1
|
Runa F, Ortiz-Soto G, de Barros NR, Kelber JA. Targeting SMAD-Dependent Signaling: Considerations in Epithelial and Mesenchymal Solid Tumors. Pharmaceuticals (Basel) 2024; 17:326. [PMID: 38543112 PMCID: PMC10975212 DOI: 10.3390/ph17030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
SMADs are the canonical intracellular effector proteins of the TGF-β (transforming growth factor-β). SMADs translocate from plasma membrane receptors to the nucleus regulated by many SMAD-interacting proteins through phosphorylation and other post-translational modifications that govern their nucleocytoplasmic shuttling and subsequent transcriptional activity. The signaling pathway of TGF-β/SMAD exhibits both tumor-suppressing and tumor-promoting phenotypes in epithelial-derived solid tumors. Collectively, the pleiotropic nature of TGF-β/SMAD signaling presents significant challenges for the development of effective cancer therapies. Here, we review preclinical studies that evaluate the efficacy of inhibitors targeting major SMAD-regulating and/or -interacting proteins, particularly enzymes that may play important roles in epithelial or mesenchymal compartments within solid tumors.
Collapse
Affiliation(s)
- Farhana Runa
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | | | | | - Jonathan A Kelber
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
- Department of Biology, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
2
|
Moorhouse J, Val N, Shahriari S, Nelson M, Ashby R, Ghildyal R. Rhinovirus protease cleavage of nucleoporins: perspective on implications for airway remodeling. Front Microbiol 2024; 14:1321531. [PMID: 38249483 PMCID: PMC10797083 DOI: 10.3389/fmicb.2023.1321531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Human Rhinoviruses (RV) are a major cause of common colds and infections in early childhood and can lead to subsequent development of asthma via an as yet unknown mechanism. Asthma is a chronic inflammatory pulmonary disease characterized by significant airway remodeling. A key component of airway remodeling is the transdifferentiation of airway epithelial and fibroblast cells into cells with a more contractile phenotype. Interestingly, transforming growth factor-beta (TGF-β), a well characterized inducer of transdifferentiation, is significantly higher in airways of asthmatics compared to non-asthmatics. RV infection induces TGF-β signaling, at the same time nucleoporins (Nups), including Nup153, are cleaved by RV proteases disrupting nucleocytoplasmic transport. As Nup153 regulates nuclear export of SMAD2, a key intermediate in the TGF-β transdifferentiation pathway, its loss of function would result in nuclear retention of SMAD2 and dysregulated TGF-β signaling. We hypothesize that RV infection leads to increased nuclear SMAD2, resulting in sustained TGF-β induced gene expression, priming the airway for subsequent development of asthma. Our hypothesis brings together disparate studies on RV, asthma and Nup153 with the aim to prompt new research into the role of RV infection in development of asthma.
Collapse
Affiliation(s)
| | | | | | | | | | - Reena Ghildyal
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
3
|
Chen L, Wang Y, Lin J, Song Z, Wang Q, Zhao W, Wang Y, Xiu X, Deng Y, Li X, Li Q, Wang X, Li J, Liu X, Liu K, Zhou J, Li K, Liu Y, Liao S, Deng Q, Xu C, Sun Q, Wu S, Zhang K, Guan MX, Zhou T, Sun F, Cai X, Huang C, Shan G. Exportin 4 depletion leads to nuclear accumulation of a subset of circular RNAs. Nat Commun 2022; 13:5769. [PMID: 36182935 PMCID: PMC9526749 DOI: 10.1038/s41467-022-33356-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/09/2022] [Indexed: 12/19/2022] Open
Abstract
Numerous RNAs are exported from the nucleus, abnormalities of which lead to cellular complications and diseases. How thousands of circular RNAs (circRNAs) are exported from the nucleus remains elusive. Here, we provide lines of evidence to demonstrate a link between the conserved Exportin 4 (XPO4) and nuclear export of a subset of circRNAs in metazoans. Exonic circRNAs (ecircRNAs) with higher expression levels, larger length, and lower GC content are more sensitive to XPO4 deficiency. Cellular insufficiency of XPO4 leads to nuclear circRNA accumulation, circRNA:DNA (ciR-loop) formation, linear RNA:DNA (liR-loop) buildup, and DNA damage. DDX39 known to modulate circRNA export can resolve ciR-loop, and splicing factors involved in the biogenesis of circRNAs can also affect the levels of ciR-loop. Testis and brain are two organs with high abundance of circRNAs, and insufficient XPO4 levels are detrimental, as Xpo4 heterozygous mice display male infertility and neural phenotypes. Increased levels of ciR-loop, R-loop, and DNA damage along with decreased cell numbers are observed in testis and hippocampus of Xpo4 heterozygotes. This study sheds light on the understandings of mechanism of circRNA export and reveals the significance of efficient nuclear export of circRNAs in cellular physiology. This study identifies the evolutionarily conserved Exportin 4 as an essential regulator in the nuclear export of circRNAs. Defective circRNA export results in R-loop formation and DNA damage in cells, as well as testis and neurological defects in mice.
Collapse
Affiliation(s)
- Liang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yucong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Qinwei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Wenfang Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yan Wang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, China
| | - Xiaoyu Xiu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, China
| | - Yuqi Deng
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xiuzhi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Qiqi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaolin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jingxin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xu Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Kunpeng Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuchan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shanhui Liao
- Division of Life Science and Medicine, CAS Key Laboratory of Structural Biology, University of Science and Technology of China, Hefei, 230027, China
| | - Qin Deng
- Analytical and Testing Center, Chongqing University, Chongqing, 400030, China
| | - Chao Xu
- Division of Life Science and Medicine, CAS Key Laboratory of Structural Biology, University of Science and Technology of China, Hefei, 230027, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, China
| | - Kaiming Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Min-Xin Guan
- The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Tianhua Zhou
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Cancer Center, Institute of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
| | - Fei Sun
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xiujun Cai
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China. .,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Ge Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China. .,Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
4
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
5
|
Pasha T, Zatorska A, Sharipov D, Rogelj B, Hortobágyi T, Hirth F. Karyopherin abnormalities in neurodegenerative proteinopathies. Brain 2021; 144:2915-2932. [PMID: 34019093 PMCID: PMC8194669 DOI: 10.1093/brain/awab201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative proteinopathies are characterized by progressive cell loss that is preceded by the mislocalization and aberrant accumulation of proteins prone to aggregation. Despite their different physiological functions, disease-related proteins like tau, α-synuclein, TAR DNA binding protein-43, fused in sarcoma and mutant huntingtin, all share low complexity regions that can mediate their liquid-liquid phase transitions. The proteins' phase transitions can range from native monomers to soluble oligomers, liquid droplets and further to irreversible, often-mislocalized aggregates that characterize the stages and severity of neurodegenerative diseases. Recent advances into the underlying pathogenic mechanisms have associated mislocalization and aberrant accumulation of disease-related proteins with defective nucleocytoplasmic transport and its mediators called karyopherins. These studies identify karyopherin abnormalities in amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's disease, and synucleinopathies including Parkinson's disease and dementia with Lewy bodies, that range from altered expression levels to the subcellular mislocalization and aggregation of karyopherin α and β proteins. The reported findings reveal that in addition to their classical function in nuclear import and export, karyopherins can also act as chaperones by shielding aggregation-prone proteins against misfolding, accumulation and irreversible phase-transition into insoluble aggregates. Karyopherin abnormalities can, therefore, be both the cause and consequence of protein mislocalization and aggregate formation in degenerative proteinopathies. The resulting vicious feedback cycle of karyopherin pathology and proteinopathy identifies karyopherin abnormalities as a common denominator of onset and progression of neurodegenerative disease. Pharmacological targeting of karyopherins, already in clinical trials as therapeutic intervention targeting cancers such as glioblastoma and viral infections like COVID-19, may therefore represent a promising new avenue for disease-modifying treatments in neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Terouz Pasha
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Anna Zatorska
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Daulet Sharipov
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
| | - Tibor Hortobágyi
- ELKH-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
- King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| |
Collapse
|
6
|
Metwally M, Bayoumi A, Khan A, Adams LA, Aller R, García-Monzón C, Arias-Loste MT, Bugianesi E, Miele L, Anna A, Latchoumanin O, Han S, Alenizi S, Sharkawy RE, Elattar A, Gallego-Durán R, Fischer J, Berg T, Liddle C, Romero-Gomez M, George J, Eslam M. Copy number variation and expression of exportin-4 associates with severity of fibrosis in metabolic associated fatty liver disease. EBioMedicine 2021; 70:103521. [PMID: 34388518 PMCID: PMC8365315 DOI: 10.1016/j.ebiom.2021.103521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
Background Liver fibrosis risk is a heritable trait, the outcome of which is the net deposition of extracellular matrix by hepatic stellate cell-derived myofibroblasts. Whereas nucleotide sequence variations have been extensively studied in liver fibrosis, the role of copy number variations (CNV) in which genes exist in abnormal numbers of copies (mostly due to duplication or deletion) has had limited exploration. Methods The impact of the XPO4 CNV on histological liver damage was examined in a cohort comprised 646 Caucasian patients with biopsy-proven MAFLD and 170 healthy controls. XPO4 expression was modulated and function was examined in human and animal models. Findings Here we demonstrate in a cohort of 816 subjects, 646 with biopsy-proven metabolic associated liver disease (MAFLD) and 170 controls, that duplication in the exportin 4 (XPO4) CNV is associated with the severity of liver fibrosis. Functionally, this occurs via reduced expression of hepatic XPO4 that maintains sustained activation of SMAD3/SMAD4 and promotes TGF-β1-mediated HSC activation and fibrosis. This effect was mediated through termination of nuclear SMAD3 signalling. XPO4 demonstrated preferential binding to SMAD3 compared to other SMADs and led to reduced SMAD3-mediated responses as shown by attenuation of TGFβ1 induced SMAD transcriptional activity, reductions in the recruitment of SMAD3 to target gene promoters following TGF-β1, as well as attenuation of SMAD3 phosphorylation and disturbed SMAD3/SMAD4 complex formation. Interpretation We conclude that a CNV in XPO4 is a critical mediator of fibrosis severity and can be exploited as a therapeutic target for liver fibrosis. Funding ME and JG are supported by the Robert W. Storr Bequest to the Sydney Medical Foundation, University of Sydney; a National Health and Medical Research Council of Australia (NHMRC) Program Grant (APP1053206) and Project and ideas grants (APP2001692, APP1107178 and APP1108422). AB is supported by an Australian Government Research Training Program (RTP) scholarship. EB is supported by Horizon 2020 under grant 634413 for the project EPoS.
Collapse
Affiliation(s)
- Mayada Metwally
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Anis Khan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Leon A Adams
- Medical School, Sir Charles Gairdner Hospital Unit, University of Western Australia, Nedlands, WA, Australia
| | - Rocio Aller
- Center of Investigation of Endocrinology and Nutrition, School of Medicine, and Unit of Investigation, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Instituto de Investigacion Sanitaria Princesa, University Hospital Santa Cristina, CIBERehd, Madrid, Spain
| | - María Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Science, University of Turin, Turin, Italy
| | - Luca Miele
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Alisi Anna
- Research Unit of Molecular Genetics of Complex Phenotypes, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Shuanglin Han
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Shafi Alenizi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Rasha El Sharkawy
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Afaf Elattar
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Rocio Gallego-Durán
- Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, Sevilla, Spain
| | - Janett Fischer
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Manuel Romero-Gomez
- Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, Sevilla, Spain
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
7
|
Li J, Guo Y, Deng Y, Hu L, Li B, Deng S, Zhong J, Xie L, Shi S, Hong X, Zheng X, Cai M, Li M. Subcellular Localization of Epstein-Barr Virus BLLF2 and Its Underlying Mechanisms. Front Microbiol 2021; 12:672192. [PMID: 34367081 PMCID: PMC8339435 DOI: 10.3389/fmicb.2021.672192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV), the pathogen of several human malignancies, encodes many proteins required to be transported into the nucleus for viral DNA reproduction and nucleocapsids assembly in the lytic replication cycle. Here, fluorescence microscope, mutation analysis, interspecies heterokaryon assays, co-immunoprecipitation assay, RNA interference, and Western blot were performed to explore the nuclear import mechanism of EBV encoded BLLF2 protein. BLLF2 was shown to be a nucleocytoplasmic shuttling protein neither by a chromosomal region maintenance 1 (CRM1)- nor by a transporter associated with antigen processing (TAP)-dependent pathway. Yet, BLLF2's two functional nuclear localization signals (NLSs), NLS1 (16KRQALETVPHPQNRGR31) and NLS2 (44RRPRPPVAKRRRFPR58), were identified, whereas the predicted NES was nonfunctional. Finally, BLLF2 was proven to transport into the nucleus via a Ran-dependent and importin β1-dependent pathway. This mechanism may contribute to a more extensive insight into the assembly and synthesis of EBV virions in the nucleus, thus affording a new direction for the treatment of viruses.
Collapse
Affiliation(s)
- Jingjing Li
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yingjie Guo
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yangxi Deng
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Li Hu
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Bolin Li
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Shenyu Deng
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Jiayi Zhong
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Li Xie
- Centralab, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Shaoxuan Shi
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xuejun Hong
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xuelong Zheng
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Mingsheng Cai
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Meili Li
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Ding B, Sepehrimanesh M. Nucleocytoplasmic Transport: Regulatory Mechanisms and the Implications in Neurodegeneration. Int J Mol Sci 2021; 22:4165. [PMID: 33920577 PMCID: PMC8072611 DOI: 10.3390/ijms22084165] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleocytoplasmic transport (NCT) across the nuclear envelope is precisely regulated in eukaryotic cells, and it plays critical roles in maintenance of cellular homeostasis. Accumulating evidence has demonstrated that dysregulations of NCT are implicated in aging and age-related neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and Huntington disease (HD). This is an emerging research field. The molecular mechanisms underlying impaired NCT and the pathogenesis leading to neurodegeneration are not clear. In this review, we comprehensively described the components of NCT machinery, including nuclear envelope (NE), nuclear pore complex (NPC), importins and exportins, RanGTPase and its regulators, and the regulatory mechanisms of nuclear transport of both protein and transcript cargos. Additionally, we discussed the possible molecular mechanisms of impaired NCT underlying aging and neurodegenerative diseases, such as ALS/FTD, HD, and AD.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Biology, University of Louisiana at Lafayette, 410 East Saint Mary Boulevard, Lafayette, LA 70503, USA;
| | | |
Collapse
|
9
|
Abdel Mouti M, Pauklin S. TGFB1/INHBA Homodimer/Nodal-SMAD2/3 Signaling Network: A Pivotal Molecular Target in PDAC Treatment. Mol Ther 2021; 29:920-936. [PMID: 33429081 PMCID: PMC7934636 DOI: 10.1016/j.ymthe.2021.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/17/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains a grueling disease that is projected to become the second-deadliest cancer in the next decade. Standard treatment of pancreatic cancer is chemotherapy, which mainly targets the differentiated population of tumor cells; however, it paradoxically sets the roots of tumor relapse by the selective enrichment of intrinsically chemoresistant pancreatic cancer stem cells that are equipped with an indefinite capacity for self-renewal and differentiation, resulting in tumor regeneration and an overall anemic response to chemotherapy. Crosstalk between pancreatic tumor cells and the surrounding stromal microenvironment is also involved in the development of chemoresistance by creating a supportive niche, which enhances the stemness features and tumorigenicity of pancreatic cancer cells. In addition, the desmoplastic nature of the tumor-associated stroma acts as a physical barrier, which limits the intratumoral delivery of chemotherapeutics. In this review, we mainly focus on the transforming growth factor beta 1 (TGFB1)/inhibin subunit beta A (INHBA) homodimer/Nodal-SMAD2/3 signaling network in pancreatic cancer as a pivotal central node that regulates multiple key mechanisms involved in the development of chemoresistance, including enhancement of the stem cell-like properties and tumorigenicity of pancreatic cancer cells, mediating cooperative interactions between pancreatic cancer cells and the surrounding stroma, as well as regulating the deposition of extracellular matrix proteins within the tumor microenvironment.
Collapse
Affiliation(s)
- Mai Abdel Mouti
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
10
|
Keravnou A, Bashiardes E, Barberis V, Michailidou K, Soteriou M, Tanteles GA, Cariolou MA. Identification of novel splice mutation in SMAD3 in two Cypriot families with nonsyndromic thoracic aortic aneurysm. Two case reports. Mol Genet Genomic Med 2020; 8:e1378. [PMID: 32597575 PMCID: PMC7507478 DOI: 10.1002/mgg3.1378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Thoracic aortic aneurysm and dissection (TAA/D) represents a potentially lethal disease group characterized by an increased risk of dissection or rupture. Only a small percentage (approximately 30%) of individuals with nonsyndromic familial TAA/D have a pathogenic variant in one of the genes that have been found to be associated with the disease. METHODS A targeted sequencing panel and direct sequencing approach were used to identify causative mutations in the index patients and other family members. RESULTS In this study we report two apparently unrelated Cypriot families with nonsyndromic familial TAA/D. The proband A is a female patient diagnosed with TAA/D and intracranial aneurysm and opted for an elective intervention. The proband B is a male patient who was diagnosed with TAA/D and underwent cardiac surgery. Sequencing analysis identified a novel splice site variant (c.871+1G>A) in SMAD3 which is shown to be associated with the disease. Analysis of mRNA from the patient's tissue confirmed aberrant splicing and exon 6 skipping. CONCLUSION Our findings expand the mutation spectrum of variants that have been shown to be associated with nonsyndromic familial TAA/D. This study demonstrates the importance of a comprehensive clinical and genetic evaluation aiming at early diagnosis and intervention.
Collapse
Affiliation(s)
- Anna Keravnou
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Evy Bashiardes
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Vassilis Barberis
- Department of Cardiology and Cardiovascular Surgery, American Medical Center, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Marinos Soteriou
- Department of Cardiology and Cardiovascular Surgery, American Medical Center, Nicosia, Cyprus
| | - George A Tanteles
- Clinical Genetics Clinic, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Marios A Cariolou
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
11
|
Tzavlaki K, Moustakas A. TGF-β Signaling. Biomolecules 2020; 10:biom10030487. [PMID: 32210029 PMCID: PMC7175140 DOI: 10.3390/biom10030487] [Citation(s) in RCA: 411] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) represents an evolutionarily conserved family of secreted polypeptide factors that regulate many aspects of physiological embryogenesis and adult tissue homeostasis. The TGF-β family members are also involved in pathophysiological mechanisms that underlie many diseases. Although the family comprises many factors, which exhibit cell type-specific and developmental stage-dependent biological actions, they all signal via conserved signaling pathways. The signaling mechanisms of the TGF-β family are controlled at the extracellular level, where ligand secretion, deposition to the extracellular matrix and activation prior to signaling play important roles. At the plasma membrane level, TGF-βs associate with receptor kinases that mediate phosphorylation-dependent signaling to downstream mediators, mainly the SMAD proteins, and mediate oligomerization-dependent signaling to ubiquitin ligases and intracellular protein kinases. The interplay between SMADs and other signaling proteins mediate regulatory signals that control expression of target genes, RNA processing at multiple levels, mRNA translation and nuclear or cytoplasmic protein regulation. This article emphasizes signaling mechanisms and the importance of biochemical control in executing biological functions by the prototype member of the family, TGF-β.
Collapse
|
12
|
Ernst S, Müller-Newen G. Nucleocytoplasmic Shuttling of STATs. A Target for Intervention? Cancers (Basel) 2019; 11:cancers11111815. [PMID: 31752278 PMCID: PMC6895884 DOI: 10.3390/cancers11111815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins are transcription factors that in the latent state are located predominantly in the cytoplasm. Activation of STATs through phosphorylation of a single tyrosine residue results in nuclear translocation. The requirement of tyrosine phosphorylation for nuclear accumulation is shared by all STAT family members but mechanisms of nuclear translocation vary between different STATs. These differences offer opportunities for specific intervention. To achieve this, the molecular mechanisms of nucleocytoplasmic shuttling of STATs need to be understood in more detail. In this review we will give an overview on the various aspects of nucleocytoplasmic shuttling of latent and activated STATs with a special focus on STAT3 and STAT5. Potential targets for cancer treatment will be identified and discussed.
Collapse
Affiliation(s)
- Sabrina Ernst
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52074 Aachen, Germany;
- Confocal Microscopy Facility, Interdisciplinary Center for Clinical Research IZKF, RWTH Aachen University, 52074 Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52074 Aachen, Germany;
- Correspondence:
| |
Collapse
|
13
|
Kieckhaefer JE, Maina F, Wells R, Wangensteen KJ. Liver Cancer Gene Discovery Using Gene Targeting, Sleeping Beauty, and CRISPR/Cas9. Semin Liver Dis 2019; 39:261-274. [PMID: 30912094 PMCID: PMC7485130 DOI: 10.1055/s-0039-1678725] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a devastating and prevalent cancer with limited treatment options. Technological advances have enabled genetic screens to be employed in HCC model systems to characterize genes regulating tumor initiation and growth. Relative to traditional methods for studying cancer biology, such as candidate gene approaches or expression analysis, genetic screens have several advantages: they are unbiased, with no a priori selection; can directly annotate gene function; and can uncover gene-gene interactions. In HCC, three main types of screens have been conducted and are reviewed here: (1) transposon-based mutagenesis screens, (2) knockdown screens using RNA interference (RNAi) or the CRISPR/Cas9 system, and (3) overexpression screens using CRISPR activation (CRISPRa) or cDNAs. These methods will be valuable in future genetic screens to delineate the mechanisms underlying drug resistance and to identify new treatments for HCC.
Collapse
Affiliation(s)
- Julia E. Kieckhaefer
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| | - Flavio Maina
- Aix Marseille University, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Rebecca Wells
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
- Pathology and Laboratory Medicine and Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirk J. Wangensteen
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal 2019; 12:12/570/eaav5183. [PMID: 30808818 DOI: 10.1126/scisignal.aav5183] [Citation(s) in RCA: 492] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Encoded in mammalian cells by 33 genes, the transforming growth factor-β (TGF-β) family of secreted, homodimeric and heterodimeric proteins controls the differentiation of most, if not all, cell lineages and many aspects of cell and tissue physiology in multicellular eukaryotes. Deregulation of TGF-β family signaling leads to developmental anomalies and disease, whereas enhanced TGF-β signaling contributes to cancer and fibrosis. Here, we review the fundamentals of the signaling mechanisms that are initiated upon TGF-β ligand binding to its cell surface receptors and the dependence of the signaling responses on input from and cooperation with other signaling pathways. We discuss how cells exquisitely control the functional presentation and activation of heteromeric receptor complexes of transmembrane, dual-specificity kinases and, thus, define their context-dependent responsiveness to ligands. We also introduce the mechanisms through which proteins called Smads act as intracellular effectors of ligand-induced gene expression responses and show that the specificity and impressive versatility of Smad signaling depend on cross-talk from other pathways. Last, we discuss how non-Smad signaling mechanisms, initiated by distinct ligand-activated receptor complexes, complement Smad signaling and thus contribute to cellular responses.
Collapse
Affiliation(s)
- Rik Derynck
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Erine H Budi
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Fu X, Liang C, Li F, Wang L, Wu X, Lu A, Xiao G, Zhang G. The Rules and Functions of Nucleocytoplasmic Shuttling Proteins. Int J Mol Sci 2018; 19:ijms19051445. [PMID: 29757215 PMCID: PMC5983729 DOI: 10.3390/ijms19051445] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Biological macromolecules are the basis of life activities. There is a separation of spatial dimension between DNA replication and RNA biogenesis, and protein synthesis, which is an interesting phenomenon. The former occurs in the cell nucleus, while the latter in the cytoplasm. The separation requires protein to transport across the nuclear envelope to realize a variety of biological functions. Nucleocytoplasmic transport of protein including import to the nucleus and export to the cytoplasm is a complicated process that requires involvement and interaction of many proteins. In recent years, many studies have found that proteins constantly shuttle between the cytoplasm and the nucleus. These shuttling proteins play a crucial role as transport carriers and signal transduction regulators within cells. In this review, we describe the mechanism of nucleocytoplasmic transport of shuttling proteins and summarize some important diseases related shuttling proteins.
Collapse
Affiliation(s)
- Xuekun Fu
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Guozhi Xiao
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| |
Collapse
|
16
|
Beck M, Schirmacher P, Singer S. Alterations of the nuclear transport system in hepatocellular carcinoma - New basis for therapeutic strategies. J Hepatol 2017; 67:1051-1061. [PMID: 28673770 DOI: 10.1016/j.jhep.2017.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most prevalent human malignancies worldwide with rising incidence in industrialised countries, few therapeutic options and poor prognosis. To expand and improve therapeutic strategies, identification of drug targets involved in several liver cancer-related pathways is crucial. Virtually all signal transduction cascades cross the nuclear envelope and therefore require components of the nuclear transport system (NTS), including nuclear transport receptors (e.g. importins and exportins) and the nuclear pore complex. Accordingly, members of the NTS represent promising targets for therapeutic intervention. Selective inhibitors of nuclear export have already entered clinical trials for various malignancies. Herein, we review the current knowledge regarding alterations of the NTS and their potential for targeted therapy in HCC.
Collapse
Affiliation(s)
- Martin Beck
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Stephan Singer
- European Molecular Biology Laboratory, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Germany.
| |
Collapse
|
17
|
Xiao X, Senavirathna LK, Gou X, Huang C, Liang Y, Liu L. EZH2 enhances the differentiation of fibroblasts into myofibroblasts in idiopathic pulmonary fibrosis. Physiol Rep 2017; 4:4/17/e12915. [PMID: 27582065 PMCID: PMC5027349 DOI: 10.14814/phy2.12915] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022] Open
Abstract
The accumulation of fibroblasts/myofibroblasts in fibrotic foci is one of the characteristics of idiopathic pulmonary fibrosis (IPF). Enhancer of zeste homolog 2 (EZH2) is the catalytic component of a multiprotein complex, polycomb repressive complex 2, which is involved in the trimethylation of histone H3 at lysine 27. In this study, we investigated the role and mechanisms of EZH2 in the differentiation of fibroblasts into myofibroblasts. We found that EZH2 was upregulated in the lungs of patients with IPF and in mice with bleomycin-induced lung fibrosis. The upregulation of EZH2 occurred in myofibroblasts. The inhibition of EZH2 by its inhibitor 3-deazaneplanocin A (DZNep) or an shRNA reduced the TGF-β1-induced differentiation of human lung fibroblasts into myofibroblasts, as demonstrated by the expression of the myofibroblast markers α-smooth muscle actin and fibronectin, and contractility. DZNep inhibited Smad2/3 nuclear translocation without affecting Smad2/3 phosphorylation. DZNep treatment attenuated bleomycin-induced pulmonary fibrosis in mice. We conclude that EZH2 induces the differentiation of fibroblasts to myofibroblasts by enhancing Smad2/3 nuclear translocation.
Collapse
Affiliation(s)
- Xiao Xiao
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma Department of Physiological Sciences, Lungberg-Kienlen Lung Biology and Toxicology Laboratory, Stillwater, Oklahoma
| | - Lakmini K Senavirathna
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma Department of Physiological Sciences, Lungberg-Kienlen Lung Biology and Toxicology Laboratory, Stillwater, Oklahoma
| | - Xuxu Gou
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma Department of Physiological Sciences, Lungberg-Kienlen Lung Biology and Toxicology Laboratory, Stillwater, Oklahoma
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma Department of Physiological Sciences, Lungberg-Kienlen Lung Biology and Toxicology Laboratory, Stillwater, Oklahoma
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma Department of Physiological Sciences, Lungberg-Kienlen Lung Biology and Toxicology Laboratory, Stillwater, Oklahoma
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma Department of Physiological Sciences, Lungberg-Kienlen Lung Biology and Toxicology Laboratory, Stillwater, Oklahoma
| |
Collapse
|
18
|
Gupta A, Saltarski JM, White MA, Scaglioni PP, Gerber DE. Therapeutic Targeting of Nuclear Export Inhibition in Lung Cancer. J Thorac Oncol 2017; 12:1446-1450. [PMID: 28647672 PMCID: PMC5572747 DOI: 10.1016/j.jtho.2017.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/03/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022]
Abstract
Intracellular compartmentalization and trafficking of molecules plays a critical role in complex and essential cellular processes. In lung cancer and other malignancies, aberrant nucleocytoplasmic transport of tumor suppressor proteins and cell cycle regulators results in tumorigenesis and inactivation of apoptosis. Pharmacologic agents targeting this process, termed selective inhibitors of nuclear export (SINE), have demonstrated antitumor efficacy in preclinical models and human clinical trials. Exportin-1 (XPO1), which serves as the sole exporter of several tumor suppressor proteins and cell cycle regulators, including retinoblastoma, adenomatous polyposis coli, p53, p73, p21, p27, forkhead box O, signal transducer and activator of transcription 3, inhibitor of κB, topoisomerase II, and protease activated receptor 4-is the principal focus of development of SINE. The most extensively studied of the SINE to date, the exportin-1 inhibitor selinexor (KPT-330 [Karyopharm Therapeutics, Inc., Newton Centre, MA]), has demonstrated single-agent anticancer activity and synergistic effects in combination regimens against multiple cancer types, with principal toxicities of low-grade cytopenias and gastrointestinal effects. SINE may have particular relevance in KRAS-driven tumors, for which this treatment strategy demonstrates significant synthetic lethality. A multicenter phase 1/2 clinical trial of selinexor in previously treated advanced KRAS-mutant NSCLC is under way.
Collapse
Affiliation(s)
- Arjun Gupta
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jessica M Saltarski
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael A White
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Pfizer, Inc., New York, New York
| | - Pier P Scaglioni
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David E Gerber
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
19
|
Ederle H, Dormann D. TDP-43 and FUS en route from the nucleus to the cytoplasm. FEBS Lett 2017; 591:1489-1507. [PMID: 28380257 DOI: 10.1002/1873-3468.12646] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/24/2017] [Accepted: 04/02/2017] [Indexed: 12/13/2022]
Abstract
Misfolded or mislocalized RNA-binding proteins (RBPs) and, consequently, altered mRNA processing, can cause neuronal dysfunction, eventually leading to neurodegeneration. Two prominent examples are the RBPs TAR DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS), which form pathological messenger ribonucleoprotein aggregates in patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastating neurodegenerative disorders. Here, we review the multiple functions of TDP-43 and FUS in mRNA processing, both in the nucleus and in the cytoplasm. We discuss how TDP-43 and FUS may exit the nucleus and how defects in both nuclear and cytosolic mRNA processing events, and possibly nuclear export defects, may contribute to neurodegeneration and ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Helena Ederle
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Germany
| |
Collapse
|
20
|
Abstract
Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Khosravi S, Martinka M, Zhou Y, Ong CJ. Prognostic significance of the expression of nuclear eukaryotic translation initiation factor 5A2 in human melanoma. Oncol Lett 2016; 12:3089-3100. [PMID: 27899968 PMCID: PMC5103909 DOI: 10.3892/ol.2016.5057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 04/29/2016] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic translation initiation factor 5A2 (EIF5A2) expression is upregulated in various cancers. The present authors previously demonstrated that cytoplasmic EIF5A2 expression increases with melanoma progression and inversely correlates with patient survival. Other studies have suggested that nuclear EIF5A2 may also play a role in oncogenesis. The present study used immunohistochemistry and tissue microarray with a large number of melanocytic lesions (n=459) and demonstrated that nuclear EIF5A2 expression was significantly upregulated between common acquired nevi, dysplastic nevi and primary melanomas, and between primary melanomas and metastatic melanomas. Nuclear EIF5A2 expression was inversely associated with overall and disease-specific 5-year survival rate for all (P<0.001) and primary (P=0.014 and P=0.015, respectively) melanoma patients. Nuclear EIF5A2 expression was directly associated with melanoma thickness (P=0.036) and American Joint Committee on Cancer staging (P<0.001), which suggests the possible role of nuclear EIF5A2 in melanoma cell invasion. Subsequently, the present study investigated the association between the expression of nuclear EIF5A2 and matrix metalloproteinase-2 (MMP-2), which is an important factor for promoting cancer cell invasion. Nuclear EIF5A2 and a strong MMP-2 expression were directly associated, and their concurrent expression was significantly associated with a poorer overall and disease-specific 5-year survival rate for all and primary melanoma patients. Nuclear and cytoplasmic EIF5A2 expression were also demonstrated to be significantly associated, and simultaneous expression of the two forms of EIF5A2 was significantly associated with poor overall and disease-specific 5-year survival rates for all and primary melanoma patients. Multivariate Cox regression analysis revealed that nuclear EIF5A2 expression alone and in combination with cytoplasmic EIF5A2 expression was an adverse independent prognostic factor for all and primary melanoma patients. In conclusion, the present study for the first time, to the best of our knowledge, demonstrated that nuclear EIF5A2 expression is an independent prognostic marker in melanoma, and revealed its role in melanoma progression and patient survival. Therefore, nuclear EIF5A2 may have the potential to serve as a therapeutic marker for melanoma.
Collapse
Affiliation(s)
- Shahram Khosravi
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1L8, Canada; Department of Surgery, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1L8, Canada
| | - Magdalena Martinka
- Department of Pathology, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1L8, Canada
| | - Youwen Zhou
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1L8, Canada
| | - Christopher J Ong
- Department of Surgery, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V5Z 1L8, Canada
| |
Collapse
|
22
|
Mahipal A, Malafa M. Importins and exportins as therapeutic targets in cancer. Pharmacol Ther 2016; 164:135-43. [PMID: 27113410 DOI: 10.1016/j.pharmthera.2016.03.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
The nuclear transport proteins, importins and exportins (karyopherin-β proteins), may play an important role in cancer by transporting key mediators of oncogenesis across the nuclear membrane in cancer cells. During nucleocytoplasmic transport of tumor suppressor proteins and cell cycle regulators during the processing of these proteins, aberrant cellular growth signaling and inactivation of apoptosis can occur, both critical to growth and development of tumors. Karyopherin-β proteins bind to these cargo proteins and RanGTP for active transport across the nuclear membrane through the nuclear pore complex. Importins and exportins are overexpressed in multiple tumors including melanoma, pancreatic, breast, colon, gastric, prostate, esophageal, lung cancer, and lymphomas. Furthermore, some of the karyopherin-β proteins such as exportin-1 have been implicated in drug resistance in cancer. Importin and exportin inhibitors are being considered as therapeutic targets against cancer and have shown preclinical anticancer activity. Moreover, synergistic activity has been observed with various chemotherapeutic and targeted agents. However, clinical development of the exportin-1 inhibitor leptomycin B was stopped due to adverse events, including vomiting, anorexia, and dehydration. Selinexor, a selective nuclear export inhibitor, is being tested in multiple clinical trials both as a single agent and in combination with chemotherapy. Selinexor has demonstrated clinical activity in multiple cancers, especially acute myelogenous leukemia and multiple myeloma. The roles of other importin and exportin inhibitors still need to be investigated clinically. Targeting the key mediators of nucleocytoplasmic transport in cancer cells represents a novel strategy in cancer intervention with the potential to significantly affect outcomes.
Collapse
Affiliation(s)
- Amit Mahipal
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
23
|
Aksu M, Trakhanov S, Görlich D. Structure of the exportin Xpo4 in complex with RanGTP and the hypusine-containing translation factor eIF5A. Nat Commun 2016; 7:11952. [PMID: 27306458 PMCID: PMC4912631 DOI: 10.1038/ncomms11952] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/16/2016] [Indexed: 12/28/2022] Open
Abstract
Xpo4 is a bidirectional nuclear transport receptor that mediates nuclear export of eIF5A and Smad3 as well as import of Sox2 and SRY. How Xpo4 recognizes such a variety of cargoes is as yet unknown. Here we present the crystal structure of the RanGTP·Xpo4·eIF5A export complex at 3.2 Å resolution. Xpo4 has a similar structure as CRM1, but the NES-binding site is occluded, and a new interaction site evolved that recognizes both globular domains of eIF5A. eIF5A contains hypusine, a unique amino acid with two positive charges, which is essential for cell viability and eIF5A function in translation. The hypusine docks into a deep, acidic pocket of Xpo4 and is thus a critical element of eIF5A's complex export signature. This further suggests that Xpo4 recognizes other cargoes differently, and illustrates how Xpo4 suppresses - in a chaperone-like manner - undesired interactions of eIF5A inside nuclei.
Collapse
Affiliation(s)
- Metin Aksu
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sergei Trakhanov
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Stelma T, Chi A, van der Watt PJ, Verrico A, Lavia P, Leaner VD. Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential. IUBMB Life 2016; 68:268-80. [PMID: 26970212 DOI: 10.1002/iub.1484] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 01/10/2023]
Abstract
The Karyopherin superfamily is a major class of soluble transport receptors consisting of both import and export proteins. The trafficking of proteins involved in transcription, cell signalling and cell cycle regulation among other functions across the nuclear membrane is essential for normal cellular functioning. However, in cancer cells, the altered expression or localization of nuclear transporters as well as the disruption of endogenous nuclear transport inhibitors are some ways in which the Karyopherin proteins are dysregulated. The value of nuclear transporters in the diagnosis, prognosis and treatment of cancer is currently being elucidated with recent studies highlighting their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tamara Stelma
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alicia Chi
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pauline J van der Watt
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Annalisa Verrico
- Institute of Molecular Biology and Pathology, National Research Council of Italy, C/O University of Roma "La Sapienza", Rome, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology, National Research Council of Italy, C/O University of Roma "La Sapienza", Rome, Italy
| | - Virna D Leaner
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Bhardwaj A, Das S. SIRT6 deacetylates PKM2 to suppress its nuclear localization and oncogenic functions. Proc Natl Acad Sci U S A 2016; 113:E538-47. [PMID: 26787900 PMCID: PMC4747762 DOI: 10.1073/pnas.1520045113] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
SIRT6 (sirtuin 6) is a member of sirtuin family of deacetylases involved in diverse processes including genome stability, metabolic homeostasis, and tumorigenesis. However, the role of SIRT6 deacetylase activity in its tumor-suppressor functions is not well understood. Here we report that SIRT6 binds to and deacetylates nuclear PKM2 (pyruvate kinase M2) at the lysine 433 residue. PKM2 is a glycolytic enzyme with nonmetabolic nuclear oncogenic functions. SIRT6-mediated deacetylation results in PKM2 nuclear export. We further have identified exportin 4 as the specific transporter mediating PKM2 nuclear export. As a result of SIRT6-mediated deacetylation, PKM2 nuclear protein kinase and transcriptional coactivator functions are abolished. Thus, SIRT6 suppresses PKM2 oncogenic functions, resulting in reduced cell proliferation, migration potential, and invasiveness. Furthermore, studies in mouse tumor models demonstrate that PKM2 deacetylation is integral to SIRT6-mediated tumor suppression and inhibition of metastasis. Additionally, reduced SIRT6 levels correlate with elevated nuclear acetylated PKM2 levels in increasing grades of hepatocellular carcinoma. These findings provide key insights into the pivotal role of deacetylase activity in SIRT6 tumor-suppressor functions.
Collapse
Affiliation(s)
- Abhishek Bhardwaj
- Molecular Oncology Laboratory, National Institute of Immunology, New Delhi-110067, India
| | - Sanjeev Das
- Molecular Oncology Laboratory, National Institute of Immunology, New Delhi-110067, India
| |
Collapse
|
26
|
Briffa R, Um I, Faratian D, Zhou Y, Turnbull AK, Langdon SP, Harrison DJ. Multi-Scale Genomic, Transcriptomic and Proteomic Analysis of Colorectal Cancer Cell Lines to Identify Novel Biomarkers. PLoS One 2015; 10:e0144708. [PMID: 26678268 PMCID: PMC4692059 DOI: 10.1371/journal.pone.0144708] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022] Open
Abstract
Selecting colorectal cancer (CRC) patients likely to respond to therapy remains a clinical challenge. The objectives of this study were to establish which genes were differentially expressed with respect to treatment sensitivity and relate this to copy number in a panel of 15 CRC cell lines. Copy number variations of the identified genes were assessed in a cohort of CRCs. IC50's were measured for 5-fluorouracil, oxaliplatin, and BEZ-235, a PI3K/mTOR inhibitor. Cell lines were profiled using array comparative genomic hybridisation, Illumina gene expression analysis, reverse phase protein arrays, and targeted sequencing of KRAS hotspot mutations. Frequent gains were observed at 2p, 3q, 5p, 7p, 7q, 8q, 12p, 13q, 14q, and 17q and losses at 2q, 3p, 5q, 8p, 9p, 9q, 14q, 18q, and 20p. Frequently gained regions contained EGFR, PIK3CA, MYC, SMO, TRIB1, FZD1, and BRCA2, while frequently lost regions contained FHIT and MACROD2. TRIB1 was selected for further study. Gene enrichment analysis showed that differentially expressed genes with respect to treatment response were involved in Wnt signalling, EGF receptor signalling, apoptosis, cell cycle, and angiogenesis. Stepwise integration of copy number and gene expression data yielded 47 candidate genes that were significantly correlated. PDCD6 was differentially expressed in all three treatment responses. Tissue microarrays were constructed for a cohort of 118 CRC patients and TRIB1 and MYC amplifications were measured using fluorescence in situ hybridisation. TRIB1 and MYC were amplified in 14.5% and 7.4% of the cohort, respectively, and these amplifications were significantly correlated (p≤0.0001). TRIB1 protein expression in the patient cohort was significantly correlated with pERK, Akt, and Caspase 3 expression. In conclusion, a set of candidate predictive biomarkers for 5-fluorouracil, oxaliplatin, and BEZ235 are described that warrant further study. Amplification of the putative oncogene TRIB1 has been described for the first time in a cohort of CRC patients.
Collapse
Affiliation(s)
- Romina Briffa
- Division of Pathology, Institute of Genetics and Molecular Medicine,
University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United
Kingdom
| | - Inhwa Um
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, United
Kingdom
| | - Dana Faratian
- Division of Pathology, Institute of Genetics and Molecular Medicine,
University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United
Kingdom
| | - Ying Zhou
- Division of Pathology, Institute of Genetics and Molecular Medicine,
University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United
Kingdom
| | - Arran K. Turnbull
- Division of Pathology, Institute of Genetics and Molecular Medicine,
University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United
Kingdom
| | - Simon P. Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine,
University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United
Kingdom
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, United
Kingdom
| |
Collapse
|
27
|
Taleahmad S, Mirzaei M, Parker LM, Hassani SN, Mollamohammadi S, Sharifi-Zarchi A, Haynes PA, Baharvand H, Salekdeh GH. Proteome Analysis of Ground State Pluripotency. Sci Rep 2015; 5:17985. [PMID: 26671762 PMCID: PMC4680864 DOI: 10.1038/srep17985] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/09/2015] [Indexed: 02/07/2023] Open
Abstract
The differentiation potential of pluripotent embryonic stem cells (ESCs) can be manipulated via serum and medium conditions for direct cellular development or to maintain a naïve ground state. The self-renewal state of ESCs can thus be induced by adding inhibitors of mitogen activated protein kinase (MAPK) and glycogen synthase kinase-3 (Gsk3), known as 2 inhibitors (2i) treatment. We have used a shotgun proteomics approach to investigate differences in protein expressions between 2i- and serum-grown mESCs. The results indicated that 164 proteins were significantly upregulated and 107 proteins downregulated in 2i-grown cells compared to serum. Protein pathways in 2i-grown cells with the highest enrichment were associated with glycolysis and gluconeogenesis. Protein pathways related to organ development were downregulated in 2i-grown cells. In serum-grown ESCs, protein pathways involved in integrin and focal adhesion, and signaling proteins involved in the actin cytoskeleton regulation were enriched. We observed a number of nuclear proteins which were mostly involved in self-renewal maintenance and were expressed at higher levels in 2i compared to serum - Dnmt1, Map2k1, Parp1, Xpo4, Eif3g, Smarca4/Brg1 and Smarcc1/Baf155. Collectively, the results provided an insight into the key protein pathways used by ESCs in the ground state or metastable conditions through 2i or serum culture medium, respectively.
Collapse
Affiliation(s)
- Sara Taleahmad
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lindsay M Parker
- Department of Chemistry and Biomolecular sciences, Macquarie University, Sydney, NSW, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, NSW, 2109, Sydney, Australia
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sepideh Mollamohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Sharifi-Zarchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paul A Haynes
- Department of Chemistry and Biomolecular sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hossein Baharvand
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, NSW, 2109, Sydney, Australia.,Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| |
Collapse
|
28
|
Huang T, Ditzel EJ, Perrera AB, Broka DM, Camenisch TD. Arsenite Disrupts Zinc-Dependent TGFβ2-SMAD Activity During Murine Cardiac Progenitor Cell Differentiation. Toxicol Sci 2015; 148:409-20. [PMID: 26354774 PMCID: PMC5009438 DOI: 10.1093/toxsci/kfv191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TGFβ2 (transforming growth factor-β2) is a key growth factor regulating epithelial to mesenchymal transition (EMT). TGFβ2 triggers cardiac progenitor cells to differentiate into mesenchymal cells and give rise to the cellular components of coronary vessels as well as cells of aortic and pulmonary valves. TGFβ signaling is dependent on a dynamic on and off switch in Smad activity. Arsenite exposure of 1.34 μM for 24-48 h has been reported to disrupt Smad phosphorylation leading to deficits in TGFβ2-mediated cardiac precursor differentiation and transformation. In this study, the molecular mechanism of acute arsenite toxicity on TGFβ2-induced Smad2/3 nuclear shuttling and TGFβ2-mediated cardiac EMT was investigated. A 4-h exposure to 5 μM arsenite blocks nuclear accumulation of Smad2/3 in response to TGFβ2 without disrupting Smad phosphorylation or nuclear importation. The depletion of nuclear Smad is restored by knocking-down Smad-specific exportins, suggesting that arsenite augments Smad2/3 nuclear exportation. The blockage in TGFβ2-Smad signaling is likely due to the loss of Zn(2+) cofactor in Smad proteins, as Zn(2+) supplementation reverses the disruption in Smad2/3 nuclear translocation and transcriptional activity by arsenite. This coincides with Zn(2+) supplementation rescuing arsenite-mediated deficits in cardiac EMT. Thus, zinc partially protects cardiac EMT from developmental toxicity by arsenite.
Collapse
Affiliation(s)
- Tianfang Huang
- *Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Eric J. Ditzel
- *Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Alec B. Perrera
- *Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Derrick M. Broka
- *Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Todd D. Camenisch
- *Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721,Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona 85721,Sarver Heart Center, University of Arizona, Tucson, Arizona 85721,Bio5 Institute, University of Arizona, Tucson, Arizona 85721,To whom correspondence should be addressed at College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721. Fax: (520) 626-2466. E-mail:
| |
Collapse
|
29
|
Liu X, Chen Z, Ouyang G, Song T, Liang H, Liu W, Xiao W. ELL Protein-associated Factor 2 (EAF2) Inhibits Transforming Growth Factor β Signaling through a Direct Interaction with Smad3. J Biol Chem 2015; 290:25933-45. [PMID: 26370086 DOI: 10.1074/jbc.m115.663542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 12/29/2022] Open
Abstract
A series of in vitro and in vivo studies has shown that EAF2 can affect multiple signaling pathways involved in cellular processes. However, the molecular mechanisms underlying its effects have remained elusive. Here we report the discovery of a new functional link between EAF2 and TGF-β signaling. Promoter reporter assays indicated that EAF2 suppresses Smad3 transcriptional activity, resulting in inhibition of TGF-β signaling. Coimmunoprecipitation assays showed that EAF2 specifically interacts with Smad3 in vitro and in vivo but not with other Smad proteins. In addition, we observed that EAF2 binding does not alter Smad3 phosphorylation but causes Smad3 cytoplasmic retention, competes with Smad4 for binding to Smad3, and prevents p300-Smad3 complex formation. Furthermore, we demonstrated that EAF2 suppresses both TGF-β-induced G1 cell cycle arrest and TGF-β-induced cell migration. This study identifies and characterizes a novel repressor of TGF-β signaling.
Collapse
Affiliation(s)
- Xing Liu
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhu Chen
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China, Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China
| | - Gang Ouyang
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tieshan Song
- Hubei University of Science and Technology, Xianning 437100, China, and
| | - Huageng Liang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Liu
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wuhan Xiao
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,
| |
Collapse
|
30
|
Cautain B, Hill R, de Pedro N, Link W. Components and regulation of nuclear transport processes. FEBS J 2014; 282:445-62. [PMID: 25429850 PMCID: PMC7163960 DOI: 10.1111/febs.13163] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 12/27/2022]
Abstract
The spatial separation of DNA replication and gene transcription in the nucleus and protein translation in the cytoplasm is a uniform principle of eukaryotic cells. This compartmentalization imposes a requirement for a transport network of macromolecules to shuttle these components in and out of the nucleus. This nucleo‐cytoplasmic transport of macromolecules is critical for both cell physiology and pathology. Consequently, investigating its regulation and disease‐associated alterations can reveal novel therapeutic approaches to fight human diseases, such as cancer or viral infection. The characterization of the nuclear pore complex, the identification of transport signals and transport receptors, as well as the characterization of the Ran system (providing the energy source for efficient cargo transport) has greatly facilitated our understanding of the components, mechanisms and regulation of the nucleo‐cytoplasmic transport of proteins in our cells. Here we review this knowledge with a specific emphasis on the selection of disease‐relevant molecular targets for potential therapeutic intervention.
Collapse
Affiliation(s)
- Bastien Cautain
- Fundacion MEDINA Parque tecnológico ciencias de la salud, Granada, Spain
| | | | | | | |
Collapse
|
31
|
Kowno M, Watanabe-Susaki K, Ishimine H, Komazaki S, Enomoto K, Seki Y, Wang YY, Ishigaki Y, Ninomiya N, Noguchi TAK, Kokubu Y, Ohnishi K, Nakajima Y, Kato K, Intoh A, Takada H, Yamakawa N, Wang PC, Asashima M, Kurisaki A. Prohibitin 2 regulates the proliferation and lineage-specific differentiation of mouse embryonic stem cells in mitochondria. PLoS One 2014; 9:e81552. [PMID: 24709813 PMCID: PMC3977857 DOI: 10.1371/journal.pone.0081552] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/24/2013] [Indexed: 12/03/2022] Open
Abstract
Background The pluripotent state of embryonic stem (ES) cells is controlled by a network of specific transcription factors. Recent studies also suggested the significant contribution of mitochondria on the regulation of pluripotent stem cells. However, the molecules involved in these regulations are still unknown. Methodology/Principal Findings In this study, we found that prohibitin 2 (PHB2), a pleiotrophic factor mainly localized in mitochondria, is a crucial regulatory factor for the homeostasis and differentiation of ES cells. PHB2 was highly expressed in undifferentiated mouse ES cells, and the expression was decreased during the differentiation of ES cells. Knockdown of PHB2 induced significant apoptosis in pluripotent ES cells, whereas enhanced expression of PHB2 contributed to the proliferation of ES cells. However, enhanced expression of PHB2 strongly inhibited ES cell differentiation into neuronal and endodermal cells. Interestingly, only PHB2 with intact mitochondrial targeting signal showed these specific effects on ES cells. Moreover, overexpression of PHB2 enhanced the processing of a dynamin-like GTPase (OPA1) that regulates mitochondrial fusion and cristae remodeling, which could induce partial dysfunction of mitochondria. Conclusions/Significance Our results suggest that PHB2 is a crucial mitochondrial regulator for homeostasis and lineage-specific differentiation of ES cells.
Collapse
Affiliation(s)
- Megumi Kowno
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kanako Watanabe-Susaki
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hisako Ishimine
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shinji Komazaki
- Department of Anatomy, Saitama Medical School, Moroyama, Iruma, Saitama, Japan
| | - Kei Enomoto
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Yasuhiro Seki
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Ying Ying Wang
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Japan Society for the Promotion of Science (JSPS), Tsukuba, Ibaraki, Japan
| | - Yohei Ishigaki
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoto Ninomiya
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Taka-aki K. Noguchi
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuko Kokubu
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keigoh Ohnishi
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiro Nakajima
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Kaoru Kato
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Atsushi Intoh
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Hitomi Takada
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Norio Yamakawa
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Pi-Chao Wang
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makoto Asashima
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Kurisaki
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
32
|
Zhang F, Fan YC, Mu NN, Zhao J, Sun FK, Zhao ZH, Gao S, Wang K. Exportin 4 gene expression and DNA promoter methylation status in chronic hepatitis B virus infection. J Viral Hepat 2014; 21:241-50. [PMID: 24597692 DOI: 10.1111/jvh.12136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/30/2013] [Indexed: 02/04/2023]
Abstract
Exportin 4 (XPO4) is a novel identified candidate tumour-suppressor gene involved in the pathogenesis of hepatocellular carcinoma (HCC). This study was aimed to determine the clinical features of XPO4 mRNA expression and promoter methylation status in peripheral blood mononuclear cells (PBMCs) of patients with chronic hepatitis B virus (HBV) infection. PBMCs were isolated from 44 HCC, 38 liver cirrhosis (LC), 34 chronic hepatitis B (CHB) patients and 17 healthy controls (HCs). The mRNA level and promoter methylation status of XPO4 were determined by quantitative real-time RT-PCR and methylation-specific PCR, respectively. XPO4 mRNA level of HCC patients was significantly lower compared with LC and CHB patients as well as HCs (all P < 0.01, respectively), and significant differences of the XPO4 mRNA level were found in LC and CHB group than in HCs (LC vs HCs, P < 0.01; CHB vs HCs, P < 0.05). Methylation rate of XPO4 promoter was significantly increased in patients with HCC than in patients with CHB and HCs (both P < 0.05). DNA methylation pattern was responsible for the suppression of XPO4 transcription in the progression of HBV infection (P = 0.000). Furthermore, AFP level was significantly higher in HCC patients with XPO4 methylation than in those without methylation ((8702 ± 15635) μm vs (1052 ± 5370) μm, P < 0.05). In conclusion, transcription of XPO4 gene was gradually decreased and methylation rate of XPO4 promoter was increased with the progression of HBV infection. Methylation status of XPO4 in PBMCs tended to be a noninvasive biomarker to predict HCC and the progression of HBV infection.
Collapse
Affiliation(s)
- F Zhang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Murine leukemia virus uses NXF1 for nuclear export of spliced and unspliced viral transcripts. J Virol 2014; 88:4069-82. [PMID: 24478440 DOI: 10.1128/jvi.03584-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Intron-containing mRNAs are subject to restricted nuclear export in higher eukaryotes. Retroviral replication requires the nucleocytoplasmic transport of both spliced and unspliced RNA transcripts, and RNA export mechanisms of gammaretroviruses are poorly characterized. Here, we report the involvement of the nuclear export receptor NXF1/TAP in the nuclear export of gammaretroviral RNA transcripts. We identified a conserved cis-acting element in the pol gene of gammaretroviruses, including murine leukemia virus (MLV) and xenotropic murine leukemia virus (XMRV), named the CAE (cytoplasmic accumulation element). The CAE enhanced the cytoplasmic accumulation of viral RNA transcripts and the expression of viral proteins without significantly affecting the stability, splicing, or translation efficiency of the transcripts. Insertion of the CAE sequence also facilitated Rev-independent HIV Gag expression. We found that the CAE sequence interacted with NXF1, whereas disruption of NXF1 ablated CAE function. Thus, the CAE sequence mediates the cytoplasmic accumulation of gammaretroviral transcripts in an NXF1-dependent manner. Disruption of NXF1 expression impaired cytoplasmic accumulations of both spliced and unspliced RNA transcripts of XMRV and MLV, resulting in their nuclear retention or degradation. Thus, our results demonstrate that gammaretroviruses use NXF1 for the cytoplasmic accumulation of both spliced and nonspliced viral RNA transcripts. IMPORTANCE Murine leukemia virus (MLV) has been studied as one of the classic models of retrovirology. Although unspliced host messenger RNAs are rarely exported from the nucleus, MLV actively exports unspliced viral RNAs to the cytoplasm. Despite extensive studies, how MLV achieves this difficult task has remained a mystery. Here, we have studied the RNA export mechanism of MLV and found that (i) the genome contains a sequence which supports the efficient nuclear export of viral RNAs, (ii) the cellular factor NXF1 is involved in the nuclear export of both spliced and unspliced viral RNAs, and, finally, (iii) depletion of NXF1 results in nuclear retention or degradation of viral RNAs. Our study provides a novel insight into MLV nuclear export.
Collapse
|
34
|
Schul D, Schmitt A, Regneri J, Schartl M, Wagner TU. Burst BMP triggered receptor kinase activity drives Smad1 mediated long-term target gene oscillation in C2C12 cells. PLoS One 2013; 8:e59442. [PMID: 23560048 PMCID: PMC3613406 DOI: 10.1371/journal.pone.0059442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/14/2013] [Indexed: 11/19/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are important growth factors that regulate many cellular processes. During embryogenesis they act as morphogens and play a critical role during organ development. They influence cell fates via concentration-gradients in the embryos where cells transduce this extracellular information into gene expression profiles and cell fate decisions. How receiving cells decode and quantify BMP2/4 signals is hardly understood. There is little data on the quantitative relationships between signal input, transducing molecules, their states and location, and ultimately their ability to integrate graded systemic inputs and generate qualitative responses. Understanding this signaling network on a quantitative level should be considered a prerequisite for efficient pathway modulation, as the BMP pathway is a prime target for therapeutic invention. Hence, we quantified the spatial distribution of the main signal transducer of the BMP2/4 pathway in response to different types and levels of stimuli in c2c12 cells. We found that the subcellular localization of Smad1 is independent of ligand concentration. In contrast, Smad1 phosphorylation levels relate proportionally to BMP2 ligand concentrations and they are entirely located in the nucleus. Interestingly, we found that BMP2 stimulates target gene expression in non-linear, wave-like forms. Amplitudes showed a clear concentration-dependency, for sustained and transient stimulation. We found that even burst-stimulation triggers gene-expression wave-like modulations that are detectable for at least 30 h. Finally, we show here that target gene expression oscillations depend on receptor kinase activity, as the kinase drives further expression pulses without receptor reactivation and the target gene expression breaks off after inhibitor treatment in c2c12 cells.
Collapse
Affiliation(s)
- Daniela Schul
- Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| | - Alexandra Schmitt
- Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| | - Janine Regneri
- Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| | - Manfred Schartl
- Physiological Chemistry I, University of Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
35
|
Zhang H, Wei S, Ning S, Jie Y, Ru Y, Gu Y. Evaluation of TGFβ, XPO4, elF5A2 and ANGPTL4 as biomarkers in HCC. Exp Ther Med 2012; 5:119-127. [PMID: 23251252 PMCID: PMC3523953 DOI: 10.3892/etm.2012.750] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/04/2012] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer, and the fourth leading cause of cancer mortality worldwide. It is often diagnosed at an advanced stage, and hence typically has a poor prognosis. A number of distinct molecules have been recently identified as playing a role in the control of cancer progression. However, patients with HCC have a highly variable clinical course, indicating that HCC comprises several biologically distinctive subgroups reflecting a molecular heterogeneity of the tumors. To evaluate potential biomarkers in HCC, we employed multiple methods in this study, including qPCR, immunostaining methods and tissue microarrays (TMAs), as well as histological and pathological analysis, to assess TGFβ, XPO4, elF5A2 and ANGPTL4 in cancerous and paracancerous liver tissues from 280 patients suffering from liver cancer. Our results found that all four indicators were located in the cytoplasm and distributed in cancerous and paracancerous liver tissues. Generally, there were higher levels of these indicators in paracancerous, compared with cancerous, liver tissues. These four indicators were correlated and modulated among each other. In connection with patient clinical and revisit information, statistical analysis determined that TGFβ1 in paracancerous liver tissue was positively correlated with tumor size. Higher production of TGFβ1 in paracancerous liver tissue was always associated with bigger liver tumors. XPO4 in cancerous liver tissue and TGFβ1 in paracancerous liver tissue were positively correlated with tumor differentiation. TGFβ1, ANGPTL4 and elF5A2 were also positively correlated with the T classification of tumors. Additionally, higher levels of XPO4 in cancerous liver tissue suggested that the patient would have a better prognosis and survival rate. However, higher production of XPO4 in paracancerous liver tissue suggested a worse prognosis. All the results above provide new insights into better understanding biological indicators, such as XPO4, TGFβ1, ANGPTL4 and elF5A2, in the prediction and evaluation of liver cancer, as well as signaling pathways in the control of liver cancer. XPO4 and TGFβ1 may serve as useful markers to evaluate the size and prognosis of liver cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040
| | | | | | | | | | | |
Collapse
|
36
|
Raschbichler V, Lieber D, Bailer SM. NEX-TRAP, a novel method for in vivo analysis of nuclear export of proteins. Traffic 2012; 13:1326-34. [PMID: 22708827 DOI: 10.1111/j.1600-0854.2012.01389.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 12/01/2022]
Abstract
Transport of proteins between cytoplasm and nucleus is mediated by transport factors of the importin α- and β-families and occurs along a gradient of the small GTPase Ran. To date, in vivo analysis as well as prediction of protein nuclear export remain tedious and difficult. We generated a novel bipartite assay called NEX-TRAP (Nuclear EXport Trapped by RAPamycin) for in vivo analysis of protein nuclear export. The assay is based on the rapamycin-induced dimerization of the modules FRB (FK506-rapamycin (FR)-binding domain) and FKBP (FK506-binding protein-12): a potential nuclear export cargo is fused to FRB, to EYFP for direct visualization as well as to an SV40-derived nuclear localization signal (NLS) for constitutive nuclear import. An integral membrane protein that resides at the trans Golgi network (TGN) is fused to a cytoplasmically exposed FKBP and serves as reporter. EYFP-NLS-FRB fusion proteins with export activity accumulate in the nucleus at steady state but continuously shuttle between nucleus and cytoplasm. Rapamycin-induced dimerization of FRB and FKBP at the TGN traps the shuttling protein outside of the nucleus, making nuclear export permanent. Using several example cargoes, we show that the NEX-TRAP is superior to existing assays owing to its ease of use, its sensitivity and accuracy. Analysis of large numbers of export cargoes is facilitated by recombinational cloning. The NEX-TRAP holds the promise of applicability in automated fluorescence imaging for systematic analysis of nuclear export, thereby improving in silico prediction of nuclear export sequences.
Collapse
Affiliation(s)
- Verena Raschbichler
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Pettenkoferstr. 9a, 80336, München, Germany
| | | | | |
Collapse
|
37
|
Xu P, Liu J, Derynck R. Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Lett 2012; 586:1871-84. [PMID: 22617150 DOI: 10.1016/j.febslet.2012.05.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/06/2012] [Accepted: 05/07/2012] [Indexed: 01/17/2023]
Abstract
TGF-β family signaling through Smads is conceptually a simple and linear signaling pathway, driven by sequential phosphorylation, with type II receptors activating type I receptors, which in turn activate R-Smads. Nevertheless, TGF-β family proteins induce highly complex programs of gene expression responses that are extensively regulated, and depend on the physiological context of the cells. Regulation of TGF-β signaling occurs at multiple levels, including TGF-β activation, formation, activation and destruction of functional TGF-β receptor complexes, activation and degradation of Smads, and formation of Smad transcription complexes at regulatory gene sequences that cooperate with a diverse set of DNA binding transcription factors and coregulators. Here we discuss recent insights into the roles of post-translational modifications and molecular interaction networks in the functions of receptors and Smads in TGF-β signal responses. These layers of regulation demonstrate how a simple signaling system can be coopted to exert exquisitely regulated, complex responses.
Collapse
Affiliation(s)
- Pinglong Xu
- Department of Cell and Tissue Biology, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
38
|
Sundqvist A, Ten Dijke P, van Dam H. Key signaling nodes in mammary gland development and cancer: Smad signal integration in epithelial cell plasticity. Breast Cancer Res 2012; 14:204. [PMID: 22315972 PMCID: PMC3496114 DOI: 10.1186/bcr3066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Smad proteins are the key intermediates of transforming growth factor-beta (TGF-β) signaling during development and in tissue homeostasis. Pertubations in TGF-β/Smad signaling have been implicated in cancer and other diseases. In the cell nucleus, Smad complexes trigger cell type- and context-specific transcriptional programs, thereby transmitting and integrating signals from a variety of ligands of the TGF-β superfamily and other stimuli in the cell microenvironment. The actual transcriptional and biological outcome of Smad activation critically depends on the genomic integrity and the modification state of genome and chromatin of the cell. The cytoplasmic and nuclear Smads can also modulate the activity of other signal transducers and enzymes such as microRNA-processing factors. In the case of breast cancer, the role of Smads in epithelial plasticity, tumor-stroma interactions, invasion, and metastasis seems of particular importance.
Collapse
Affiliation(s)
- Anders Sundqvist
- Ludwig Institute for Cancer Research, Uppsala University, Box 595, 75124, Uppsala, Sweden
| | | | | |
Collapse
|
39
|
Mechanism and regulation of nucleocytoplasmic trafficking of smad. Cell Biosci 2011; 1:40. [PMID: 22204445 PMCID: PMC3292837 DOI: 10.1186/2045-3701-1-40] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/28/2011] [Indexed: 11/24/2022] Open
Abstract
Smad proteins are the intracellular mediators of transforming growth factor β (TGF-β) signaling. Smads function as transcription factors and their activities require carboxyl-terminal phosphorylation by TGF-β receptor kinases which are embedded in the cell membrane. Therefore, the translocation of activated Smads from the cytoplasm into the nucleus is a rate-limiting step in TGF-β signal transduction into the nucleus. On the other hand, the export of Smads out of the nucleus turns off TGF-β effect. Such spatial control of Smad ensures a tight regulation of TGF-β target genes. Several cross-talk pathways have been shown to affect TGF-β signaling by impairing nuclear translocation of Smad, exemplifying the biological importance of the nuclear transport process. Many laboratories have investigated the underlying molecular mechanism of Smad nucleocytoplasmic translocation, combining genetics, biochemistry and sophisticated live cell imaging approaches. The last few years have witnessed the elucidation of several key players in Smad nuclear transport, most importantly the karyopherins that carry Smads across the nuclear envelope and nuclear pore proteins that facilitate the trans-nuclear envelope movement. The foundation is now set to further elucidate how the nuclear transport process is regulated and exploit such knowledge to manipulate TGF-β signaling. In this review we will discuss the current understanding of the molecular machinery responsible for nuclear import and export of Smads.
Collapse
|
40
|
Molinari C, Ballardini M, Teodorani N, Giannini M, Zoli W, Emiliani E, Lucci E, Passardi A, Rosetti P, Saragoni L, Guidoboni M, Amadori D, Calistri D. Genomic alterations in rectal tumors and response to neoadjuvant chemoradiotherapy: an exploratory study. Radiat Oncol 2011; 6:161. [PMID: 22099067 PMCID: PMC3236016 DOI: 10.1186/1748-717x-6-161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/18/2011] [Indexed: 12/17/2022] Open
Abstract
Background Neoadjuvant chemoradiotherapy is the treatment of choice in advanced rectal cancer, even though there are many patients who will not benefit from it. There are still no effective methods for predicting which patients will respond or not. The present study aimed to define the genomic profile of rectal tumors and to identify alterations that are predictive of response in order to optimize therapeutic strategies. Methods Forty-eight candidates for neoadjuvant chemoradiotherapy were recruited and their pretherapy biopsies analyzed by array Comparative Genomic Hybridization (aCGH). Pathologic response was evaluated by tumor regression grade. Results Both Hidden Markov Model and Smoothing approaches identified similar alterations, with a prevalence of DNA gains. Non responsive patients had a different alteration profile from responsive ones, with a higher number of genome changes mainly located on 2q21, 3q29, 7p22-21, 7q21, 7q36, 8q23-24, 10p14-13, 13q12, 13q31-34, 16p13, 17p13-12 and 18q23 chromosomal regions. Conclusions This exploratory study suggests that an in depth characterization of chromosomal alterations by aCGH would provide useful predictive information on response to neoadjuvant chemoradiotherapy and could help to optimize therapy in rectal cancer patients. The data discussed in this study are available on the NCBI Gene Expression Omnibus [GEO: GSE25885].
Collapse
Affiliation(s)
- Chiara Molinari
- Biosciences Laboratories, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Huang D, Wang Y, Wang L, Zhang F, Deng S, Wang R, Zhang Y, Huang K. Poly(ADP-ribose) polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell. PLoS One 2011; 6:e27123. [PMID: 22073128 PMCID: PMC3205050 DOI: 10.1371/journal.pone.0027123] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/11/2011] [Indexed: 12/31/2022] Open
Abstract
Background Transforming growth factor type-β (TGF-β)/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS) generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose) polymerase 1 (PARP1), a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs). Methods and Results TGF-β1 treatment promoted PARP1 activation through induction of ROS generation in rat VSMCs. TGF-β1-induced phosphorylation and nuclear accumulation of Smad3 was prevented by treatment of cells with PARP inhibitor, 3-aminobenzamide (3AB) or N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-2-(N,N-dimethylamino)acetami (PJ34), or PARP1 siRNA. TGF-β1 treatment promoted poly(ADP-ribosy)lation of Smad3 via activation of PARP1 in the nucleus. Poly(ADP-ribosy)lation enhanced Smad-Smad binding element (SBE) complex formation in nuclear extracts and increased DNA binding activity of Smad3. Pretreatment with 3AB, PJ34, or PARP1 siRNA prevented TGF-β1-induced Smad3 transactivation and expression of Smad3 target genes, including collagen Iα1, collagen IIIα1 and tissue inhibitor of metalloproteinase 1, in rat VSMCs. Conclusions PARP1 is indispensable for TGF-β1 induced Smad3 activation in rat VSMCs. Targeting PARP1 may be a promising therapeutic approach against vascular diseases induced by dysregulation of TGF-β/Smad3 pathway.
Collapse
MESH Headings
- Animals
- Benzamides/pharmacology
- Blotting, Southwestern
- Blotting, Western
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- Electrophoretic Mobility Shift Assay
- Enzyme Inhibitors/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Fluorescent Antibody Technique
- Immunoenzyme Techniques
- Immunoprecipitation
- Luciferases/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phenanthrenes/pharmacology
- Phosphorylation/drug effects
- Poly(ADP-ribose) Polymerase Inhibitors
- Poly(ADP-ribose) Polymerases/genetics
- Poly(ADP-ribose) Polymerases/metabolism
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/genetics
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Signal Transduction/drug effects
- Smad3 Protein/genetics
- Smad3 Protein/metabolism
- Trans-Activators
- Transcription, Genetic
- Transfection
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Dan Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Central Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Deng
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Wang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- * E-mail: (KH); (YZ)
| | - Kai Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- * E-mail: (KH); (YZ)
| |
Collapse
|
42
|
Dai F, Shen T, Li Z, Lin X, Feng XH. PPM1A dephosphorylates RanBP3 to enable efficient nuclear export of Smad2 and Smad3. EMBO Rep 2011; 12:1175-81. [PMID: 21960005 PMCID: PMC3207100 DOI: 10.1038/embor.2011.174] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/23/2011] [Accepted: 07/27/2011] [Indexed: 01/31/2023] Open
Abstract
Smad2 and Smad3 (Smad2/3) are essential signal transducers and transcription factors in the canonical transforming growth factor-β (TGF-β) signalling pathway. Active Smad2/3 signalling in the nucleus is terminated by dephosphorylation and subsequent nuclear export of Smad2/3. Here we report that protein phosphatase PPM1A regulates the nuclear export of Smad2/3 through targeting nuclear exporter RanBP3. PPM1A directly interacted with and dephosphorylated RanBP3 at Ser 58 in vitro and in vivo. Consistently, RanBP3 phosphorylation was elevated in PPM1A-null mouse embryonic fibroblasts. Dephosphorylation of RanBP3 at Ser 58 promoted its ability to export Smad2/3 and terminate TGF-β responses. Our findings indicate the critical role of PPM1A in maximizing exporter activity of RanBP3 for efficient termination of canonical TGF-β signalling.
Collapse
Affiliation(s)
- Fangyan Dai
- Department of Molecular & Cellular Biology, Texas A&M Health Sciences Center, Houston, Texas 77030, USA
| | - Tao Shen
- Michael E. DeBakey Department of Surgery, Texas A&M Health Sciences Center, Houston, Texas 77030, USA
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, and Texas A&M Health Sciences Center, Houston, Texas 77030, USA
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas 77030, USA
| | - Zhaoyong Li
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Texas A&M Health Sciences Center, Houston, Texas 77030, USA
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, and Texas A&M Health Sciences Center, Houston, Texas 77030, USA
| | - Xin-Hua Feng
- Department of Molecular & Cellular Biology, Texas A&M Health Sciences Center, Houston, Texas 77030, USA
- Michael E. DeBakey Department of Surgery, Texas A&M Health Sciences Center, Houston, Texas 77030, USA
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, and Texas A&M Health Sciences Center, Houston, Texas 77030, USA
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
43
|
Tsuchiya M, Ogawa H, Suzuki T, Sugiyama N, Haraguchi T, Hiraoka Y. Exportin 4 interacts with Sox9 through the HMG Box and inhibits the DNA binding of Sox9. PLoS One 2011; 6:e25694. [PMID: 21991335 PMCID: PMC3185033 DOI: 10.1371/journal.pone.0025694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/08/2011] [Indexed: 11/23/2022] Open
Abstract
Sox9 is a transcription factor that is required for tissue development in mammals. In general, such transcription factors require co-regulators for precise temporal and spatial control of the activation and inactivation of the numerous genes necessary for precise development during embryogenesis. Here we identify a new Sox9 co-regulator: Using affinity chromatography with immobilized Sox9 protein, we identified exportin 4 (Exp4) as an interacting protein of Sox9 in human cultured cells. Interaction between endogenous Exp4 and Sox9 proteins was confirmed in the human osteosarcoma U2OS cells by immunoprecipitation experiments using anti-Sox9 antibody. siRNA depletion of Exp4 enhanced transcription of Sox9 target genes in U2OS cells, but did not affect nuclear localization of Sox9. These results suggest that Exp4 regulates Sox9 activity in the nucleus. Furthermore we found that the HMG box of Sox9 was responsible for binding to Exp4, and the HMG box was required for suppression of Sox9-mediated transcription. This contrasts with the known Sox9 co-regulators which bind to its transcriptional activation domain. Chromatin immunoprecipitation analyses revealed that Exp4 prevents Sox9 binding to the enhancers of its target genes. These results demonstrate that Exp4 acts as a Sox9 co-regulator that directly regulates binding of Sox9 to its target genes.
Collapse
Affiliation(s)
- Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Division of Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Division of Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Taiga Suzuki
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, California, United States of America
| | - Noriyuki Sugiyama
- Kyoto Prefectural University of Medicine, Kawaramachi-dori, Kyoto, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
44
|
Hua F, Mu R, Liu J, Xue J, Wang Z, Lin H, Yang H, Chen X, Hu Z. TRB3 interacts with SMAD3 promoting tumor cell migration and invasion. J Cell Sci 2011; 124:3235-46. [DOI: 10.1242/jcs.082875] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tribbles homolog 3 (TRB3, also known as TRIB3, NIPK and SKIP3), a human homolog of Drosophila Tribbles, has been found to interact with a variety of signaling molecules to regulate diverse cellular functions. Here, we report that TRB3 is a novel SMAD3-interacting protein. Expression of exogenous TRB3 enhanced the transcriptional activity of SMAD3, whereas knocking down endogenous TRB3 reduced the transcriptional activity of SMAD3. The kinase-like domain (KD) of TRB3 was responsible for the interaction with SMAD3 and the regulation of SMAD3-mediated transcriptional activity. In addition, TGF-β1 stimulation or overexpression of SMAD3 enhanced the TRB3 promoter activity and expression, suggesting that there is a positive feedback loop between TRB3 and TGF-β–SMAD3 signaling. Mechanistically, TRB3 was found to trigger the degradation of SMAD ubiquitin regulatory factor 2 (Smurf2), which resulted in a decrease in the degradation of SMAD2 and phosphorylated SMAD3. Moreover, TRB3–SMAD3 interaction promoted the nuclear localization of SMAD3 because of the interaction of TRB3 with the MH2 domain of SMAD3. These effects of TRB3 were responsible for potentiating the SMAD3-mediated activity. Furthermore, knockdown of endogenous TRB3 expression inhibited the migration and invasion of tumor cells in vitro, which were associated with an increase in the expression of E-cadherin and a decrease in the expression of Twist-1 and Snail, two master regulators of epithelial-to-mesenchymal transition, suggesting a crucial role for TRB3 in maintaining the mesenchymal status of tumor cells. These results demonstrate that TRB3 acts as a novel SMAD3-interacting protein to participate in the positive regulation of TGF-β–SMAD-mediated cellular biological functions.
Collapse
Affiliation(s)
- Fang Hua
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Rong Mu
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Jinwen Liu
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Jianfei Xue
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Ziyan Wang
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Heng Lin
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Hongzhen Yang
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Xiaoguang Chen
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| | - Zhuowei Hu
- Molecular Immunology and Pharmacology Laboratory, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P R China
| |
Collapse
|
45
|
Ran-dependent nuclear export mediators: a structural perspective. EMBO J 2011; 30:3457-74. [PMID: 21878989 DOI: 10.1038/emboj.2011.287] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/22/2011] [Indexed: 12/25/2022] Open
Abstract
Nuclear export is an essential eukaryotic activity. It proceeds through nuclear pore complexes (NPCs) and is mediated by soluble receptors that shuttle between nucleus and cytoplasm. RanGTPase-dependent export mediators (exportins) constitute the largest class of these carriers and are functionally highly versatile. All of these exportins load their substrates in response to RanGTP binding in the nucleus and traverse NPCs as ternary RanGTP-exportin-cargo complexes to the cytoplasm, where GTP hydrolysis leads to export complex disassembly. The different exportins vary greatly in their substrate range. Recent structural studies of both protein- and RNA-specific exporters have illuminated how exportins bind their cargoes, how Ran triggers cargo loading and how export complexes are disassembled in the cytoplasm. Here, we review the current state of knowledge and highlight emerging principles as well as prevailing questions.
Collapse
|
46
|
Gong K, Xing D, Li P, Hilgers RH, Hage FG, Oparil S, Chen YF. cGMP inhibits TGF-beta signaling by sequestering Smad3 with cytosolic beta2-tubulin in pulmonary artery smooth muscle cells. Mol Endocrinol 2011; 25:1794-803. [PMID: 21868450 DOI: 10.1210/me.2011-1009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Atrial natriuretic peptide (ANP) and TGF-β play counterregulatory roles in pulmonary vascular adaptation to chronic hypoxia. We have demonstrated that ANP-cyclic GMP (cGMP)-protein kinase G (PKG) signaling inhibits TGF-β signaling by blocking TGF-β-induced nuclear translocation of mothers against decapentaplegic homolog (Smad)3 in pulmonary artery smooth muscle cells (PASMC). The current study tested the novel hypothesis that activation of the ANP-cGMP-PKG pathway limits TGF-β-induced Smad3 nuclear translocation by enhancing Smad3 binding to cytosolic anchoring proteins in isolated pulmonary artery smooth muscle cells. Cells were pretreated with vehicle or cGMP and then exposed to TGF-β1 treatment. Cytosolic fractions were isolated and immunoprecipitated with a selective anti-Smad3 antibody. Differential proteomic analysis of the cytosolic Smad3-interacting proteins by two-dimensional differential in-gel electrophoresis and mass spectroscopy followed by coimmunoprecipitation and immunostaining demonstrated that Smad3 was bound to β2-tubulin in a TGF-β1/cGMP-dependent manner: binding of Smad3 to β2-tubulin was decreased by TGF-β1 and increased by cGMP treatment. A site-directed mutagenesis study demonstrated that mutating Smad3 at Thr388, but not Ser309, two potential sites of PKG-induced hyperphosphorylation, inhibited cGMP-induced Smad3 binding to β2-tubulin. Further, luciferase reporter analysis showed that muation of T388 in Smad3 abolished the inhibitory effect of cGMP on TGF-β1-induced plasminogen activator inhibitor-1 (PAI-1) transcription. In addition, disruption of β2-tubulin with the microtubule depolymerizers nocodazole and colchicine promoted Smad3 dissociation from β2-tubulin, increased both TGF-β1-induced Smad3 nuclear translocation and PAI-1 mRNA expression, and abolished the inhibitory effects of cGMP on these processes. In contrast, the microtubule stabilizers paclitaxel and epothilone B increased cytosolic Smad3 binding to β2-tubulin and enhanced the inhibitory effect of cGMP on Smad3 nuclear translocation and PAI-1 expression in response to TGF-β1. These provocative findings suggest that sequestering Smad3 by β2-tubulin in cytosol is a key mechanism by which ANP-cGMP-PKG signaling interferes with downstream signaling from TGF-β and thus protects against pulmonary arterial remodeling in response to hypoxia stress.
Collapse
Affiliation(s)
- Kaizheng Gong
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Regalado ES, Guo DC, Villamizar C, Avidan N, Gilchrist D, McGillivray B, Clarke L, Bernier F, Santos-Cortez RL, Leal SM, Bertoli-Avella AM, Shendure J, Rieder MJ, Nickerson DA, Milewicz DM. Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ Res 2011; 109:680-6. [PMID: 21778426 DOI: 10.1161/circresaha.111.248161] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Thoracic aortic aneurysms leading to acute aortic dissections (TAAD) can be inherited in families in an autosomal dominant manner. As part of the spectrum of clinical heterogeneity of familial TAAD, we recently described families with multiple members that had TAAD and intracranial aneurysms or TAAD and intracranial and abdominal aortic aneurysms inherited in an autosomal dominant manner. OBJECTIVE To identify the causative mutation in a large family with autosomal dominant inheritance of TAAD with intracranial and abdominal aortic aneurysms by performing exome sequencing of 2 distantly related individuals with TAAD and identifying shared rare variants. METHODS AND RESULTS A novel frame shift mutation, p. N218fs (c.652delA), was identified in the SMAD3 gene and segregated with the vascular diseases in this family with a logarithm of odds score of 2.52. Sequencing of 181 probands with familial TAAD identified 3 additional SMAD3 mutations in 4 families, p.R279K (c.836G>A), p.E239K (c.715G>A), and p.A112V (c.235C>T), resulting in a combined logarithm of odds score of 5.21. These 4 mutations were notably absent in 2300 control exomes. SMAD3 mutations were recently described in patients with aneurysms osteoarthritis syndrome and some of the features of this syndrome were identified in individuals in our cohort, but these features were notably absent in many SMAD3 mutation carriers. CONCLUSIONS SMAD3 mutations are responsible for 2% of familial TAAD. Mutations are found in families with TAAD alone, along with families with TAAD, intracranial aneurysms, abdominal aortic and bilateral iliac aneurysms segregating in an autosomal dominant manner.
Collapse
Affiliation(s)
- Ellen S Regalado
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Role of Smads in TGFβ signaling. Cell Tissue Res 2011; 347:21-36. [PMID: 21643690 DOI: 10.1007/s00441-011-1190-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/10/2011] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-β (TGFβ) is the prototype for a large family of pleiotropic factors that signal via heterotetrameric complexes of type I and type II serine/threonine kinase receptors. Important intracellular mediators of TGFβ signaling are members of the Smad family. Smad2 and 3 are activated by C-terminal receptor-mediated phosphorylation, whereafter they form complexes with Smad4 and are translocated to the nucleus where they, in cooperation with other transcription factors, co-activators and co-repressors, regulate the transcription of specific genes. Smads have key roles in exerting TGFβ-induced programs leading to cell growth arrest and epithelial-mesenchymal transition. The activity and stability of Smad molecules are carefully regulated by a plethora of post-translational modifications, including phosphorylation, ubiquitination, sumoylation, acetylation and poly(ADP)-ribosylation. The Smad function has been shown to be perturbed in certain diseases such as cancer.
Collapse
|
49
|
Xie WB, Li Z, Miano JM, Long X, Chen SY. Smad3-mediated myocardin silencing: a novel mechanism governing the initiation of smooth muscle differentiation. J Biol Chem 2011; 286:15050-7. [PMID: 21402709 PMCID: PMC3083168 DOI: 10.1074/jbc.m110.202747] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 03/11/2011] [Indexed: 12/30/2022] Open
Abstract
Both TGF-β and myocardin (MYOCD) are important for smooth muscle cell (SMC) differentiation, but their precise role in regulating the initiation of SMC development is less clear. In TGF-β-induced SMC differentiation of pluripotent C3H10T1/2 progenitors, we found that TGF-β did not significantly induce Myocd mRNA expression until 18 h of stimulation. On the other hand, early SMC markers such as SM α-actin, SM22α, and SM calponin were detectable beginning 2 or 4 h after TGF-β treatment. These results suggest that Myocd expression is blocked during the initiation of TGF-β-induced SMC differentiation. Consistent with its endogenous expression, Myocd promoter activity was not elevated until 18 h following TGF-β stimulation. Surprisingly, Smad signaling was inhibitory to Myocd expression because blockade of Smad signaling enhanced Myocd promoter activity. Overexpression of Smad3, but not Smad2, inhibited Myocd promoter activity. Conversely, shRNA knockdown of Smad3 allowed TGF-β to activate the Myocd promoter in the initial phase of induction. Myocd was activated by PI3 kinase signaling and its downstream target Nkx2.5. Interestingly, Smad3 did not affect PI3 kinase activity. However, Smad3 physically interacted with Nkx2.5. This interaction blocked Nkx2.5 binding to the Myocd promoter in the early stage of TGF-β induction, leading to inhibition of Myocd mRNA expression. Moreover, Smad3 inhibited Nkx2.5-activated Myocd promoter activity in a dose-dependent manner. Taken together, our results reveal a novel mechanism for Smad3-mediated inhibition of Myocd in the initiation phase of SMC differentiation.
Collapse
Affiliation(s)
- Wei-Bing Xie
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| | - Zuguo Li
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| | - Joseph M. Miano
- the Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York 14642
| | - Xiaochun Long
- the Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York 14642
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| |
Collapse
|
50
|
O'Reilly AJ, Dacks JB, Field MC. Evolution of the karyopherin-β family of nucleocytoplasmic transport factors; ancient origins and continued specialization. PLoS One 2011; 6:e19308. [PMID: 21556326 PMCID: PMC3083441 DOI: 10.1371/journal.pone.0019308] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/29/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Macromolecular transport across the nuclear envelope (NE) is achieved through nuclear pore complexes (NPCs) and requires karyopherin-βs (KAP-βs), a family of soluble receptors, for recognition of embedded transport signals within cargo. We recently demonstrated, through proteomic analysis of trypanosomes, that NPC architecture is likely highly conserved across the Eukaryota, which in turn suggests conservation of the transport mechanisms. To determine if KAP-β diversity was similarly established early in eukaryotic evolution or if it was subsequently layered onto a conserved NPC, we chose to identify KAP-β sequences in a diverse range of eukaryotes and to investigate their evolutionary history. RESULTS Thirty six predicted proteomes were scanned for candidate KAP-β family members. These resulting sequences were resolved into fifteen KAP-β subfamilies which, due to broad supergroup representation, were most likely represented in the last eukaryotic common ancestor (LECA). Candidate members of each KAP-β subfamily were found in all eukaryotic supergroups, except XPO6, which is absent from Archaeplastida. Phylogenetic reconstruction revealed the likely evolutionary relationships between these different subfamilies. Many species contain more than one representative of each KAP-β subfamily; many duplications are apparently taxon-specific but others result from duplications occurring earlier in eukaryotic history. CONCLUSIONS At least fifteen KAP-β subfamilies were established early in eukaryote evolution and likely before the LECA. In addition we identified expansions at multiple stages within eukaryote evolution, including a multicellular plant-specific KAP-β, together with frequent secondary losses. Taken with evidence for early establishment of NPC architecture, these data demonstrate that multiple pathways for nucleocytoplasmic transport were established prior to the radiation of modern eukaryotes but that selective pressure continues to sculpt the KAP-β family.
Collapse
Affiliation(s)
- Amanda J. O'Reilly
- Department of Pathology, University of
Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Joel B. Dacks
- Department of Cell Biology, University of
Alberta, Edmonton, Canada
| | - Mark C. Field
- Department of Pathology, University of
Cambridge, Tennis Court Road, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|