1
|
Peraldi R, Kmita M. 40 years of the homeobox: mechanisms of Hox spatial-temporal collinearity in vertebrates. Development 2024; 151:dev202508. [PMID: 39167089 DOI: 10.1242/dev.202508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Animal body plans are established during embryonic development by the Hox genes. This patterning process relies on the differential expression of Hox genes along the head-to-tail axis. Hox spatial collinearity refers to the relationship between the organization of Hox genes in clusters and the differential Hox expression, whereby the relative order of the Hox genes within a cluster mirrors the spatial sequence of expression in the developing embryo. In vertebrates, the cluster organization is also associated with the timing of Hox activation, which harmonizes Hox expression with the progressive emergence of axial tissues. Thereby, in vertebrates, Hox temporal collinearity is intimately linked to Hox spatial collinearity. Understanding the mechanisms contributing to Hox temporal and spatial collinearity is thus key to the comprehension of vertebrate patterning. Here, we provide an overview of the main discoveries pertaining to the mechanisms of Hox spatial-temporal collinearity.
Collapse
Affiliation(s)
- Rodrigue Peraldi
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Marie Kmita
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
2
|
Cormier SA, Kappen C. Identification of a Chondrocyte-Specific Enhancer in the Hoxc8 Gene. J Dev Biol 2024; 12:5. [PMID: 38390956 PMCID: PMC10885077 DOI: 10.3390/jdb12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Hox genes encode transcription factors whose roles in patterning animal body plans during embryonic development are well-documented. Multiple studies demonstrate that Hox genes continue to act in adult cells, in normal differentiation, in regenerative processes, and, with abnormal expression, in diverse types of cancers. However, surprisingly little is known about the regulatory mechanisms that govern Hox gene expression in specific cell types, as they differentiate during late embryonic development, and in the adult organism. The murine Hoxc8 gene determines the identity of multiple skeletal elements in the lower thoracic and lumbar region and continues to play a role in the proliferation and differentiation of cells in cartilage as the skeleton matures. This study was undertaken to identify regulatory elements in the Hoxc8 gene that control transcriptional activity, specifically in cartilage-producing chondrocytes. We report that an enhancer comprising two 416 and 224 bps long interacting DNA elements produces reporter gene activity when assayed on a heterologous transcriptional promoter in transgenic mice. This enhancer is distinct in spatial, temporal, and molecular regulation from previously identified regulatory sequences in the Hoxc8 gene that control its expression in early development. The identification of a tissue-specific Hox gene regulatory element now allows mechanistic investigations into Hox transcription factor expression and function in differentiating cell types and adult tissues and to specifically target these cells during repair processes and regeneration.
Collapse
Affiliation(s)
- Stephania A. Cormier
- Department of Respiratory Immunology and Toxicology, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA;
| | - Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
3
|
Characterising open chromatin in chick embryos identifies cis-regulatory elements important for paraxial mesoderm formation and axis extension. Nat Commun 2021; 12:1157. [PMID: 33608545 PMCID: PMC7895974 DOI: 10.1038/s41467-021-21426-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Somites arising from paraxial mesoderm are a hallmark of the segmented vertebrate body plan. They form sequentially during axis extension and generate musculoskeletal cell lineages. How paraxial mesoderm becomes regionalised along the axis and how this correlates with dynamic changes of chromatin accessibility and the transcriptome remains unknown. Here, we report a spatiotemporal series of ATAC-seq and RNA-seq along the chick embryonic axis. Footprint analysis shows differential coverage of binding sites for several key transcription factors, including CDX2, LEF1 and members of HOX clusters. Associating accessible chromatin with nearby expressed genes identifies cis-regulatory elements (CRE) for TCF15 and MEOX1. We determine their spatiotemporal activity and evolutionary conservation in Xenopus and human. Epigenome silencing of endogenous CREs disrupts TCF15 and MEOX1 gene expression and recapitulates phenotypic abnormalities of anterior-posterior axis extension. Our integrated approach allows dissection of paraxial mesoderm regulatory circuits in vivo and has implications for investigating gene regulatory networks.
Collapse
|
4
|
Gonçalves CS, Le Boiteux E, Arnaud P, Costa BM. HOX gene cluster (de)regulation in brain: from neurodevelopment to malignant glial tumours. Cell Mol Life Sci 2020; 77:3797-3821. [PMID: 32239260 PMCID: PMC11105007 DOI: 10.1007/s00018-020-03508-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
HOX genes encode a family of evolutionarily conserved homeodomain transcription factors that are crucial both during development and adult life. In humans, 39 HOX genes are arranged in four clusters (HOXA, B, C, and D) in chromosomes 7, 17, 12, and 2, respectively. During embryonic development, particular epigenetic states accompany their expression along the anterior-posterior body axis. This tightly regulated temporal-spatial expression pattern reflects their relative chromosomal localization, and is critical for normal embryonic brain development when HOX genes are mainly expressed in the hindbrain and mostly absent in the forebrain region. Epigenetic marks, mostly polycomb-associated, are dynamically regulated at HOX loci and regulatory regions to ensure the finely tuned HOX activation and repression, highlighting a crucial epigenetic plasticity necessary for homeostatic development. HOX genes are essentially absent in healthy adult brain, whereas they are detected in malignant brain tumours, namely gliomas, where HOX genes display critical roles by regulating several hallmarks of cancer. Here, we review the major mechanisms involved in HOX genes (de)regulation in the brain, from embryonic to adult stages, in physiological and oncologic conditions. We focus particularly on the emerging causes of HOX gene deregulation in glioma, as well as on their functional and clinical implications.
Collapse
Affiliation(s)
- Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elisa Le Boiteux
- Université Clermont Auvergne, CNRS, INSERM-iGReD, Clermont-Ferrand, France
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, INSERM-iGReD, Clermont-Ferrand, France
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
5
|
Saito S, Suzuki T. How do signaling and transcription factors regulate both axis elongation and Hox gene expression along the anteroposterior axis? Dev Growth Differ 2020; 62:363-375. [DOI: 10.1111/dgd.12682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Seiji Saito
- Division of Biological Science Graduate School of Science Nagoya University Nagoya Japan
| | - Takayuki Suzuki
- Avian Bioscience Research Center Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| |
Collapse
|
6
|
Wang H, Wei H, Wang J, Li L, Chen A, Li Z. MicroRNA-181d-5p-Containing Exosomes Derived from CAFs Promote EMT by Regulating CDX2/HOXA5 in Breast Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:654-667. [PMID: 31955007 PMCID: PMC6970169 DOI: 10.1016/j.omtn.2019.11.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022]
Abstract
Recently, novel mechanisms underlying the pro-tumorigenic effects of cancer-associated fibroblasts (CAFs) have been identified in several cancers, including breast cancer. CAFs can secrete exosomes that are loaded with proteins, lipids, and RNAs to affect tumor microenvironment. Herein, we identify CAF-derived exosomes that can transfer miR-181d-5p to enhance the aggressiveness of breast cancer. Cancerous tissues and matched paracancerous tissues were surgically resected from 122 patients with breast cancer. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were employed to identify interaction between homeobox A5 (HOXA5) and caudal-related homeobox 2 (CDX2), as well as between CDX2 and miR-181d-5p, respectively. Human breast cancer Michigan Cancer Foundation-7 (MCF-7) cells were cocultured with CAF-derived exosomes. 5-Ethynyl-2'-deoxyuridine (EdU) assay, TUNEL staining, Transwell invasion assays, and scratch tests were carried out to evaluate MCF-7 cell functions. Nude mice bearing xenografted MCF-7 cells were injected with CAF-derived exosomes, and the tumor formation was evaluated. HOXA5 expressed at a poor level in breast cancer tissues, and its overexpression retarded MCF-7 cell proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) and facilitated its apoptosis in vitro. miR-181d-5p targets CDX2, a transcription factor binding to HOXA5 promoter. Coculture of CAFs and MCF-7 cells showed that CAFs prolonged proliferation and antagonized apoptosis of MCF-7 cells via release of exosomes. Coculture of MCF-7 cells and exosomes derived from CAFs identified miR-181d-5p as a mediator of the exosomal effects on MCF-7 cells, in part, via downregulation of CDX2 and HOXA5. CAF-derived exosomes containing miR-181d-5p promoted the tumor growth of nude mice bearing xenografted MCF-7 cells. In conclusion, exosomal miR-181d-5p plays a key role in CAF-mediated effects on tumor environment in breast cancer, likely via CDX2 and HOXA5.
Collapse
Affiliation(s)
- Hongbin Wang
- The Second Ward, Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China
| | - Hong Wei
- In-Patient Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Jingsong Wang
- The Second Ward, Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China
| | - Lin Li
- The Second Ward, Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China
| | - Anyue Chen
- The Second Ward, Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China
| | - Zhigao Li
- The Second Ward, Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China.
| |
Collapse
|
7
|
Severe head dysgenesis resulting from imbalance between anterior and posterior ontogenetic programs. Cell Death Dis 2019; 10:812. [PMID: 31649239 PMCID: PMC6813351 DOI: 10.1038/s41419-019-2040-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
Abstract
Head dysgenesis is a major cause of fetal demise and craniofacial malformation. Although mutations in genes of the head ontogenetic program have been reported, many cases remain unexplained. Head dysgenesis has also been related to trisomy or amplification of the chromosomal region overlapping the CDX2 homeobox gene, a master element of the trunk ontogenetic program. Hence, we investigated the repercussion on head morphogenesis of the imbalance between the head and trunk ontogenetic programs, by means of ectopic rostral expression of CDX2 at gastrulation. This caused severe malformations affecting the forebrain and optic structures, and also the frontonasal process associated with defects in neural crest cells colonization. These malformations are the result of the downregulation of genes of the head program together with the abnormal induction of trunk program genes. Together, these data indicate that the imbalance between the anterior and posterior ontogenetic programs in embryos is a new possible cause of head dysgenesis during human development, linked to defects in setting up anterior neuroectodermal structures.
Collapse
|
8
|
Darvishi M, Mashati P, Khosravi A. The clinical significance of CDX2 in leukemia: A new perspective for leukemia research. Leuk Res 2018; 72:45-51. [PMID: 30096576 DOI: 10.1016/j.leukres.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
CDX2 gene encodes a transcription factor involved in primary embryogenesis and hematopoietic development; however, the expression of CDX2 in adults is restricted to intestine and is not observed in blood tissues. The ectopic expression of CDX2 has been frequently observed in acute myeloid and lymphoid leukemia which in most cases is concomitant with poor prognosis. Induction of CDX2 in mice leads to hematologic complications, showing the leukemogenic origin of this gene. CDX2 plays significant role in the most critical pathways as the regulator of important transcription factors targeting cell proliferation, multi-drug resistance and survival. On the whole, the results indicate that CDX2 has the potential to be suggested as the diagnostic marker in hematologic malignancies. This review discusses the role of aberrant expression of CDX2 in the prognosis and the response to treatment in patients with different leukemia in clinical reports in the recent decades. The improvement in this regard could be of high importance in diagnosis and treatment methods.
Collapse
Affiliation(s)
- Mina Darvishi
- Department of Hematology and Blood Bank, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pargol Mashati
- Department of Hematology and Blood Bank, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Neijts R, Deschamps J. At the base of colinear Hox gene expression: cis -features and trans -factors orchestrating the initial phase of Hox cluster activation. Dev Biol 2017; 428:293-299. [DOI: 10.1016/j.ydbio.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/16/2017] [Indexed: 10/19/2022]
|
10
|
Essential roles for Cdx in murine primitive hematopoiesis. Dev Biol 2017; 422:115-124. [PMID: 28065741 DOI: 10.1016/j.ydbio.2017.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 11/24/2022]
Abstract
The Cdx transcription factors play essential roles in primitive hematopoiesis in the zebrafish where they exert their effects, in part, through regulation of hox genes. Defects in hematopoiesis have also been reported in Cdx mutant murine embryonic stem cell models, however, to date no mouse model reflecting the zebrafish Cdx mutant hematopoietic phenotype has been described. This is likely due, in part, to functional redundancy among Cdx members and the early lethality of Cdx2 null mutants. To circumvent these limitations, we used Cre-mediated conditional deletion to assess the impact of concomitant loss of Cdx1 and Cdx2 on murine primitive hematopoiesis. We found that Cdx1/Cdx2 double mutants exhibited defects in primitive hematopoiesis and yolk sac vasculature concomitant with reduced expression of several genes encoding hematopoietic transcription factors including Scl/Tal1. Chromatin immunoprecipitation analysis revealed that Scl was occupied by Cdx2 in vivo, and Cdx mutant hematopoietic yolk sac differentiation defects could be rescued by expression of exogenous Scl. These findings demonstrate critical roles for Cdx members in murine primitive hematopoiesis upstream of Scl.
Collapse
|
11
|
Neijts R, Amin S, van Rooijen C, Deschamps J. Cdx is crucial for the timing mechanism driving colinear Hox activation and defines a trunk segment in the Hox cluster topology. Dev Biol 2016; 422:146-154. [PMID: 28041967 DOI: 10.1016/j.ydbio.2016.12.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/09/2016] [Accepted: 12/27/2016] [Indexed: 11/28/2022]
Abstract
Cdx and Hox transcription factors are important regulators of axial patterning and are required for tissue generation along the vertebrate body axis. Cdx genes have been demonstrated to act upstream of Hox genes in midgestation embryos. Here, we investigate the role of Cdx transcription factors in the gradual colinear activation of the Hox clusters. We found that Hox temporally colinear expression is severely affected in epiblast stem cells derived from Cdx null embryos. We demonstrate that after initiation of 3' Hox gene transcription, Cdx activity is crucial for H3K27ac deposition and for accessibility of cis-regulatory elements around the central - or 'trunk' - Hox genes. We thereby identify a Cdx-responsive segment of HoxA, immediately 5' to the recently defined regulatory domain orchestrating initial transcription of the first Hox gene. We propose that this partition of HoxA into a Wnt-driven 3' part and the newly found Cdx-dependent middle segment of the cluster, forms a structural fundament of Hox colinearity of expression. Subsequently to initial Wnt-induced activation of 3' Hox genes, Cdx transcription factors would act as crucial effectors for activating central Hox genes, until the last gene of the cluster arrests the process.
Collapse
Affiliation(s)
- Roel Neijts
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT Utrecht, and UMC Utrecht, the Netherlands
| | - Shilu Amin
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT Utrecht, and UMC Utrecht, the Netherlands
| | - Carina van Rooijen
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT Utrecht, and UMC Utrecht, the Netherlands
| | - Jacqueline Deschamps
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT Utrecht, and UMC Utrecht, the Netherlands.
| |
Collapse
|
12
|
Jørgensen S, Coskun M, Homburg KM, Pedersen OBV, Troelsen JT. HOXB4 Gene Expression Is Regulated by CDX2 in Intestinal Epithelial Cells. PLoS One 2016; 11:e0164555. [PMID: 27755609 PMCID: PMC5068786 DOI: 10.1371/journal.pone.0164555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/06/2016] [Indexed: 01/07/2023] Open
Abstract
The mammalian Caudal-related homeobox transcription factor 2 (CDX2) plays a key role in the homeobox regulatory network and is essential in regulating the expression of several homeobox (HOX) genes during embryonic development, particularly in the gut. Genome-wide CDX2 chromatin immunoprecipitation analysis and expression data from Caco2 cells also suggests a role for CDX2 in the regulation of HOXB4 gene expression in the intestinal epithelium. Thus, the aim of this study was to investigate whether HOXB4 gene expression is regulated by CDX2 in the intestinal epithelium. We demonstrated binding of CDX2 to four different CDX2 binding sites in an enhancer region located upstream of the HOXB4 transcription start site. Mutations in the CDX2 binding sites reduced HOXB4 gene activity, and knock down of endogenous CDX2 expression by shRNA reduced HOXB4 gene expression. This is the first report demonstrating the CDX2 regulation of HOXB4 gene expression in the developed intestinal epithelium, indicating a possible role for HOXB4 in intestinal homeostasis.
Collapse
Affiliation(s)
- Steffen Jørgensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Clinical Immunology, Naestved Hospital, Naestved, Region Zealand, Denmark
| | - Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Ole B. V. Pedersen
- Department of Clinical Immunology, Naestved Hospital, Naestved, Region Zealand, Denmark
| | - Jesper T. Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- * E-mail:
| |
Collapse
|
13
|
Jeannotte L, Gotti F, Landry-Truchon K. Hoxa5: A Key Player in Development and Disease. J Dev Biol 2016; 4:E13. [PMID: 29615582 PMCID: PMC5831783 DOI: 10.3390/jdb4020013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 12/28/2022] Open
Abstract
A critical position in the developmental hierarchy is occupied by the Hox genes, which encode transcription factors. Hox genes are crucial in specifying regional identity along the embryonic axes and in regulating morphogenesis. In mouse, targeted mutations of Hox genes cause skeletal transformations and organ defects that can impair viability. Here, we present the current knowledge about the Hoxa5 gene, a paradigm for the function and the regulation of Hox genes. The phenotypic survey of Hoxa5-/- mice has unveiled its critical role in the regional specification of the skeleton and in organogenesis. Most Hoxa5-/- mice die at birth from respiratory distress due to tracheal and lung dysmorphogenesis and impaired diaphragm innervation. The severity of the phenotype establishes that Hoxa5 plays a predominant role in lung organogenesis versus other Hox genes. Hoxa5 also governs digestive tract morphogenesis, thyroid and mammary glands development, and ovary homeostasis. Deregulated Hoxa5 expression is reported in cancers, indicating Hoxa5 involvement in tumor predisposition and progression. The dynamic Hoxa5 expression profile is under the transcriptional control of multiple cis-acting sequences and trans-acting regulators. It is also modulated by epigenetic mechanisms, implicating chromatin modifications and microRNAs. Finally, lncRNAs originating from alternative splicing and distal promoters encompass the Hoxa5 locus.
Collapse
Affiliation(s)
- Lucie Jeannotte
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| | - Florian Gotti
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| | - Kim Landry-Truchon
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| |
Collapse
|
14
|
Hayward AG, Joshi P, Skromne I. Spatiotemporal analysis of zebrafishhoxgene regulation by Cdx4. Dev Dyn 2015; 244:1564-73. [DOI: 10.1002/dvdy.24343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/07/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Piyush Joshi
- Department of Biology; University of Miami; Coral Gables Florida
| | - Isaac Skromne
- Department of Biology; University of Miami; Coral Gables Florida
| |
Collapse
|
15
|
Kong KA, Lee JY, Oh JH, Lee Y, Kim MH. Akt1 mediates the posterior Hoxc gene expression through epigenetic modifications in mouse embryonic fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:793-9. [PMID: 24955524 DOI: 10.1016/j.bbagrm.2014.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 05/09/2014] [Accepted: 06/11/2014] [Indexed: 12/20/2022]
Abstract
The evolutionarily conserved Hox genes are organized in clusters and expressed colinearly to specify body patterning during embryonic development. Previously, Akt1 has been identified as a putative Hox gene regulator through in silico analysis. Substantial upregulation of consecutive 5' Hoxc genes has been observed when Akt1 is absent in mouse embryonic fibroblast (MEF) cells. In this study, we provide evidence that Akt1 regulates the 5' Hoxc gene expression by epigenetic modifications. Enrichment of histone H3K9 acetylation and a low level of the H3K27me3 mark were detected at the posterior 5' Hoxc loci when Akt1 is absent. A histone deacetylase (HDAC) inhibitor de-repressed 5' Hoxc gene expression when Akt1 is present, and a DNA demethylating reagent synergistically upregulated HDAC-induced 5' Hoxc gene expression. A knockdown study revealed that Hdac6 is mediated in the Hoxc12 repression through direct binding to the transcription start site (TSS) in the presence of Akt1. Co-immunoprecipitation analysis revealed that endogenous Akt1 directly interacted with Hdac6. Furthermore, exogenous Akt1 was enriched at the promoter region of the posterior Hoxc genes such as Hoxc11 and Hoxc12, not the Akt1-independent Hoxc5 and Hoxd10 loci. The regulation of the H3K27me3 mark by Ezh2 and Kdm6b at the 5' Hoxc gene promoter turned out to be Akt1 dependent. Taken together, these results suggest that Akt1 mediates the posterior 5' Hoxc gene expression through epigenetic modification such as histone methylation and acetylation, and partly through a direct binding to the promoter region of the 5' Hoxc genes and/or Hdac6 in mouse embryonic fibroblast cells.
Collapse
Affiliation(s)
- Kyoung-Ah Kong
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Oh
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youra Lee
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Bérubé-Simard FA, Prudhomme C, Jeannotte L. YY1 acts as a transcriptional activator of Hoxa5 gene expression in mouse organogenesis. PLoS One 2014; 9:e93989. [PMID: 24705708 PMCID: PMC3976385 DOI: 10.1371/journal.pone.0093989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/11/2014] [Indexed: 12/15/2022] Open
Abstract
The Hox gene family encodes homeodomain-containing transcriptional regulators that confer positional information to axial and paraxial tissues in the developing embryo. The dynamic Hox gene expression pattern requires mechanisms that differentially control Hox transcription in a precise spatio-temporal fashion. This implies an integrated regulation of neighbouring Hox genes achieved through the sharing and the selective use of defined enhancer sequences. The Hoxa5 gene plays a crucial role in lung and gut organogenesis. To position Hoxa5 in the regulatory hierarchy that drives organ morphogenesis, we searched for cis-acting regulatory sequences and associated trans-acting factors required for Hoxa5 expression in the developing lung and gut. Using mouse transgenesis, we identified two DNA regions included in a 1.5-kb XbaI-XbaI fragment located in the Hoxa4-Hoxa5 intergenic domain and known to control Hoxa4 organ expression. The multifunctional YY1 transcription factor binds the two regulatory sequences in vitro and in vivo. Moreover, the mesenchymal deletion of the Yy1 gene function in mice results in a Hoxa5-like lung phenotype with decreased Hoxa5 and Hoxa4 gene expression. Thus, YY1 acts as a positive regulator of Hoxa5 expression in the developing lung and gut. Our data also support a role for YY1 in the coordinated expression of Hox genes for correct organogenesis.
Collapse
Affiliation(s)
- Félix-Antoine Bérubé-Simard
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l′Université Laval, Québec, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| | - Christelle Prudhomme
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l′Université Laval, Québec, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| | - Lucie Jeannotte
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l′Université Laval, Québec, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| |
Collapse
|
17
|
Akt1 as a putative regulator of Hox genes. Gene 2012; 513:287-91. [PMID: 23154063 DOI: 10.1016/j.gene.2012.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/22/2012] [Accepted: 10/20/2012] [Indexed: 02/06/2023]
Abstract
In mammals, precise spatiotemporal expressions of Hox genes control the main body axis during embryogenesis. However, the mechanism by which Hox genes are regulated is poorly understood. To discover the putative regulator of Hox genes, in silico analyses were performed using GEO profiles, and Akt1 emerged as a candidate regulator of Hox genes in E13.5 MEFs. The results of the RT-PCR showed that 5' Hoxc genes, including ncRNA were upregulated in Akt1 null MEF. Combined bisulfite restriction analysis (COBRA) and bisulfite sequencing showed that the CpG island of a 5' Hoxc gene was hypomethylated in Akt1 null cells. These results indicate that Hox expression could be controlled by the function of Akt1 through epigenetic modification such as DNA methylation.
Collapse
|
18
|
Lalevée S, Anno YN, Chatagnon A, Samarut E, Poch O, Laudet V, Benoit G, Lecompte O, Rochette-Egly C. Genome-wide in silico identification of new conserved and functional retinoic acid receptor response elements (direct repeats separated by 5 bp). J Biol Chem 2011; 286:33322-34. [PMID: 21803772 PMCID: PMC3190930 DOI: 10.1074/jbc.m111.263681] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 07/28/2011] [Indexed: 11/06/2022] Open
Abstract
The nuclear retinoic acid receptors interact with specific retinoic acid (RA) response elements (RAREs) located in the promoters of target genes to orchestrate transcriptional networks involved in cell growth and differentiation. Here we describe a genome-wide in silico analysis of consensus DR5 RAREs based on the recurrent RGKTSA motifs. More than 15,000 DR5 RAREs were identified and analyzed for their localization and conservation in vertebrates. We selected 138 elements located ±10 kb from transcription start sites and gene ends and conserved across more than 6 species. We also validated the functionality of these RAREs by analyzing their ability to bind retinoic acid receptors (ChIP sequencing experiments) as well as the RA regulation of the corresponding genes (RNA sequencing and quantitative real time PCR experiments). Such a strategy provided a global set of high confidence RAREs expanding the known experimentally validated RAREs repertoire associated to a series of new genes involved in cell signaling, development, and tumor suppression. Finally, the present work provides a valuable knowledge base for the analysis of a wider range of RA-target genes in different species.
Collapse
Affiliation(s)
- Sébastien Lalevée
- From the Department of Functional Genomics and Cancer and
- CNRS UMR5534, F-69622 Villeurbanne
| | - Yannick N. Anno
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596 and CNRS UMR7104, Université de Strasbourg, F_67404 Illkirch Cedex
| | - Amandine Chatagnon
- CNRS UMR5534, F-69622 Villeurbanne
- Université Lyon 1, UMR5534, F-69622 Villeurbanne, and
| | - Eric Samarut
- From the Department of Functional Genomics and Cancer and
| | - Olivier Poch
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596 and CNRS UMR7104, Université de Strasbourg, F_67404 Illkirch Cedex
| | - Vincent Laudet
- Institut de Génomique Fonctionelle de Lyon, UMR 5242, Institut National de la Recherche Agronomique, Université de Lyon, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Gerard Benoit
- CNRS UMR5534, F-69622 Villeurbanne
- Université Lyon 1, UMR5534, F-69622 Villeurbanne, and
| | - Odile Lecompte
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596 and CNRS UMR7104, Université de Strasbourg, F_67404 Illkirch Cedex
| | | |
Collapse
|
19
|
Savory JGA, Mansfield M, Rijli FM, Lohnes D. Cdx mediates neural tube closure through transcriptional regulation of the planar cell polarity gene Ptk7. Development 2011; 138:1361-70. [DOI: 10.1242/dev.056622] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The vertebrate Cdx genes (Cdx1, Cdx2 and Cdx4) encode homeodomain transcription factors with well-established roles in anteroposterior patterning. To circumvent the peri-implantation lethality inherent to Cdx2 loss of function, we previously used the Cre-loxP system to ablate Cdx2 at post-implantation stages and confirmed a crucial role for Cdx2 function in events related to axial extension. As considerable data suggest that the Cdx family members functionally overlap, we extended this analysis to assess the consequence of concomitant loss of both Cdx1 and Cdx2. Here, we report that Cdx1-Cdx2 double mutants exhibit a severely truncated anteroposterior axis. In addition, these double mutants exhibit fused somites, a widened mediolateral axis and craniorachischisis, a severe form of neural tube defect in which early neurulation fails and the neural tube remains open. These defects are typically associated with deficits in planar cell polarity (PCP) signaling in vertebrates. Consistent with this, we found that expression of Ptk7, which encodes a gene involved in PCP, is markedly reduced in Cdx1-Cdx2 double mutants, and is a candidate Cdx target. Genetic interaction between Cdx mutants and a mutant allele of Scrib, a gene involved in PCP signaling, is suggestive of a role for Cdx signaling in the PCP pathway. These findings illustrate a novel and pivotal role for Cdx function upstream of Ptk7 and neural tube closure in vertebrates.
Collapse
Affiliation(s)
- Joanne G. A. Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Melissa Mansfield
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
20
|
Sturgeon K, Kaneko T, Biemann M, Gauthier A, Chawengsaksophak K, Cordes SP. Cdx1 refines positional identity of the vertebrate hindbrain by directly repressing Mafb expression. Development 2010; 138:65-74. [PMID: 21098558 DOI: 10.1242/dev.058727] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An interplay of transcription factors interprets signalling pathways to define anteroposterior positions along the vertebrate axis. In the hindbrain, these transcription factors prompt the position-appropriate appearance of seven to eight segmental structures, known as rhombomeres (r1-r8). The evolutionarily conserved Cdx caudal-type homeodomain transcription factors help specify the vertebrate trunk and tail but have not been shown to directly regulate hindbrain patterning genes. Mafb (Kreisler, Krml1, valentino), a basic domain leucine zipper transcription factor, is required for development of r5 and r6 and is the first gene to show restricted expression within these two segments. The homeodomain protein vHnf1 (Hnf1b) directly activates Mafb expression. vHnf1 and Mafb share an anterior expression limit at the r4/r5 boundary but vHnf1 expression extends beyond the posterior limit of Mafb and, therefore, cannot establish the posterior Mafb expression boundary. Upon identifying regulatory sequences responsible for posterior Mafb repression, we have used in situ hybridization, immunofluorescence and chromatin immunoprecipitation (ChIP) analyses to determine that Cdx1 directly inhibits early Mafb expression in the neural tube posterior of the r6/r7 boundary, which is the anteriormost boundary of Cdx1 expression in the hindbrain. Cdx1 dependent repression of Mafb is transient. After the 10-somite stage, another mechanism acts to restrict Mafb expression in its normal r5 and r6 domain, even in the absence of Cdx1. Our findings identify Mafb as one of the earliest direct targets of Cdx1 and show that Cdx1 plays a direct role in early hindbrain patterning. Thus, just as Cdx2 and Cdx4 govern the trunk-to-tail transition, Cdx1 may regulate the hindbrain-to-spinal cord transition.
Collapse
Affiliation(s)
- Kendra Sturgeon
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Potvin É, Beuret L, Cadrin-Girard JF, Carter M, Roy S, Tremblay M, Charron J. Cooperative action of multiple cis-acting elements is required for N-myc expression in branchial arches: specific contribution of GATA3. Mol Cell Biol 2010; 30:5348-63. [PMID: 20855530 PMCID: PMC2976382 DOI: 10.1128/mcb.00353-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/02/2009] [Accepted: 08/07/2010] [Indexed: 01/05/2023] Open
Abstract
The precise expression of the N-myc proto-oncogene is essential for normal mammalian development, whereas altered N-myc gene regulation is known to be a determinant factor in tumor formation. Using transgenic mouse embryos, we show that N-myc sequences from kb -8.7 to kb +7.2 are sufficient to reproduce the N-myc embryonic expression profile in developing branchial arches and limb buds. These sequences encompass several regulatory elements dispersed throughout the N-myc locus, including an upstream limb bud enhancer, a downstream somite enhancer, a branchial arch enhancer in the second intron, and a negative regulatory element in the first intron. N-myc expression in the limb buds is under the dominant control of the limb bud enhancer. The expression in the branchial arches necessitates the interplay of three regulatory domains. The branchial arch enhancer cooperates with the somite enhancer region to prevent an inhibitory activity contained in the first intron. The characterization of the branchial arch enhancer has revealed a specific role of the transcription factor GATA3 in the regulation of N-myc expression. Together, these data demonstrate that correct N-myc developmental expression is achieved via cooperation of multiple positive and negative regulatory elements.
Collapse
Affiliation(s)
- Éric Potvin
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Laurent Beuret
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Jean-François Cadrin-Girard
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Marcelle Carter
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Sophie Roy
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Michel Tremblay
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Jean Charron
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| |
Collapse
|
22
|
|
23
|
Coulombe Y, Lemieux M, Moreau J, Aubin J, Joksimovic M, Bérubé-Simard FA, Tabariès S, Boucherat O, Guillou F, Larochelle C, Tuggle CK, Jeannotte L. Multiple promoters and alternative splicing: Hoxa5 transcriptional complexity in the mouse embryo. PLoS One 2010; 5:e10600. [PMID: 20485555 PMCID: PMC2868907 DOI: 10.1371/journal.pone.0010600] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/13/2010] [Indexed: 12/28/2022] Open
Abstract
Background The genomic organization of Hox clusters is fundamental for the precise spatio-temporal regulation and the function of each Hox gene, and hence for correct embryo patterning. Multiple overlapping transcriptional units exist at the Hoxa5 locus reflecting the complexity of Hox clustering: a major form of 1.8 kb corresponding to the two characterized exons of the gene and polyadenylated RNA species of 5.0, 9.5 and 11.0 kb. This transcriptional intricacy raises the question of the involvement of the larger transcripts in Hox function and regulation. Methodology/Principal Findings We have undertaken the molecular characterization of the Hoxa5 larger transcripts. They initiate from two highly conserved distal promoters, one corresponding to the putative Hoxa6 promoter, and a second located nearby Hoxa7. Alternative splicing is also involved in the generation of the different transcripts. No functional polyadenylation sequence was found at the Hoxa6 locus and all larger transcripts use the polyadenylation site of the Hoxa5 gene. Some larger transcripts are potential Hoxa6/Hoxa5 bicistronic units. However, even though all transcripts could produce the genuine 270 a.a. HOXA5 protein, only the 1.8 kb form is translated into the protein, indicative of its essential role in Hoxa5 gene function. The Hoxa6 mutation disrupts the larger transcripts without major phenotypic impact on axial specification in their expression domain. However, Hoxa5-like skeletal anomalies are observed in Hoxa6 mutants and these defects can be explained by the loss of expression of the 1.8 kb transcript. Our data raise the possibility that the larger transcripts may be involved in Hoxa5 gene regulation. Significance Our observation that the Hoxa5 larger transcripts possess a developmentally-regulated expression combined to the increasing sum of data on the role of long noncoding RNAs in transcriptional regulation suggest that the Hoxa5 larger transcripts may participate in the control of Hox gene expression.
Collapse
Affiliation(s)
- Yan Coulombe
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mallo M, Wellik DM, Deschamps J. Hox genes and regional patterning of the vertebrate body plan. Dev Biol 2010; 344:7-15. [PMID: 20435029 DOI: 10.1016/j.ydbio.2010.04.024] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/09/2010] [Accepted: 04/22/2010] [Indexed: 12/18/2022]
Abstract
Several decades have passed since the discovery of Hox genes in the fruit fly Drosophila melanogaster. Their unique ability to regulate morphologies along the anteroposterior (AP) axis (Lewis, 1978) earned them well-deserved attention as important regulators of embryonic development. Phenotypes due to loss- and gain-of-function mutations in mouse Hox genes have revealed that the spatio-temporally controlled expression of these genes is critical for the correct morphogenesis of embryonic axial structures. Here, we review recent novel insight into the modalities of Hox protein function in imparting specific identity to anatomical regions of the vertebral column, and in controlling the emergence of these tissues concomitantly with providing them with axial identity. The control of these functions must have been intimately linked to the shaping of the body plan during evolution.
Collapse
Affiliation(s)
- Moises Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | | | |
Collapse
|
25
|
Savory JGA, Bouchard N, Pierre V, Rijli FM, De Repentigny Y, Kothary R, Lohnes D. Cdx2 regulation of posterior development through non-Hox targets. Development 2009; 136:4099-110. [PMID: 19906845 DOI: 10.1242/dev.041582] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The homeodomain transcription factors Cdx1, Cdx2 and Cdx4 play essential roles in anteroposterior vertebral patterning through regulation of Hox gene expression. Cdx2 is also expressed in the trophectoderm commencing at E3.5 and plays an essential role in implantation, thus precluding assessment of the cognate-null phenotype at later stages. Cdx2 homozygous null embryos generated by tetraploid aggregation exhibit an axial truncation indicative of a role for Cdx2 in elaborating the posterior embryo through unknown mechanisms. To better understand such roles, we developed a conditional Cdx2 floxed allele in mice and effected temporal inactivation at post-implantation stages using a tamoxifen-inducible Cre. This approach yielded embryos that were devoid of detectable Cdx2 protein and exhibited the axial truncation phenotype predicted from previous studies. This phenotype was associated with attenuated expression of genes encoding several key players in axial elongation, including Fgf8, T, Wnt3a and Cyp26a1, and we present data suggesting that T, Wnt3a and Cyp26a1 are direct Cdx2 targets. We propose a model wherein Cdx2 functions as an integrator of caudalizing information by coordinating axial elongation and somite patterning through Hox-independent and -dependent pathways, respectively.
Collapse
Affiliation(s)
- Joanne G A Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos. Dev Cell 2009; 17:516-26. [PMID: 19853565 DOI: 10.1016/j.devcel.2009.08.010] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 07/16/2009] [Accepted: 08/21/2009] [Indexed: 02/08/2023]
Abstract
Hox and Cdx transcription factors regulate embryonic positional identities. Cdx mutant mice display posterior body truncations of the axial skeleton, neuraxis, and caudal urorectal structures. We show that trunk Hox genes stimulate axial extension, as they can largely rescue these Cdx mutant phenotypes. Conversely, posterior (paralog group 13) Hox genes can prematurely arrest posterior axial growth when precociously expressed. Our data suggest that the transition from trunk to tail Hox gene expression successively regulates the construction and termination of axial structures in the mouse embryo. Thus, Hox genes seem to differentially orchestrate posterior expansion of embryonic tissues during axial morphogenesis as an integral part of their function in specifying head-to-tail identity. In addition, we present evidence that Cdx and Hox transcription factors exert these effects by controlling Wnt signaling. Concomitant regulation of Cyp26a1 expression, restraining retinoic acid signaling away from the posterior growth zone, may likewise play a role in timing the trunk-tail transition.
Collapse
|
27
|
Savory JG, Pilon N, Grainger S, Sylvestre JR, Béland M, Houle M, Oh K, Lohnes D. Cdx1 and Cdx2 are functionally equivalent in vertebral patterning. Dev Biol 2009; 330:114-22. [DOI: 10.1016/j.ydbio.2009.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 03/16/2009] [Accepted: 03/16/2009] [Indexed: 11/27/2022]
|
28
|
Boucherat O, Guillou F, Aubin J, Jeannotte L. [Hoxa5: a master gene with multifaceted roles]. Med Sci (Paris) 2009; 25:77-82. [PMID: 19154698 DOI: 10.1051/medsci/200925177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Hox gene family occupies a central position in the control of body patterning by regulating the transcription of downstream effectors that, in turn, direct the morphogenetic events leading to the complex body forms along the axes. Analysis of Hox mutant mouse lines has revealed a panoply of phenotypes indicative of the broad range of Hox genes action throughout embryonic and postnatal life. Although Hox genes have been the subject of extensive research in the last two decades, the comprehension of the mechanisms involved in their regulation and function still remains elusive. Here, we present an overview of our current knowledge about one Hox gene family member, Hoxa5. The phenotypic survey of Hoxa5 mutant mice has unveiled the crucial role of this gene in regulating morphogenesis and specifying regional identity along the embryo. A majority of Hoxa5 mutant pups die at birth from defective respiratory tract. Surviving mutants present deficient alveolar septation revealing the importance of Hoxa5 during formation and maturation of the lung. Hoxa5 also participates in the morphogenesis of the digestive tract as well as that of the thyroid and mammary glands. Hoxa5 expression is restricted to the mesenchyme, and its action appears to be mediated through the control of mesenchymal-epithelial interactions during organogenesis. The implication of Hoxa5 in tumorigenesis has also been documented. In breast cancer, Hoxa5 down-regulation may impact on p53 gene expression, contributing to the oncogenic process. In contrast, the loss of Hoxa5 function limits leukaemia associated with specific chromosomal translocations. Thus, inappropriate Hoxa5 gene expression may disrupt normal growth and differentiation programs causing neoplasia. Hox gene function is intimately linked to its correct expression. Regulation of Hoxa5 expression requires multiple cis-acting regions, some encompassing coding sequences from neighboring genes. Moreover, it is complicated by the presence of several transcription units. Together these data enlighten the importance of Hox cluster organization in Hoxa5 function.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, 9, rue McMahon, Québec G1R 2J6, Canada
| | | | | | | |
Collapse
|
29
|
Abstract
Cdx and Hox gene families descend from the same ProtoHox cluster, already present in the common ancestors of bilaterians and cnidarians, and thought to act by providing anteroposterior (A-P) positional identity to axial tissues in all bilaterians. Mouse Cdx and Hox genes still exhibit common features in their early expression and function. The initiation and early shaping of Hox and Cdx transcriptional domains in mouse embryos are very similar, in keeping with their common involvement in conveying A-P information to the nascent tissues during embryonic axial elongation. Considerations of the impact on axial patterning of the early expression phase of these genes that correlates with the temporally collinear expression of 3'-5'Hox genes suggest that it is concerned with the acquisition of A-P information by the three germ layers as the axis extends. This early A-P information acquired by all cells emerging from the primitive streak or tailbud and their neighbors in the caudal neural plate gets further modulated by the second phase of gene expression occurring later as the tissues mature and differentiate along the growing axis. We discuss the possibility that regulatory phase 1, common to all Cdx and Hox genes, is inherent to the concerted mechanism sequentially turning on 3'-5'Hox genes at early stages, and keeping expression of the initiated genes subsequently in the new materials added posteriorly at the axis extends. The posterior Hox gene expression domain would be subsequently complemented by Hox regulatory phase 2, consisting in a variety of gene-specific, region-specific, and/or tissue-specific gene expression controls. We also touch on the unanswered question whether vertebrate Cdx gene expression delivers A-P positional information in its own right, as Caudal does in Drosophila, or whether it does so exclusively by upregulating Hox genes.
Collapse
Affiliation(s)
- Teddy Young
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan, Utrecht, The Netherlands
| | | |
Collapse
|
30
|
Gaunt SJ, Drage D, Trubshaw RC. Increased Cdx protein dose effects upon axial patterning in transgenic lines of mice. Development 2008; 135:2511-20. [PMID: 18579683 DOI: 10.1242/dev.015909] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the link between Cdx protein concentration and axial patterning in embryos, we made lines of mice OE1, OE2 and OE4 that overexpress each of the Cdx genes Cdx1, Cdx2 and Cdx4, respectively. The lines carry Cdx transgenes under the transcriptional control of their own promoter/enhancer elements. Transgenic embryos show Cdx transcription at 8.5 to 8.7 days within normal spatial domains for Cdx expression (primitive streak/tailbud), yet, overall, they contain elevated levels of Cdx proteins. Increased doses of Cdx proteins result in homeotic shifts in vertebral types along most of the vertebral column, with transformations being most obvious within the cervical region. Most of the shifts are anterior-to-posterior transformations and the anterior limits of these are commonly skull/vertebra 1 (v1) for OE1, v1/v2 for OE2 and v7 for OE4. OE embryos display anterior shifts in the expression of a Hoxa7/lacZ reporter within neural, paraxial and lateral plate mesoderm tissues. Hoxa7/lacZ expression commences at the normal time in OE1 and OE4 embryos. OE2 embryos display a forward shift in the gradient of Cdx2 protein along the axis, suggesting that a Cdx morphogen gradient model could account, at least in part, for the homeotic shifts in vertebral types. OE mice display additional defects: forelimb deficiencies in OE1, multiple tail axes, vertebral mis-alignments and axial truncations in OE2.
Collapse
Affiliation(s)
- Stephen J Gaunt
- Department of Development and Genetics, The Babraham Institute, Babraham, Cambridge, UK.
| | | | | |
Collapse
|
31
|
Brody T, Rasband W, Baler K, Kuzin A, Kundu M, Odenwald WF. cis-Decoder discovers constellations of conserved DNA sequences shared among tissue-specific enhancers. Genome Biol 2007; 8:R75. [PMID: 17490485 PMCID: PMC1929141 DOI: 10.1186/gb-2007-8-5-r75] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/18/2006] [Accepted: 05/09/2007] [Indexed: 12/01/2022] Open
Abstract
: The use of cis-Decoder, a new tool for discovery of conserved sequence elements that are shared between similarly regulating enhancers, suggests that enhancers use overlapping repertoires of highly conserved core elements. A systematic approach is described for analysis of evolutionarily conserved cis-regulatory DNA using cis-Decoder, a tool for discovery of conserved sequence elements that are shared between similarly regulated enhancers. Analysis of 2,086 conserved sequence blocks (CSBs), identified from 135 characterized enhancers, reveals most CSBs consist of shorter overlapping/adjacent elements that are either enhancer type-specific or common to enhancers with divergent regulatory behaviors. Our findings suggest that enhancers employ overlapping repertoires of highly conserved core elements.
Collapse
Affiliation(s)
- Thomas Brody
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Wayne Rasband
- Office of Scientific Director, IRP, NIMH, NIH, Bethesda, MD, 20892, USA
| | - Kevin Baler
- Office of Scientific Director, IRP, NIMH, NIH, Bethesda, MD, 20892, USA
| | - Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Mukta Kundu
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Ward F Odenwald
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
32
|
Bengani H, Ganapathi M, Singh GP, Brahmachari V. Mining of putative cis-acting elements for chromatin mediated regulation of Hox genes in mammals by in-silico analysis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:384-95. [PMID: 17358016 DOI: 10.1002/jez.b.21162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The remarkable conservation in developmental strategies across phyla is well reflected in the conservation of the homeotic gene complexes responsible for establishing the body plan in embryonic development. On the other hand, changes in the strategy of transcription regulation are believed to form one of the major factors in the evolution of developmental mechanisms and phenotypic evolution of species. Apart from transcription regulation by gene specific transcription factors, the role of regulators mediating modifications of chromatin proteins, especially of HOX gene clusters in Drosophila is well documented. By comparative genomics we have identified novel motifs conserved in mouse, chimpanzee and human in the noncoding upstream/intronic sequences of Hox genes by in silico analysis. These motifs lack the binding sites for known transcription factors and are significantly over represented in the target genes of one of the core components of Polycomb Repressive Complex namely Supressor of zeste 12 (SUZ12) in human embryonic cells reported by Lee et al. [2006a. Cell 125:301-313]. Therefore, we predict that they could be the sites of interaction of chromatin modifying complexes for epigenetic regulation.
Collapse
Affiliation(s)
- Hemant Bengani
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | | | | | | |
Collapse
|
33
|
Abstract
Analysis of the Hoxa5(-/-) mutants has revealed the critical role of Hoxa5 in survival, specification of axial identity, and ontogeny of organs, including the respiratory tract. The presence of the selection cassette in the original Hoxa5(-/-) mutation may interfere with the interpretation of the phenotypes. To circumvent this aspect and to bypass the lethality of the Hoxa5 mutation, we have designed a conditional approach and generated Hoxa5 allelic variants. The conditional allele (Hoxa5(floxed)) behaves as a wild-type allele. In contrast, both the Hoxa5(Delta) and the Hoxa5(floxneo) alleles are characterized by the loss of the functional transcript and protein, the lethality due to lung defects and the skeletal homeotic transformations similar to those of the Hoxa5(-/-) mutants. Analysis of neighboring Hox gene expression patterns in the Hoxa5 mutants produced further confirmed that the Hoxa5 allelic variants are true null alleles.
Collapse
Affiliation(s)
- Sébastien Tabariès
- Centre de Recherche en Cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| | | | | | | |
Collapse
|
34
|
Scholl C, Bansal D, Döhner K, Eiwen K, Huntly BJ, Lee BH, Rücker FG, Schlenk RF, Bullinger L, Döhner H, Gilliland DG, Fröhling S. The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. J Clin Invest 2007; 117:1037-48. [PMID: 17347684 PMCID: PMC1810574 DOI: 10.1172/jci30182] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 01/12/2007] [Indexed: 12/21/2022] Open
Abstract
The homeobox transcription factor CDX2 plays an important role in embryonic development and regulates the proliferation and differentiation of intestinal epithelial cells in the adult. We have found that CDX2 is expressed in leukemic cells of 90% of patients with acute myeloid leukemia (AML) but not in hematopoietic stem and progenitor cells derived from normal individuals. Stable knockdown of CDX2 expression by RNA interference inhibited the proliferation of various human AML cell lines and strongly reduced their clonogenic potential in vitro. Primary murine hematopoietic progenitor cells transduced with Cdx2 acquired serial replating activity, were able to be continuously propagated in liquid culture, generated fully penetrant and transplantable AML in BM transplant recipients, and displayed dysregulated expression of Hox family members in vitro and in vivo. These results demonstrate that aberrant expression of the developmental regulatory gene CDX2 in the adult hematopoietic compartment is a frequent event in the pathogenesis of AML; suggest a role for CDX2 as part of a common effector pathway that promotes the proliferative capacity and self-renewal potential of myeloid progenitor cells; and support the hypothesis that CDX2 is responsible, in part, for the altered HOX gene expression that is observed in most cases of AML.
Collapse
Affiliation(s)
- Claudia Scholl
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Dimple Bansal
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Konstanze Döhner
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Karina Eiwen
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Brian J.P. Huntly
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Benjamin H. Lee
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Frank G. Rücker
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Richard F. Schlenk
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Lars Bullinger
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - D. Gary Gilliland
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Stefan Fröhling
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
35
|
Yan J, Chen YX, Desmond A, Silva A, Yang Y, Wang H, Hua X. Cdx4 and menin co-regulate Hoxa9 expression in hematopoietic cells. PLoS One 2006; 1:e47. [PMID: 17183676 PMCID: PMC1762371 DOI: 10.1371/journal.pone.0000047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 10/10/2006] [Indexed: 11/18/2022] Open
Abstract
Background Transcription factor Cdx4 and transcriptional coregulator menin are essential for Hoxa9 expression and normal hematopoiesis. However, the precise mechanism underlying Hoxa9 regulation is not clear. Methods and Findings Here, we show that the expression level of Hoxa9 is correlated with the location of increased trimethylated histone 3 lysine 4 (H3K4M3). The active and repressive histone modifications co-exist along the Hoxa9 regulatory region. We further demonstrate that both Cdx4 and menin bind to the same regulatory region at the Hoxa9 locus in vivo, and co-activate the reporter gene driven by the Hoxa9 cis-elements that contain Cdx4 binding sites. Ablation of menin abrogates Cdx4 access to the chromatin target and significantly reduces both active and repressive histone H3 modifications in the Hoxa9 locus. Conclusion These results suggest a functional link among Cdx4, menin and histone modifications in Hoxa9 regulation in hematopoietic cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xianxin Hua
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|