependent manner.
RNA-binding proteins that regulate mRNA turnover and/or translation
(TTR-RBPs) critically affect the subsets of expressed proteins. However,
very little is known regarding the tissue- and age-dependent expression of
TTR-RBPs in humans. Here, we use human tissue arrays containing a panel of
organ biopsies from donors of different ages, to study the distribution and
abundance of four TTR-RBPs: HuR, AUF1, TIA-1, and TTP. HuR and AUF1 were
expressed with remarkably similar patterns. Both TTR-RBPs were present in
high percentages of cells and displayed elevated intensities in many age
groups and tissues, most notably in the gastrointestinal and reproductive
systems; they were moderately expressed in the urinary and immune systems,
and were almost undetectable in muscle and brain. TIA-1 was also abundant
in many tissues and age groups; TIA-1 was expressed at high levels in the
gastrointestinal, immune, urinary, and reproductive systems, and at low
levels in brain and muscle. By contrast, TTP-expressing cells, as well as
TTP signal intensities declined with advancing age, particularly in the
immune, nervous, and muscular systems; however, TTP levels remained
elevated in the gastrointestinal tract. The widespread abundance of HuR,
AUF1, and TIA-1 throughout the body and in all age groups was in stark
contrast with their declining levels in human diploid fibroblasts (HDFs)
undergoing replicative senescence, a cultured-cell model of aging.
Conversely, TTP levels increased in senescent HDFs, while TTP levels
decreased with advancing age. Our studies provide a framework for the
study of human TTR-RBP function in different tissues, throughout the human
life span.
Collapse
|
23
|
Tong X, Pelling JC. Enhancement of p53 expression in keratinocytes by the bioflavonoid apigenin is associated with RNA-binding protein HuR. Mol Carcinog 2009; 48:118-29. [PMID: 18680106 DOI: 10.1002/mc.20460] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have reported previously that apigenin, a naturally occurring nonmutagenic flavonoid, increased wild-type p53 protein expression in the mouse keratinocyte 308 cell line by a mechanism involving p53 protein stabilization. Here we further demonstrated that the increase in p53 protein level induced by apigenin treatment of 308 keratinoyctes was not the result of enhanced transcription, mRNA stabilization or cytoplasmic export of p53 mRNA. Instead, biosynthetic labeling showed that apigenin increased nascent p53 protein synthesis by enhancing p53 translation. The AU-rich element (ARE) within the 3'-untranslated region (UTR) of p53 mRNA was found to be responsible for apigenin's ability to increase p53 translation, as demonstrated in studies wherein the 3'-UTR of p53 mRNA containing the ARE was fused downstream of a luciferase reporter gene. Furthermore, apigenin treatment increased the level of association of the RNA binding protein HuR with endogenous p53 mRNA. Apigenin treatment also augmented HuR translocation into the cytoplasm. Overexpression of HuR enhanced apigenin-induced p53 protein expression in 308 keratinocytes, whereas siRNA-mediated HuR reduction suppressed apigenin-induced p53 protein expression and de novo translation of p53. Moreover, apigenin treatment of cells induced p16 protein expression, which in turn was correlated with cytoplasmic localization of HuR induced by apigenin. Overall, these findings indicate that, in addition to modulating p53 protein stability, one of the mechanisms by which apigenin induces p53 protein expression is enhancement of translation through the RNA binding protein HuR.
Collapse
Affiliation(s)
- Xin Tong
- Department of Pathology and the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
24
|
Kotlowski R, Bernstein CN, Silverberg MS, Krause DO. Population-based case-control study of alpha 1-antitrypsin and SLC11A1 in Crohn's disease and ulcerative colitis. Inflamm Bowel Dis 2008; 14:1112-7. [PMID: 18340647 DOI: 10.1002/ibd.20425] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory diseases of the digestive tract. Genetic factors and an abnormal immune response to infections are suspected to be involved in inflammatory bowel diseases. METHODS In the present study 300 blood samples from CD patients (n = 100), UC patients (n = 100), and healthy controls (n = 100) were taken from a population-based case-control study. PCR assays and capillary electrophoresis were used to detect alpha 1 antitrypsin M, S, and Z alleles and the C-to-T transition at the -237 nucleotide position of the SLC11A1 promoter. Additionally, length polymorphism of (gt)n alleles in the promoter region and TGTG and CAAA insertion/deletion in the untranslated region (3' UTR) of the SLC11A1 gene were evaluated. RESULTS The Z allele only for AAT was associated (P < 0.05) with CD. No other significant results were detected for AAT alleles. For SLC11A1, alleles 1 and 2 were significant (P < 0.05) for UC, but only allele 3 was significant (P < 0.05) for CD. There was a significant (P < 0.05) association of a CAAA insertion with CD but not for deletion in the 3' UTR. No differences (P < 0.05) were detected for TAAA. CONCLUSIONS Because AAT and SLC11A1 proteins directly or indirectly function as inhibitors of human leukocyte elastase, mutations in the AAT and SLC11A1 genes may change the balance between elastase produced by leukocytes during phagocytosis.
Collapse
Affiliation(s)
- Roman Kotlowski
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
25
|
Cammas A, Lewis SM, Vagner S, Holcik M. Post-transcriptional control of gene expression through subcellular relocalization of mRNA binding proteins. Biochem Pharmacol 2008; 76:1395-403. [PMID: 18582437 DOI: 10.1016/j.bcp.2008.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 04/28/2008] [Accepted: 05/16/2008] [Indexed: 11/15/2022]
Abstract
Eukaryotic cells have developed multiple mechanisms to respond to different physiological cues, such as cellular stress, which allow the cells to adapt themselves to their new environment. The regulation of post-transcriptional gene expression is an important component of the cellular stress response and is mediated by mRNA binding proteins (mRBPs). Recently, several studies have shown that regulated subcellular localization of mRBPs upon diverse stimuli (such as cellular stress) provides an additional level of regulation for gene expression.
Collapse
|
26
|
Casolaro V, Fang X, Tancowny B, Fan J, Wu F, Srikantan S, Asaki SY, De Fanis U, Huang SK, Gorospe M, Atasoy UX, Stellato C. Posttranscriptional regulation of IL-13 in T cells: role of the RNA-binding protein HuR. J Allergy Clin Immunol 2008; 121:853-9.e4. [PMID: 18279945 DOI: 10.1016/j.jaci.2007.12.1166] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 12/06/2007] [Accepted: 12/19/2007] [Indexed: 12/24/2022]
Abstract
BACKGROUND IL-13, a critical cytokine in allergy, is regulated by as-yet-elusive mechanisms. OBJECTIVE We investigated IL-13 posttranscriptional regulation by HuR, a protein associating with adenylate-uridylate-rich elements in the 3' untranslated regions (UTRs) of mRNA, promoting mRNA stability and translation. METHODS IL-13 mRNA decay was monitored in human T(H)2-skewed cells by using the transcriptional inhibitor actinomycin D. The IL-13 3'UTR was subcloned into an inducible beta-globin reporter transiently expressed in H2 cells in the absence or presence of overexpressed HuR. Association of HuR with IL-13 mRNA was detected by means of immunoprecipitation of ribonucleoprotein complexes and a biotin pull-down assay. The effects of HuR transient overexpression and silencing on IL-13 expression were investigated. RESULTS IL-13 mRNA half-life increased significantly in restimulated T(H)2-skewed cells compared with baseline values. Decay of beta-globin mRNA was significantly faster in H2 cells transfected with the IL-13 3'UTR-containing plasmid than in those carrying a control vector. HuR overexpression increased the beta-globin IL-13 3'UTR reporter half-life. Significant enrichment of IL-13 mRNA was produced by means of immunoprecipitation of Jurkat cell ribonucleoprotein complexes with anti-HuR. HuR binding to the IL-13 3'UTR was confirmed by means of pull-down assay of biotin-labeled RNA probes spanning the IL-13 3'UTR. Two-dimensional Western blot analysis showed stimulus-induced posttranslational modification of HuR. In Jurkat cells mitogen-induced IL-13 mRNA was significantly affected by HuR overexpression and silencing. CONCLUSIONS Mitogen-induced IL-13 expression involves changes in transcript turnover and a change in phosphorylation of HuR and its association with the mRNA 3'UTR.
Collapse
|
27
|
Mazroui R, Di Marco S, Clair E, von Roretz C, Tenenbaum SA, Keene JD, Saleh M, Gallouzi IE. Caspase-mediated cleavage of HuR in the cytoplasm contributes to pp32/PHAP-I regulation of apoptosis. ACTA ACUST UNITED AC 2008; 180:113-27. [PMID: 18180367 PMCID: PMC2213623 DOI: 10.1083/jcb.200709030] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The RNA-binding protein HuR affects cell fate by regulating the stability and/or the translation of messenger RNAs that encode cell stress response proteins. In this study, we delineate a novel regulatory mechanism by which HuR contributes to stress-induced cell death. Upon lethal stress, HuR translocates into the cytoplasm by a mechanism involving its association with the apoptosome activator pp32/PHAP-I. Depleting the expression of pp32/PHAP-I by RNA interference reduces both HuR cytoplasmic accumulation and the efficiency of caspase activation. In the cytoplasm, HuR undergoes caspase-mediated cleavage at aspartate 226. This cleavage activity is significantly reduced in the absence of pp32/PHAP-I. Substituting aspartate 226 with an alanine creates a noncleavable isoform of HuR that, when overexpressed, maintains its association with pp32/PHAP-I and delays the apoptotic response. Thus, we propose a model in which HuR association with pp32/PHAP-I and its caspase-mediated cleavage constitutes a regulatory step that contributes to an amplified apoptotic response.
Collapse
Affiliation(s)
- Rachid Mazroui
- Department of Biochemistry, McGill University Health Center, McGill University, Montreal, Quebec H3G 146, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rodríguez-Gabriel MA, Russell P. Control of mRNA stability by SAPKs. TOPICS IN CURRENT GENETICS 2008; 20:159-170. [PMID: 21738496 PMCID: PMC3129863 DOI: 10.1007/4735_2007_0248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Control of mRNA turnover is an essential step in the regulation of gene expression in eukaryotes. The concerted action of many enzymes regulates the way each mRNA is degraded. Moreover, the degradation of each mRNA is influenced by the environment surrounding the cell. The conection between the environment and changes in the half-lifes of mRNAs is regulated by the activity of stress activated MAP kinases (SAPKs) and their substrates. Here we will describe some of those mechanisms, and how SAPKs regulate mRNA stability in eukaryotic cells.
Collapse
Affiliation(s)
| | - Paul Russell
- Dept. Molecular Biology. The Scripps Research Institute. La Jolla, CA 92037. U.S.A
| |
Collapse
|
29
|
Cellier MF, Courville P, Campion C. Nramp1 phagocyte intracellular metal withdrawal defense. Microbes Infect 2007; 9:1662-70. [PMID: 18024118 DOI: 10.1016/j.micinf.2007.09.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural resistance-associated macrophage proteins (Nramp) are multispecific symporters facilitating proton-dependent import of divalent metals. Nramp1 restricts microbial access to essential micro-nutrients such as iron and manganese within professional phagosomes. Increased understanding of Nramp1 roles in human phagocytes will be useful for future therapeutic approaches against selected infectious and immune diseases.
Collapse
Affiliation(s)
- Mathieu F Cellier
- INRS-Institut Armand-Frappier, 531, Bd des prairies, Laval, Québec H7V 1B7, Canada.
| | | | | |
Collapse
|
30
|
van der Giessen K, Gallouzi IE. Involvement of transportin 2-mediated HuR import in muscle cell differentiation. Mol Biol Cell 2007; 18:2619-29. [PMID: 17475777 PMCID: PMC1924833 DOI: 10.1091/mbc.e07-02-0167] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Muscle fiber formation requires the sequential expression of myogenic regulatory factors (MRFs) such as MyoD and myogenin. The messenger RNAs encoding these two proteins are regulated posttranscriptionally through their ability to associate with the RNA-binding protein HuR. HuR localizes first to the nucleus and then to the cytoplasm during muscle differentiation. Therefore, we examined the link between this localization and the promyogenic function of HuR. We show that early in muscle differentiation, HuR is localized to the nucleus of myoblasts by active Transportin 2 (TRN2)-mediated import. In differentiated muscle fibers, however, the TRN2-HuR complex is disrupted, leading to the cytoplasmic localization of HuR, as well as to the stabilization of MyoD and myogenin mRNAs. Interrupting the TRN2-HuR complex using RNA interference against TRN2, or the cell-permeable peptides (AP) fused to the HuR nucleocytoplasmic shuttling domain (HNS), enhanced the efficiency of myofiber formation. Together, our data suggest that HuR import is disrupted in differentiated muscle fibers and this event constitutes an important regulatory step during myogenesis.
Collapse
Affiliation(s)
- Kate van der Giessen
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Imed-Eddine Gallouzi
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
31
|
Abstract
There have been recent, significant advances about the role of mRNA turnover in controlling gene expression in immune cells. Post‐transcriptional regulation of gene expression contributes to the characteristics of many of the processes underlying the immune response by ensuring early, rapid, and transient action. The emphasis of this review is on current work that deals with the regulation of mRNA decay during innate immunity against microbes and T cell activation as a model of the adaptive response.
Collapse
Affiliation(s)
- Khalid S A Khabar
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, P3354, mBC-03, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
32
|
Annabi B, Currie JC, Moghrabi A, Béliveau R. Inhibition of HuR and MMP-9 expression in macrophage-differentiated HL-60 myeloid leukemia cells by green tea polyphenol EGCg. Leuk Res 2006; 31:1277-84. [PMID: 17081606 DOI: 10.1016/j.leukres.2006.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 09/27/2006] [Accepted: 10/04/2006] [Indexed: 10/25/2022]
Abstract
Matrix metalloproteinase (MMP)-9 expression is linked with myeloid cell differentiation, as well as inflammation and angiogenesis processes related to cancer progression. MMP-9 secretion and macrophage-like HL-60 myeloid leukemia cells differentiation were triggered by the tumor-promoting agent PMA. The chemopreventive effects of green tea catechins epigallocatechin-gallate, catechin-gallate, and epicatechin-gallate, but not those catechins that lack a 3'-galloyl group, inhibited in a time- and dose-dependent manner MMP-9 secretion. The gene and protein expression of MMP-9 and of the mRNA stabilizing factor HuR were also inhibited, while that of the 67 kDa laminin receptor remained unaffected. Specific catechins may help optimize current chemotherapeutic treatment protocols for leukemia.
Collapse
Affiliation(s)
- Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BIOMED, Université du Québec à Montréal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|