1
|
Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 2012; 13:720-31. [PMID: 22986266 DOI: 10.1038/nrg3293] [Citation(s) in RCA: 870] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent years have witnessed a sea change in our understanding of transcription regulation: whereas traditional models focused solely on the events that brought RNA polymerase II (Pol II) to a gene promoter to initiate RNA synthesis, emerging evidence points to the pausing of Pol II during early elongation as a widespread regulatory mechanism in higher eukaryotes. Current data indicate that pausing is particularly enriched at genes in signal-responsive pathways. Here the evidence for pausing of Pol II from recent high-throughput studies will be discussed, as well as the potential interconnected functions of promoter-proximally paused Pol II.
Collapse
|
2
|
Boeke J, Bag I, Ramaiah MJ, Vetter I, Kremmer E, Pal-Bhadra M, Bhadra U, Imhof A. The RNA helicase Rm62 cooperates with SU(VAR)3-9 to re-silence active transcription in Drosophila melanogaster. PLoS One 2011; 6:e20761. [PMID: 21674064 PMCID: PMC3107242 DOI: 10.1371/journal.pone.0020761] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/09/2011] [Indexed: 11/18/2022] Open
Abstract
Gene expression is highly dynamic and many genes show a wide range in expression over several orders of magnitude. This regulation is often mediated by sequence specific transcription factors. In addition, the tight packaging of DNA into chromatin can provide an additional layer of control resulting in a dynamic range of gene expression covering several orders of magnitude. During transcriptional activation, chromatin barriers have to be eliminated to allow an efficient progression of the RNA polymerase. This repressive chromatin structure has to be re-established quickly after it has been activated in order to tightly regulate gene activity. We show that the DExD/H box containing RNA helicase Rm62 is targeted to a site of rapid induction of transcription where it is responsible for an increased degree of methylation at H3K9 at the heat shock locus after removal of the heat shock stimulus. The RNA helicase interacts with the well-characterized histone methyltransferase SU(VAR)3-9 via its N-terminus, which provides a potential mechanism for the targeting of H3K9 methylation to highly regulated genes. The recruitment of SU(VAR)3-9 through interaction with a RNA helicase to a site of active transcription might be a general mechanism that allows an efficient silencing of highly regulated genes thereby enabling a cell to fine tune its gene activity over a wide range.
Collapse
Affiliation(s)
- Joern Boeke
- Munich Center of Integrated Protein Science and Adolf-Butenandt Institute, Ludwig Maximilians University of Munich, Munich, Germany
| | - Indira Bag
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Hyderabad, India
| | - M. Janaki Ramaiah
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Hyderabad, India
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Irene Vetter
- Munich Center of Integrated Protein Science and Adolf-Butenandt Institute, Ludwig Maximilians University of Munich, Munich, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum Munich, Munich, Germany
| | - Manika Pal-Bhadra
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Hyderabad, India
| | - Utpal Bhadra
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Axel Imhof
- Munich Center of Integrated Protein Science and Adolf-Butenandt Institute, Ludwig Maximilians University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
3
|
Nechaev S, Adelman K. Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:34-45. [PMID: 21081187 DOI: 10.1016/j.bbagrm.2010.11.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/06/2010] [Accepted: 11/09/2010] [Indexed: 01/12/2023]
Abstract
Proper regulation of gene expression is essential for the differentiation, development and survival of all cells and organisms. Recent work demonstrates that transcription of many genes, including key developmental and stimulus-responsive genes, is regulated after the initiation step, by pausing of RNA polymerase II during elongation through the promoter-proximal region. Thus, there is great interest in better understanding the events that follow transcription initiation and the ways in which the efficiency of early elongation can be modulated to impact expression of these highly regulated genes. Here we describe our current understanding of the steps involved in the transition from an unstable initially transcribing complex into a highly stable and processive elongation complex. We also discuss the interplay between factors that affect early transcript elongation and the potential physiological consequences for genes that are regulated through transcriptional pausing.
Collapse
Affiliation(s)
- Sergei Nechaev
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
4
|
Neznanov N, Gorbachev AV, Neznanova L, Komarov AP, Gurova KV, Gasparian AV, Banerjee AK, Almasan A, Fairchild RL, Gudkov AV. Anti-malaria drug blocks proteotoxic stress response: anti-cancer implications. Cell Cycle 2009; 8:3960-70. [PMID: 19901558 DOI: 10.4161/cc.8.23.10179] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The number of physical conditions and chemical agents induce accumulation of misfolded proteins creating proteotoxic stress. This leads to activation of adaptive pro-survival pathway, known as heat shock response (HSR), resulting in expression of additional chaperones. Several cancer treatment approaches, such as proteasome inhibitor Bortezomib and hsp90 inhibitor geldanamycin, involve activation of proteotoxic stress. Low efficacy of these therapies is likely due to the protective effects of HSR induced in treated cells, making this pathway an attractive target for pharmacological suppression. We found that the anti-malaria drugs quinacrine (QC) and emetine prevented HSR in cancer cells, as judged by induction of hsp70 expression. As opposed to emetine, which inhibited general translation, QC did not affect protein synthesis, but rather suppressed inducible HSF1-dependent transcription of the hsp70 gene in a relatively selective manner. The treatment of tumor cells in vitro with a combination of non-toxic concentrations of QC and proteotoxic stress inducers resulted in rapid induction of apoptosis. The effect was similar if QC was substituted by siRNA against hsp70, suggesting that the HSR inhibitory activity of QC was responsible for cell sensitization to proteotoxic stress inducers. QC was also found to enhance the antitumor efficacy of proteotoxic stress inducers in vivo: combinatorial treatment with 17-DMAG + QC resulted in suppression of tumor growth in two mouse syngeneic models. These results reveal that QC is an inhibitor of HSF1-mediated HSR. As such, this compound has significant clinical potential as an adjuvant in therapeutic strategies aimed at exploiting the cytotoxic potential of proteotoxic stress.
Collapse
Affiliation(s)
- Nickolay Neznanov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gilchrist DA, Nechaev S, Lee C, Ghosh SKB, Collins JB, Li L, Gilmour DS, Adelman K. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev 2008; 22:1921-33. [PMID: 18628398 DOI: 10.1101/gad.1643208] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Negative Elongation Factor (NELF) is a transcription regulatory complex that induces stalling of RNA polymerase II (Pol II) during early transcription elongation and represses expression of several genes studied to date, including Drosophila Hsp70, mammalian proto-oncogene junB, and HIV RNA. To determine the full spectrum of NELF target genes in Drosophila, we performed a microarray analysis of S2 cells depleted of NELF and discovered that NELF RNAi affects many rapidly inducible genes involved in cellular responses to stimuli. Surprisingly, only one-third of NELF target genes were, like Hsp70, up-regulated by NELF-depletion, whereas the majority of target genes showed decreased expression levels upon NELF RNAi. Our data reveal that the presence of stalled Pol II at this latter group of genes enhances gene expression by maintaining a permissive chromatin architecture around the promoter-proximal region, and that loss of Pol II stalling at these promoters is accompanied by a significant increase in nucleosome occupancy and a decrease in histone H3 Lys 4 trimethylation. These findings identify a novel, positive role for stalled Pol II in regulating gene expression and suggest that there is a dynamic interplay between stalled Pol II and chromatin structure.
Collapse
Affiliation(s)
- Daniel A Gilchrist
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Aida M, Chen Y, Nakajima K, Yamaguchi Y, Wada T, Handa H. Transcriptional pausing caused by NELF plays a dual role in regulating immediate-early expression of the junB gene. Mol Cell Biol 2006; 26:6094-104. [PMID: 16880520 PMCID: PMC1592793 DOI: 10.1128/mcb.02366-05] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) negatively regulate transcription elongation by RNA polymerase II (RNAPII) in vitro. However, the physiological roles of this negative regulation are not well understood. Here, by using a number of approaches to identify protein-DNA interactions in vivo, we show that DSIF- and NELF-mediated transcriptional pausing has a dual function in regulating immediate-early expression of the human junB gene. Before induction by interleukin-6, RNAPII, DSIF, and NELF accumulate in the promoter-proximal region of junB, mainly at around position +50 from the transcription initiation site. After induction, the association of these proteins with the promoter-proximal region continues whereas RNAPII and DSIF are also found in the downstream regions. Depletion of a subunit of NELF by RNA interference enhances the junB mRNA level both before and after induction, indicating that DSIF- and NELF-mediated pausing contributes to the negative regulation of junB expression, not only by inducing RNAPII pausing before induction but also by attenuating transcription after induction. These regulatory mechanisms appear to be conserved in other immediate-early genes as well.
Collapse
Affiliation(s)
- Masatoshi Aida
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Adelman K, Wei W, Ardehali MB, Werner J, Zhu B, Reinberg D, Lis JT. Drosophila Paf1 modulates chromatin structure at actively transcribed genes. Mol Cell Biol 2006; 26:250-60. [PMID: 16354696 PMCID: PMC1317635 DOI: 10.1128/mcb.26.1.250-260.2006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Paf1 complex in yeast has been reported to influence a multitude of steps in gene expression through interactions with RNA polymerase II (Pol II) and chromatin-modifying complexes; however, it is unclear which of these many activities are primary functions of Paf1 and are conserved in metazoans. We have identified and characterized the Drosophila homologs of three subunits of the yeast Paf1 complex and found striking differences between the yeast and Drosophila Paf1 complexes. We demonstrate that although Drosophila Paf1, Rtf1, and Cdc73 colocalize broadly with actively transcribing, phosphorylated Pol II, and all are recruited to activated heat shock genes with similar kinetics; Rtf1 does not appear to be a stable part of the Drosophila Paf1 complex. RNA interference (RNAi)-mediated depletion of Paf1 or Rtf1 leads to defects in induction of Hsp70 RNA, but tandem RNAi-chromatin immunoprecipitation assays show that loss of neither Paf1 nor Rtf1 alters the density or distribution of phosphorylated Pol II on the active Hsp70 gene. However, depletion of Paf1 reduces trimethylation of histone H3 at lysine 4 in the Hsp70 promoter region and significantly decreases the recruitment of chromatin-associated factors Spt6 and FACT, suggesting that Paf1 may manifest its effects on transcription through modulating chromatin structure.
Collapse
Affiliation(s)
- Karen Adelman
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Boehm AK, Saunders A, Werner J, Lis JT. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol Cell Biol 2003; 23:7628-37. [PMID: 14560008 PMCID: PMC207607 DOI: 10.1128/mcb.23.21.7628-7637.2003] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The uninduced Drosophila hsp70 gene is poised for rapid activation. Here we examine the rapid changes upon heat shock in levels and location of heat shock factor (HSF), RNA polymerase II (Pol II) and its phosphorylated forms, and the Pol II kinase P-TEFb on hsp70 in vivo by using both real-time PCR assays of chromatin immunoprecipitates and polytene chromosome immunofluorescence. These studies capture Pol II recruitment and progression along hsp70 and reveal distinct spatial and temporal patterns of serine 2 and serine 5 phosphorylation: in uninduced cells, the promoter-paused Pol II shows Ser5 but not Ser2 phosphorylation, and in induced cells the relative level of Ser2-P Pol II is lower at the promoter than at regions downstream. An early time point of heat shock activation captures unphosphorylated Pol II recruited to the promoter prior to P-TEFb, and during the first wave of transcription Pol II and the P-TEFb kinase can be seen tracking together across hsp70 with indistinguishable kinetics. Pol II distributions on several other genes with paused Pol II show a pattern of Ser5 and Ser2 phosphorylation similar to that of hsp70. These studies of factor choreography set important limits in modeling transcription regulatory mechanisms.
Collapse
Affiliation(s)
- Amber K Boehm
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
9
|
Katsani KR, Hajibagheri MA, Verrijzer CP. Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology. EMBO J 1999; 18:698-708. [PMID: 9927429 PMCID: PMC1171162 DOI: 10.1093/emboj/18.3.698] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The POZ domain is a conserved protein-protein interaction motif present in a variety of transcription factors involved in development, chromatin remodelling and human cancers. Here, we study the role of the POZ domain of the GAGA transcription factor in promoter recognition. Natural target promoters for GAGA typically contain multiple GAGA-binding elements. Our results show that the POZ domain mediates strong co-operative binding to multiple sites but inhibits binding to single sites. Protein cross-linking and gel filtration chromatography experiments established that the POZ domain is required for GAGA oligomerization into higher order complexes. Thus, GAGA oligomerization increases binding specificity by selecting only promoters with multiple sites. Electron microscopy revealed that GAGA binds to multiple sites as a large oligomer and induces bending of the promoter DNA. Our results indicate a novel mode of DNA binding by GAGA, in which a large GAGA complex binds multiple GAGA elements that are spread out over a region of a few hundred base pairs. We suggest a model in which the promoter DNA is wrapped around a GAGA multimer in a conformation that may exclude normal nucleosome formation.
Collapse
Affiliation(s)
- K R Katsani
- Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | |
Collapse
|
10
|
Abstract
Living cells, both prokaryotic and eukaryotic, employ specific sensory and signalling systems to obtain and transmit information from their environment in order to adjust cellular metabolism, growth, and development to environmental alterations. Among external factors that trigger such molecular communications are nutrients, ions, drugs and other compounds, and physical parameters such as temperature and pressure. One could consider stress imposed on cells as any disturbance of the normal growth condition and even as any deviation from optimal growth circumstances. It may be worthwhile to distinguish specific and general stress circumstances. Reasoning from this angle, the extensively studied response to heat stress on the one hand is a specific response of cells challenged with supra-optimal temperatures. This response makes use of the sophisticated chaperoning mechanisms playing a role during normal protein folding and turnover. The response is aimed primarily at protection and repair of cellular components and partly at acquisition of heat tolerance. In addition, heat stress conditions induce a general response, in common with other metabolically adverse circumstances leading to physiological perturbations, such as oxidative stress or osmostress. Furthermore, it is obvious that limitation of essential nutrients, such as glucose or amino acids for yeasts, leads to such a metabolic response. The purpose of the general response may be to promote rapid recovery from the stressful condition and resumption of normal growth. This review focuses on the changes in gene expression that occur when cells are challenged by stress, with major emphasis on the transcription factors involved, their cognate promoter elements, and the modulation of their activity upon stress signal transduction. With respect to heat shock-induced changes, a wealth of information on both prokaryotic and eukaryotic organisms, including yeasts, is available. As far as the concept of the general (metabolic) stress response is concerned, major attention will be paid to Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- W H Mager
- Department of Biochemistry and Molecular Biology, IMBW, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | |
Collapse
|
11
|
Champlin DT, Lis JT. Distribution of B52 within a chromosomal locus depends on the level of transcription. Mol Biol Cell 1994; 5:71-9. [PMID: 8186467 PMCID: PMC301010 DOI: 10.1091/mbc.5.1.71] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Drosophila B52 protein is a homologue of human ASF/SF2 that functions in vitro as an essential pre-mRNA splicing factor. Immunofluorescence analysis of polytene chromosomes has shown that B52 generally colocalizes with RNA polymerase II; however, in contrast to other splicing factors, B52 brackets RNA polymerase II at highly active heat-shock puffs. Also, UV cross-linking in nonpolytene cells has shown that B52 cross-links in vivo to DNA flanking the highly active transcription units. Here, we find that the distribution of cross-linked B52 at heat-shock loci depends on transcription levels. Heat shocks at low and moderate temperatures, which induce corresponding levels of transcription, recruit B52 both to transcribed DNA and to flanking DNA, whereas a full heat-shock induction concentrates B52 on the DNA that brackets the entire activated region. We have also identified a 46-kDa protein from Chironomus tentans that binds Drosophila B52 antibodies and has a distribution on chromosomes analogous to B52. This protein is found throughout the moderately transcribed Balbiani rings. However, when transcription at these rings is hyperinduced to levels comparable to fully induced Drosophila heat-shock genes, the protein is restricted to the boundaries of highly decondensed chromatin. We suggest that B52 tracks to chromatin fibers that are folding or unfolding, and we discuss this in light of B52's proposed roles in pre-mRNA splicing and control.
Collapse
Affiliation(s)
- D T Champlin
- Section of Biochemistry, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
12
|
Belikov SV, Belgovsky AI, Preobrazhenskaya OV, Karpov VL, Mirzabekov AD. Two non-histone proteins are associated with the promoter region and histone HI with the transcribed region of active hsp-70 genes as revealed by UV-induced DNA-protein crosslinking in vivo. Nucleic Acids Res 1993; 21:1031-4. [PMID: 8451170 PMCID: PMC309240 DOI: 10.1093/nar/21.4.1031] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We described here an approach for mapping proteins on any sequence of genomic DNA. UV-induced DNA-protein crosslinking within whole cells and the 'protein image' hybridization technique (1) were applied to test the proteins bound to different regions of the D. melanogaster hsp-70 gene. The histone H1-DNA association with the coding region is shown to be maintained, even during very intensive transcription, but is absent in the promoter. Two non-histone proteins with apparent molecular masses of 50 kD (p50) and 100 kD (p100) are crosslinked only to the active hsp-70 gene regulatory region and preferentially bind to its complementary and coding DNA strands, respectively.
Collapse
Affiliation(s)
- S V Belikov
- W.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | | | | | | | |
Collapse
|
13
|
Abstract
In contrast to the hsp70 gene, whose expression is normally at a very low level and increases by more than 2 orders of magnitude during heat shock, the hsp83 gene in Drosophila melanogaster is expressed at high levels during normal development and increases only severalfold in response to heat shock. Developmental expression of the hsp83 gene consists of a high level of tissue-general, basal expression and a very high level of expression in ovaries. We identified regions upstream of the hsp83 gene that were required for its developmental and heat shock-induced expression by assaying beta-galactosidase activity and mRNA levels in transgenic animals containing a series of 5' deletion and insertion mutations of an hsp83-lacZ fusion gene. Deletion of sequences upstream of the overlapping array of a previously defined heat shock consensus (HSC) sequence eliminated both forms of developmental expression of the hsp83 gene. As a result, the hsp83 gene with this deletion mutation was regulated like that of the hsp70 gene. Moreover, an in vivo polymer competition assay revealed that the overlapping HSC sequences of the hsp83 gene and the nonoverlapping HSC sequences of the hsp70 gene had similar affinities for the factor required for heat induction of the two heat shock genes. We discuss the functional similarity of hsp70 and hsp83 heat shock regulation in terms of a revised view of the heat shock-regulatory sequence.
Collapse
|
14
|
Abstract
In contrast to the hsp70 gene, whose expression is normally at a very low level and increases by more than 2 orders of magnitude during heat shock, the hsp83 gene in Drosophila melanogaster is expressed at high levels during normal development and increases only severalfold in response to heat shock. Developmental expression of the hsp83 gene consists of a high level of tissue-general, basal expression and a very high level of expression in ovaries. We identified regions upstream of the hsp83 gene that were required for its developmental and heat shock-induced expression by assaying beta-galactosidase activity and mRNA levels in transgenic animals containing a series of 5' deletion and insertion mutations of an hsp83-lacZ fusion gene. Deletion of sequences upstream of the overlapping array of a previously defined heat shock consensus (HSC) sequence eliminated both forms of developmental expression of the hsp83 gene. As a result, the hsp83 gene with this deletion mutation was regulated like that of the hsp70 gene. Moreover, an in vivo polymer competition assay revealed that the overlapping HSC sequences of the hsp83 gene and the nonoverlapping HSC sequences of the hsp70 gene had similar affinities for the factor required for heat induction of the two heat shock genes. We discuss the functional similarity of hsp70 and hsp83 heat shock regulation in terms of a revised view of the heat shock-regulatory sequence.
Collapse
Affiliation(s)
- H Xiao
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
15
|
TATA box-dependent protein-DNA interactions are detected on heat shock and histone gene promoters in nuclear extracts derived from Drosophila melanogaster embryos. Mol Cell Biol 1989. [PMID: 2905425 DOI: 10.1128/mcb.8.8.3204] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We monitored protein-DNA interactions that occur on the hsp26, hsp70, histone H3, and histone H4 promoters in nuclear extracts derived from frozen Drosophila melanogaster embryos. All four of these promoters were found to be transcribed in vitro at comparable levels by extracts from both heat-shocked and non-heat-shocked embryos. Factors were detected in both types of extracts that block exonuclease digestion from a downstream site at ca. +35 and -20 base pairs from the start of transcription of all four of these promoters. In addition, factors in extracts from heat-shocked embryos blocked exonuclease digestion at sites flanking the heat shock consensus sequences of hsp26 and hsp70. Competition experiments indicated that common factors cause the +35 and -20 barriers on all four promoters in both extracts. The formation of the barriers at +35 and -20 required a TATA box but did not appear to require specific sequences downstream of +7. We suggest that the factors responsible for the +35 and -20 barriers are components whose association with the promoter precedes transcriptional activation.
Collapse
|
16
|
Gilmour DS, Dietz TJ, Elgin SC. TATA box-dependent protein-DNA interactions are detected on heat shock and histone gene promoters in nuclear extracts derived from Drosophila melanogaster embryos. Mol Cell Biol 1988; 8:3204-14. [PMID: 2905425 PMCID: PMC363552 DOI: 10.1128/mcb.8.8.3204-3214.1988] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We monitored protein-DNA interactions that occur on the hsp26, hsp70, histone H3, and histone H4 promoters in nuclear extracts derived from frozen Drosophila melanogaster embryos. All four of these promoters were found to be transcribed in vitro at comparable levels by extracts from both heat-shocked and non-heat-shocked embryos. Factors were detected in both types of extracts that block exonuclease digestion from a downstream site at ca. +35 and -20 base pairs from the start of transcription of all four of these promoters. In addition, factors in extracts from heat-shocked embryos blocked exonuclease digestion at sites flanking the heat shock consensus sequences of hsp26 and hsp70. Competition experiments indicated that common factors cause the +35 and -20 barriers on all four promoters in both extracts. The formation of the barriers at +35 and -20 required a TATA box but did not appear to require specific sequences downstream of +7. We suggest that the factors responsible for the +35 and -20 barriers are components whose association with the promoter precedes transcriptional activation.
Collapse
Affiliation(s)
- D S Gilmour
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | |
Collapse
|
17
|
Thomas GH, Elgin SC. Protein/DNA architecture of the DNase I hypersensitive region of the Drosophila hsp26 promoter. EMBO J 1988; 7:2191-201. [PMID: 2901349 PMCID: PMC454544 DOI: 10.1002/j.1460-2075.1988.tb03058.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genomic footprinting on the Drosophila hsp26 promoter in isolated nuclei has shown that a TATA box binding factor is present before and after induction by heat shock, while three of the seven heat shock consensus sequences 5' of the gene are occupied (presumably by heat shock factor, HSF) specifically on heat shock. The sites of HSF interaction are separated by greater than 200 bp of which approximately 150 bp are bound to the surface of a nucleosome. The juxtaposition of these various macromolecules on the DNA suggests a basis for the major DNase I hypersensitive site 5' of hsp26 and a novel tertiary structure for the promoter complex.
Collapse
Affiliation(s)
- G H Thomas
- Department of Biology, Washington University, St. Louis, MO 63130
| | | |
Collapse
|
18
|
Liberator PA, Lingrel JB. Chromatin fine-structure mapping of the goat beta F gene in fetal erythroid tissue. Mol Cell Biol 1987; 7:2772-82. [PMID: 2823104 PMCID: PMC367894 DOI: 10.1128/mcb.7.8.2772-2782.1987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Using a restriction enzyme accessibility assay, we have previously demonstrated that the chromatin structure immediately proximal to the goat beta F-, beta C-, and beta A-globin genes changes in a manner which parallels their developmentally regulated expression. More specifically, the PvuII recognition sequence, located 9 nucleotides upstream from the transcriptional start site in each of the three genes, is accessible to digestion only in nuclei prepared from erythroid tissue in which the respective gene product is expressed. Here we describe two restriction enzyme sites further upstream from the transcription start sites (HindIII at -700 and SacI at -480) which were not accessible to digestion in fetal erythroid nuclei. Conversely, two sites within the second coding block of the beta F gene (AccI at +276 and BamHI at +470) were accessible in fetal erythroid tissue. The corresponding sites in the beta C and beta A genes were not available for digestion in the same fetal tissue. Processive exonuclease III digestion in situ from the three accessible restriction enzyme sites in the beta F gene allowed us to define more closely the limits of these open regions. Resistance to exonuclease III digestion was encountered at or near both intron-exon junctions flanking the first intervening sequence of the beta F gene. Conversely, no resistance to exonuclease III digestion was evident in either the first or second coding blocks or the 5' untranslated region. Digestion upstream from the PvuII site of the beta F gene was negligible. High-resolution mapping by S1 nuclease analysis indicated that the endpoint of exonuclease III digestion from this site lay immediately downstream of the ATA box.
Collapse
Affiliation(s)
- P A Liberator
- Department of Microbiology and Molecular Genetics, University of Cincinnati College of Medicine, Ohio 45267-0524
| | | |
Collapse
|
19
|
Localization of specific topoisomerase I interactions within the transcribed region of active heat shock genes by using the inhibitor camptothecin. Mol Cell Biol 1987. [PMID: 3031452 DOI: 10.1128/mcb.7.1.141] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Camptothecin stabilizes the topoisomerase I-DNA covalent intermediate that forms during the relaxation of torsionally strained DNA. By mapping the position of the resultant DNA nicks, we analyzed the distribution of the covalent intermediates formed on heat shock genes in cultured Drosophila melanogaster cells. Topoisomerase I was found to interact with the transcriptionally active genes hsp22, hsp23, hsp26, and hsp28 after heat shock but not with the inactive genes before heat shock. The interaction occurred predominantly within the transcribed region, with specific sites occurring on both the transcribed and nontranscribed strands of the DNA. Little interaction was seen with nontranscribed flanking sequences. Camptothecin only partially inhibited transcription of the hsp28 gene during heat shock, causing a reduced level of transcripts which were nonetheless full length. Topoisomerase I also interacted with the DNA throughout the transcriptionally active hsp83 gene, including an intron, in both heat-shocked and non-heat-shocked cells. The results point to a dynamic set of interactions at the active locus.
Collapse
|
20
|
RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol Cell Biol 1987. [PMID: 3099167 DOI: 10.1128/mcb.6.11.3984] [Citation(s) in RCA: 175] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using a protein-DNA cross-linking method (D. S. Gilmour and J. T. Lis, Mol. Cell. Biol. 5:2009-2018, 1985), we examined the in vivo distribution of RNA polymerase II on the hsp70 heat shock gene in Drosophila melanogaster Schneider line 2 cells. In heat shock-induced cells, a high level of RNA polymerase II was detected on the entire gene, while in noninduced cells, the RNA polymerase II was confined to the 5' end of the hsp70 gene, predominantly between nucleotides -12 and +65 relative to the start of transcription. This association of RNA polymerase II was apparent whether the cross-linking was performed by a 10-min UV irradiation of chilled cells with mercury vapor lamps or by a 40-microsecond irradiation of cells with a high-energy xenon flash lamp. We hypothesize that RNA polymerase II has access to, and a high affinity for, the promoter region of this gene before induction, and this poised RNA polymerase II may be critical in the mechanism of transcription activation.
Collapse
|
21
|
Sequences involved in temperature and ecdysterone-induced transcription are located in separate regions of a Drosophila melanogaster heat shock gene. Mol Cell Biol 1987. [PMID: 3097502 DOI: 10.1128/mcb.6.2.663] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional regulation of the Drosophila melanogaster hsp27 (also called hsp28) gene was studied by introducing altered genes into the germ line by P element-mediated transformation. DNA sequences upstream of the gene were defined with respect to their effect on steroid hormone-induced and heat-induced transcription. These two types of control were found to be separable; the sequences responsible for 80% of heat-induced expression were located more than 1.1 kilobases upstream of the RNA initiation site, while the sequences responsible for the majority of ecdysterone induction were positioned downstream of the site at -227 base pairs. We have determined the DNA sequence of the intergenic region separating hsp23 and hsp27 and have located putative heat shock and ecdysterone consensus sequences. Our results indicate that the heat shock promoter of the hsp27 gene is organized quite differently from that of hsp70.
Collapse
|
22
|
Gilmour DS, Elgin SC. Localization of specific topoisomerase I interactions within the transcribed region of active heat shock genes by using the inhibitor camptothecin. Mol Cell Biol 1987; 7:141-8. [PMID: 3031452 PMCID: PMC365050 DOI: 10.1128/mcb.7.1.141-148.1987] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Camptothecin stabilizes the topoisomerase I-DNA covalent intermediate that forms during the relaxation of torsionally strained DNA. By mapping the position of the resultant DNA nicks, we analyzed the distribution of the covalent intermediates formed on heat shock genes in cultured Drosophila melanogaster cells. Topoisomerase I was found to interact with the transcriptionally active genes hsp22, hsp23, hsp26, and hsp28 after heat shock but not with the inactive genes before heat shock. The interaction occurred predominantly within the transcribed region, with specific sites occurring on both the transcribed and nontranscribed strands of the DNA. Little interaction was seen with nontranscribed flanking sequences. Camptothecin only partially inhibited transcription of the hsp28 gene during heat shock, causing a reduced level of transcripts which were nonetheless full length. Topoisomerase I also interacted with the DNA throughout the transcriptionally active hsp83 gene, including an intron, in both heat-shocked and non-heat-shocked cells. The results point to a dynamic set of interactions at the active locus.
Collapse
|
23
|
Nucleosomal instability and induction of new upstream protein-DNA associations accompany activation of four small heat shock protein genes in Drosophila melanogaster. Mol Cell Biol 1986. [PMID: 3022129 DOI: 10.1128/mcb.6.3.779] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated in detail the structural changes that occur in nuclear chromatin upon activation of the four small heat shock protein genes in D. melanogaster. Both the chemical cleavage reagent methidiumpropyl-EDTA X iron(II) [MPE X Fe(II)] and the nuclease DNase I revealed a complex pattern of four or five hypersensitive sites upstream of each gene before activation. In addition, MPE X Fe(II) detected a short positioned array of nucleosomes located on each coding region. Upon heat shock activation a number of changes in the patterns occurred. For each gene, at least one of the upstream hypersensitive regions was eliminated or substantially shifted in position. Regions were established which became highly refractile to digestion by either MPE X Fe(II) or DNase I and, as such, appeared as small "footprints" in the pattern. The location of these refractile regions relative to the cap site varied for each gene examined. The coding regions themselves became highly accessible to DNase I. The nucleosomal arrays detected by MPE X Fe(II) were characterized by a considerable loss of detail and significantly enhanced accessibility, the extent of which probably reflected the relative transcription rate of each gene. Careful mapping of the location and extent of each upstream footprint and comparison with the DNA sequence revealed the presence at each location of two (or more) contiguous or overlapping segments that bear high homology to the heat shock consensus sequence C-T-N-G-A-A-N-N-T-T-C-N-A-G. A specific protein factor (or factors) is most likely bound at or near these sequence in heat-shocked Drosophila cells.
Collapse
|
24
|
Gilmour DS, Lis JT. RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol Cell Biol 1986; 6:3984-9. [PMID: 3099167 PMCID: PMC367162 DOI: 10.1128/mcb.6.11.3984-3989.1986] [Citation(s) in RCA: 168] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
By using a protein-DNA cross-linking method (D. S. Gilmour and J. T. Lis, Mol. Cell. Biol. 5:2009-2018, 1985), we examined the in vivo distribution of RNA polymerase II on the hsp70 heat shock gene in Drosophila melanogaster Schneider line 2 cells. In heat shock-induced cells, a high level of RNA polymerase II was detected on the entire gene, while in noninduced cells, the RNA polymerase II was confined to the 5' end of the hsp70 gene, predominantly between nucleotides -12 and +65 relative to the start of transcription. This association of RNA polymerase II was apparent whether the cross-linking was performed by a 10-min UV irradiation of chilled cells with mercury vapor lamps or by a 40-microsecond irradiation of cells with a high-energy xenon flash lamp. We hypothesize that RNA polymerase II has access to, and a high affinity for, the promoter region of this gene before induction, and this poised RNA polymerase II may be critical in the mechanism of transcription activation.
Collapse
|
25
|
Abstract
We describe a method for examining the in vivo distribution of a protein on specific eucaryotic DNA sequences. In this method, proteins are cross-linked to DNA in intact cells, and the protein-DNA adducts are isolated by immunoprecipitation with antiserum against the protein. Characterization of the DNA cross-linked to the precipitated protein identifies the sequences with which the protein is associated in vivo. Here, we applied these methods to detect RNA polymerase II-DNA interactions in heat-shocked and untreated Drosophila melanogaster Schneider line 2 cells. The level of RNA polymerase II associated with several heat shock genes increased dramatically in response to heat shock, whereas the level associated with the copia genes decreased, indicating that both induction of heat shock gene expression and repression of the copia gene expression by heat shock occur at the transcriptional level. Low levels of RNA polymerase II were present on DNA outside of the transcription units, and for at least two genes, hsp83 and hsp26, RNA polymerase II initiated binding near the transcription start site. Moreover, for hsp70, the density of RNA polymerase II on sequences downstream of the polyadenylate addition site was much lower than that observed on the gene internal sequences. Examination of the amount of specific restriction fragments cross-linked to RNA polymerase II provides a means of detecting RNA polymerase II on individual members of multigene families. This analysis shows that RNA polymerase II is associated with only one of the two cytoplasmic actin genes.
Collapse
|
26
|
Babiss LE, Bennett A, Friedman JM, Darnell JE. DNase I-hypersensitive sites in the 5'-flanking region of the rat serum albumin gene: correlation between chromatin structure and transcriptional activity. Proc Natl Acad Sci U S A 1986; 83:6504-8. [PMID: 3462709 PMCID: PMC386532 DOI: 10.1073/pnas.83.17.6504] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
As tested by DNase I digestion, the chromatin structure in several regions 5' to the rat serum albumin gene varies in tissues and cell lines that differ in transcription rate of this gene. Three DNase I-hypersensitive regions were found in hepatocyte nuclei but not in kidney cell nuclei. The sites were approximately 2.8 kbp (site 1), 0.2 kbp (site 2), and 0.05 kbp (site 3) upstream from the cap site of the gene. In rat fetal liver tissue and rat hepatoma cell lines (FaO, C2, and C2-rev7), as well as in cultured primary hepatocytes where the rate of albumin gene transcription is lower than in adult liver, hypersensitive site (HSS) 1 was absent while sites 2 and 3 were present. In addition, the C2 cell line, which does not express albumin mRNA, contains a different HSS at position -1.5 kbp. Factors (proteins) bound to sites 2 and 3 may allow cell-specific transcription, but the additional factor interaction at site 1 could be required for a maximal rate of albumin gene transcription.
Collapse
|
27
|
de Banzie JS, Sinclair L, Lis JT. Expression of the major heat shock gene of Drosophila melanogaster in Saccharomyces cerevisiae. Nucleic Acids Res 1986; 14:3587-601. [PMID: 3010243 PMCID: PMC339795 DOI: 10.1093/nar/14.8.3587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A copy of the gene which encodes the major heat shock protein (hsp70) of D. melanogaster was integrated in both orientations into the genome of S. cerevisiae at the leu2 locus. The level of transcript from the D. melanogaster gene was measured under both normal conditions and conditions which are known to give rise to the heat shock response in S. cerevisiae. In both orientations the D. melanogaster gene gave rise to an abundant transcript in uninduced cells. The level of this transcript was increased transiently on heat shock, peaking after about 30 min at the elevated temperature. The average induction observed was around 5-fold. Although the D. melanogaster gene is heat inducible in S. cerevisiae, the transcripts are initiated at several sites which lie between 10 and 40 base pairs downstream of the initiation site in D. melanogaster. Thus, the transcriptional apparatus of S. cerevisiae appears to recognize the promoter and regulatory elements of the D. melanogaster major heat shock gene, although the manner in which transcription is initiated differs between the two species.
Collapse
|
28
|
Cartwright IL, Elgin SC. Nucleosomal instability and induction of new upstream protein-DNA associations accompany activation of four small heat shock protein genes in Drosophila melanogaster. Mol Cell Biol 1986; 6:779-91. [PMID: 3022129 PMCID: PMC367578 DOI: 10.1128/mcb.6.3.779-791.1986] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We investigated in detail the structural changes that occur in nuclear chromatin upon activation of the four small heat shock protein genes in D. melanogaster. Both the chemical cleavage reagent methidiumpropyl-EDTA X iron(II) [MPE X Fe(II)] and the nuclease DNase I revealed a complex pattern of four or five hypersensitive sites upstream of each gene before activation. In addition, MPE X Fe(II) detected a short positioned array of nucleosomes located on each coding region. Upon heat shock activation a number of changes in the patterns occurred. For each gene, at least one of the upstream hypersensitive regions was eliminated or substantially shifted in position. Regions were established which became highly refractile to digestion by either MPE X Fe(II) or DNase I and, as such, appeared as small "footprints" in the pattern. The location of these refractile regions relative to the cap site varied for each gene examined. The coding regions themselves became highly accessible to DNase I. The nucleosomal arrays detected by MPE X Fe(II) were characterized by a considerable loss of detail and significantly enhanced accessibility, the extent of which probably reflected the relative transcription rate of each gene. Careful mapping of the location and extent of each upstream footprint and comparison with the DNA sequence revealed the presence at each location of two (or more) contiguous or overlapping segments that bear high homology to the heat shock consensus sequence C-T-N-G-A-A-N-N-T-T-C-N-A-G. A specific protein factor (or factors) is most likely bound at or near these sequence in heat-shocked Drosophila cells.
Collapse
|
29
|
Hoffman E, Corces V. Sequences involved in temperature and ecdysterone-induced transcription are located in separate regions of a Drosophila melanogaster heat shock gene. Mol Cell Biol 1986; 6:663-73. [PMID: 3097502 PMCID: PMC367558 DOI: 10.1128/mcb.6.2.663-673.1986] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The transcriptional regulation of the Drosophila melanogaster hsp27 (also called hsp28) gene was studied by introducing altered genes into the germ line by P element-mediated transformation. DNA sequences upstream of the gene were defined with respect to their effect on steroid hormone-induced and heat-induced transcription. These two types of control were found to be separable; the sequences responsible for 80% of heat-induced expression were located more than 1.1 kilobases upstream of the RNA initiation site, while the sequences responsible for the majority of ecdysterone induction were positioned downstream of the site at -227 base pairs. We have determined the DNA sequence of the intergenic region separating hsp23 and hsp27 and have located putative heat shock and ecdysterone consensus sequences. Our results indicate that the heat shock promoter of the hsp27 gene is organized quite differently from that of hsp70.
Collapse
|
30
|
Gilmour DS, Lis JT. In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster. Mol Cell Biol 1985; 5:2009-18. [PMID: 3018544 PMCID: PMC366919 DOI: 10.1128/mcb.5.8.2009-2018.1985] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We describe a method for examining the in vivo distribution of a protein on specific eucaryotic DNA sequences. In this method, proteins are cross-linked to DNA in intact cells, and the protein-DNA adducts are isolated by immunoprecipitation with antiserum against the protein. Characterization of the DNA cross-linked to the precipitated protein identifies the sequences with which the protein is associated in vivo. Here, we applied these methods to detect RNA polymerase II-DNA interactions in heat-shocked and untreated Drosophila melanogaster Schneider line 2 cells. The level of RNA polymerase II associated with several heat shock genes increased dramatically in response to heat shock, whereas the level associated with the copia genes decreased, indicating that both induction of heat shock gene expression and repression of the copia gene expression by heat shock occur at the transcriptional level. Low levels of RNA polymerase II were present on DNA outside of the transcription units, and for at least two genes, hsp83 and hsp26, RNA polymerase II initiated binding near the transcription start site. Moreover, for hsp70, the density of RNA polymerase II on sequences downstream of the polyadenylate addition site was much lower than that observed on the gene internal sequences. Examination of the amount of specific restriction fragments cross-linked to RNA polymerase II provides a means of detecting RNA polymerase II on individual members of multigene families. This analysis shows that RNA polymerase II is associated with only one of the two cytoplasmic actin genes.
Collapse
|