1
|
Fang Z, Li X, Yoshino Y, Suzuki M, Qi H, Murooka H, Katakai R, Shirota M, Mai Pham TA, Matsuzawa A, Otsuka K, Ishioka C, Mori T, Chiba N. Aurora A polyubiquitinates the BRCA1-interacting protein OLA1 to promote centrosome maturation. Cell Rep 2023; 42:112850. [PMID: 37481721 DOI: 10.1016/j.celrep.2023.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/03/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
The BRCA1-interacting protein Obg-like ATPase 1 (OLA1) functions in centriole duplication. In this study, we show the role of the mitotic kinase Aurora A in the reduction of centrosomal OLA1. Aurora A binds to and polyubiquitinates OLA1, targeting it for proteasomal degradation. NIMA-related kinase 2 (NEK2) phosphorylates the T124 residue of OLA1, increases binding of OLA1 to Aurora A and OLA1 polyubiquitination by Aurora A, and reduces centrosomal OLA1 in G2 phase. The kinase activity of Aurora A suppresses OLA1 polyubiquitination. The decrease in centrosomal OLA1 caused by Aurora A-mediated polyubiquitination promotes the recruitment of pericentriolar material proteins in G2 phase. The E3 ligase activity of Aurora A is critical for centrosome amplification induced by its overexpression. The results suggest a dual function of Aurora A as an E3 ubiquitin ligase and a kinase in the regulation of centrosomal OLA1, which is essential for proper centrosome maturation in G2 phase.
Collapse
Affiliation(s)
- Zhenzhou Fang
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Xingming Li
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Moe Suzuki
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Huicheng Qi
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Hinari Murooka
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Riko Katakai
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Thi Anh Mai Pham
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Ayako Matsuzawa
- Department of Molecular Immunology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Kei Otsuka
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Takahiro Mori
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Departemt of Medical Oncology and Hematology, Okinawa Chubu Hospital, 281 Miyazato, Uruma, Okinawa 904-2293, Japan; Genome Medical Science Project, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
2
|
Nelson N, Jigo R, Clark GJ. BRCA1 and NORE1A Form a Her2/Ras Regulated Tumor Suppressor Complex Modulating Senescence. Cancers (Basel) 2023; 15:4133. [PMID: 37627161 PMCID: PMC10452424 DOI: 10.3390/cancers15164133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BRCA1 is a tumor suppressor with a complex mode of action. Hereditary mutations in BRCA1 predispose carriers to breast cancer, and spontaneous breast cancers often exhibit defects in BRCA1 expression. However, haploinsufficiency or suppression of BRCA1 expression leads to defects in DNA repair, which can induce DNA damage responses, leading to senescence. Activating mutation or overexpression of the Her2 oncoprotein are also frequent drivers of breast cancer. Yet, over-activation of Her2, working through the RAS oncoprotein, can also induce senescence. It is thought that additional defects in the p53 and Rb tumor suppressor machinery must occur in such tumors to allow an escape from senescence, thus permitting tumor development. Although BRCA1 mutant breast cancers are usually Her2 negative, a significant percentage of Her2 positive tumors also lose their expression of BRCA1. Such Her2+/BRCA1- tumors might be expected to have a particularly high senescence barrier to overcome. An important RAS senescence effector is the protein NORE1A, which can modulate both p53 and Rb. It is an essential senescence effector of the RAS oncoprotein, and it is often downregulated in breast tumors by promotor methylation. Here we show that NORE1A forms a Her2/RAS regulated, endogenous complex with BRCA1 at sites of replication fork arrest. Suppression of NORE1A blocks senescence induction caused by BRCA1 inactivation and Her2 activation. Thus, NORE1A forms a tumor suppressor complex with BRCA1. Its frequent epigenetic inactivation may facilitate the transformation of Her2+/BRCA1- mediated breast cancer by suppressing senescence.
Collapse
Affiliation(s)
- Nicholas Nelson
- Department of Chemistry, US Naval Academy, Annapolis, MD 21402, USA
| | - Raphael Jigo
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Geoffrey J. Clark
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Singh A, Busacca S, Gaba A, Sheaff M, Poile C, Nakas A, Dzialo J, Bzura A, Dawson AG, Fennell DA, Fry AM. BAP1 loss induces mitotic defects in mesothelioma cells through BRCA1-dependent and independent mechanisms. Oncogene 2023; 42:572-585. [PMID: 36550359 PMCID: PMC9937923 DOI: 10.1038/s41388-022-02577-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
The tumour suppressor BRCA1-associated protein 1 (BAP1) is the most frequently mutated cancer gene in mesothelioma. Here we report novel functions for BAP1 in mitotic progression highlighting the relationship between BAP1 and control of genome stability in mesothelioma cells with therapeutic implications. Depletion of BAP1 protein induced proteasome-mediated degradation of BRCA1 in mesothelioma cells while loss of BAP1 correlated with BRCA1 loss in mesothelioma patient tumour samples. BAP1 loss also led to mitotic defects that phenocopied the loss of BRCA1 including spindle assembly checkpoint failure, centrosome amplification and chromosome segregation errors. However, loss of BAP1 also led to additional mitotic changes that were not observed upon BRCA1 loss, including an increase in spindle length and enhanced growth of astral microtubules. Intriguingly, these consequences could be explained by loss of expression of the KIF18A and KIF18B kinesin motors that occurred upon depletion of BAP1 but not BRCA1, as spindle and astral microtubule defects were rescued by re-expression of KIF18A and KIF18B, respectively. We therefore propose that BAP1 inactivation causes mitotic defects through BRCA1-dependent and independent mechanisms revealing novel routes by which mesothelioma cells lacking BAP1 may acquire genome instability and exhibit altered responses to microtubule-targeted agents.
Collapse
Affiliation(s)
- Anita Singh
- grid.9918.90000 0004 1936 8411Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN UK ,grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK
| | - Sara Busacca
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK
| | - Aarti Gaba
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK
| | - Michael Sheaff
- Department of Histopathology, Barts Health NHS Trust, Queen Mary University of London, The Royal London Hospital, London, E1 2ES UK
| | - Charlotte Poile
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK
| | - Apostolos Nakas
- grid.412925.90000 0004 0400 6581University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, LE3 9QP UK
| | - Joanna Dzialo
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK
| | - Aleksandra Bzura
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK
| | - Alan G. Dawson
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK ,grid.412925.90000 0004 0400 6581University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, LE3 9QP UK
| | - Dean A. Fennell
- grid.9918.90000 0004 1936 8411Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX UK ,grid.412925.90000 0004 0400 6581University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, LE3 9QP UK
| | - Andrew M. Fry
- grid.9918.90000 0004 1936 8411Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 9HN UK
| |
Collapse
|
4
|
Qi H, Kikuchi M, Yoshino Y, Fang Z, Ohashi K, Gotoh T, Ideta R, Ui A, Endo S, Otsuka K, Shindo N, Gonda K, Ishioka C, Miki Y, Iwabuchi T, Chiba N. BRCA1 transports the DNA damage signal for CDDP-induced centrosome amplification through the centrosomal Aurora A. Cancer Sci 2022; 113:4230-4243. [PMID: 36082621 PMCID: PMC9746055 DOI: 10.1111/cas.15573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer gene 1 (BRCA1) plays roles in DNA repair and centrosome regulation and is involved in DNA damage-induced centrosome amplification (DDICA). Here, the centrosomal localization of BRCA1 and the kinases involved in centrosome duplication were analyzed in each cell cycle phase after treatment with DNA crosslinker cisplatin (CDDP). CDDP treatment increased the centrosomal localization of BRCA1 in early S-G2 phase. BRCA1 contributed to the increased centrosomal localization of Aurora A in S phase and that of phosphorylated Polo-like kinase 1 (PLK1) in late S phase after CDDP treatment, resulting in centriole disengagement and overduplication. The increased centrosomal localization of BRCA1 and Aurora A induced by CDDP treatment involved the nuclear export of BRCA1 and BRCA1 phosphorylation by ataxia telangiectasia mutated (ATM). Patient-derived variants and mutations at phosphorylated residues of BRCA1 suppressed the interaction between BRCA1 and Aurora A, as well as the CDDP-induced increase in the centrosomal localization of BRCA1 and Aurora A. These results suggest that CDDP induces the phosphorylation of BRCA1 by ATM in the nucleus and its transport to the cytoplasm, thereby promoting the centrosomal localization Aurora A, which phosphorylates PLK1. The function of BRCA1 in the translocation of the DNA damage signal from the nucleus to the centrosome to induce centrosome amplification after CDDP treatment might support its role as a tumor suppressor.
Collapse
Affiliation(s)
- Huicheng Qi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Megumi Kikuchi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Yuki Yoshino
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Zhenzhou Fang
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kazune Ohashi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Takato Gotoh
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Ryo Ideta
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Tohoku University School of MedicineSendaiJapan
| | - Ayako Ui
- Department of Molecular Oncology, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Shino Endo
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kei Otsuka
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Norihisa Shindo
- Division of Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Kohsuke Gonda
- Department of Medical PhysicsTohoku University Graduate School of MedicineSendaiJapan
| | - Chikashi Ishioka
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | - Tokuro Iwabuchi
- Faculty of Bioscience and BiotechnologyTokyo University of TechnologyTokyoJapan
| | - Natsuko Chiba
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
5
|
Haynes BM, Cunningham K, Shekhar MPV. RAD6 inhibition enhances paclitaxel sensitivity of triple negative breast cancer cells by aggravating mitotic spindle damage. BMC Cancer 2022; 22:1073. [PMID: 36258187 PMCID: PMC9578210 DOI: 10.1186/s12885-022-10119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Paclitaxel (PTX), a first-line therapy for triple negative breast cancers (TNBC) induces anti-tumor activity by microtubule stabilization and inhibition of cell division. Its dose-limiting toxicity and short half-life, however, pose clinical challenges underscoring the need for strategies that increase its efficiency. RAD6, a E2 ubiquitin conjugating enzyme, is associated with centrosomes at all phases of cell cycle. Constitutive overexpression of the RAD6B homolog in normal breast cells induces centrosome amplification and multipolar spindle formation, indicating its importance in centrosome regulation. Methods TNBC centrosome numbers were scored by pericentrin immunostaining. PTX sensitivities and interactions with SMI#9, a RAD6-selective small molecule inhibitor, on TNBC cell survival were analyzed by MTT and colony forming assays and an isogenic MDA-MB-468 TNBC model of PTX resistance. The molecular mechanisms underlying PTX and SMI#9 induced cytotoxicity were determined by flow cytometry, immunoblot analysis of cyclin B1 and microtubule associated protein TAU, and dual immunofluorescence staining of TAU and α-tubulin. Results Our data show aberrant centrosome numbers and that PTX sensitivities are not correlated with TNBC BRCA1 status. Combining PTX with SMI#9 synergistically enhances PTX sensitivities of BRCA1 wild-type and mutant TNBC cells. Whereas SMI#9/PTX combination treatment increased cyclin B1 levels in MDA-MB-468 cells, it induced cyclin B1 loss in HCC1937 cells with accumulation of reproductively dead giant cells, a characteristic of mitotic catastrophe. Cell cycle analysis revealed drug-induced accumulation of tetraploid cells in S and G2/M phases, and robust increases in cells with 4 N DNA content in HCC1937 cells. TAU overexpression is associated with reduced PTX efficacy. Among the six TAU isoforms, both SMI#9 and PTX downregulated 1N3R TAU in MDA-MB-468 and HCC1937 cells, suggesting a common mechanism of 1N3R regulation. Dual TAU and α-tubulin immunostaining showed that SMI#9 induces monopolar mitotic spindles. Using the isogenic model of PTX resistance, we show that SMI#9 treatment restores PTX sensitivity. Conclusions These data support a common mechanism of microtubule regulation by SMI#9 and PTX and suggest that combining PTX with RAD6 inhibitor may be beneficial for increasing TNBC sensitivities to PTX and alleviating toxicity. This study demonstrates a new role for RAD6 in regulating microtubule dynamics. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10119-z.
Collapse
Affiliation(s)
- Brittany M Haynes
- Karmanos Cancer Institute, 4100 John R Street, Detroit, MI, 48201, USA.,Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI, 48201, USA.,Present address: Office of Policy Communications, and Education, National Center for Advancing Translational Sciences, Besthesda, USA
| | - Kristen Cunningham
- Karmanos Cancer Institute, 4100 John R Street, Detroit, MI, 48201, USA.,Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI, 48201, USA
| | - Malathy P V Shekhar
- Karmanos Cancer Institute, 4100 John R Street, Detroit, MI, 48201, USA. .,Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI, 48201, USA. .,Department of Pathology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
The TOG protein Stu2 is regulated by acetylation. PLoS Genet 2022; 18:e1010358. [PMID: 36084134 PMCID: PMC9491610 DOI: 10.1371/journal.pgen.1010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/21/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
Stu2 in S. cerevisiae is a member of the XMAP215/Dis1/CKAP5/ch-TOG family of MAPs and has multiple functions in controlling microtubules, including microtubule polymerization, microtubule depolymerization, linking chromosomes to the kinetochore, and assembly of γ-TuSCs at the SPB. Whereas phosphorylation has been shown to be critical for Stu2 localization at the kinetochore, other regulatory mechanisms that control Stu2 function are still poorly understood. Here, we show that a novel form of Stu2 regulation occurs through the acetylation of three lysine residues at K252, K469, and K870, which are located in three distinct domains of Stu2. Alteration of acetylation through acetyl-mimetic and acetyl-blocking mutations did not impact the essential function of Stu2. Instead, these mutations lead to a decrease in chromosome stability, as well as changes in resistance to the microtubule depolymerization drug, benomyl. In agreement with our in silico modeling, several acetylation-mimetic mutants displayed increased interactions with γ-tubulin. Taken together, these data suggest that Stu2 acetylation can govern multiple Stu2 functions, including chromosome stability and interactions at the SPB. Microtubules are proteinaceous polymers that play several important roles in cell division and segregation of the genetic material to each daughter cell. The functions of microtubules are critically dependent upon their dynamic properties in which tubulin subunits are added or removed from the microtubule end, allowing microtubules to grow or shorten in length. These dynamic properties are controlled by several types of microtubule associated proteins. In this study using bakers yeast, we describe our discovery of a previously unappreciated way to regulate the microtubule associated protein Stu2 by a modification called acetylation. When we created mutations in the Stu2 protein that can’t be properly acetylated, the cell lost some of its chromosomes. Some of these mutations actually caused the microtubules to be resistant to drugs that normally disassemble the microtubule polymer. As similar versions of the Stu2 protein are found in diverse organisms that range from yeast and fungus, to plants, insects, mammals and humans, our work could provide unique insights into how microtubules malfunction in some human diseases. With further studies, this may provide a new understanding of chromosome loss in birth defects and/or cancer.
Collapse
|
7
|
Sulimenko V, Dráberová E, Dráber P. γ-Tubulin in microtubule nucleation and beyond. Front Cell Dev Biol 2022; 10:880761. [PMID: 36158181 PMCID: PMC9503634 DOI: 10.3389/fcell.2022.880761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules composed of αβ-tubulin dimers are dynamic cytoskeletal polymers that play key roles in essential cellular processes such as cell division, organelle positioning, intracellular transport, and cell migration. γ-Tubulin is a highly conserved member of the tubulin family that is required for microtubule nucleation. γ-Tubulin, together with its associated proteins, forms the γ-tubulin ring complex (γ-TuRC), that templates microtubules. Here we review recent advances in the structure of γ-TuRC, its activation, and centrosomal recruitment. This provides new mechanistic insights into the molecular mechanism of microtubule nucleation. Accumulating data suggest that γ-tubulin also has other, less well understood functions. We discuss emerging evidence that γ-tubulin can form oligomers and filaments, has specific nuclear functions, and might be involved in centrosomal cross-talk between microtubules and microfilaments.
Collapse
Affiliation(s)
| | | | - Pavel Dráber
- *Correspondence: Vadym Sulimenko, ; Pavel Dráber,
| |
Collapse
|
8
|
Chen T, Yeh HW, Chen PP, Huang WT, Wu CY, Liao TC, Lin SL, Chen YY, Lin KT, Hsu STD, Cheng HC. BARD1 is an ATPase activating protein for OLA1. Biochim Biophys Acta Gen Subj 2022; 1866:130099. [DOI: 10.1016/j.bbagen.2022.130099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
|
9
|
Dráber P, Dráberová E. Dysregulation of Microtubule Nucleating Proteins in Cancer Cells. Cancers (Basel) 2021; 13:cancers13225638. [PMID: 34830792 PMCID: PMC8616210 DOI: 10.3390/cancers13225638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The dysfunction of microtubule nucleation in cancer cells changes the overall cytoskeleton organization and cellular physiology. This review focuses on the dysregulation of the γ-tubulin ring complex (γ-TuRC) proteins that are essential for microtubule nucleation. Recent research on the high-resolution structure of γ-TuRC has brought new insight into the microtubule nucleation mechanism. We discuss the effect of γ-TuRC protein overexpression on cancer cell behavior and new drugs directed to γ-tubulin that may offer a viable alternative to microtubule-targeting agents currently used in cancer chemotherapy. Abstract In cells, microtubules typically nucleate from microtubule organizing centers, such as centrosomes. γ-Tubulin, which forms multiprotein complexes, is essential for nucleation. The γ-tubulin ring complex (γ-TuRC) is an efficient microtubule nucleator that requires additional centrosomal proteins for its activation and targeting. Evidence suggests that there is a dysfunction of centrosomal microtubule nucleation in cancer cells. Despite decades of molecular analysis of γ-TuRC and its interacting factors, the mechanisms of microtubule nucleation in normal and cancer cells remains obscure. Here, we review recent work on the high-resolution structure of γ-TuRC, which brings new insight into the mechanism of microtubule nucleation. We discuss the effects of γ-TuRC protein dysregulation on cancer cell behavior and new compounds targeting γ-tubulin. Drugs inhibiting γ-TuRC functions could represent an alternative to microtubule targeting agents in cancer chemotherapy.
Collapse
|
10
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
11
|
Yoshino Y, Fang Z, Qi H, Kobayashi A, Chiba N. Dysregulation of the centrosome induced by BRCA1 deficiency contributes to tissue-specific carcinogenesis. Cancer Sci 2021; 112:1679-1687. [PMID: 33606355 PMCID: PMC8088922 DOI: 10.1111/cas.14859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alterations in breast cancer gene 1 (BRCA1), a tumor suppressor gene, increase the risk of breast and ovarian cancers. BRCA1 forms a heterodimer with BRCA1-associated RING domain protein 1 (BARD1) and functions in multiple cellular processes, including DNA repair and centrosome regulation. BRCA1 acts as a tumor suppressor by promoting homologous recombination (HR) repair, and alterations in BRCA1 cause HR deficiency, not only in breast and ovarian tissues but also in other tissues. The molecular mechanisms underlying BRCA1 alteration-induced carcinogenesis remain unclear. Centrosomes are the major microtubule-organizing centers and function in bipolar spindle formation. The regulation of centrosome number is critical for chromosome segregation in mitosis, which maintains genomic stability. BRCA1/BARD1 function in centrosome regulation together with Obg-like ATPase (OLA1) and receptor for activating protein C kinase 1 (RACK1). Cancer-derived variants of BRCA1, BARD1, OLA1, and RACK1 do not interact, and aberrant expression of these proteins results in abnormal centrosome duplication in mammary-derived cells, and rarely in other cell types. RACK1 is involved in centriole duplication in the S phase by promoting polo-like kinase 1 activation by Aurora A, which is critical for centrosome duplication. Centriole number is higher in cells derived from mammary tissues compared with in those derived from other tissues, suggesting that tissue-specific centrosome characterization may shed light on the tissue specificity of BRCA1-associated carcinogenesis. Here, we explored the role of the BRCA1-containing complex in centrosome regulation and the effect of its deficiency on tissue-specific carcinogenesis.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer BiologyGraduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Zhenzhou Fang
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Huicheng Qi
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Akihiro Kobayashi
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Natsuko Chiba
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer BiologyGraduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
12
|
Stolarova L, Kleiblova P, Janatova M, Soukupova J, Zemankova P, Macurek L, Kleibl Z. CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells 2020; 9:cells9122675. [PMID: 33322746 PMCID: PMC7763663 DOI: 10.3390/cells9122675] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Germline alterations in many genes coding for proteins regulating DNA repair and DNA damage response (DDR) to DNA double-strand breaks (DDSB) have been recognized as pathogenic factors in hereditary cancer predisposition. The ATM-CHEK2-p53 axis has been documented as a backbone for DDR and hypothesized as a barrier against cancer initiation. However, although CHK2 kinase coded by the CHEK2 gene expedites the DDR signal, its function in activation of p53-dependent cell cycle arrest is dispensable. CHEK2 mutations rank among the most frequent germline alterations revealed by germline genetic testing for various hereditary cancer predispositions, but their interpretation is not trivial. From the perspective of interpretation of germline CHEK2 variants, we review the current knowledge related to the structure of the CHEK2 gene, the function of CHK2 kinase, and the clinical significance of CHEK2 germline mutations in patients with hereditary breast, prostate, kidney, thyroid, and colon cancers.
Collapse
Affiliation(s)
- Lenka Stolarova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Petra Kleiblova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800 Prague, Czech Republic;
| | - Marketa Janatova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Jana Soukupova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Petra Zemankova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Zdenek Kleibl
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (L.S.); (M.J.); (J.S.); (P.Z.)
- Correspondence: ; Tel.: +420-22496-745
| |
Collapse
|
13
|
Li SK, Tang HC, Leung MMH, Zou W, Chan WL, Zhou Y, Ng IOL, Ching YP. Centrosomal protein TAX1BP2 inhibits centrosome-microtubules aberrations induced by hepatitis B virus X oncoprotein. Cancer Lett 2020; 492:147-161. [PMID: 32827601 DOI: 10.1016/j.canlet.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 11/21/2022]
Abstract
Liver cancer (hepatocellular carcinoma, HCC) is one of the most prevalent cancers worldwide. Several etiological factors of HCC, including hepatitis B or hepatitis C virus infection, liver cirrhosis and aflatoxin B1 intake has been identified. HBx, which is an oncogenic protein encoded by the hepatitis B virus, is strongly associated with hepatocarcinogenesis. Using stable HBx-expressing cell, we showed that HBx induced chromosome gain, with amplification of centrosomes numbers and deregulation of centrosome ultrastructure. To dissect the mechanism for chromosome instability, our result revealed that HBx contributed to a hyperactive centrosome-microtubule dynamics by accelerating microtubule nucleation and polymerization. Further investigations suggested that HBx interacted with a centrosome linker protein TAX1BP2, which has previously been shown to function as an intrinsic block of centrosome amplification and a tumour suppressor in HCC. Restoring TAX1BP2 was able to block HBx-mediated centrosome amplification and abolish the HBx-mediated centrosome aberration, thereby suppressing chromosome instability. Thus, we demonstrate here a mechanism by which HBx deregulates centrosome-microtubule dynamics through interacting with TAX1BP2, which underlines the possibility of restoration of TAX1BP2 to rescue cells from chromosome instability.
Collapse
Affiliation(s)
- Sai-Kam Li
- School of Biomedical Sciences, Hong Kong
| | | | | | - Wenjun Zou
- School of Biomedical Sciences, Hong Kong
| | | | - Yuan Zhou
- School of Biomedical Sciences, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Yick Pang Ching
- School of Biomedical Sciences, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
14
|
Otsuka K, Yoshino Y, Qi H, Chiba N. The Function of BARD1 in Centrosome Regulation in Cooperation with BRCA1/OLA1/RACK1. Genes (Basel) 2020; 11:genes11080842. [PMID: 32722046 PMCID: PMC7464954 DOI: 10.3390/genes11080842] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer gene 1 (BRCA1)-associated RING domain protein 1 (BARD1) forms a heterodimer with BRCA1, a tumor suppressor associated with hereditary breast and ovarian cancer. BRCA1/BARD1 functions in multiple cellular processes including DNA repair and centrosome regulation. Centrosomes are the major microtubule-organizing centers in animal cells and are critical for the formation of a bipolar mitotic spindle. BRCA1 and BARD1 localize to the centrosome during the cell cycle, and the BRCA1/BARD1 dimer ubiquitinates centrosomal proteins to regulate centrosome function. We identified Obg-like ATPase 1 (OLA1) and receptor for activated C kinase (RACK1) as BRCA1/BARD1-interating proteins that bind to BARD1 and BRCA1 and localize the centrosomes during the cell cycle. Cancer-derived variants of BRCA1, BARD1, OLA1, and RACK1 failed to interact, and aberrant expression of these proteins caused centrosome amplification due to centriole overduplication only in mammary tissue-derived cells. In S-G2 phase, the number of centrioles was higher in mammary tissue-derived cells than in cells from other tissues, suggesting their involvement in tissue-specific carcinogenesis by BRCA1 and BARD1 germline mutations. We described the function of BARD1 in centrosome regulation in cooperation with BRCA1/OLA1/RACK1, as well as the effect of their dysfunction on carcinogenesis.
Collapse
Affiliation(s)
- Kei Otsuka
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; (K.O.); (Y.Y.); (H.Q.)
- Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; (K.O.); (Y.Y.); (H.Q.)
- Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Huicheng Qi
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; (K.O.); (Y.Y.); (H.Q.)
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; (K.O.); (Y.Y.); (H.Q.)
- Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
- Correspondence:
| |
Collapse
|
15
|
The Effects of Genetic and Epigenetic Alterations of BARD1 on the Development of Non-Breast and Non-Gynecological Cancers. Genes (Basel) 2020; 11:genes11070829. [PMID: 32708251 PMCID: PMC7396976 DOI: 10.3390/genes11070829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Breast Cancer 1 (BRCA1) gene is a well-characterized tumor suppressor gene, mutations of which are primarily found in women with breast and ovarian cancers. BRCA1-associated RING domain 1 (BARD1) gene has also been identified as an important tumor suppressor gene in breast, ovarian, and uterine cancers. Underscoring the functional significance of the BRCA1 and BARD1 interactions, prevalent mutations in the BRCA1 gene are found in its RING domain, through which it binds the RING domain of BARD1. BARD1-BRCA1 heterodimer plays a crucial role in a variety of DNA damage response (DDR) pathways, including DNA damage checkpoint and homologous recombination (HR). However, many mutations in both BARD1 and BRCA1 also exist in other domains that significantly affect their biological functions. Intriguingly, recent genome-wide studies have identified various single nucleotide polymorphisms (SNPs), genetic alterations, and epigenetic modifications in or near the BARD1 gene that manifested profound effects on tumorigenesis in a variety of non-breast and non-gynecological cancers. In this review, we will briefly discuss the molecular functions of BARD1, including its BRCA1-dependent as well as BRCA1-independent functions. We will then focus on evaluating the common BARD1 related SNPs as well as genetic and epigenetic changes that occur in the non-BRCA1-dominant cancers, including neuroblastoma, lung, and gastrointestinal cancers. Furthermore, the pro- and anti-tumorigenic functions of different SNPs and BARD1 variants will also be discussed.
Collapse
|
16
|
Turn RE, East MP, Prekeris R, Kahn RA. The ARF GAP ELMOD2 acts with different GTPases to regulate centrosomal microtubule nucleation and cytokinesis. Mol Biol Cell 2020; 31:2070-2091. [PMID: 32614697 PMCID: PMC7543072 DOI: 10.1091/mbc.e20-01-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ELMOD2 is a ∼32 kDa protein first purified by its GTPase-activating protein (GAP) activity toward ARL2 and later shown to have uniquely broad specificity toward ARF family GTPases in in vitro assays. To begin the task of defining its functions in cells, we deleted ELMOD2 in immortalized mouse embryonic fibroblasts and discovered a number of cellular defects, which are reversed upon expression of ELMOD2-myc. We show that these defects, resulting from the loss of ELMOD2, are linked to two different pathways and two different GTPases: with ARL2 and TBCD to support microtubule nucleation from centrosomes and with ARF6 in cytokinesis. These data highlight key aspects of signaling by ARF family GAPs that contribute to previously underappreciated sources of complexity, including GAPs acting from multiple sites in cells, working with multiple GTPases, and contributing to the spatial and temporal control of regulatory GTPases by serving as both GAPs and effectors.
Collapse
Affiliation(s)
- Rachel E Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.,Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
| | - Michael P East
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
17
|
During mitosis ZEB1 "switches" from being a chromatin-bound epithelial gene repressor, to become a microtubule-associated protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118673. [PMID: 32057919 DOI: 10.1016/j.bbamcr.2020.118673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022]
Abstract
Microtubules are polymers of α/β-tubulin, with microtubule organization being regulated by microtubule-associated proteins (MAPs). Herein, we describe a novel role for the epithelial gene repressor, zinc finger E-box-binding homeobox 1 (ZEB1), that "switches" from a chromatin-associated protein during interphase, to a MAP that associates with α-, β- and γ-tubulin during mitosis. Additionally, ZEB1 was also demonstrated to associate with γ-tubulin at the microtubule organizing center (MTOC). Using confocal microscopy, ZEB1 localization was predominantly nuclear during interphase, with α/β-tubulin being primarily cytoplasmic and the association between these proteins being minimal. However, during the stages of mitosis, ZEB1 co-localization with α-, β-, and γ-tubulin was significantly increased, with the association commonly peaking during metaphase in multiple tumor cell-types. ZEB1 was also observed to accumulate in the cleavage furrow during cytokinesis. The increased interaction between ZEB1 and α-tubulin during mitosis was also confirmed using the proximity ligation assay. In contrast to ZEB1, its paralog ZEB2, was mainly perinuclear and cytoplasmic during interphase, showing some co-localization with α-tubulin during mitosis. Considering the association between ZEB1 with α/β/γ-tubulin during mitosis, studies investigated ZEB1's role in the cell cycle. Silencing ZEB1 resulted in a G2-M arrest, which could be mediated by the up-regulation of p21Waf1/Cip1 and p27Kip1 that are known downstream targets repressed by ZEB1. However, it cannot be excluded the G2/M arrest observed after ZEB1 silencing is not due to its roles as a MAP. Collectively, ZEB1 plays a role as a MAP during mitosis and could be functionally involved in this process.
Collapse
|
18
|
Abstract
Renal cell carcinomas (RCCs) are a diverse set of malignancies that have recently been shown to harbour mutations in a number of chromatin modifier genes - including PBRM1, SETD2, BAP1, KDM5C, KDM6A, and MLL2 - through high-throughput sequencing efforts. Current research focuses on understanding the biological activities that chromatin modifiers employ to suppress tumorigenesis and on developing clinical approaches that take advantage of this knowledge. Unsurprisingly, several common themes unify the functions of these epigenetic modifiers, particularly regulation of histone post-translational modifications and nucleosome organization. Furthermore, chromatin modifiers also govern processes crucial for DNA repair and maintenance of genomic integrity as well as the regulation of splicing and other key processes. Many chromatin modifiers have additional non-canonical roles in cytoskeletal regulation, which further contribute to genomic stability, expanding the repertoire of functions that might be essential in tumorigenesis. Our understanding of how mutations in chromatin modifiers contribute to tumorigenesis in RCC is improving but remains an area of intense investigation. Importantly, elucidating the activities of chromatin modifiers offers intriguing opportunities for the development of new therapeutic interventions in RCC.
Collapse
Affiliation(s)
- Aguirre A de Cubas
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
19
|
Carbajosa S, Pansa MF, Paviolo NS, Castellaro AM, Andino DL, Nigra AD, García IA, Racca AC, Rodriguez-Berdini L, Angiolini V, Guantay L, Villafañez F, Federico MB, Rodríguez-Baili MC, Caputto BL, Drewes G, Madauss KP, Gloger I, Fernandez E, Gil GA, Bocco JL, Gottifredi V, Soria G. Polo-like Kinase 1 Inhibition as a Therapeutic Approach to Selectively Target BRCA1-Deficient Cancer Cells by Synthetic Lethality Induction. Clin Cancer Res 2019; 25:4049-4062. [PMID: 30890549 DOI: 10.1158/1078-0432.ccr-18-3516] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE BRCA1 and BRCA2 deficiencies are widespread drivers of human cancers that await the development of targeted therapies. We aimed to identify novel synthetic lethal relationships with therapeutic potential using BRCA-deficient isogenic backgrounds. EXPERIMENTAL DESIGN We developed a phenotypic screening technology to simultaneously search for synthetic lethal (SL) interactions in BRCA1- and BRCA2-deficient contexts. For validation, we developed chimeric spheroids and a dual-tumor xenograft model that allowed the confirmation of SL induction with the concomitant evaluation of undesired cytotoxicity on BRCA-proficient cells. To extend our results using clinical data, we performed retrospective analysis on The Cancer Genome Atlas (TCGA) breast cancer database. RESULTS The screening of a kinase inhibitors library revealed that Polo-like kinase 1 (PLK1) inhibition triggers strong SL induction in BRCA1-deficient cells. Mechanistically, we found no connection between the SL induced by PLK1 inhibition and PARP inhibitors. Instead, we uncovered that BRCA1 downregulation and PLK1 inhibition lead to aberrant mitotic phenotypes with altered centrosomal duplication and cytokinesis, which severely reduced the clonogenic potential of these cells. The penetrance of PLK1/BRCA1 SL interaction was validated using several isogenic and nonisogenic cellular models, chimeric spheroids, and mice xenografts. Moreover, bioinformatic analysis revealed high-PLK1 expression in BRCA1-deficient tumors, a phenotype that was consistently recapitulated by inducing BRCA1 deficiency in multiple cell lines as well as in BRCA1-mutant cells. CONCLUSIONS We uncovered an unforeseen addiction of BRCA1-deficient cancer cells to PLK1 expression, which provides a new means to exploit the therapeutic potential of PLK1 inhibitors in clinical trials, by generating stratification schemes that consider this molecular trait in patient cohorts.
Collapse
Affiliation(s)
- Sofía Carbajosa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Florencia Pansa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Andrés M Castellaro
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Diego L Andino
- CIDIE-CONICET, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Ayelén D Nigra
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Iris Alejandra García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana C Racca
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucía Rodriguez-Berdini
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Virginia Angiolini
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Guantay
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Villafañez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - María Celeste Rodríguez-Baili
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Beatriz L Caputto
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Kevin P Madauss
- GlaxoSmithKline-Trust in Science, Global Health R&D, Upper Providence, Pennsylvania
| | - Israel Gloger
- GlaxoSmithKline-Trust in Science, Global Health R&D, Stevenage, United Kingdom
| | - Elmer Fernandez
- CIDIE-CONICET, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Germán A Gil
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
20
|
BRCA1/BARD1-dependent ubiquitination of NF2 regulates Hippo-YAP1 signaling. Proc Natl Acad Sci U S A 2019; 116:7363-7370. [PMID: 30918126 DOI: 10.1073/pnas.1822155116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coordination of growth and genomic stability is critical for normal cell physiology. Although the E3 ubiquitin ligase BRCA1 is a key player in maintenance of genomic stability, its role in growth signaling remains elusive. Here, we show that BRCA1 facilitates stabilization of YAP1 protein and turning "off" the Hippo pathway through ubiquitination of NF2. In BRCA1-deficient cells Hippo pathway is "turned On." Phosphorylation of YAP1 is crucial for this signaling process because a YAP1 mutant harboring alanine substitutions (Mt-YAP5SA) in LATS1 kinase recognition sites not only resists degradation but also rescues YAP1 transcriptional activity in BRCA1-deficient cells. Furthermore, an ectopic expression of the active Mt-YAP5SA, but not inactive Mt-YAP6SA, promotes EGF-independent proliferation and tumorigenesis in BRCA1-/- mammary epithelial cells. These findings establish an important role of BRCA1 in regulating stability of YAP1 protein that correlates positively with cell proliferation.
Collapse
|
21
|
RACK1 regulates centriole duplication by controlling localization of BRCA1 to the centrosome in mammary tissue-derived cells. Oncogene 2019; 38:3077-3092. [PMID: 30617304 DOI: 10.1038/s41388-018-0647-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022]
Abstract
Breast cancer gene 1 (BRCA1) is a tumor suppressor that is associated with hereditary breast and ovarian cancer. BRCA1 functions in DNA repair and centrosome regulation together with BRCA1-associated RING domain protein (BARD1), a heterodimer partner of BRCA1. Obg-like ATPase 1 (OLA1) was identified as a protein that interacts with BARD1. OLA1 regulates the centrosome by binding to and collaborating with BRCA1 and BARD1. We identified receptor for activated C kinase (RACK1) as a protein that interacts with OLA1. RACK1 directly bound to OLA1, the N-terminal region of BRCA1, and γ-tubulin, associated with BARD1, and localized the centrosomes throughout the cell cycle. Knockdown of RACK1 caused abnormal centrosomal localization of BRCA1 and abrogated centriole duplication. Overexpression of RACK1 increased the centrosomal localization of BRCA1 and caused centrosome amplification due to centriole overduplication. The number of centrioles in cells with two γ-tubulin spots was higher in cell lines derived from mammary tissue compared to those derived from other tissues. The effects of aberrant RACK1 expression level on centriole duplication were observed in cell lines derived from mammary tissue, but not in those derived from other tissues. Two BRCA1 variants, R133H and E143K, and a RACK1 variant, K280E, associated with cancer, which weakened the BRCA1-RACK1 interaction, interfered with the centrosomal localization of BRCA1 and reduced centrosome amplification induced by overexpression of RACK1. These results suggest that RACK1 regulates centriole duplication by controlling the centrosomal localization of BRCA1 in mammary tissue-derived cells and that this is dependent on the BRCA1-RACK1 interaction.
Collapse
|
22
|
Abstract
Acetylation is among the most prevalent posttranslational modifications in cells and regulates a number of physiological processes such as gene transcription, cell metabolism, and cell signaling. Although initially discovered on nuclear histones, many non-nuclear proteins have subsequently been found to be acetylated as well. The centrosome is the major microtubule-organizing center in most metazoans. Recent proteomic data indicate that a number of proteins in this subcellular compartment are acetylated. This review gives an overview of our current knowledge on protein acetylation at the centrosome and its functional relevance in organelle biology.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de recherches cliniques de Montreal, Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - William Y Tsang
- Institut de recherches cliniques de Montreal, Montreal, Quebec, Canada. .,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada. .,Department of Pathology and Cell Biology, Universite de Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Wang H, Huang Y, Shi J, Zhi Y, Yuan F, Yu J, Chen Z, Yang J. XPC deficiency leads to centrosome amplification by inhibiting BRCA1 expression upon cisplatin-mediated DNA damage in human bladder cancer. Cancer Lett 2018; 444:136-146. [PMID: 30579971 DOI: 10.1016/j.canlet.2018.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Xeroderma pigmentosum group C (XPC) is a well-known DNA damage recognition protein. Defects in XPC lead to carcinogenesis and progression of many human cancers. In the current study, we defined a novel, important role of XPC in preventing centrosome amplification during cisplatin-mediated DNA damage response. From experiments with human bladder cancer tissue, urothelial tissue from Xpc knockout mice and XPC-silenced cell lines, we found that attenuated XPC expression was associated with increased centrosome amplification in human bladder cancer. A significant increase in centrosome amplification was observed in XPC-silenced cells upon cisplatin treatment. XPC deficiency leads to reduced BRCA1 expression via upregulating its transcriptional repressor, Pit-1. The BRCA1 downregulation results in more DNA double strand breaks accumulation and persistent activation of the ATM-Chk1/Chk2 signaling, resulting in a prolonged G2/M arrest during which centrosome can over-duplicate and lead to centrosome amplification. XPC complementation in silenced cells could reduce Pit-1 expression, increase BRCA1 expression and recover the status of centrosome amplification. Our study reveals a new function for XPC in preventing chromosomal instability, providing new information on cancer chemotherapy and potential clinical significance for cancer management.
Collapse
Affiliation(s)
- Huanhuan Wang
- Department of Cell Biology, The Third Military Medical University, Chongqing, PR China
| | - Yaqin Huang
- Department of Cell Biology, The Third Military Medical University, Chongqing, PR China
| | - Jiazhong Shi
- Department of Cell Biology, The Third Military Medical University, Chongqing, PR China
| | - Yi Zhi
- Department of Urology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Fang Yuan
- Chongqing University Cancer Hospital, Chongqing, PR China
| | - Jin Yu
- Department of Cell Biology, The Third Military Medical University, Chongqing, PR China
| | - Zhiwen Chen
- Urology Institute of People's Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, PR China; Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.
| | - Jin Yang
- Department of Cell Biology, The Third Military Medical University, Chongqing, PR China.
| |
Collapse
|
24
|
Mariappan A, Soni K, Schorpp K, Zhao F, Minakar A, Zheng X, Mandad S, Macheleidt I, Ramani A, Kubelka T, Dawidowski M, Golfmann K, Wason A, Yang C, Simons J, Schmalz HG, Hyman AA, Aneja R, Ullrich R, Urlaub H, Odenthal M, Büttner R, Li H, Sattler M, Hadian K, Gopalakrishnan J. Inhibition of CPAP-tubulin interaction prevents proliferation of centrosome-amplified cancer cells. EMBO J 2018; 38:embj.201899876. [PMID: 30530478 PMCID: PMC6331730 DOI: 10.15252/embj.201899876] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022] Open
Abstract
Centrosome amplification is a hallmark of human cancers that can trigger cancer cell invasion. To survive, cancer cells cluster amplified extra centrosomes and achieve pseudobipolar division. Here, we set out to prevent clustering of extra centrosomes. Tubulin, by interacting with the centrosomal protein CPAP, negatively regulates CPAP‐dependent peri‐centriolar material recruitment, and concurrently microtubule nucleation. Screening for compounds that perturb CPAP–tubulin interaction led to the identification of CCB02, which selectively binds at the CPAP binding site of tubulin. Genetic and chemical perturbation of CPAP–tubulin interaction activates extra centrosomes to nucleate enhanced numbers of microtubules prior to mitosis. This causes cells to undergo centrosome de‐clustering, prolonged multipolar mitosis, and cell death. 3D‐organotypic invasion assays reveal that CCB02 has broad anti‐invasive activity in various cancer models, including tyrosine kinase inhibitor (TKI)‐resistant EGFR‐mutant non‐small‐cell lung cancers. Thus, we have identified a vulnerability of cancer cells to activation of extra centrosomes, which may serve as a global approach to target various tumors, including drug‐resistant cancers exhibiting high incidence of centrosome amplification.
Collapse
Affiliation(s)
- Aruljothi Mariappan
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany.,Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Komal Soni
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Fan Zhao
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Amin Minakar
- Department of Chemistry, University of Cologne, Cologne, Germany
| | - Xiangdong Zheng
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Sunit Mandad
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, University Medical Center Goettingen, Goettingen, Germany.,Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Iris Macheleidt
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Anand Ramani
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany.,IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tomáš Kubelka
- Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Maciej Dawidowski
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany.,Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Kristina Golfmann
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Arpit Wason
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Chunhua Yang
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Judith Simons
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | | | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Roland Ullrich
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, University Medical Center Goettingen, Goettingen, Germany
| | - Margarete Odenthal
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Reinhardt Büttner
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Haitao Li
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Jay Gopalakrishnan
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany .,Center for Molecular Medicine of the University of Cologne, Cologne, Germany.,IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
25
|
Austria T, Marion C, Yu V, Widschwendter M, Hinton DR, Dubeau L. Mechanism of cytokinesis failure in ovarian cystadenomas with defective BRCA1 and P53 pathways. Int J Cancer 2018; 143:2932-2942. [PMID: 29978915 DOI: 10.1002/ijc.31659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/23/2018] [Accepted: 06/07/2018] [Indexed: 11/09/2022]
Abstract
We previously described an in vitro model in which serous ovarian cystadenomas were transfected with SV40 large T antigen, resulting in loss of RB and P53 functions and thus mimicking genetic defects present in early high-grade serous extra-uterine Müllerian (traditionally called high-grade serous ovarian) carcinomas including those associated with the BRCA1 mutation carrier state. We showed that replicative aging in this cell culture model leads to a mitotic arrest at the spindle assembly checkpoint. Here we show that this arrest is due to a reduction in microtubule anchoring that coincides with decreased expression of the BUB1 kinase and of the phosphorylated form of its substrate, BUB3. The ensuing prolonged mitotic arrest leads to cohesion fatigue resulting in cell death or, in cells that recover from this arrest, in cytokinesis failure and polyploidy. Down-regulation of BRCA1 to levels similar to those present in BRCA1 mutation carriers leads to increased and uncontrolled microtubule anchoring to the kinetochore resulting in overcoming the spindle assembly checkpoint. Progression to anaphase under those conditions is associated with formation of chromatin bridges between chromosomal plates due to abnormal attachments to the kinetochore, significantly increasing the risk of cytokinesis failure. The dependence of this scenario on accelerated replicative aging can, at least in part, account for the site specificity of the cancers associated with the BRCA1 mutation carrier state, as epithelia of the mammary gland and of the reproductive tract are targets of cell-nonautonomous consequences of this carrier state on cellular proliferation associated with menstrual cycle progressions.
Collapse
Affiliation(s)
- Theresa Austria
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Christine Marion
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Vanessa Yu
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Martin Widschwendter
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - David R Hinton
- Department of Pathology and Ophthalmology, Roski Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Louis Dubeau
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
26
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
27
|
Yoshino Y, Qi H, Fujita H, Shirota M, Abe S, Komiyama Y, Shindo K, Nakayama M, Matsuzawa A, Kobayashi A, Ogoh H, Watanabe T, Ishioka C, Chiba N. BRCA1-Interacting Protein OLA1 Requires Interaction with BARD1 to Regulate Centrosome Number. Mol Cancer Res 2018; 16:1499-1511. [PMID: 29858377 DOI: 10.1158/1541-7786.mcr-18-0269] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/28/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022]
Abstract
BRCA1 functions as a tumor suppressor in DNA repair and centrosome regulation. Previously, Obg-like ATPase 1 (OLA1) was shown to interact with BARD1, a heterodimer partner of BRCA1. OLA1 binds to BRCA1, BARD1, and γ-tubulin and functions in centrosome regulation. This study determined that overexpression of wild-type OLA1 (OLA1-WT) caused centrosome amplification due to centriole overduplication in mammary tissue-derived cells. Centrosome amplification induced by overexpression of the cancer-derived OLA1 mutant, which is deficient at regulating centrosome number, occurred in significantly fewer cells than in that induced by overexpression of OLA1-WT. Thus, it was hypothesized that overexpression of OLA1 with normal function efficiently induces centrosome amplification, but not that of OLA1 mutants, which are deficient at regulating centrosome number. We analyzed whether overexpression of OLA1 missense mutants of nine candidate phosphorylation residues, three residues modified with acetylation, and two ATP-binding residues caused centrosome amplification and identified five missense mutants that are deficient in the regulation of centrosome number. Three of them did not bind to BARD1. Two phosphomimetic mutations restored the binding to BARD1 and the efficient centrosome amplification by their overexpression. Knockdown and overexpression of BARD1 also caused centrosome amplification. BARD1 mutant reported in cancer failed to bind to OLA1 and rescue the BARD1 knockdown-induced centrosome amplification and reduced its centrosomal localization. Combined, these data reveal that the OLA1-BARD1 interaction is important for the regulation of centrosome number.Implications: Regulation of centrosome number by BRCA1/BARD1 together with OLA1 is important for the genome integrity to prevent tumor development. Mol Cancer Res; 16(10); 1499-511. ©2018 AACR.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Huicheng Qi
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Hiroki Fujita
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shun Abe
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Yuhei Komiyama
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Kazuha Shindo
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Masahiro Nakayama
- Department of Molecular Immunology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Ayako Matsuzawa
- Department of Molecular Immunology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Akihiro Kobayashi
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Honami Ogoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.
| |
Collapse
|
28
|
Takaoka M, Miki Y. BRCA1 gene: function and deficiency. Int J Clin Oncol 2017; 23:36-44. [PMID: 28884397 DOI: 10.1007/s10147-017-1182-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 10/18/2022]
Abstract
The BRCA1 protein, a hereditary breast and ovarian cancer-causing gene product, is known as a multifunctional protein that performs various functions in cells. It is well known, along with BRCA 2, to cause hereditary breast and ovarian cancer, but here we will specifically focus on BRCA1. We introduce the mechanism and the latest report on homologous recombination repair, replication, involvement in checkpoint regulation, transcription, chromatin remodeling, and cytoplasmic function (centrosome regulation, apoptosis, selective autophagy), and consider the possibility of carcinogenesis from inhibition of the intracellular functions in each. We also consider the possibility of drug development based on each function. Finally, we will explain, from data obtained through basic research, that an appropriate regimen is important for raising the response rate for poly (ADP)-ribose polymerase inhibitors, in the case of low susceptibility, iatrogenic toxicity, tolerance, etc.
Collapse
Affiliation(s)
- Miho Takaoka
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan. .,Department of Genetic Diagnosis, The Cancer Institute, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
29
|
Agarwal S, Varma D. Targeting mitotic pathways for endocrine-related cancer therapeutics. Endocr Relat Cancer 2017; 24:T65-T82. [PMID: 28615236 PMCID: PMC5557717 DOI: 10.1530/erc-17-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022]
Abstract
A colossal amount of basic research over the past few decades has provided unprecedented insights into the highly complex process of cell division. There is an ever-expanding catalog of proteins that orchestrate, participate and coordinate in the exquisite processes of spindle formation, chromosome dynamics and the formation and regulation of kinetochore microtubule attachments. Use of classical microtubule poisons has still been widely and often successfully used to combat a variety of cancers, but their non-selective interference in other crucial physiologic processes necessitate the identification of novel druggable components specific to the cell cycle/division pathway. Considering cell cycle deregulation, unscheduled proliferation, genomic instability and chromosomal instability as a hallmark of tumor cells, there lies an enormous untapped terrain that needs to be unearthed before a drug can pave its way from bench to bedside. This review attempts to systematically summarize the advances made in this context so far with an emphasis on endocrine-related cancers and the avenues for future progress to target mitotic mechanisms in an effort to combat these dreadful cancers.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Cell and Molecular BiologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dileep Varma
- Department of Cell and Molecular BiologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
30
|
Martinez AR, Kaul Z, Parvin JD, Groden J. Differential requirements for DNA repair proteins in immortalized cell lines using alternative lengthening of telomere mechanisms. Genes Chromosomes Cancer 2017; 56:617-631. [PMID: 28398700 DOI: 10.1002/gcc.22465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/28/2022] Open
Abstract
Cancer cells require telomere maintenance to enable uncontrolled growth. Most often telomerase is activated, although a subset of human cancers are telomerase-negative and depend on recombination-based mechanisms known as ALT (Alternative Lengthening of Telomeres). ALT depends on proteins that are essential for homologous recombination, including BLM and the MRN complex, to extend telomeres. This study surveyed the requirement for requisite homologous recombination proteins, yet to be studied in human ALT cell lines, by protein depletion using RNA interference. Effects on ALT were evaluated by measuring C-circle abundance, a marker of ALT. Surprisingly, several proteins essential for homologous recombination, BARD1, BRCA2, and WRN, were dispensable for C-circle production, while PALB2 had varying effects on C-circles among ALT cell lines. Depletion of homologous recombination proteins BRCA1 and BLM, which have been previously studied in ALT, decreased C-circles in all ALT cell lines. Depletion of the non-homologous end joining proteins 53BP1 and LIG4 had no effect on C-circles in any ALT cell line. Proteins such as chromatin modifiers that recruit double-strand break proteins, RNF8 and RNF168, and other proteins loosely grouped into excision DNA repair processes, XPA, MSH2, and MPG, reduced C-circles in some ALT cell lines. MSH2 depletion also reduced recombination at telomeres as measured by intertelomeric exchanges. Collectively, the requirement for DNA repair proteins varied between the ALT cell lines compared. In sum, our study suggests that ALT proceeds by multiple mechanisms that differ between cell lines and that some of these depend on DNA repair proteins not associated with homologous recombination pathways.
Collapse
Affiliation(s)
- Alaina R Martinez
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Zeenia Kaul
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Joanna Groden
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
31
|
Yim H, Shin SB, Woo SU, Lee PCW, Erikson RL. Plk1-mediated stabilization of 53BP1 through USP7 regulates centrosome positioning to maintain bipolarity. Oncogene 2017; 36:966-978. [PMID: 27477698 DOI: 10.1038/onc.2016.263] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/04/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
Although 53BP1 has been established well as a mediator in DNA damage response, its function in mitosis is not clearly understood. We found that 53BP1 is a mitotic-binding partner of the kinases Plk1 and AuroraA, and that the binding with Plk1 increases the stability of 53BP1 by accelerating its interaction with the deubiquitinase USP7. Depletion of 53BP1 induces mitotic defects such as chromosomal missegregation, misorientation of spindle poles and the generation of extra centrosomes, which is similar phenotype to USP7-knockdown cells. In addition, 53BP1 depletion reduces the levels of p53 and centromere protein F (CENPF), interacting proteins of 53BP1. These phenotypes induced by 53BP1 depletion were rescued by expression of wild-type or phosphomimic mutant 53BP1 but not by expression of a dephosphomimic mutant. We propose that phosphorylation of 53BP1 at S380 accelerates complex formation with USP7 and CENPF to regulate their stability, thus having a crucial role in proper centrosome positioning, chromosomal alignment, and centrosome number.
Collapse
Affiliation(s)
- H Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - S-B Shin
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - S U Woo
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - P C-W Lee
- Department of Biomedical Sciences, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Korea
| | - R L Erikson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
32
|
Abstract
Here, we review how DNA damage affects the centrosome and how centrosomes communicate with the DNA damage response (DDR) apparatus. We discuss how several proteins of the DDR are found at centrosomes, including the ATM, ATR, CHK1 and CHK2 kinases, the BRCA1 ubiquitin ligase complex and several members of the poly(ADP-ribose) polymerase family. Stereotypical centrosome organisation, in which two centriole barrels are orthogonally arranged in a roughly toroidal pericentriolar material (PCM), is strongly affected by exposure to DNA-damaging agents. We describe the genetic dependencies and mechanisms for how the centrioles lose their close association, and the PCM both expands and distorts after DNA damage. Another consequence of genotoxic stress is that centrosomes undergo duplication outside the normal cell cycle stage, meaning that centrosome amplification is commonly seen after DNA damage. We discuss several potential mechanisms for how centrosome numbers become dysregulated after DNA damage and explore the links between the DDR and the PLK1- and separase-dependent mechanisms that drive centriole separation and reduplication. We also describe how centrosome components, such as centrin2, are directly involved in responding to DNA damage. This review outlines current questions on the involvement of centrosomes in the DDR.
Collapse
Affiliation(s)
- Lisa I Mullee
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, Ireland
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, Ireland.
| |
Collapse
|
33
|
Uematsu K, Okumura F, Tonogai S, Joo-Okumura A, Alemayehu DH, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T. ASB7 regulates spindle dynamics and genome integrity by targeting DDA3 for proteasomal degradation. J Cell Biol 2016; 215:95-106. [PMID: 27697924 PMCID: PMC5057283 DOI: 10.1083/jcb.201603062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022] Open
Abstract
Uematsu et al. show that ASB7 ubiquitinates DDA3, which facilitates Kif2a-mediated depolymerization of microtubules (MTs) for proteasomal degradation. The presence of MTs prevents the ASB7–DDA3 interaction, suggesting a feedback loop to appropriately regulate MT polymerization and spindle dynamics. Proper dynamic regulation of the spindle is essential for successful cell division. However, the molecular mechanisms that regulate spindle dynamics in mitosis are not fully understood. In this study, we show that Cullin 5–interacting suppressor of cytokine signaling box protein ASB7 ubiquitinates DDA3, a regulator of spindle dynamics, thereby targeting it for proteasomal degradation. The presence of microtubules (MTs) prevented the ASB7–DDA3 interaction, thus stabilizing DDA3. Knockdown of ASB7 decreased MT polymerization and increased the proportion of cells with unaligned chromosomes, and this phenotype was rescued by deletion of DDA3. Collectively, these data indicate that ASB7 plays a crucial role in regulating spindle dynamics and genome integrity by controlling the expression of DDA3.
Collapse
Affiliation(s)
- Keiji Uematsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Syunsuke Tonogai
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Dawit Hailu Alemayehu
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Akihiko Nishikimi
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan Research Center for Advanced Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan Research Center for Advanced Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| |
Collapse
|
34
|
New concepts on BARD1: Regulator of BRCA pathways and beyond. Int J Biochem Cell Biol 2016; 72:1-17. [DOI: 10.1016/j.biocel.2015.12.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/09/2023]
|
35
|
Kaufman KL, Jenkins Y, Alomari M, Mirzaei M, Best OG, Pascovici D, Mactier S, Mulligan SP, Haynes PA, Christopherson RI. The Hsp90 inhibitor SNX-7081 is synergistic with fludarabine nucleoside via DNA damage and repair mechanisms in human, p53-negative chronic lymphocytic leukemia. Oncotarget 2015; 6:40981-97. [PMID: 26556860 PMCID: PMC4747384 DOI: 10.18632/oncotarget.5715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/16/2015] [Indexed: 12/31/2022] Open
Abstract
Clinical trials of heat shock protein 90 (Hsp90) inhibitors have been limited by high toxicity. We previously showed that the Hsp90 inhibitor, SNX-7081, synergizes with and restores sensitivity to fludarabine nucleoside (2-FaraA) in human chronic lymphocytic leukemia (CLL) cells with lesions in the p53 pathway (Best OG, et al., Leukemia Lymphoma 53:1367-75, 2012). Here, we used label-free quantitative shotgun proteomics and comprehensive bioinformatic analysis to determine the mechanism of this synergy. We propose that 2-FaraA-induced DNA damage is compounded by SNX-7081-mediated inhibition of DNA repair, resulting in enhanced induction of apoptosis. DNA damage responses are impaired in part due to reductions in checkpoint regulators BRCA1 and cyclin D1, and cell death is triggered following reductions of MYC and nucleolin and an accumulation of apoptosis-inducing NFkB2 p100 subunit. Loss of nucleolin can activate Fas-mediated apoptosis, leading to the increase of pro-apoptotic proteins (BID, fas-associated factor-2) and subsequent apoptosis of p53-negative, 2-FaraA refractory CLL cells. A significant induction of DNA damage, indicated by increases in DNA damage marker γH2AX, was observed following the dual drug treatment of additional cell lines, indicating that a similar mechanism may operate in other p53-mutated human B-lymphoid cancers. These results provide valuable insight into the synergistic mechanism between SNX-7081 and 2-FaraA that may provide an alternative treatment for CLL patients with p53 mutations, for whom therapeutic options are currently limited. Moreover, this drug combination reduces the effective dose of the Hsp90 inhibitor and may therefore alleviate any toxicity encountered.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- BRCA1 Protein/metabolism
- Benzamides/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Chromatography, Liquid/methods
- Cyclin D1/metabolism
- DNA Damage
- DNA Repair/drug effects
- Drug Synergism
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mutation
- NF-kappa B p52 Subunit/metabolism
- Phosphoproteins/metabolism
- Protein Interaction Maps/drug effects
- Proteomics/methods
- Proto-Oncogene Proteins c-myc/metabolism
- RNA-Binding Proteins/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tandem Mass Spectrometry
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
- Nucleolin
Collapse
Affiliation(s)
- Kimberley L. Kaufman
- School of Molecular Bioscience, University of Sydney, Darlington, NSW 2006, Australia
- Molecular Neuropathology, Brain and Mind Centre, Camperdown, NSW 2050, Australia
| | - Yiping Jenkins
- School of Molecular Bioscience, University of Sydney, Darlington, NSW 2006, Australia
| | - Munther Alomari
- School of Molecular Bioscience, University of Sydney, Darlington, NSW 2006, Australia
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - O. Giles Best
- Northern Blood Research Centre, Kolling Institute for Medical Research, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Swetlana Mactier
- School of Molecular Bioscience, University of Sydney, Darlington, NSW 2006, Australia
| | - Stephen P. Mulligan
- Northern Blood Research Centre, Kolling Institute for Medical Research, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Paul A. Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | | |
Collapse
|
36
|
Srivastava D, Chakrabarti O. Ubiquitin in regulation of spindle apparatus and its positioning: implications in development and disease. Biochem Cell Biol 2015; 93:273-81. [PMID: 26110206 DOI: 10.1139/bcb-2015-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Emerging data implicates ubiquitination, a post-translational modification, in regulating essential cellular events, one of them being mitosis. In this review we discuss how various E3 ligases modulate the cortical proteins such as dynein, LGN, NuMa, Gα, along with polymerization, stability, and integrity of spindles. These are responsible for regulating symmetric cell division. Some of the ubiquitin ligases regulating these proteins include PARK2, BRCA1/BARD1, MGRN1, SMURF2, and SIAH1; these play a pivotal role in the correct positioning of the spindle apparatus. A direct connection between developmental or various pathological disorders and the ubiquitination mediated cortical regulation is rather speculative, though deletions or mutations in them lead to developmental disorders and disease conditions.
Collapse
Affiliation(s)
- Devika Srivastava
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
| |
Collapse
|
37
|
Arquint C, Gabryjonczyk AM, Nigg EA. Centrosomes as signalling centres. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0464. [PMID: 25047618 DOI: 10.1098/rstb.2013.0464] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Centrosomes-as well as the related spindle pole bodies (SPBs) of yeast-have been extensively studied from the perspective of their microtubule-organizing roles. Moreover, the biogenesis and duplication of these organelles have been the subject of much attention, and the importance of centrosomes and the centriole-ciliary apparatus for human disease is well recognized. Much less developed is our understanding of another facet of centrosomes and SPBs, namely their possible role as signalling centres. Yet, many signalling components, including kinases and phosphatases, have been associated with centrosomes and spindle poles, giving rise to the hypothesis that these organelles might serve as hubs for the integration and coordination of signalling pathways. In this review, we discuss a number of selected studies that bear on this notion. We cover different processes (cell cycle control, development, DNA damage response) and organisms (yeast, invertebrates and vertebrates), but have made no attempt to be comprehensive. This field is still young and although the concept of centrosomes and SPBs as signalling centres is attractive, it remains primarily a concept-in need of further scrutiny. We hope that this review will stimulate thought and experimentation.
Collapse
Affiliation(s)
- Christian Arquint
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | - Erich A Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
38
|
Zheng LY, Song AP, Chen L, Liu DG, Li XH, Guo HY, Tian XX, Fang WG. Association of genetic polymorphisms in AURKA, BRCA1, CCNE1 and CDK2 with the risk of endometrial carcinoma and clinicopathological parameters among Chinese Han women. Eur J Obstet Gynecol Reprod Biol 2015; 184:65-72. [DOI: 10.1016/j.ejogrb.2014.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 10/13/2014] [Accepted: 11/11/2014] [Indexed: 12/28/2022]
|
39
|
Thirunavukarasou A, Govindarajalu G, Singh P, Bandi V, Muthu K, Baluchamy S. Cullin 4A and 4B ubiquitin ligases interact with γ-tubulin and induce its polyubiquitination. Mol Cell Biochem 2014; 401:219-28. [DOI: 10.1007/s11010-014-2309-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/20/2014] [Indexed: 11/27/2022]
|
40
|
Di Paolo A, Racca C, Calsou P, Larminat F. Loss of BRCA1 impairs centromeric cohesion and triggers chromosomal instability. FASEB J 2014; 28:5250-61. [PMID: 25205741 DOI: 10.1096/fj.14-250266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In contrast to its well-known role in the DNA damage response during interphase, the function of BRCA1 in the maintenance of chromosomal stability during mitosis remains to be defined. In this study, we uncover a novel role of BRCA1 in preserving centromere integrity in mitotic human cells. Using immunofluorescence and chromatin immunoprecipitation approaches, we report BRCA1 association with centromeric chromatin during mitosis. BRCA1 depletion impairs centromeric cohesion, leading to an increase in interkinetochore distance and in unpaired sister-chromatids frequency during prometaphase. Moreover, BRCA1 loss partially decreased accumulation of the Aurora B kinase at the centromere. We found that proper recruitment of the DNMT3b DNA methyltransferase to satellite sequences is BRCA1-dependent during mitosis, suggesting that DNA hypomethylation contributes to Aurora B mislocalization. BRCA1-deficient cells exhibited decreased ability to correct improper Aurora B-dependent chromosome-spindle attachments and to align chromosomes at metaphase. Finally, we show that BRCA1 disruption promotes merotelic kinetochore attachments that represent a major mechanism of aneuploidy in human cells. In summary, we report here a novel function of BRCA1 in maintaining chromosomal stability through its contribution to the mitotic centromere integrity necessary for faithful segregation of sister-chromatids during cell division.
Collapse
Affiliation(s)
- Aurélie Di Paolo
- Institute of Pharmacology and Structural Biology, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5089, Toulouse, France; University of Toulouse, Université Paul Sabatier, Toulouse, France; and
| | - Carine Racca
- Institute of Pharmacology and Structural Biology, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5089, Toulouse, France; University of Toulouse, Université Paul Sabatier, Toulouse, France; and
| | - Patrick Calsou
- Institute of Pharmacology and Structural Biology, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5089, Toulouse, France; University of Toulouse, Université Paul Sabatier, Toulouse, France; and Equipe Labellisée Ligue Nationale contre le Cancer, Toulouse, France
| | - Florence Larminat
- Institute of Pharmacology and Structural Biology, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5089, Toulouse, France; University of Toulouse, Université Paul Sabatier, Toulouse, France; and
| |
Collapse
|
41
|
Zarrizi R, Menard JA, Belting M, Massoumi R. Deubiquitination of γ-tubulin by BAP1 prevents chromosome instability in breast cancer cells. Cancer Res 2014; 74:6499-508. [PMID: 25228651 DOI: 10.1158/0008-5472.can-14-0221] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microtubule nucleation requires the γ-tubulin ring complex, and during the M-phase (mitosis) this complex accumulates at the centrosome to support mitotic spindle formation. The posttranslational modification of γ-tubulin through ubiquitination is vital for regulating microtubule nucleation and centrosome duplication. Blocking the BRCA1/BARD1-dependent ubiquitination of γ-tubulin causes centrosome amplification. In the current study, we identified BRCA1-associated protein-1 (BAP1) as a deubiquitination enzyme for γ-tubulin. BAP1 was downregulated in metastatic adenocarcinoma breast cell lines compared with noncancerous human breast epithelial cells. Furthermore, low expression of BAP1 was associated with reduced overall survival of patients with breast cancer. Reduced expression of BAP1 in breast cancer cell lines was associated with mitotic abnormalities. Importantly, rescue experiments including expression of full length but not the catalytic mutant of BAP1 reduced ubiquitination of γ-tubulin and prevented mitotic defects. Our study uncovers a new mechanism for BAP1 involved in deubiquitination of γ-tubulin, which is required to prevent abnormal mitotic spindle formation and genome instability.
Collapse
Affiliation(s)
- Reihaneh Zarrizi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden
| | - Julien Albert Menard
- Department of Clinical Sciences, Section of Oncology-Pathology, Lund University, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Section of Oncology-Pathology, Lund University, Lund, Sweden. Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden.
| |
Collapse
|
42
|
Chen H, Mohan P, Jiang J, Nemirovsky O, He D, Fleisch MC, Niederacher D, Pilarski LM, Lim CJ, Maxwell CA. Spatial regulation of Aurora A activity during mitotic spindle assembly requires RHAMM to correctly localize TPX2. Cell Cycle 2014; 13:2248-61. [PMID: 24875404 DOI: 10.4161/cc.29270] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Construction of a mitotic spindle requires biochemical pathways to assemble spindle microtubules and structural proteins to organize these microtubules into a bipolar array. Through a complex with dynein, the receptor for hyaluronan-mediated motility (RHAMM) cross-links mitotic microtubules to provide structural support, maintain spindle integrity, and correctly orient the mitotic spindle. Here, we locate RHAMM to sites of microtubule assembly at centrosomes and non-centrosome sites near kinetochores and demonstrate that RHAMM is required for the activation of Aurora kinase A. Silencing of RHAMM delays the kinetics of spindle assembly, mislocalizes targeting protein for XKlp2 (TPX2), and attenuates the localized activation of Aurora kinase A with a consequent reduction in mitotic spindle length. The RHAMM-TPX2 complex requires a C-terminal basic leucine zipper in RHAMM and a domain that includes the nuclear localization signal in TPX2. Together, our findings identify RHAMM as a critical regulator for Aurora kinase A signaling and suggest that RHAMM ensures bipolar spindle assembly and mitotic progression through the integration of biochemical and structural pathways.
Collapse
Affiliation(s)
- Helen Chen
- Department of Pediatrics; Child and Family Research Institute; University of British Columbia; Vancouver, British Columbia, Canada
| | - Pooja Mohan
- Department of Pediatrics; Child and Family Research Institute; University of British Columbia; Vancouver, British Columbia, Canada
| | - Jihong Jiang
- Department of Pediatrics; Child and Family Research Institute; University of British Columbia; Vancouver, British Columbia, Canada
| | - Oksana Nemirovsky
- Department of Pediatrics; Child and Family Research Institute; University of British Columbia; Vancouver, British Columbia, Canada
| | - Daniel He
- Department of Pediatrics; Child and Family Research Institute; University of British Columbia; Vancouver, British Columbia, Canada
| | - Markus C Fleisch
- Department of Gynaecology and Obstetrics; University Hospital Düsseldorf; Heinrich-Heine University; Düsseldorf, Germany
| | - Dieter Niederacher
- Department of Gynaecology and Obstetrics; University Hospital Düsseldorf; Heinrich-Heine University; Düsseldorf, Germany
| | - Linda M Pilarski
- Department of Oncology; University of Alberta and Cross Cancer Institute; Edmonton, Alberta, Canada
| | - C James Lim
- Department of Pediatrics; Child and Family Research Institute; University of British Columbia; Vancouver, British Columbia, Canada
| | - Christopher A Maxwell
- Department of Pediatrics; Child and Family Research Institute; University of British Columbia; Vancouver, British Columbia, Canada
| |
Collapse
|
43
|
Kotian S, Banerjee T, Lockhart A, Huang K, Catalyurek UV, Parvin JD. NUSAP1 influences the DNA damage response by controlling BRCA1 protein levels. Cancer Biol Ther 2014; 15:533-43. [PMID: 24521615 DOI: 10.4161/cbt.28019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NUSAP1 has been reported to function in mitotic spindle assembly, chromosome segregation, and regulation of cytokinesis. In this study, we find that NUSAP1 has hitherto unknown functions in the key BRCA1-regulated pathways of double strand DNA break repair and centrosome duplication. Both these pathways are important for maintenance of genomic stability, and any defects in these pathways can cause tumorigenesis. Depletion of NUSAP1 from cells led to the suppression of double strand DNA break repair via the homologous recombination and single-strand annealing pathways. The presence of NUSAP1 was also found to be important for the control of centrosome numbers. We have found evidence that NUSAP1 plays a role in these processes through regulation of BRCA1 protein levels, and BRCA1 overexpression from a plasmid mitigates the defective phenotypes seen upon NUSAP1 depletion. We found that after NUSAP1 depletion there is a decrease in BRCA1 recruitment to ionizing radiation-induced foci. Results from this study reveal a novel association between BRCA1 and NUSAP1 and suggests a mechanism whereby NUSAP1 is involved in carcinogenesis.
Collapse
Affiliation(s)
- Shweta Kotian
- Department of Biomedical Informatics; The Ohio State University Comprehensive Cancer Center; The Ohio State University; Columbus, OH USA
| | - Tapahsama Banerjee
- Department of Biomedical Informatics; The Ohio State University Comprehensive Cancer Center; The Ohio State University; Columbus, OH USA
| | - Ainsley Lockhart
- Department of Biomedical Informatics; The Ohio State University Comprehensive Cancer Center; The Ohio State University; Columbus, OH USA
| | - Kun Huang
- Department of Biomedical Informatics; The Ohio State University Comprehensive Cancer Center; The Ohio State University; Columbus, OH USA
| | - Umit V Catalyurek
- Department of Biomedical Informatics; The Ohio State University Comprehensive Cancer Center; The Ohio State University; Columbus, OH USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics; The Ohio State University Comprehensive Cancer Center; The Ohio State University; Columbus, OH USA
| |
Collapse
|
44
|
Shang Z, Yu L, Lin YF, Matsunaga S, Shen CY, Chen BPC. DNA-PKcs activates the Chk2-Brca1 pathway during mitosis to ensure chromosomal stability. Oncogenesis 2014; 3:e85. [PMID: 24492479 PMCID: PMC3940919 DOI: 10.1038/oncsis.2013.49] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 01/06/2023] Open
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is known to have a critical role in DNA double-strand break repair. We have previously reported that DNA-PKcs is activated when cells enter mitosis and functions in mitotic spindle assembly and chromosome segregation. Here we report that DNA-PKcs is the upstream regulator of the Chk2-Brca1 pathway, which impacts microtubule dynamics, kinetochore attachment and chromosomal segregation in mitosis. Downstream from Chk2, Brca1 promotes monoubiquitination of γ-tubulin to inhibit microtubule nucleation and growth. We found that DNA-PKcs is essential for mitotic Chk2 phosphorylation at Thr68. As in Chk2- and Brca1-deficient cells, loss of DNA-PKcs resulted in chromosome misalignment and lagging during anaphase owing to elevation in microtubule dynamics. Importantly, these mitotic aberrations in DNA-PKcs-defective cells were alleviated by the overexpression of phosphomimetic Chk2 or Brca1 mutant proteins but not their wild-type counterparts. Taken together, these results demonstrate that DNA-PKcs regulates mitotic spindle organization and chromosomal instability via the Chk2-Brca1 signaling pathway.
Collapse
Affiliation(s)
- Z Shang
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - L Yu
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Y-F Lin
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - S Matsunaga
- Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Tottori University, Yonago, Japan
| | - C-Y Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - B P C Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
45
|
Matsuzawa A, Kanno SI, Nakayama M, Mochiduki H, Wei L, Shimaoka T, Furukawa Y, Kato K, Shibata S, Yasui A, Ishioka C, Chiba N. The BRCA1/BARD1-interacting protein OLA1 functions in centrosome regulation. Mol Cell 2013; 53:101-14. [PMID: 24289923 DOI: 10.1016/j.molcel.2013.10.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/03/2013] [Accepted: 10/23/2013] [Indexed: 01/21/2023]
Abstract
The breast and ovarian cancer-specific tumor suppressor BRCA1, along with its heterodimer partner BRCA1-associated RING domain protein (BARD1), plays important roles in DNA repair, centrosome regulation, and transcription. To explore further functions of BRCA1/BARD1, we performed mass spectrometry analysis and identified Obg-like ATPase 1 (OLA1) as a protein that interacts with the carboxy-terminal region of BARD1. OLA1 directly bound to the amino-terminal region of BRCA1 and γ-tubulin. OLA1 localized to centrosomes in interphase and to the spindle pole in mitotic phase, and its knockdown resulted in centrosome amplification and the activation of microtubule aster formation. OLA1 with a mutation observed in breast cancer cell line, E168Q, failed to bind BRCA1 and rescue the OLA1 knockdown-induced centrosome amplification. BRCA1 variant I42V also abrogated the binding of BRCA1 to OLA1. These findings suggest that OLA1 plays an important role in centrosome regulation together with BRCA1.
Collapse
Affiliation(s)
- Ayako Matsuzawa
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Shin-Ichiro Kanno
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Masahiro Nakayama
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Hironori Mochiduki
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Leizhen Wei
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Tatsuro Shimaoka
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama 362-0806, Japan
| | - Yumiko Furukawa
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Kei Kato
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Shun Shibata
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Natsuko Chiba
- Department of Molecular Immunology, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
46
|
Gorrini C, Baniasadi PS, Harris IS, Silvester J, Inoue S, Snow B, Joshi PA, Wakeham A, Molyneux SD, Martin B, Bouwman P, Cescon DW, Elia AJ, Winterton-Perks Z, Cruickshank J, Brenner D, Tseng A, Musgrave M, Berman HK, Khokha R, Jonkers J, Mak TW, Gauthier ML. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. ACTA ACUST UNITED AC 2013; 210:1529-44. [PMID: 23857982 PMCID: PMC3727320 DOI: 10.1084/jem.20121337] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BRCA1 deficiency results in impaired Nrf2-mediated antioxidant responses followed by cell death, with estradiol rescuing the effect by inducing Nrf2 stabilization. Oxidative stress plays an important role in cancer development and treatment. Recent data implicate the tumor suppressor BRCA1 in regulating oxidative stress, but the molecular mechanism and the impact in BRCA1-associated tumorigenesis remain unclear. Here, we show that BRCA1 regulates Nrf2-dependent antioxidant signaling by physically interacting with Nrf2 and promoting its stability and activation. BRCA1-deficient mouse primary mammary epithelial cells show low expression of Nrf2-regulated antioxidant enzymes and accumulate reactive oxygen species (ROS) that impair survival in vivo. Increased Nrf2 activation rescues survival and ROS levels in BRCA1-null cells. Interestingly, 53BP1 inactivation, which has been shown to alleviate several defects associated with BRCA1 loss, rescues survival of BRCA1-null cells without restoring ROS levels. We demonstrate that estrogen treatment partially restores Nrf2 levels in the absence of BRCA1. Our data suggest that Nrf2-regulated antioxidant response plays a crucial role in controlling survival downstream of BRCA1 loss. The ability of estrogen to induce Nrf2 posits an involvement of an estrogen-Nrf2 connection in BRCA1 tumor suppression. Lastly, BRCA1-mutated tumors retain a defective antioxidant response that increases the sensitivity to oxidative stress. In conclusion, the role of BRCA1 in regulating Nrf2 activity suggests important implications for both the etiology and treatment of BRCA1-related cancers.
Collapse
Affiliation(s)
- Chiara Gorrini
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kim S, Hwang SK, Lee M, Kwak H, Son K, Yang J, Kim SH, Lee CH. Fanconi anemia complementation group A (FANCA) localizes to centrosomes and functions in the maintenance of centrosome integrity. Int J Biochem Cell Biol 2013; 45:1953-61. [PMID: 23806870 DOI: 10.1016/j.biocel.2013.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/07/2013] [Accepted: 06/16/2013] [Indexed: 02/07/2023]
Abstract
Fanconi anemia (FA) proteins are known to play roles in the cellular response to DNA interstrand cross-linking lesions; however, several reports have suggested that FA proteins play additional roles. To elucidate novel functions of FA proteins, we used yeast two-hybrid screening to identify binding partners of the Fanconi anemia complementation group A (FANCA) protein. The candidate proteins included never-in-mitosis-gene A (NIMA)-related kinase 2 (Nek2), which functions in the maintenance of centrosome integrity. The interaction of FANCA and Nek2 was confirmed in human embryonic kidney (HEK) 293T cells. Furthermore, FANCA interacted with γ-tubulin and localized to centrosomes, most notably during the mitotic phase, confirming that FANCA is a centrosomal protein. Knockdown of FANCA increased the frequency of centrosomal abnormalities and enhanced the sensitivity of U2OS osteosarcoma cells to nocodazole, a microtubule-interfering agent. In vitro kinase assays indicated that Nek2 can phosphorylate FANCA at threonine-351 (T351), and analysis with a phospho-specific antibody confirmed that this phosphorylation occurred in response to nocodazole treatment. Furthermore, U2OS cells overexpressing the phosphorylation-defective T351A FANCA mutant showed numerical centrosomal abnormalities, aberrant mitotic arrest, and enhanced nocodazole sensitivity, implying that the Nek2-mediated T351 phosphorylation of FANCA is important for the maintenance of centrosomal integrity. Taken together, this study revealed that FANCA localizes to centrosomes and is required for the maintenance of centrosome integrity, possibly through its phosphorylation at T351 by Nek2.
Collapse
Affiliation(s)
- Sunshin Kim
- New Experimental Therapeutics Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 410-769, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zheng L, Song A, Ruan Y, Chen L, Liu D, Li X, Guo H, Han J, Li Y, Tian X, Fang W. Genetic polymorphisms in AURKA, BRCA1, CCNE1 and CDK2 are associated with ovarian cancer susceptibility among Chinese Han women. Cancer Epidemiol 2013; 37:639-46. [PMID: 23787073 DOI: 10.1016/j.canep.2013.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/22/2013] [Accepted: 04/28/2013] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Centrosome aberrations and cell-cycle deregulation have important implications for ovarian cancer development. The AURKA, BRCA1, CCNE1 and CDK2 genes play pivotal roles in centrosome duplication and cell-cycle regulation. METHODS Using a haplotype-based analysis, this study aimed to investigate whether genetic polymorphisms in these four genes may contribute to ovarian cancer susceptibility. A total of 22 single nucleotide polymorphisms (SNPs) in these four genes were genotyped in 287 cases of ovarian serous cystadenocarcinomas and 618 age-matched cancer-free controls from the Chinese Han population, and then haplotype blocks were reconstructed according to our genotyping data and linkage disequilibrium (LD) status of these SNPs. RESULTS For AURKA, we found that haplotype GA [rs6064391 (T→G)+rs911162 (G→A)] was strongly associated with decreased ovarian cancer risk (adjusted OR=0.31, 95% CI=0.15-0.63, P=0.0012). For BRCA1, we found that haplotype CGTAG was associated with decreased ovarian cancer risk (adjusted OR=0.64, 95% CI=0.41-0.98, P=0.0417). Moreover, women harboring homozygous GA/CGTAG haplotypes showed the lowest risk (OR=0.12, 95% CI=0.02-0.94, P=0.0438). In CCNE1, the SNPs rs3218035 and rs3218042 were significantly associated with increased ovarian cancer risk (rs3218035: adjusted OR=5.20, 95% CI=1.85-14.52, P=0.0017; rs3218042: adjusted OR=4.98, 95% CI=1.75-14.19, P=0.0027). For CDK2, no significant association was found. CONCLUSIONS This study indicates that genetic polymorphisms of AURKA, BRCA1 and CCNE1 may affect ovarian cancer susceptibility in Chinese Han women.
Collapse
Affiliation(s)
- Liyuan Zheng
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chouinard G, Clément I, Lafontaine J, Rodier F, Schmitt E. Cell cycle-dependent localization of CHK2 at centrosomes during mitosis. Cell Div 2013; 8:7. [PMID: 23680298 PMCID: PMC3668180 DOI: 10.1186/1747-1028-8-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/09/2013] [Indexed: 01/26/2023] Open
Abstract
Background Centrosomes function primarily as microtubule-organizing centres and play a crucial role during mitosis by organizing the bipolar spindle. In addition to this function, centrosomes act as reaction centers where numerous key regulators meet to control cell cycle progression. One of these factors involved in genome stability, the checkpoint kinase CHK2, was shown to localize at centrosomes throughout the cell cycle. Results Here, we show that CHK2 only localizes to centrosomes during mitosis. Using wild-type and CHK2−/− HCT116 human colon cancer cells and human osteosarcoma U2OS cells depleted for CHK2 with small hairpin RNAs we show that several CHK2 antibodies are non-specific and cross-react with an unknown centrosomal protein(s) by immunofluorescence. To characterize the localization of CHK2, we generated cells expressing inducible GFP-CHK2 and Flag-CHK2 fusion proteins. We show that CHK2 localizes to the nucleus in interphase cells but that a fraction of CHK2 associates with the centrosomes in a Polo-like kinase 1-dependent manner during mitosis, from early mitotic stages until cytokinesis. Conclusion Our findings demonstrate that a subpopulation of CHK2 localizes at the centrosomes in mitotic cells but not in interphase. These results are consistent with previous reports supporting a role for CHK2 in the bipolar spindle formation and the timely progression of mitosis.
Collapse
Affiliation(s)
- Guillaume Chouinard
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital Notre-Dame et Institut du cancer de Montréal, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|
50
|
BRCA1 regulates microtubule dynamics and taxane-induced apoptotic cell signaling. Oncogene 2013; 33:1418-28. [PMID: 23524581 DOI: 10.1038/onc.2013.85] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 01/10/2013] [Accepted: 01/28/2013] [Indexed: 01/01/2023]
Abstract
The taxanes are effective microtubule-stabilizing chemotherapy drugs used in the treatment of various solid tumors. However, the emergence of drug resistance hampers their clinical efficacy. The molecular basis of clinical taxane resistance remains poorly understood. Breast cancer 1, early onset gene, BRCA1, is a tumor-suppressor gene, whose expression has been correlated with taxane sensitivity in many solid tumors including non-small cell lung cancer. However, the molecular mechanism underlying the relationship between BRCA1 (B1) expression and taxane activity remains unclear. To this end, we created a stable B1 knockdown A549 cell line (B1-KD) to investigate B1's role in microtubule biology and response to taxane treatment. We show that B1-KD rendered A549 cells resistant to paclitaxel (PTX), phenocopying clinical studies showing that low B1 expression correlated with taxane resistance. As previously reported, we show that loss of B1 enhanced centrosomal γ-tubulin localization and microtubule nucleation. Interestingly, we found that the B1-KD cells exhibited increased microtubule dynamics as compared with parental A549 cells, as assessed by live-cell confocal microscopy using enhanced green fluorescent protein-tagged α-tubulin or EB1 protein. In addition, we showed that loss of B1 impairs the ability of PTX to induce microtubule polymerization using immunofluorescence microscopy and a cell-based tubulin polymerization assay. Furthermore, B1-KD cells exhibited significantly lower intracellular binding of a fluorescently labeled PTX to microtubules. Recent studies have shown that PTX-stabilized microtubules serves as a scaffold for pro-caspase-8 binding and induction of apoptosis downstream of induced-proximity activation of caspase-8. Here we show that loss of B1 reduces the association of pro-caspase-8 with microtubules and subsequently leads to impaired PTX-induced activation of apoptosis. Taken together, our data show that B1 regulates indirectly endogenous microtubule dynamics and stability while its loss leads to microtubules that are more dynamic and less susceptible to PTX-induced stabilization conferring taxane resistance.
Collapse
|