1
|
Frankish J, Mukherjee D, Romano E, Billian-Frey K, Schröder M, Heinonen K, Merz C, Redondo Müller M, Gieffers C, Hill O, Thiemann M, Honeychurch J, Illidge T, Sykora J. The CD40 agonist HERA-CD40L results in enhanced activation of antigen presenting cells, promoting an anti-tumor effect alone and in combination with radiotherapy. Front Immunol 2023; 14:1160116. [PMID: 37304285 PMCID: PMC10251205 DOI: 10.3389/fimmu.2023.1160116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The ability to modulate and enhance the anti-tumor immune responses is critical in developing novel therapies in cancer. The Tumor Necrosis Factor (TNF) Receptor Super Family (TNFRSF) are potentially excellent targets for modulation which result in specific anti-tumor immune responses. CD40 is a member of the TNFRSF and several clinical therapies are under development. CD40 signaling plays a pivotal role in regulating the immune system from B cell responses to myeloid cell driven activation of T cells. The CD40 signaling axis is well characterized and here we compare next generation HERA-Ligands to conventional monoclonal antibody based immune modulation for the treatment of cancer. Methods & results HERA-CD40L is a novel molecule that targets CD40 mediated signal transduction and demonstrates a clear mode of action in generating an activated receptor complex via recruitment of TRAFs, cIAP1, and HOIP, leading to TRAF2 phosphorylation and ultimately resulting in the enhanced activation of key inflammatory/survival pathway and transcription factors such asNFkB, AKT, p38, ERK1/2, JNK, and STAT1 in dendritic cells. Furthermore, HERA-CD40L demonstrated a strong modulation of the tumor microenvironment (TME) via the increase in intratumoral CD8+ T cells and the functional switch from pro-tumor macrophages (TAMs) to anti-tumor macrophages that together results in a significant reduction of tumor growth in a CT26 mouse model. Furthermore, radiotherapy which may have an immunosuppressive modulation of the TME, was shown to have an immunostimulatory effect in combination with HERA-CD40L. Radiotherapy in combination with HERA-CD40L treatment resulted in an increase in detected intratumoral CD4+/8+ T cells compared to RT alone and, additionally, the repolarization of TAMs was also observed, resulting in an inhibition of tumor growth in a TRAMP-C1 mouse model. Discussion Taken together, HERA-CD40L resulted in activating signal transduction mechanisms in dendritic cells, resulting in an increase in intratumoral T cells and manipulation of the TME to be pro-inflammatory, repolarizing M2 macrophages to M1, enhancing tumor control.
Collapse
Affiliation(s)
| | - Debayan Mukherjee
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Erminia Romano
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | - Jamie Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tim Illidge
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
2
|
Palumbo C, Mecchia A, Bocedi A, Aquilano K, Lettieri-Barbato D, Rosina M, Di Venere A, Rodolfo C, Caccuri AM. Revisited role of TRAF2 and TRAF2 C-terminal domain in endoplasmic reticulum stress-induced autophagy in HAP1 leukemia cells. Int J Biochem Cell Biol 2022; 145:106193. [PMID: 35257890 DOI: 10.1016/j.biocel.2022.106193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022]
Abstract
The scaffold protein Tumor Necrosis Factor Receptor-Associated Factor 2 (TRAF2) has been reported to play a key role in the endoplasmic reticulum (ER) stress-induced activation of c-Jun N-terminal Kinase (JNK) and hence autophagy. Autophagy is a highly conserved catabolic process, whose dysregulation is involved in the pathogenesis of various human diseases, including cancer. We investigated the involvement of TRAF2 in autophagy regulation in the human leukemic HAP1 cell line, under both basal and ER stress conditions. In TRAF2-knockout HAP1 cell line (KO), the basal autophagic flux was higher than in the parental cell line (WT). Moreover, tunicamycin-induced ER stress stimulated JNK activation and autophagy both in WT and KO HAP1. On the other hand, re-expression of a TRAF2 C-terminal fragment (residues ,310-501), in a TRAF2-KO cellular background, rendered HAP1 cells unable to activate both JNK and autophagy upon ER stress induction. Of note, this apparent dominant negative effect of the C-terminal fragment was observed even in the absence of the endogenous, full-length TRAF2 molecule. Furthermore, the expression of the C-terminal fragment resulted in both protein kinase B (AKT) pathway activation and increased resistance to the toxic effects induced by prolonged ER stress conditions. These findings indicate that TRAF2 is dispensable for the activation of both JNK and autophagy in HAP1 cells, while the TRAF2 C-terminal domain may play an autonomous role in regulating the cellular response to ER stress.
Collapse
Affiliation(s)
- Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; IRCCS-Fondazione Santa Lucia, Rome, Italy
| | - Marco Rosina
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Almerinda Di Venere
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Rodolfo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Anna Maria Caccuri
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy; The NAST Centre for Nanoscience and Nanotechnology and Innovative Instrumentation, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
3
|
Vougioukalaki M, Georgila K, Athanasiadis EI, Eliopoulos AG. Cell adhesion tunes inflammatory TPL2 kinase signal transduction. Cell Mol Life Sci 2022; 79:156. [PMID: 35218437 PMCID: PMC11072766 DOI: 10.1007/s00018-022-04130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/01/2022]
Abstract
Signaling through adhesion-related molecules is important for cancer growth and metastasis and cancer cells are resistant to anoikis, a form of cell death ensued by cell detachment from the extracellular matrix. Herein, we report that detached carcinoma cells and immortalized fibroblasts display defects in TNF and CD40 ligand (CD40L)-induced MEK-ERK signaling. Cell detachment results in reduced basal levels of the MEK kinase TPL2, compromises TPL2 activation and sensitizes carcinoma cells to death-inducing receptor ligands, mimicking the synthetic lethal interactions between TPL2 inactivation and TNF or CD40L stimulation. Focal Adhesion Kinase (FAK), which is activated in focal adhesions and mediates anchorage-dependent survival signaling, was found to sustain steady state TPL2 protein levels and to be required for TNF-induced TPL2 signal transduction. We show that when FAK levels are reduced, as seen in certain types of malignancy or malignant cell populations, the formation of cIAP2:RIPK1 complexes increases, leading to reduced TPL2 expression levels by a dual mechanism: first, by the reduction in the levels of NF-κΒ1 which is required for TPL2 stability; second, by the engagement of an RelA NF-κΒ pathway that elevates interleukin-6 production, leading to activation of STAT3 and its transcriptional target SKP2 which functions as a TPL2 E3 ubiquitin ligase. These data underscore a new mode of regulation of TNF family signal transduction on the TPL2-MEK-ERK branch by adhesion-related molecules that may have important ramifications for cancer therapy.
Collapse
Affiliation(s)
- Maria Vougioukalaki
- Division of Basic Sciences, University of Crete Medical School, Heraklion, Greece
- Institute for Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Konstantina Georgila
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil I Athanasiadis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aristides G Eliopoulos
- Institute for Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece.
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
4
|
Marino S, Hannemann N, Bishop RT, Zeng F, Carrasco G, Meurisse S, Li B, Sophocleous A, Sparatore A, Baeuerle T, Vukicevic S, Auberval M, Mollat P, Bozec A, Idris AI. Anti-inflammatory, but not osteoprotective, effect of the TRAF6/CD40 inhibitor 6877002 in rodent models of local and systemic osteolysis. Biochem Pharmacol 2021; 195:114869. [PMID: 34896056 DOI: 10.1016/j.bcp.2021.114869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
NFκB plays a key role in inflammation and skeletal disorders. Previously, we reported that pharmacological inhibition of NFκB at the level of TRAF6 suppressed RANKL, CD40L and IL1β-induced osteoclastogenesis and attenuated cancer-induced bone disease. TNFα is also known to regulate TRAF6/NFκB signalling, however the anti-inflammatory and osteoprotective effects associated with inhibition of the TNFα/TRAF6/NFκB axis have not been investigated. Here, we show that in vitro and ex vivo exposure to the verified small-molecule inhibitor of TRAF6, 6877002 prevented TNFα-induced NFκB activation, osteoclastogenesis and calvarial osteolysis, but it had no effects on TNFα-induced apoptosis or growth inhibition in osteoblasts. Additionally, 6877002 disrupted T-cells support for osteoclast formation and synoviocyte motility, without affecting the viability of osteoblasts in the presence of T-cells derived factors. Using the collagen-induced arthritis model, we show that oral and intraperitoneal administration of 6877002 in mice reduced joint inflammation and arthritis score. Unexpectedly, no difference in trabecular and cortical bone parameters were detected between vehicle and 6877002 treated mice, indicating lack of osteoprotection by 6877002 in the arthritis model described. Using two independent rodent models of osteolysis, we confirmed that 6877002 had no effect on trabecular and cortical bone loss in both osteoporotic rats or RANKL- treated mice. In contrast, the classic anti-osteolytic alendronate offered complete osteoprotection in RANKL- treated mice. In conclusion, TRAF6 inhibitors may be of value in the management of the inflammatory component of bone disorders, but may not offer protection against local or systemic bone loss, unless combined with anti-resorptive therapy such as bisphosphonates.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK; Bone and Cancer Group, Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR, UK
| | - Nicole Hannemann
- Department of Internal Medicine, 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ryan T Bishop
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Feier Zeng
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Giovana Carrasco
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Sandrine Meurisse
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Boya Li
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Antonia Sophocleous
- Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenes Street, 1516 Nicosia, Cyprus
| | - Anna Sparatore
- University of Milano, Department of Pharmaceutical Science, Milan, Italy
| | - Tobias Baeuerle
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum, Erlangen, Bayern, Germany
| | - Slobodan Vukicevic
- Department of Anatomy, Medical School, University of Zagreb, Zagreb, Croatia
| | - Marielle Auberval
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Patrick Mollat
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Aline Bozec
- Department of Internal Medicine, 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aymen I Idris
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK; Bone and Cancer Group, Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR, UK.
| |
Collapse
|
5
|
TRAF6 Phosphorylation Prevents Its Autophagic Degradation and Re-Shapes LPS-Triggered Signaling Networks. Cancers (Basel) 2021; 13:cancers13143618. [PMID: 34298830 PMCID: PMC8303406 DOI: 10.3390/cancers13143618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Here, we reveal that basal turnover and autophagy-induced decay of the ubiquitin E3 ligase TRAF6 is antagonized by IKKε-mediated phosphorylation at five serines. Phosphoproteomic experiments show that TRAF6 and its phosphorylation contribute to the remodeling of LPS- and autophagyinduced signaling networks, revealing an intricate link between inflammatory and metabolic processes that are frequently dysregulated in cancer. Abstract The ubiquitin E3 ligase TNF Receptor Associated Factor 6 (TRAF6) participates in a large number of different biological processes including innate immunity, differentiation and cell survival, raising the need to specify and shape the signaling output. Here, we identify a lipopolysaccharide (LPS)-dependent increase in TRAF6 association with the kinase IKKε (inhibitor of NF-κB kinase subunit ε) and IKKε-mediated TRAF6 phosphorylation at five residues. The reconstitution of TRAF6-deficient cells, with TRAF6 mutants representing phosphorylation-defective or phospho-mimetic TRAF6 variants, showed that the phospho-mimetic TRAF6 variant was largely protected from basal ubiquitin/proteasome-mediated degradation, and also from autophagy-mediated decay in autolysosomes induced by metabolic perturbation. In addition, phosphorylation of TRAF6 and its E3 ligase function differentially shape basal and LPS-triggered signaling networks, as revealed by phosphoproteome analysis. Changes in LPS-triggered phosphorylation networks of cells that had experienced autophagy are partially dependent on TRAF6 and its phosphorylation status, suggesting an involvement of this E3 ligase in the interplay between metabolic and inflammatory circuits.
Collapse
|
6
|
Sultan CS, Weitnauer M, Turinsky M, Kessler T, Brune M, Gleissner CA, Leuschner F, Wagner AH, Hecker M. Functional association of a CD40 gene single-nucleotide polymorphism with the pathogenesis of coronary heart disease. Cardiovasc Res 2021; 116:1214-1225. [PMID: 31373353 DOI: 10.1093/cvr/cvz206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
AIMS Endothelial dysfunction is a major contributor to the pathogenesis of atherosclerosis. CD40-CD40 ligand interactions confer a pro-inflammatory phenotype to endothelial cells (ECs). Recently, a thymine to cytosine transition (-1T>C) in the Kozak sequence of the CD40 gene (rs1883832) has been associated with coronary heart disease (CHD) in an Asian population. As there are no reports yet regarding its role in other ethnic groups, this study determines if the -1T>C single-nucleotide polymorphism (SNP) could be a risk factor for CHD in Caucasians by performing an association study and elucidates its functional consequence in cultured ECs. METHODS AND RESULTS Molecular and biochemical techniques, cell adhesion assays were used for genotype-stratified human EC characterization. SNP distribution in Caucasians was examined in a hospital-based case-control CHD study and serum levels of soluble CD40 (sCD40) were quantified by ELISA. The SNP in the CD40 gene affected baseline CD40 protein abundance on ECs. There was a genotype-dependent difference in CD40-mediated expression of pro-inflammatory genes. Monocyte adhesion was highest on the surface of cells homozygous for the C allele. Homozygosity for the C allele was associated with significant 2.32-fold higher odds of developing CHD as compared to TT genotype carriers. sCD40 plasma levels were genotype-dependently elevated in CHD patients, indicating a possible prognostic value. CONCLUSION The C allele of the CD40 SNP provokes a pro-inflammatory EC phenotype, compensated by an enhanced CD40 shedding to neutralize excess CD40 ligand. Homozygosity for the C allele is the cause for a genetic susceptibility to atherosclerosis and its sequelae.
Collapse
Affiliation(s)
- Cheryl S Sultan
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Michael Weitnauer
- Department of Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Martin Turinsky
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Thorsten Kessler
- German Heart Centre Munich, Technical University Munich, Munich, Germany
| | - Maik Brune
- Department of Internal Medicine 1 and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Christian A Gleissner
- Department of Cardiology, Angiology and Pneumology, Heidelberg University, Heidelberg, Germany
| | - Florian Leuschner
- Department of Cardiology, Angiology and Pneumology, Heidelberg University, Heidelberg, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Knockdown of TRAF6 inhibits chondrocytes apoptosis and inflammation by suppressing the NF-κB pathway in lumbar facet joint osteoarthritis. Mol Cell Biochem 2021; 476:1929-1938. [PMID: 33502650 DOI: 10.1007/s11010-021-04048-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6), a regulator of NF-κB signaling, has been discovered recently to be probably related to osteoarthritis, while the function of TRAF6 in lumbar facet joint osteoarthritis(FJOA)still remains unknown. The aim of this study was to probe the specific function of TRAF6 in chondrocytes and its connection with the pathophysiology of FJOA. We found upregulation of TRAF6 in FJOA cartilage by western blot analysis. In vitro, we stimulated immortalized human chondrocytes by LPS to establish the cells apoptosis model. Western blot analysis demonstrated that levels of TRAF6 and cleaved caspase-3/8 in the chondrocyte injury model increased significantly. Knockdown of TRAF6 suppressed the expression of matrix metallopeptidase-13 (MMP-13) and interleukin-6 (IL-6) induced by LPS, and alleviated cell apoptosis. Meanwhile, western blot and immunofluorescent staining demonstrated that IκBα degradation and p65 nuclear transportation were also inhibited, revealing that knockdown of TRAF6 suppressed activation of the NF-κB pathway in LPS-induced chondrocytes apoptosis model. Collectively, our findings suggest that TRAF6 plays a crucial role in FJOA development by regulating NF-κB signaling pathway. Knockdown of TRAF6 may supply a potential therapeutic strategy for FJOA.
Collapse
|
8
|
Mukhopadhyay D, Sangaré LO, Braun L, Hakimi MA, Saeij JP. Toxoplasma GRA15 limits parasite growth in IFNγ-activated fibroblasts through TRAF ubiquitin ligases. EMBO J 2020; 39:e103758. [PMID: 32293748 DOI: 10.15252/embj.2019103758] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023] Open
Abstract
The protozoan parasite Toxoplasma gondii lives inside a vacuole in the host cytosol where it is protected from host cytoplasmic innate immune responses. However, IFNγ-dependent cell-autonomous immunity can destroy the vacuole and the parasite inside. Toxoplasma strain differences in susceptibility to human IFNγ exist, but the Toxoplasma effector(s) that determine these differences are unknown. We show that in human primary fibroblasts, the polymorphic Toxoplasma-secreted effector GRA15 mediates the recruitment of ubiquitin ligases, including TRAF2 and TRAF6, to the vacuole membrane, which enhances recruitment of ubiquitin receptors (p62/NDP52) and ubiquitin-like molecules (LC3B, GABARAP). This ultimately leads to lysosomal degradation of the vacuole. In murine fibroblasts, GRA15-mediated TRAF6 recruitment mediates the recruitment of immunity-related GTPases and destruction of the vacuole. Thus, we have identified how the Toxoplasma effector GRA15 affects cell-autonomous immunity in human and murine cells.
Collapse
Affiliation(s)
- Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Lamba Omar Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Laurence Braun
- Institute for Advanced Biosciences, Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS, UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS, UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Jeroen Pj Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
9
|
Elmetwali T, Salman A, Wei W, Hussain SA, Young LS, Palmer DH. CD40L membrane retention enhances the immunostimulatory effects of CD40 ligation. Sci Rep 2020; 10:342. [PMID: 31941968 PMCID: PMC6962220 DOI: 10.1038/s41598-019-57293-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
In carcinomas, the nature of CD40 ligand shapes the outcome of CD40 ligation. To date, the consequences of membrane-bound CD40L (mCD40L) on its immune-stimulatory function are unknown. Here, we examined the impact of mCD40L versus soluble CD40L (sCD40L) on T24 bladder carcinoma gene expression profiling. Of 410 differentially expressed genes, 286 were upregulated and 124 downregulated by mCD40L versus sCD40L. Gene ontology enrichment analysis revealed immune-stimulatory function as the most significant enriched biological process affected by upregulated transcripts, while those downregulated were critical for cell growth and division. Furthermore, immature dendritic cells (iDC) responded to mCD40L with enhanced maturation and activation over sCD40L evidenced by higher expression levels of CD83, CD86, HLA-DR and CD54, increased secretion of IL12 and IL10 and higher tumour-antigen (TA) uptake capacity. Furthermore, autologus CD3+ T cells responded to TA-loaded mCD40L-activated DC with increased proliferation and cytotoxic response (CD107a and IFN-γ-producing CD3+ CD8+ T cells) to the tumour-loaded autologous PBMCs compared to sCD40L. Thus, these data indicate that mCD40L enhances the immunostimulatory capacity over sCD40L. Furthermore, the ability of mCD40L to also directly induce cell death in CD40-expressing carcinomas, subsequently releasing tumour-specific antigens into the tumour microenvironment highlights the potential for mCD40L as a multi-faceted anti-cancer immunotherapeutic.
Collapse
Affiliation(s)
- Taha Elmetwali
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
| | - Asmaa Salman
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- National Research Centre, 12662, Dokki, Giza, Egypt
| | - Wenbin Wei
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Syed A Hussain
- Sheffield Academic Unit of Oncology Department of Oncology and Metabolism Medical School, University of Sheffield, Sheffield, S10 2 RX, UK
| | - Lawrence S Young
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel H Palmer
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Bebington, Wirral, CH63 4JY, UK
| |
Collapse
|
10
|
Wajant H, Siegmund D. TNFR1 and TNFR2 in the Control of the Life and Death Balance of Macrophages. Front Cell Dev Biol 2019; 7:91. [PMID: 31192209 PMCID: PMC6548990 DOI: 10.3389/fcell.2019.00091] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Macrophages stand in the first line of defense against a variety of pathogens but are also involved in the maintenance of tissue homeostasis. To fulfill their functions macrophages sense a broad range of pathogen- and damage-associated molecular patterns (PAMPs/DAMPs) by plasma membrane and intracellular pattern recognition receptors (PRRs). Intriguingly, the overwhelming majority of PPRs trigger the production of the pleiotropic cytokine tumor necrosis factor-alpha (TNF). TNF affects almost any type of cell including macrophages themselves. TNF promotes the inflammatory activity of macrophages but also controls macrophage survival and death. TNF exerts its activities by stimulation of two different types of receptors, TNF receptor-1 (TNFR1) and TNFR2, which are both expressed by macrophages. The two TNF receptor types trigger distinct and common signaling pathways that can work in an interconnected manner. Based on a brief general description of major TNF receptor-associated signaling pathways, we focus in this review on research of recent years that revealed insights into the molecular mechanisms how the TNFR1-TNFR2 signaling network controls the life and death balance of macrophages. In particular, we discuss how the TNFR1-TNFR2 signaling network is integrated into PRR signaling.
Collapse
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Lee KJ, Park KH, Hahn JH. Alleviation of Ultraviolet-B Radiation-Induced Photoaging by a TNFR Antagonistic Peptide, TNFR2-SKE. Mol Cells 2019; 42:151-160. [PMID: 30703869 PMCID: PMC6399009 DOI: 10.14348/molcells.2018.0423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/01/2019] [Indexed: 11/27/2022] Open
Abstract
Ultraviolet (UV) radiation of the sunlight, especially UVA and UVB, is the primary environmental cause of skin damage, including topical inflammation, premature skin aging, and skin cancer. Previous reports show that activation of nuclear factor-κB (NF-κB) in human skin fibroblasts and keratinocytes after UV exposure induces the expression and release of proinflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α), and subsequently leads to the production of matrix metalloproteases (MMPs) and growth factor basic fibroblast growth factor (bFGF). Here, we demonstrated that TNFR2-SKEE and TNFR2-SKE, oligopeptides from TNF receptor-associated factor 2 (TRAF2)-binding site of TNF receptor 2 (TNFR2), strongly inhibited the interaction of TNFR1 as well as TNFR2 with TRAF2. In particular, TNFR2-SKE suppressed UVB- or TNF-α-induced nuclear translocalization of activated NF-κB in mouse fibroblasts. It decreased the expression of bFGF, MMPs, and COX2, which were upregulated by TNF-α, and increased procollagen production, which was reduced by TNF-α. Furthermore, TNFR2-SKE inhibited the UVB-induced proliferation of keratinocytes and melanocytes in the mouse skin and the infiltration of immune cells into inflamed tissues. These results suggest that TNFR2-SKE may possess the clinical potency to alleviate UV-induced photoaging in human skin.
Collapse
Affiliation(s)
- Kyoung-Jin Lee
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Kyeong Han Park
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Jang-Hee Hahn
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
12
|
Wang L, Ren J, Li G, Moorman JP, Yao ZQ, Ning S. LMP1 signaling pathway activates IRF4 in latent EBV infection and a positive circuit between PI3K and Src is required. Oncogene 2016; 36:2265-2274. [PMID: 27819673 DOI: 10.1038/onc.2016.380] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Interferon (IFN) regulatory factors (IRFs) have crucial roles in immune regulation and oncogenesis. We have recently shown that IRF4 is activated through c-Src-mediated tyrosine phosphorylation in virus-transformed cells. However, the intracellular signaling pathway triggering Src activation of IRF4 remains unknown. In this study, we provide evidence that Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) promotes IRF4 phosphorylation and markedly stimulates IRF4 transcriptional activity, and that Src mediates LMP1 activation of IRF4. As to more precise mechanism, we show that LMP1 physically interacts with c-Src, and the phosphatidylinositol 3 kinase (PI3K) subunit P85 mediates their interaction. Depletion of P85 by P85-specific short hairpin RNAs disrupts their interaction and diminishes IRF4 phosphorylation in EBV-transformed cells. Furthermore, we show that Src is upstream of PI3K for activation of both IRF4 and Akt. In turn, inhibition of PI3K kinase activity by the PI3K-speicfic inhibitor LY294002 impairs Src activity. Our results show that LMP1 signaling is responsible for IRF4 activation, and further characterize the IRF4 regulatory network that is a promising therapeutic target for specific hematological malignancies.
Collapse
Affiliation(s)
- L Wang
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - J Ren
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - G Li
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - J P Moorman
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, TN, USA
| | - Z Q Yao
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, TN, USA
| | - S Ning
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
13
|
Increased CD40 Expression Enhances Early STING-Mediated Type I Interferon Response and Host Survival in a Rodent Malaria Model. PLoS Pathog 2016; 12:e1005930. [PMID: 27716849 PMCID: PMC5055354 DOI: 10.1371/journal.ppat.1005930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/12/2016] [Indexed: 01/01/2023] Open
Abstract
Both type I interferon (IFN-I) and CD40 play a significant role in various infectious diseases, including malaria and autoimmune disorders. CD40 is mostly known to function in adaptive immunity, but previous observations of elevated CD40 levels early after malaria infection of mice led us to investigate its roles in innate IFN-I responses and disease control. Using a Plasmodium yoelii nigeriensis N67 and C57BL/6 mouse model, we showed that infected CD40-/- mice had reduced STING and serum IFN-β levels day-2 post infection, higher day-4 parasitemia, and earlier deaths. CD40 could greatly enhance STING-stimulated luciferase signals driven by the IFN-β promoter in vitro, which was mediated by increased STING protein levels. The ability of CD40 to influence STING expression was confirmed in CD40-/- mice after malaria infection. Substitutions at CD40 TRAF binding domains significantly decreased the IFN-β signals and STING protein level, which was likely mediated by changes in STING ubiquitination and degradation. Increased levels of CD40, STING, and ISRE driven luciferase signal in RAW Lucia were observed after phagocytosis of N67-infected red blood cells (iRBCs), stimulation with parasite DNA/RNA, or with selected TLR ligands [LPS, poly(I:C), and Pam3CSK4]. The results suggest stimulation of CD40 expression by parasite materials through TLR signaling pathways, which was further confirmed in bone marrow derived dendritic cells/macrophages (BMDCs/BMDMs) and splenic DCs from CD40-/-, TLR3-/- TLR4-/-, TRIF-/-, and MyD88-/- mice after iRBC stimulation or parasite infection. Our data connect several signaling pathways consisting of phagocytosis of iRBCs, recognition of parasite DNA/RNA (possibly GPI) by TLRs, elevated levels of CD40 and STING proteins, increased IFN-I production, and longer host survival time. This study reveals previously unrecognized CD40 function in innate IFN-I responses and protective pathways in infections with malaria strains that induce a strong IFN-I response, which may provide important information for better understanding and management of malaria.
Collapse
|
14
|
Seibold K, Ehrenschwender M. p62 regulates CD40-mediated NFκB activation in macrophages through interaction with TRAF6. Biochem Biophys Res Commun 2015; 464:330-5. [PMID: 26133577 DOI: 10.1016/j.bbrc.2015.06.153] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 11/18/2022]
Abstract
CD40 is a member of the tumor necrosis factor (TNF) receptor family. Activation-induced recruitment of adapter proteins, so-called TNF-receptor-associated factors (TRAFs) to the cytoplasmic tail of CD40 triggers signaling cascades important in the immune system, but has also been associated with excessive inflammation in diseases such as atherosclerosis and rheumatoid arthritis. Especially, pro-inflammatory nuclear factor κB (NFκB) signaling emanating from CD40-associated TRAF6 appears to be a key pathogenic driving force. Consequently, targeting the CD40-TRAF6 interaction is emerging as a promising therapeutic strategy, but the underlying molecular machinery of this signaling axis is to date poorly understood. Here, we identified the multifunctional adaptor protein p62 as a critical regulator in CD40-mediated NFκB signaling via TRAF6. CD40 activation triggered formation of a TRAF6-p62 complex. Disturbing this interaction tremendously reduced CD40-mediated NFκB signaling in macrophages, while TRAF6-independent signaling pathways remained unaffected. This highlights p62 as a potential target in hyper-inflammatory, CD40-associated pathologies.
Collapse
Affiliation(s)
- Kristina Seibold
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Martin Ehrenschwender
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
15
|
Vlahava VM, Eliopoulos AG, Sourvinos G. CD40 ligand exhibits a direct antiviral effect on Herpes Simplex Virus type-1 infection via a PI3K-dependent, autophagy-independent mechanism. Cell Signal 2015; 27:1253-63. [DOI: 10.1016/j.cellsig.2015.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/03/2015] [Indexed: 11/25/2022]
|
16
|
Bankert KC, Oxley KL, Smith SM, Graham JP, de Boer M, Thewissen M, Simons PJ, Bishop GA. Induction of an Altered CD40 Signaling Complex by an Antagonistic Human Monoclonal Antibody to CD40. THE JOURNAL OF IMMUNOLOGY 2015; 194:4319-27. [DOI: 10.4049/jimmunol.1402903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022]
|
17
|
Portillo JAC, Greene JA, Schwartz I, Subauste MC, Subauste CS. Blockade of CD40-TRAF2,3 or CD40-TRAF6 is sufficient to inhibit pro-inflammatory responses in non-haematopoietic cells. Immunology 2015; 144:21-33. [PMID: 25051892 DOI: 10.1111/imm.12361] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/11/2014] [Accepted: 06/11/2014] [Indexed: 01/12/2023] Open
Abstract
Inhibition of the CD40-CD154 pathway controls inflammatory disorders. Unfortunately, administration of anti-CD154 monoclonal antibodies causes thromboembolism. Blockade of signalling downstream of CD40 may represent an approach to treat CD40-driven inflammatory disorders. Blocking tumour necrosis factor receptor-associated factor 6 (TRAF6) signalling downstream of CD40 in MHC II(+) cells diminishes inflammation. However, CD40-TRAF6 blockade may cause immunosuppression. We examined the role of CD40-TRAF2,3 and CD40-TRAF6 signalling in the development of pro-inflammatory responses in human non-haematopoietic and monocytic cells. Human aortic endothelial cells, aortic smooth muscle cells, renal proximal tubule epithelial cells, renal mesangial cells and monocytic cells were transduced with retroviral vectors that encode wild-type CD40, CD40 with a mutation that prevents TRAF2,3 recruitment (ΔT2,3), TRAF6 recruitment (ΔT6) or both TRAF2,3 plus TRAF6 recruitment (ΔT2,3,6). Non-haematopoietic cells that expressed CD40 ΔT2,3 exhibited marked inhibition in CD154-induced up-regulation of vascular cell adhesion molecule 1, intercellular adhesion molecule 1 (ICAM-1), monocyte chemotactic protein 1 (MCP-1), tissue factor and matrix metalloproteinase 9. Similar results were obtained with cells that expressed CD40 ΔT6. Although both mutations impaired ICAM-1 up-regulation in monocytic cells, only expression of CD40 ΔT6 reduced MCP-1 and tissue factor up-regulation in these cells. Treatment of endothelial and smooth muscle cells with cell-permeable peptides that block CD40-TRAF2,3 or CD40-TRAF6 signalling impaired pro-inflammatory responses. In contrast, while the CD40-TRAF2,3 blocking peptide did not reduce CD154-induced dendritic cell maturation, the CD40-TRAF6 blocking peptide impaired this response. Hence, preventing CD40-TRAF2,3 or CD40-TRAF6 interaction inhibits pro-inflammatory responses in human non-haematopoietic cells. In contrast to inhibition of CD40-TRAF6 signalling, inhibition of CD40-TRAF2,3 signalling did not impair dendritic cell maturation. Blocking CD40-TRAF2,3 signalling may control CD40-CD154-dependent inflammatory disorders.
Collapse
Affiliation(s)
- Jose-Andres C Portillo
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
18
|
Fas-associated factor (Faf1) is a novel CD40 interactor that regulates CD40-induced NF-κB activation via a negative feedback loop. Cell Death Dis 2014; 5:e1213. [PMID: 24810049 PMCID: PMC4047894 DOI: 10.1038/cddis.2014.172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/03/2014] [Accepted: 02/13/2014] [Indexed: 12/24/2022]
Abstract
CD40-induced signalling through ligation with its natural ligand (CD40L/CD154) is dependent on recruitment of TRAF molecules to the cytoplasmic domain of the receptor. Here, we applied the yeast two-hybrid system to examine whether other proteins can interact with CD40. Fas-Associated Factor 1(FAF1) was isolated from a HeLa cDNA library using the CD40 cytoplasmic tail (216–278 aa) as a bait construct. FAF1 was able to interact with CD40 both in vitro and in vivo. The FAF1 N-terminal domain was sufficient to bind CD40 and required the TRAF6-binding domain within the cytoplasmic tail of CD40 for binding. CD40 ligation induced FAF1 expression in an NFκB-dependent manner. Knockdown of FAF1 prolonged CD40-induced NFκB, whereas overexpression of FAF1 suppressed CD40-induced NFκB activity and this required interaction of FAF1 with the CD40 receptor via its FID domain. Thus, we report a novel role for FAF1in regulating CD40-induced NFκB activation via a negative feedback loop. Loss of FAF1 function in certain human malignancies may contribute to oncogenesis through unchecked NFκB activation, and further understanding of this process may provide a biomarker of NFκB-targeted therapies for such malignancies.
Collapse
|
19
|
Bhadra R, Cobb DA, Khan IA. CD40 signaling to the rescue: A CD8 exhaustion perspective in chronic infectious diseases. Crit Rev Immunol 2013; 33:361-78. [PMID: 23971530 DOI: 10.1615/critrevimmunol.2013007444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chronic infectious diseases such as HIV, HBV, and HCV, among others, cause severe morbidity and mortality globally. Progressive decline in CD8 functionality, survival, and proliferative potential-a phenomenon referred to as CD8 exhaustion-is believed to be responsible for poor pathogen control in chronic infectious diseases. While the role of negative inhibitory receptors such as PD-1 in augmenting CD8 exhaustion has been extensively studied, the role of positive costimulatory receptors remains poorly understood. In this review, we discuss how one such costimulatory pathway, CD40-CD40L, regulates CD8 dysfunction and rescue. While the significance of this pathway has been extensively investigated in models of autoimmunity, acute infectious diseases, and tumor models, the role played by CD40-CD40L in regulating CD8 exhaustion in chronic infectious diseases is just beginning to be understood. Considering that monotherapy with blocking antibodies targeting inhibitory PD-1-PD-L1 pathway is only partially effective at ameliorating CD8 exhaustion and that humanized CD40 agonist antibodies are currently available, a better understanding of the role of the CD40-CD40L pathway in chronic infectious diseases will pave the way for the development of more robust immunotherapeutic and prophylactic vaccination strategies.
Collapse
Affiliation(s)
- Rajarshi Bhadra
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037, USA
| | | | | |
Collapse
|
20
|
Miliara S, Gkouskou KK, Sharp TV, Eliopoulos AG. SUMOylation is required for optimal TRAF3 signaling capacity. PLoS One 2013; 8:e80470. [PMID: 24260396 PMCID: PMC3832365 DOI: 10.1371/journal.pone.0080470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/03/2013] [Indexed: 12/15/2022] Open
Abstract
TNF receptor-associated factors (TRAFs) are multifunctional adaptor proteins involved in temporal and spatial coordination of signals necessary for normal immune function. Here, we report that TRAF3, a TRAF family member with a key role in Toll-like and TNF family receptor signaling and suppressor of lymphomagenesis, is post-translationally modified by the small ubiquitin-related modifier (SUMO). Through yeast two-hybrid and co-immunoprecipitation assays we have identified Ubc9, the SUMO conjugating enzyme, as a novel TRAF3-interacting protein. We show that Ubc9-dependent SUMOylation of TRAF3 modulates optimal association with the CD40 receptor, thereby influencing TRAF3 degradation and non-canonical NF-κB activation upon CD40 triggering. Collectively, our findings describe a novel post-translational modification of a TRAF family member and reveal a link between SUMOylation and TRAF-mediated signal transduction.
Collapse
Affiliation(s)
- Sophia Miliara
- Molecular and Cellular Biology Laboratory, University of Crete School of Medicine, Heraklion, Greece
- Laboratory of Cancer Biology, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Kalliopi K. Gkouskou
- Molecular and Cellular Biology Laboratory, University of Crete School of Medicine, Heraklion, Greece
- Laboratory of Cancer Biology, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Tyson V. Sharp
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Aristides G. Eliopoulos
- Molecular and Cellular Biology Laboratory, University of Crete School of Medicine, Heraklion, Greece
- Laboratory of Cancer Biology, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece
| |
Collapse
|
21
|
The protein kinase double-stranded RNA-dependent (PKR) enhances protection against disease cause by a non-viral pathogen. PLoS Pathog 2013; 9:e1003557. [PMID: 23990781 PMCID: PMC3749959 DOI: 10.1371/journal.ppat.1003557] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 07/01/2013] [Indexed: 01/08/2023] Open
Abstract
PKR is well characterized for its function in antiviral immunity. Using Toxoplasma gondii, we examined if PKR promotes resistance to disease caused by a non-viral pathogen. PKR(-/-) mice infected with T. gondii exhibited higher parasite load and worsened histopathology in the eye and brain compared to wild-type controls. Susceptibility to toxoplasmosis was not due to defective expression of IFN-γ, TNF-α, NOS2 or IL-6 in the retina and brain, differences in IL-10 expression in these organs or to impaired induction of T. gondii-reactive T cells. While macrophages/microglia with defective PKR signaling exhibited unimpaired anti-T. gondii activity in response to IFN-γ/TNF-α, these cells were unable to kill the parasite in response to CD40 stimulation. The TRAF6 binding site of CD40, but not the TRAF2,3 binding sites, was required for PKR phosphorylation in response to CD40 ligation in macrophages. TRAF6 co-immunoprecipitated with PKR upon CD40 ligation. TRAF6-PKR interaction appeared to be indirect, since TRAF6 co-immunoprecipitated with TRAF2 and TRAF2 co-immunoprecipitated with PKR, and deficiency of TRAF2 inhibited TRAF6-PKR co-immunoprecipitation as well as PKR phosphorylation induced by CD40 ligation. PKR was required for stimulation of autophagy, accumulation the autophagy molecule LC3 around the parasite, vacuole-lysosomal fusion and killing of T. gondii in CD40-activated macrophages and microglia. Thus, our findings identified PKR as a mediator of anti-microbial activity and promoter of protection against disease caused by a non-viral pathogen, revealed that PKR is activated by CD40 via TRAF6 and TRAF2, and positioned PKR as a link between CD40-TRAF signaling and stimulation of the autophagy pathway.
Collapse
|
22
|
So T, Croft M. Regulation of PI-3-Kinase and Akt Signaling in T Lymphocytes and Other Cells by TNFR Family Molecules. Front Immunol 2013; 4:139. [PMID: 23760533 PMCID: PMC3675380 DOI: 10.3389/fimmu.2013.00139] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/25/2013] [Indexed: 12/22/2022] Open
Abstract
Activation of phosphoinositide 3-kinase (PI3K) and Akt (protein kinase B) is a common response triggered by a range of membrane-bound receptors on many cell types. In T lymphocytes, the PI3K-Akt pathway promotes clonal expansion, differentiation, and survival of effector cells and suppresses the generation of regulatory T cells. PI3K activation is tightly controlled by signals through the T cell receptor (TCR) and the co-stimulatory receptor CD28, however sustained and periodic signals from additional co-receptors are now being recognized as critical contributors to the activation of this pathway. Accumulating evidence suggests that many members of the Tumor Necrosis Factor receptor (TNFR) superfamily, TNFR2 (TNFRSF1B), OX40 (TNFRSF4), 4-1BB (TNFRSF9), HVEM (TNFRSF14), and DR3 (TNFRSF25), that are constitutive or inducible on T cells, can directly or indirectly promote activity in the PI3K-Akt pathway. We discuss recent data which suggests that ligation of one TNFR family molecule organizes a signalosome, via TNFR-associated factor (TRAF) adapter proteins in T cell membrane lipid microdomains, that results in the subsequent accumulation of highly concentrated depots of PI3K and Akt in close proximity to TCR signaling units. We propose this may be a generalizable mechanism applicable to other TNFR family molecules that will result in a quantitative contribution of these signalosomes to enhancing and sustaining PI3K and Akt activation triggered by the TCR. We also review data that other TNFR molecules, such as CD40 (TNFRSF5), RANK (TNFRSF11A), FN14 (TNFRSF12A), TACI (TNFRSF13B), BAFFR (TNFRSF13C), and NGFR (TNFRSF16), contribute to the activation of this pathway in diverse cell types through a similar ability to recruit PI3K or Akt into their signaling complexes.
Collapse
Affiliation(s)
- Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine , Sendai , Japan
| | | |
Collapse
|
23
|
Li D, Zhong Y, Zhou Y, Sun H, Zheng X, Zhao C, Yan Y, Lin Y, Liao L, Wang X. Autocrine TNF-α-mediated NF-κB activation is a determinant for evasion of CD40-induced cytotoxicity in cancer cells. Biochem Biophys Res Commun 2013; 436:467-72. [PMID: 23751348 DOI: 10.1016/j.bbrc.2013.05.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 12/21/2022]
Abstract
Activation of CD40 by CD40L results in diverse effects on different malignant cells, causing either promotion of survival, growth and resistance to chemotherapy, or induction of cytostasis and apoptosis. The molecular mechanisms underlying CD40-mediated growth regulation and apoptosis induction in cancer cell are not fully understood. In this study, we investigated the role of NF-κB activation in CD40-mediated cytotoxicity in cancer cells. The results show that activation of CD40 by recombinant soluble CD40 ligand (rsCD40L) readily induced NF-κB activation and blocking NF-κB significantly enhanced rsCD40L-induced apoptosis in cancer cells. Importantly, autocrine of TNF-α induced by rsCD40L was indispensable for both NF-κB activation and cytotoxicity induction, establishing a dual role of autocrine TNF-α that constitutes both pro-apoptotic and anti-apoptotic arms of CD40 signaling. Our results indicate that autocrine TNF-α-mediated NF-κB activation is a determinant for cancer cells' evasion of CD40L-induced cytotoxicity and blocking NF-κB may have potential for improve the value of CD40 as an anticancer agent.
Collapse
Affiliation(s)
- Daoxia Li
- Department of Forensic Analytical Toxicology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Different activation of TRAF4 and TRAF6 in inflammatory bowel disease. Mediators Inflamm 2013; 2013:647936. [PMID: 23431243 PMCID: PMC3569908 DOI: 10.1155/2013/647936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/26/2012] [Accepted: 12/10/2012] [Indexed: 02/07/2023] Open
Abstract
In recent years, interests combining the exploration of tumor necrosis factor receptor-associated factor 4 (TRAF4) and TRAF6 in immune cells and transgenic mice are emerging. Although it has been found that TRAF4 and TRAF6 share the same TRAF binding sites, comprehensive study of TRAF4 and TRAF6 in inflammatory bowel disease (IBD) is still lacking. This paper shows similar and different expression patterns of TRAF4 and TRAF6 in patients with IBD. The results indicate that TRAF4 and TRAF6 are overexpressed in IBD. TRAF4 and TRAF6 play different roles in the pathogenesis of IBD. Moreover, TRAF4 may be an indicator of endoscopic disease activity of UC and TRAF6 preactivation can be detected in noninflamed colonic segments.
Collapse
|
25
|
Moschonas A, Ioannou M, Eliopoulos AG. CD40 stimulates a "feed-forward" NF-κB-driven molecular pathway that regulates IFN-β expression in carcinoma cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5521-7. [PMID: 22547704 DOI: 10.4049/jimmunol.1200133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IFN-β and the CD40L (CD154) share important roles in the antiviral and antitumor immune responses. In this study, we show that CD40 receptor occupancy results in IFN-β upregulation through an unconventional "feed-forward" mechanism, which is orchestrated by canonical NF-κB and involves the sequential de novo synthesis of IFN regulatory factor (IRF)1 and Viperin (RSAD2), an IRF1 target. RelA (p65) NF-κB, IRF1, and Viperin-dependent IRF7 binding to the IFN-β promoter largely controls its activity. However, full activation of IFN-β also requires the parallel engagement of noncanonical NF-κB2 signaling leading to p52 recruitment to the IFN-β promoter. These data define a novel link between CD40 signaling and IFN-β expression and provide a telling example of how signal propagation can be exploited to ensure efficient regulation of gene expression.
Collapse
Affiliation(s)
- Aristides Moschonas
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School, 71003 Heraklion, Crete, Greece
| | | | | |
Collapse
|
26
|
Yi H, Zuo D, Yu X, Hu F, Manjili MH, Chen Z, Subjeck JR, Wang XY. Suppression of antigen-specific CD4+ T cell activation by SRA/CD204 through reducing the immunostimulatory capability of antigen-presenting cell. J Mol Med (Berl) 2011; 90:413-26. [PMID: 22083206 DOI: 10.1007/s00109-011-0828-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/25/2011] [Indexed: 12/23/2022]
Abstract
Pattern recognition scavenger receptor SRA/CD204, primarily expressed on specialized antigen-presenting cells (APCs), including dendritic cells (DCs) and macrophages, has been implicated in multiple physiological and pathological processes, including atherosclerosis, Alzheimer's disease, endotoxic shock, host defense, and cancer development. SRA/CD204 was also recently shown to function as an attenuator of vaccine response and antitumor immunity. Here, we, for the first time, report that SRA/CD204 knockout (SRA(-/-)) mice developed a more robust CD4(+) T cell response than wild-type mice after ovalbumin immunization. Splenic DCs from the immunized SRA(-/-) mice were much more efficient than those from WT mice in stimulating naïve OT-II cells, indicating that the suppressive activity of SRA/CD204 is mediated by DCs. Strikingly, antigen-exposed SRA(-/-) DCs with or without lipopolysaccharide treatment exhibited increased T-cell-stimulating activity in vitro, which was independent of the classical endocytic property of the SRA/CD204. Additionally, absence of SRA/CD204 resulted in significantly elevated IL12p35 expression in DCs upon CD40 ligation plus interferon gamma (IFN-γ) stimulation. Molecular studies reveal that SRA/CD204 inhibited the activation of STAT1, mitogen activated protein kinase p38, and nuclear factor-kappa B signaling activation in DCs treated with anti-CD40 antibodies and IFN-γ. Furthermore, splenocytes from the generated SRA(-/-) OT-II mice showed heightened proliferation upon stimulation with OVA protein or MHC-II-restricted OVA(323-339) peptide compared with cells from the SRA(+/+) OT-II mice. These results not only establish a new role of SRA/CD204 in limiting the intrinsic immunogenicity of APCs and CD4(+) T cell activation but also provide additional insights into the molecular mechanisms involved in the immune suppression by this molecule.
Collapse
Affiliation(s)
- Huanfa Yi
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu B, Jin M, Gong J, Du X, Bai Z. Dynamic evolution of CIKS (TRAF3IP2/Act1) in metazoans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1186-1192. [PMID: 21527283 DOI: 10.1016/j.dci.2011.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 05/30/2023]
Abstract
CIKS (TRAF3IP2/Act1) is important for inflammatory responses and autoimmunity control through its dual functions in CD40L/BAFF and IL17 signaling in mammalians. In this study, we performed comparative and evolutionary analyses of CIKSs from metazoans. Although nematode (Caenorabditis elegans) and sea urchin (Strongylocentrotus purpuratus) have IL17 and IL17 receptors, we found no CIKS in their genomes. The ancient CIKS-like (CIKSL) genes from the invertebrates lottia (Lottia gigantea) and amphioxus (Branchiostoma floridae) have an additional DEATH domain compared with other CIKSLs/CIKSs. Our data suggest that the ancient CIKSL evolved into early chordate CIKS possibly through gene tandem duplication and gene fission. Based on phylogenetic and synteny analyses, vertebrate CIKS genes are divided into two groups, one of which is orthologous to human CIKS and the other is paralogous. Expression analysis indicated that cephalochordata amphioxus IL17 together with CIKS might play an ancient and conserved role in host defense against bacterial infections. During the evolutionary process, the CIKS genes have obtained more and more functions through cooperation with other genes.
Collapse
Affiliation(s)
- Baojun Wu
- Laboratory of Developmental Immunology, School of Life Sciences, Shandong, University, Jinan 250100, China
| | | | | | | | | |
Collapse
|
28
|
Xie P, Poovassery J, Stunz LL, Smith SM, Schultz ML, Carlin LE, Bishop GA. Enhanced Toll-like receptor (TLR) responses of TNFR-associated factor 3 (TRAF3)-deficient B lymphocytes. J Leukoc Biol 2011; 90:1149-57. [PMID: 21971520 DOI: 10.1189/jlb.0111044] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The key role of TRAF6 in TLR signaling pathways is well known. More recent evidence has implicated TRAF3 as another TRAF family member important to certain TLR responses of myeloid cells. Previous studies demonstrate that TRAF3 functions are highly context-dependent, displaying receptor and cell-type specificity. We thus examined the TLR responses of TRAF3(-/-)mouse B lymphocytes to test the hypothesis that TRAF3 plays distinct roles in such responses, depending on cell type. TRAF3(-/-) DC are known to have a defect in type 1 IFN production and here, showed diminished production of TNF and IL-10 and unaltered IL-6. In marked contrast, TRAF3(-/-) B cells made elevated amounts of TNF and IL-6 protein, as well as IL-10 and IP-10 mRNA, in response to TLR ligands. Also, in contrast to TRAF3(-/-) DC, the type 1 IFN pathway was elevated in TRAF3(-/-) B cells. Increased early responses of TRAF3(-/-) B cells to TLR signals were independent of cell survival or proliferation but associated with elevated canonical NF-κB activation. Additionally, TRAF3(-/-) B cells displayed enhanced TLR-mediated expression of AID and Ig isotype switching. Thus, TRAF3 plays varied and cell type-specific, biological roles in TLR responses.
Collapse
Affiliation(s)
- Ping Xie
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Pfaller CK, Li Z, George CX, Samuel CE. Protein kinase PKR and RNA adenosine deaminase ADAR1: new roles for old players as modulators of the interferon response. Curr Opin Immunol 2011; 23:573-82. [PMID: 21924887 PMCID: PMC3190076 DOI: 10.1016/j.coi.2011.08.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/24/2011] [Indexed: 12/20/2022]
Abstract
Double-stranded RNA (dsRNA) plays a centrally important role in antiviral innate immunity, both for the production of interferon (IFN) and also in the actions of IFN. Among the IFN-inducible gene products are the protein kinase regulated by RNA (PKR) and the adenosine deaminase acting on RNA 1 (ADAR1). PKR is an established key player in the antiviral actions of IFN, through dsRNA-dependent activation and subsequent phosphorylation of protein synthesis initiation factor eIF2α thereby altering the translational pattern in cells. In addition, PKR plays an important role as a positive effector that amplifies the production of IFN. ADAR1 catalyzes the deamination of adenosine (A) in RNA with double-stranded (ds) character, leading to the destabilization of RNA duplex structures and genetic recoding. By contrast to the antiviral and proapoptotic functions associated with PKR, the actions of ADAR1 in some instances are proviral and cell protective as ADAR1 functions as a suppressor of dsRNA-mediated antiviral responses including activation of PKR and interferon regulatory factor 3.
Collapse
Affiliation(s)
- Christian K Pfaller
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
30
|
Várady G, Sarkadi B, Fátyol K. TTRAP is a novel component of the non-canonical TRAF6-TAK1 TGF-β signaling pathway. PLoS One 2011; 6:e25548. [PMID: 21980489 PMCID: PMC3182262 DOI: 10.1371/journal.pone.0025548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/06/2011] [Indexed: 11/19/2022] Open
Abstract
Transforming growth factor-β (TGF-β) principally relays its effects through the Smad pathway however, accumulating evidence indicate that alternative signaling routes are also employed by this pleiotropic cytokine. For instance recently, we have demonstrated that ligand occupied TGF-β receptors can directly trigger the TRAF6-TAK1 signaling module, resulting in MAP kinase activation. Here we report identification of the adaptor molecule TTRAP as a novel component of this non-canonical TGF-β pathway. We show that the protein associates with TGF-β receptors and components of the TRAF6-TAK1 signaling module, resulting in differential regulation of TGF-β activated p38 and NF-κB responses. Modulation of cellular TTRAP level affects cell viability in the presence of TGF-β, suggesting that the protein is an important component of the TGF-β induced apoptotic process.
Collapse
Affiliation(s)
- György Várady
- Membrane Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Sarkadi
- Membrane Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Károly Fátyol
- Membrane Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
31
|
Wu B, Jin M, Zhang Y, Wei T, Bai Z. Evolution of the IL17 receptor family in chordates: a new subfamily IL17REL. Immunogenetics 2011; 63:835-45. [PMID: 21732179 DOI: 10.1007/s00251-011-0554-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/20/2011] [Indexed: 01/05/2023]
Abstract
The human interleukin 17 receptor (IL17R) family plays a critical role in inflammatory responses and contributes to the pathology of many autoimmune diseases. So far, five members, IL17RA to IL17RE, have been identified. Recently, some IL17R genes have been identified in non-mammalian species, such as zebrafish IL17RD; however, there are no reports on the evolutionary history of this complex gene family through comparative phylogenetic approaches. Here, we concentrated on the IL17R evolution in chordates. There are two IL17Rs in the genome of the basal chordate amphioxus: IL17RA and IL17RD. After two rounds of whole genome duplications, these two IL17R genes expanded into five early vertebrate IL17R genes, IL17RA to IL17RE. IL17RA and IL17RD are found in most vertebrates, whereas the other three, IL17RB, ILR17RC, and IL17RE, underwent some loss in vertebrates during evolution. Our sequence and structure analyses reveal functional similarities and distinctions between the different IL17Rs. Based on similarity searches for IL17R-like proteins within chordate sequences, a group of IL17RE-like (IL17REL) proteins were identified from mammalians to lower vertebrates. In silico and expression analyses on the novel IL17RELs showed that this group of receptors is highly conserved across species, indicating that IL17REL may represent a unique subfamily of IL17Rs.
Collapse
Affiliation(s)
- Baojun Wu
- Laboratory of Developmental Immunology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
32
|
Knox PG, Davies CC, Ioannou M, Eliopoulos AG. The death domain kinase RIP1 links the immunoregulatory CD40 receptor to apoptotic signaling in carcinomas. ACTA ACUST UNITED AC 2011; 192:391-9. [PMID: 21282461 PMCID: PMC3101101 DOI: 10.1083/jcb.201003087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RIP1 is a component of a TRAF2 complex, required for caspase-8 activation and tumor cell killing in response to ligand binding of CD40. CD40, a tumor necrosis factor (TNF) receptor family member, is widely recognized for its prominent role in the antitumor immune response. The immunostimulatory effects of CD40 ligation on malignant cells can be switched to apoptosis upon disruption of survival signals transduced by the binding of the adaptor protein TRAF6 to CD40. Apoptosis induction requires a TRAF2-interacting CD40 motif but is initiated within a cytosolic death-inducing signaling complex after mobilization of receptor-bound TRAF2 to the cytoplasm. We demonstrate that receptor-interacting protein 1 (RIP1) is an integral component of this complex and is required for CD40 ligand-induced caspase-8 activation and tumor cell killing. Degradation of the RIP1 K63 ubiquitin ligases cIAP1/2 amplifies the CD40-mediated cytotoxic effect, whereas inhibition of CYLD, a RIP1 K63 deubiquitinating enzyme, reduces it. This two-step mechanism of apoptosis induction expands our appreciation of commonalities in apoptosis regulatory pathways across the TNF receptor superfamily and provides a telling example of how TNF family receptors usurp alternative programs to fulfill distinct cellular functions.
Collapse
Affiliation(s)
- Pauline G Knox
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School, 71003 Heraklion, Greece
| | | | | | | |
Collapse
|
33
|
Pindel A, Sadler A. The Role of Protein Kinase R in the Interferon Response. J Interferon Cytokine Res 2011; 31:59-70. [DOI: 10.1089/jir.2010.0099] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Agnieszka Pindel
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | - Anthony Sadler
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| |
Collapse
|
34
|
Meads MB, Li ZW, Dalton WS. A novel TNF receptor-associated factor 6 binding domain mediates NF-kappa B signaling by the common cytokine receptor beta subunit. THE JOURNAL OF IMMUNOLOGY 2010; 185:1606-15. [PMID: 20622119 DOI: 10.4049/jimmunol.0902026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GM-CSF, IL-3, and IL-5 are proinflammatory cytokines that control the production and function of myeloid and lymphoid cells. Their receptors are composed of a ligand-specific alpha subunit and a shared common signal-transducing beta subunit (beta common receptor or GM-CSFR beta [beta(c)]). The pleiotropic nature of biologic outcomes mediated by beta(c) and the presence of large, uncharacterized regions of its cytoplasmic domain suggest that much remains to be learned about its downstream signaling pathways. Although some previous work has attempted to link beta(c) with NF-kappaB activation, a definitive mechanism that mediates this pathway has not been described and, to date, it has not been clear whether the receptor can directly activate NF-kappaB. We demonstrate that NF-kappaB activation by beta(c) is dependent on TNFR-associated factor 6 (TRAF6) and that association of TRAF6 with beta(c) requires a consensus-binding motif found in other molecules known to interact with TRAF6. Furthermore, point mutation of this motif abrogated the ability of beta(c) to mediate NF-kappaB activation and reduced the viability of an IL-3-dependent hematopoietic cell line. Because this receptor plays a key role in hematopoiesis and the beta(c) cytoplasmic domain identified in this work mediates hematopoietic cell viability, this new pathway is likely to contribute to immune cell biology. This work is significant because it is the first description of a TRAF6-dependent signaling pathway associated with a type I cytokine receptor. It also suggests that TRAF6, a mediator of TNFR and TLR signaling, may be a common signaling intermediate in diverse cytokine receptor systems.
Collapse
Affiliation(s)
- Mark B Meads
- Department of Experimental Therapeutics and Oncologic Sciences, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA
| | | | | |
Collapse
|
35
|
Yoboua F, Martel A, Duval A, Mukawera E, Grandvaux N. Respiratory syncytial virus-mediated NF-kappa B p65 phosphorylation at serine 536 is dependent on RIG-I, TRAF6, and IKK beta. J Virol 2010; 84:7267-77. [PMID: 20410276 PMCID: PMC2898247 DOI: 10.1128/jvi.00142-10] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/13/2010] [Indexed: 12/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the etiological agent of acute respiratory diseases, such as bronchiolitis and pneumonia. The exacerbated production of proinflammatory cytokines and chemokines in the airways in response to RSV is an important pillar in the development of these pathologies. As such, a keen understanding of the mechanisms that modulate the inflammatory response during RSV infection is of pivotal importance to developing effective treatment. The NF-kappaB transcription factor is a major regulator of proinflammatory cytokine and chemokine genes. However, RSV-mediated activation of NF-kappaB is far from characterized. We recently demonstrated that aside from the well-characterized IkappaBalpha phosphorylation and degradation, the phosphorylation of p65 at Ser536 is an essential event regulating the RSV-mediated NF-kappaB-dependent promoter transactivation. In the present study, using small interfering RNA and pharmacological inhibitors, we now demonstrate that RSV sensing by the RIG-I cytoplasmic receptor triggers a signaling cascade involving the MAVS and TRAF6 adaptors that ultimately leads to p65ser536 phosphorylation by the IKKbeta kinase. In a previous study, we highlighted a critical role of the NOX2-containing NADPH oxidase enzyme as an upstream regulator of both the IkappaBalphaSer32 and p65Ser536 in human airway epithelial cells. Here, we demonstrate that inhibition of NOX2 significantly decreases IKKbeta activation. Taken together, our data identify a new RIG-I/MAVS/TRAF6/IKKbeta/p65Ser536 pathway placed under the control of NOX2, thus characterizing a novel regulatory pathway involved in NF-kappaB-driven proinflammatory response in the context of RSV infection.
Collapse
Affiliation(s)
- Fabrice Yoboua
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Alexis Martel
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Annick Duval
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Espérance Mukawera
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Nathalie Grandvaux
- CRCHUM-Centre Hospitalier de l'Université de Montréal, Montréal, Quebec H2X 1P1, Canada, Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
36
|
Zhang W, Zhang X, Wu XL, He LS, Zeng XF, Crammer AC, Lipsky PE. Competition between TRAF2 and TRAF6 regulates NF-kappaB activation in human B lymphocytes. ACTA ACUST UNITED AC 2010; 25:1-12. [PMID: 20449947 DOI: 10.1016/s1001-9294(10)60013-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of TNF receptor-associated factor 2 (TRAF-2) and TRAF6 in CD40-induced nuclear factor-kappaB (NF-kappaB) signaling pathway and whether CD40 signaling requires TRAF2. METHODS Human B cell lines were transfected with plasmids expressing wild type TRAF2 or dominant negative TRAF2, TRAF2-shRNA, or TRAF6-shRNA. The activation of NF-kappaB was detected by Western blot, kinase assay, transfactor enzyme-linked immunosorbent assay (ELISA), and fluorescence resonance energy transfer (FRET). Analysis of the role of TRAF-2 and TRAF-6 in CD40-mediated NF-kappaB activity was examined following stimulation with recombinant CD154. RESULTS TRAF2 induced activity of IkappaB-kinases (IKKalpha, IKKi/epsilon), phosphorylation of IkappaBalpha, as well as nuclear translocation and phosphorylation of p65/RelA. In contrast, TRAF6 strongly induced NF-kappaB activation and nuclear translocation of p65 as well as p50 and c-Rel. Engagement of CD154-induced nuclear translocation of p65 was inhibited by a TRAF6-shRNA, but conversely was enhanced by a TRAF2-shRNA. Examination of direct interactions between CD40 and TRAFs by FRET documented that both TRAF2 and TRAF6 directly interacted with CD40. However, the two TRAFs competed for CD40 binding. CONCLUSIONS These results indicate that TRAF2 can signal in human B cells, but it is not essential for CD40-mediated NF-kappaB activation. Moreover, TRAF2 can compete with TRAF6 for CD40 binding, and thereby limit the capacity of CD40 engagement to induce NF-kappaB activation.
Collapse
Affiliation(s)
- Wen Zhang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Sasai M, Tatematsu M, Oshiumi H, Funami K, Matsumoto M, Hatakeyama S, Seya T. Direct binding of TRAF2 and TRAF6 to TICAM-1/TRIF adaptor participates in activation of the Toll-like receptor 3/4 pathway. Mol Immunol 2010; 47:1283-91. [PMID: 20047764 DOI: 10.1016/j.molimm.2009.12.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/28/2009] [Accepted: 12/06/2009] [Indexed: 12/14/2022]
Abstract
Using yeast two-hybrid screening, we found three TRAF proteins TRAF1, 2 and 6, bound the N-terminal region of the TLR3/4 adaptor TICAM-1 (TRIF). TRAF2, a newly identified TICAM-1-binding protein, bound the PxQxS motif (aa 333-338) of TICAM-1 using mutagenesis by alanine substitutions. TICAM-1 is known to induce the activation of NF-kappaB and IRF-3, which leads to activation of the interferon (IFN)-beta promoter, an activity that is conserved in the N+TIR fragment (aa 1-533). By mutation of the two distinct binding sites for TRAF2 and TRAF6 in N+TIR TICAM-1, the induction of IFN-beta was completely abrogated. Although the TRAF2 site single mutation only marginally affected TICAM-1-mediated type I IFN induction, it further impaired the function of the TRAF6 site mutant. Moreover, double point mutations of the TRAF2 and TRAF6 binding motifs in TICAM-1 N+TIR reduced the activation of IRF-3 and NF-kappaB, the critical transcription factors for IFN-beta expression. Furthermore, TRAF2/6 functioned as an E3 ligase to induce K63-mediated ubiquitination on N+TIR which was abrogated in the mutant lacking the TRAF2/6 sites in parallel with IFN-inducing activity. Confocal microscopy analysis indicated that TRAF2 and TRAF6 merged with oligomerized (i.e. activated) TICAM-1 N+TIR. However, TRAF3, which is another TRAF family member essential for TLR3-mediated type-I IFN signaling, still assembled in the mutant lacking the TRAF2/6 sites. Our data suggest that the binding of TRAF2 and TRAF6 to TICAM-1 cooperatively activates the IFN-inducing pathway through ubiquitination of TICAM-1, a modification which occurs unrelated to TRAF3 recruitment in the TICAM-1 signaling complex. TRAF2/6 may participate in TICAM-1-mediated IFN-beta induction besides TRAF3.
Collapse
Affiliation(s)
- Miwa Sasai
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Elmetwali T, Young LS, Palmer DH. CD40 Ligand-Induced Carcinoma Cell Death: A Balance between Activation of TNFR-Associated Factor (TRAF) 3-Dependent Death Signals and Suppression of TRAF6-Dependent Survival Signals. THE JOURNAL OF IMMUNOLOGY 2009; 184:1111-20. [DOI: 10.4049/jimmunol.0900528] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 2009; 229:152-72. [PMID: 19426221 DOI: 10.1111/j.1600-065x.2009.00782.x] [Citation(s) in RCA: 1078] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARY During the generation of a successful adaptive immune response, multiple molecular signals are required. A primary signal is the binding of cognate antigen to an antigen receptor expressed by T and B lymphocytes. Multiple secondary signals involve the engagement of costimulatory molecules expressed by T and B lymphocytes with their respective ligands. Because of its essential role in immunity, one of the best characterized of the costimulatory molecules is the receptor CD40. This receptor, a member of the tumor necrosis factor receptor family, is expressed by B cells, professional antigen-presenting cells, as well as non-immune cells and tumors. CD40 binds its ligand CD40L, which is transiently expressed on T cells and other non-immune cells under inflammatory conditions. A wide spectrum of molecular and cellular processes is regulated by CD40 engagement including the initiation and progression of cellular and humoral adaptive immunity. In this review, we describe the downstream signaling pathways initiated by CD40 and overview how CD40 engagement or antagonism modulates humoral and cellular immunity. Lastly, we discuss the role of CD40 as a target in harnessing anti-tumor immunity. This review underscores the essential role CD40 plays in adaptive immunity.
Collapse
Affiliation(s)
- Raul Elgueta
- Department of Microbiology and Immunology, Dartmouth Medical School and The Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | | | | | | | | | | |
Collapse
|
40
|
cIAP1-dependent TRAF2 degradation regulates the differentiation of monocytes into macrophages and their response to CD40 ligand. Blood 2008; 113:175-85. [PMID: 18827186 DOI: 10.1182/blood-2008-02-137919] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Peripheral blood monocytes are plastic cells that migrate to tissues and differentiate into various cell types, including macrophages, dendritic cells, and osteoclasts. We have described the migration of cellular inhibitor of apoptosis protein 1 (cIAP1), a member of the IAP family of proteins, from the nucleus to the Golgi apparatus in monocytes undergoing differentiation into macrophages. Here we show that, once in the cytoplasm, cIAP1 is involved in the degradation of the adaptor protein tumor necrosis factor receptor-associated factor 2 (TRAF2) by the proteosomal machinery. Inhibition of cIAP1 prevents the decrease in TRAF2 expression that characterizes macrophage formation. We demonstrate that TRAF2 is initially required for macrophage differentiation as its silencing prevents Ikappa-Balpha degradation, nuclear factor-kappaB (NF-kappaB) p65 nuclear translocation, and the differentiation process. Then, we show that cIAP1-mediated degradation of TRAF2 allows the differentiation process to progress. This degradation is required for the macrophages to be fully functional as TRAF2 overexpression in differentiated cells decreases the c-Jun N-terminal kinase-mediated synthesis and the secretion of proinflammatory cytokines, such as interleukin-8 and monocyte chemoattractant protein 1 (MCP-1) in response to CD40 ligand. We conclude that TRAF2 expression and subsequent degradation are required for the differentiation of monocytes into fully functional macrophages.
Collapse
|
41
|
Affiliation(s)
- Aristides G Eliopoulos
- University of Crete Medical School and Institute for Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece.
| |
Collapse
|
42
|
CD40 induces antigen transporter and immunoproteasome gene expression in carcinomas via the coordinated action of NF-kappaB and of NF-kappaB-mediated de novo synthesis of IRF-1. Mol Cell Biol 2008; 28:6208-22. [PMID: 18694960 DOI: 10.1128/mcb.00611-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer cells may evade immune surveillance as a result of defective antigen processing and presentation. In this study, we demonstrate that CD40 ligation overcomes this defect through the coordinated action of the transcription factors NF-kappaB and interferon regulatory factor 1 (IRF-1). We show that unlike interferon signaling, which triggers the STAT1-mediated transcriptional activation of IRF-1, the ligation of CD40 in carcinomas induces the rapid upregulation of IRF-1 in a STAT1-independent but NF-kappaB-dependent manner. The transcriptional activation of IRF-1 is controlled largely by the recruitment of p65 (RelA) NF-kappaB to the IRF-1 promoter following the engagement of a TAK1/IkappaB kinase beta/IkappaBalpha signaling pathway downstream of CD40. NF-kappaB and de novo-synthesized IRF-1 converge to regulate the expression of genes involved in antigen processing and transport, as evident from the sequential recruitment of NF-kappaB and IRF-1 to the promoters of the genes encoding transporter for antigen processing 1 (TAP1), TAP2, tapasin, and low-molecular-mass polypeptides LMP2 and LMP10. Moreover, the RNA interference-mediated knockdown of IRF-1 reduced, whereas the inhibition of NF-kappaB abolished, the effects of CD40 on TAP1 and LMP2 upregulation in carcinoma cells. Collectively, these data reveal a novel "feed-forward" mechanism induced by NF-kappaB which ensures that acutely synthesized IRF-1 operates in concert with NF-kappaB to amplify the immunoproteasome and antigen-processing functions of CD40.
Collapse
|
43
|
TRAF6 deficiency promotes TNF-induced cell death through inactivation of GSK3beta. Cell Death Differ 2008; 15:730-8. [PMID: 18202703 DOI: 10.1038/sj.cdd.4402304] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
TNF receptor-associated factor 6 (TRAF6) plays a key role in the regulation of innate immune responses by mediating signals from both TNF receptors (TNFRs) and interleukin-1 receptors (IL-1Rs)/Toll-like receptors (TLRs). Here, we define a new role for TRAF6 in antagonizing cell death during TNF signaling. In TRAF6-deficient 3T3 (T6(-/-) 3T3) cells, TNF stimulation leads to the accumulation of reactive oxygen species (ROS), which in turn results in prolonged c-Jun N-terminal kinase (JNK) activation and accelerated cell death. Furthermore, TNF-induced p65/RelA phosphorylation as well as transcriptional activity of nuclear factor-kappaB (NF-kappaB) was significantly downregulated in T6(-/-) 3T3 cells. Interestingly, TRAF6 deficiency leads to constitutive phosphorylation and inactivation of glycogen synthase kinase 3beta (GSK3beta). Restoration of GSK3beta activity through exogenous expression of a GSK3beta constitutive active form rescued cell death in TRAF6-null 3T3 cells. These data suggest a role for TRAF6 in the maintenance of cell survival by regulating GSK3beta activity in TNF signaling.
Collapse
|
44
|
Hostager BS. Roles of TRAF6 in CD40 signaling. Immunol Res 2008; 39:105-14. [PMID: 17917059 DOI: 10.1007/s12026-007-0082-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
CD40 provides signals crucial to the activation of antigen-presenting cells during humoral and cell-mediated immune responses. A complex cohort of proteins interacts with the cytoplasmic domain of CD40 and mediates signaling. One member of this cohort is TNF receptor associated factor six (TRAF6). TRAF6 contributes to the CD40-mediated activation of NF-kappaB, stress-activated protein kinases, and perhaps other signaling molecules. TRAF6 may have roles as an adapter molecule, an activator of mitogen-activated protein kinases, and as a repressor of certain signaling circuits. Establishing the significance and interplay of these roles will lead to a more complete understanding of mechanisms important to the CD40-mediated activation of the immune system and will reveal novel targets for the development of therapeutic agents.
Collapse
Affiliation(s)
- Bruce S Hostager
- 4-204 MEBRF, Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
45
|
Rowland SL, Tremblay MM, Ellison JM, Stunz LL, Bishop GA, Hostager BS. A Novel Mechanism for TNFR-Associated Factor 6-Dependent CD40 Signaling. THE JOURNAL OF IMMUNOLOGY 2007; 179:4645-53. [PMID: 17878362 DOI: 10.4049/jimmunol.179.7.4645] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Members of the TNFR family play critical roles in the regulation of the immune system. One member of the family critical for efficient activation of T-dependent humoral immune responses is CD40, a cell surface protein expressed by B cells and other APC. The cytoplasmic domain of CD40 interacts with several members of the TNFR-associated factor (TRAF) family, which link CD40 to intracellular signaling pathways. TRAF2 and 6 appear to play particularly important roles in CD40 signaling. Previous studies suggest that the two molecules have certain overlapping roles in signaling, but that unique roles for each molecule also exist. To better define the roles of TRAF2 and TRAF6 in CD40 signaling, we used somatic cell gene targeting to generate TRAF-deficient mouse B cell lines. A20.2J cells deficient in TRAF6 exhibit marked defects in CD40-mediated JNK activation and the up-regulation of CD80. Our previous experiments with TRAF2-deficient B cell lines suggest that TRAF6 and TRAF2 may have redundant roles in CD40-mediated NF-kappaB activation. Consistent with this hypothesis, we found CD40-mediated activation of NF-kappaB intact in TRAF6-deficient cells and defective in cells lacking both TRAF2 and TRAF6. Interestingly, we found that TRAF6 mutants defective in CD40 binding were able to restore CD40-mediated JNK activation and CD80 up-regulation in TRAF6-deficient cells, indicating that TRAF6 may be able to contribute to certain CD40 signals without directly binding CD40.
Collapse
Affiliation(s)
- Sarah L Rowland
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The protozoan, Toxoplasma gondii, is a natural pathogen of mouse and a zoonosis of man. Immunity against the pathogen is largely mediated by interferon-stimulated cell-autonomous mechanisms that are strikingly different between man and mouse. There are many poorly understood host and pathogen variables that affect the outcome of infection.
Collapse
|
47
|
Villarroel Dorrego M, Speight PM, Barrett AW. CD40 in human oral epithelia. Oral Oncol 2007; 43:626-33. [PMID: 17307023 DOI: 10.1016/j.oraloncology.2006.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 11/30/2006] [Accepted: 12/01/2006] [Indexed: 02/04/2023]
Abstract
CD40 is a transmembrane glycoprotein belonging to the tumour necrosis factor receptor superfamily, which has a role in a number of biological functions, including the regulation of cell growth and division, and cell mediated immunity. Although originally described on leucocytes, principally B lymphocytes, there is now abundant evidence for the cellular diversity of CD40. The aim of this article is to review the available data on CD40 in oral epithelium, principally that lining the oral mucosa, but also that of the salivary glands.
Collapse
Affiliation(s)
- Mariana Villarroel Dorrego
- Department of Oral Pathology, Oral Medicine and Oral Surgery, Universidad Santa Maria and Institute of Dental Research, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | |
Collapse
|
48
|
Morrison BH, Bauer JA, Lupica JA, Tang Z, Szugye H, DiDonato JA, Lindner DJ. Effect of inositol hexakisphosphate kinase 2 on transforming growth factor beta-activated kinase 1 and NF-kappaB activation. J Biol Chem 2007; 282:15349-56. [PMID: 17379600 PMCID: PMC2048714 DOI: 10.1074/jbc.m700156200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/23/2007] [Indexed: 11/06/2022] Open
Abstract
We previously showed that inositol hexakisphosphate kinase 2 (IHPK2) functions as a growth-suppressive and apoptosis-enhancing kinase during cell stress. Overexpression of IHPK2 sensitized ovarian carcinoma cell lines to the growth-suppressive and apoptotic effects of interferon beta (IFN-beta), IFN-alpha2, and gamma-irradiation. Expression of a kinase-dead mutant abrogated 50% of the apoptosis induced by IFN-beta. Because the kinase-dead mutant retained significant response to cell stressors, we hypothesized that a portion of the death-promoting function of IHPK2 was independent of its kinase activity. We now demonstrate that IHPK2 binds to tumor necrosis factor (TNF) receptor-associated factor (TRAF) 2 and interferes with phosphorylation of transforming growth factor beta-activated kinase 1 (TAK1), thereby inhibiting NF-kappaB signaling. IHPK2 contains two sites required for TRAF2 binding, Ser-347 and Ser-359. Compared with wild type IHPK2-transfected cells, cells expressing S347A and S359A mutations displayed 3.5-fold greater TAK1 activation following TNF-alpha. This mutant demonstrated a 6-10-fold increase in NF-kappaB DNA binding following TNF-alpha compared with wild type IHPK2-expressing cells in which NF-kappaB DNA binding was inhibited. Cells transfected with wild type IHPK2 or IHPK2 mutants that lacked S347A and S359A mutations displayed enhanced terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling staining following TNF-alpha. We believe that IHPK2-TRAF2 binding leads to attenuation of TAK1- and NF-kappaB-mediated signaling and is partially responsible for the apoptotic activity of IHPK2.
Collapse
Affiliation(s)
- Bei H. Morrison
- Center for Hematology and Oncology Molecular Therapeutics, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio 44195
| | - Joseph A. Bauer
- Center for Hematology and Oncology Molecular Therapeutics, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio 44195
| | - Joseph A. Lupica
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Zhuo Tang
- Center for Hematology and Oncology Molecular Therapeutics, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio 44195
| | - Heidi Szugye
- Center for Hematology and Oncology Molecular Therapeutics, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio 44195
| | - Joseph A. DiDonato
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Daniel J. Lindner
- Center for Hematology and Oncology Molecular Therapeutics, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
49
|
Xia M, Ling W, Zhu H, Wang Q, Ma J, Hou M, Tang Z, Li L, Ye Q. Anthocyanin Prevents CD40-Activated Proinflammatory Signaling in Endothelial Cells by Regulating Cholesterol Distribution. Arterioscler Thromb Vasc Biol 2007; 27:519-24. [PMID: 17158355 DOI: 10.1161/01.atv.0000254672.04573.2d] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Intracellular tumor necrosis factor receptor-associated factors (TRAFs) translocation to lipid rafts is a key element in CD40-induced signaling. The purpose of this study was to investigate the influence of anthocyanin on CD40-mediated proinflammatory events in human endothelial cells and the underlying possible molecular mechanism.
Methods and Results—
Treatment of endothelial cells with anthocyanin prevented from CD40-induced proinflammatory status, measured by production of IL-6, IL-8, and monocyte chemoattractant protein-1 through inhibiting CD40-induced nuclear factor-κB (NF-κB) activation. TRAF-2 played pivotal role in CD40–NF-κB pathway as TRAF-2 small interference RNA (siRNA) diminished CD40-induced NF-κB activation and inflammation. TRAF-2 overexpression increased CD40-mediated NF-κB activation. Moreover, TRAF-2 almost totally recruited to lipid rafts after stimulation by CD40 ligand and depletion of cholesterol diminished CD40-mediated NF-κB activation. Exposure to anthocyanin not only interrupted TRAF-2 recruitment to lipid rafts but also decreased cholesterol content in Triton X-100 insoluble lipid rafts. However, anthocyanin did not influence the interaction between CD40 ligand and CD40 receptor.
Conclusions—
Our findings suggest that anthocyanin protects from CD40-induced proinflammatory signaling by preventing TRAF-2 translocation to lipid rafts through regulation of cholesterol distribution, which thereby may represent a mechanism that would explain the anti-inflammatory response of anthocyanin.
Collapse
Affiliation(s)
- Min Xia
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, PR China 510080
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ichikawa D, Funakoshi-Tago M, Aizu-Yokota E, Sonoda Y, Inoue JI, Kasahara T. TNF-receptor associated factor 6-deficient fibroblast is sensitive to the TNF-α-induced cell death: Involvement of reactive oxygen species. Biochem Biophys Res Commun 2006; 351:93-8. [PMID: 17055451 DOI: 10.1016/j.bbrc.2006.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 10/02/2006] [Indexed: 10/24/2022]
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) has mainly been involved in signaling from CD40 and IL-1 receptor family. While TNF-alpha exerts various biological effects including cell death, the role of TRAF6 in the TNF-alpha signaling remains to be unclear. Here, we demonstrated that murine embryonic fibroblasts (MEFs) derived from TRAF6 knockout (TRAF6KO) mice have increased sensitivity to actinomycin D plus TNF-alpha-induced cell death compared with wild-type MEF. Reactive oxygen species (ROS) were accumulated more in TRAF6KO MEF than in wild-type MEF. An antioxidant, butylated hydroxyanisole (BHA) completely inhibited TNF-alpha-induced cell death and DNA fragmentation. Thus, the TNF-alpha-induced cell death in TRAF6KO MEF was ROS-dependent. Reconstitution of full-length TRAF6 but not N-terminal-deleted TRAF6 constructs in TRAF6KO MEF reversed TNF-alpha-induced cell death, ROS accumulation, and DNA fragmentation completely. Thus, we concluded that resistance against TNF-alpha-induced cell death is rendered by TRAF6, which regulates ROS accumulation.
Collapse
Affiliation(s)
- Daiju Ichikawa
- Department of Biochemistry, Kyoritsu University of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | | | | | | | | | | |
Collapse
|