1
|
Sharp SP, Malizia RA, Walrath T, D'Souza SS, Booth CJ, Kartchner BJ, Lee EC, Stain SC, O'Connor W. DNA damage response genes mark the early transition from colitis to neoplasia in colitis-associated colon cancer. Gene 2018; 677:299-307. [PMID: 30121380 DOI: 10.1016/j.gene.2018.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
Chronic intestinal inflammation predisposes patients with Inflammatory Bowel Disease (IBD) to Colitis-Associated Cancer (CAC). In the setting of chronic inflammation, microsatellite instability (MSI) results from early loss of DNA damage response (DDR) genes, ultimately leading to tumor formation. Despite continued efforts to improve early detection of high risk, pre-dysplastic regions in IBD patients, current macroscopic and genetic surveillance modalities remain limited. Therefore, understanding the regulation of key DDR genes in the progression from colitis to cancer may improve molecular surveillance of CAC. To evaluate DDR gene regulation in the transition from colitis to tumorigenesis, we utilized the well-established Azoxymethane/Dextran Sodium Sulfate (AOM/DSS) pre-clinical murine model of CAC in C57BL/6 mice. In order to assess colonic tumor burden in the setting of mutagen and intestinal irritation, tumors were visualized and graded in real time through high-resolution murine colonoscopy. Upon sacrifice, colons were opened and assessed for macroscopic tumor via high magnification surgical lenses (HMSL). Tissues were then sectioned and separated into groups based on the presence or absence of macroscopically visible tumor. Critical DDR genes were evaluated by semi-quantitative RT-PCR. Interestingly, colon tissue with macroscopically visible tumor (MVT) and colon tissue prior to observable tumor (the non-macroscopically visible tumor-developing group, NMVT) were identical in reduced mRNA expression of mlh1, anapc1, and ercc4 relative to colitic mice without mutagen, or those receiving mutagen alone. Colitis alone was sufficient to reduce colonic ercc4 expression when compared to NMVT mice. Therefore, reduced ercc4 expression may mark the early transition to CAC in a pre-clinical model, with expression reduced prior to the onset of observable tumor. Moreover, the expression of select DDR genes inversely correlated with chronicity of inflammatory disease. These data suggest ercc4 expression may define early stages in the progression to CAC.
Collapse
Affiliation(s)
- Stephen P Sharp
- Department of Surgery, Albany Medical College, Albany, NY, USA.
| | | | - Travis Walrath
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| | - Shanti S D'Souza
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| | - Carmen J Booth
- Department of Comparative Medicine, Yale University, New Haven, CT, USA.
| | - Brittany J Kartchner
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| | - Edward C Lee
- Department of Surgery, Albany Medical College, Albany, NY, USA.
| | - Steven C Stain
- Department of Surgery, Albany Medical College, Albany, NY, USA.
| | - William O'Connor
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
2
|
Abstract
Sister-chromatid exchange (SCE) is the process whereby, during DNA replication, two sister chromatids break and rejoin with one another, physically exchanging regions of the parental strands in the duplicated chromosomes. This process is considered to be conservative and error-free, since no information is generally altered during reciprocal interchange by homologous recombination. Upon the advent of non-radiolabel detection methods for SCE, such events were used as genetic indicators for potential genotoxins/mutagens in laboratory toxicology tests, since, as we now know, most forms of DNA damage induce chromatid exchange upon replication fork collapse. Much of our present understanding of the mechanisms of SCE stems from studies involving nonhuman vertebrate cell lines that are defective in processes of DNA repair and/or recombination. In this article, we present a historical perspective of studies spearheaded by Dr. Anthony V. Carrano and colleagues focusing on SCE as a genetic outcome, and the role of the single-strand break DNA repair protein XRCC1 in suppressing SCE. A more general overview of the cellular processes and key protein "effectors" that regulate the manifestation of SCE is also presented.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
3
|
Stark M, Naiman T, Canaani D. Ultraviolet light-resistant primary transfectants of xeroderma pigmentosum cells are also DNA repair-proficient. Biochem Biophys Res Commun 1989; 162:1351-6. [PMID: 2764936 DOI: 10.1016/0006-291x(89)90822-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In a previous work, an immortal xeroderma pigmentosum cell line belonging to complementation group C was complemented to a UV-resistant phenotype by transfection with a human cDNA clone library. We now report that the primary transformants selected for UV-resistance also acquired normal levels of DNA repair. This was assessed both by measurement of UV-induced [3H]thymidine incorporation and by equilibrium sedimentation analysis of repair-DNA synthesis. Therefore, the transduced DNA element which confers normal UV-resistance also corrects the excision repair defect of the xeroderma pigmentosum group C cell line.
Collapse
Affiliation(s)
- M Stark
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
4
|
Darroudi F, Westerveld A, Natarajan AT. Cytogenetical characterisation of Chinese hamster 43-3B transferants with the amplified or non-amplified human DNA repair gene ERCC-1. Mutat Res 1989; 212:113-22. [PMID: 2499774 DOI: 10.1016/0027-5107(89)90062-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A comparative study on the biological responses to different mutagens (UV, 4NQO, MMC, MMS and EMS) was made on CHO wild-type cells (CHO-9), its UV-hypersensitive mutant 43-3B, and 2 types of its transferants, i.e., one containing a few copies of the human repair gene ERCC-1 and the other having more than 100 copies of ERCC-1 (due to gene amplification). Cell survival, chromosomal aberrations and SCEs were used as biological end-points. The spontaneous frequency of chromosomal aberrations in the transferants was less than found in 43-3B mutant cells, but still 2-3 times higher than in wild-type CHO cells. The spontaneous frequency of SCEs in the transferants was less than in 43-3B and similar to that of wild-type cells. The induction of SCEs by all tested agents in transferants was similar to that found in CHO-9 cells, while the mutant is known to respond with higher frequencies. ERCC-1 also bestowed resistance to MMS and EMS on the mutant to induction of chromosomal aberrations and cell killing to levels comparable with those of the wild-type strain. On the other hand ERCC-1 could not completely regain the repair proficiency against cell killing and induction of chromosomal aberrations by UV or MMC to the wild-type level. These results suggest that the ERCC-1 corrects the repair defect in CHO mutant cells, but it is unable to rectify fully the defect; probable reasons for this are discussed. However, amplified transferants (having more than 100 copies of the ERCC-1 gene) restored the impaired repair function in 43-3B to UV-, MMC- or 4NQO-induced DNA damage better than non-amplified transferants with a few copies of the ERCC-1. This difference may be due to the high amount of gene product involved in the excision repair process in the amplified cells.
Collapse
Affiliation(s)
- F Darroudi
- Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, The Netherlands
| | | | | |
Collapse
|
5
|
Darroudi F, Natarajan AT, Lohman PH. Cytogenetical characterization of UV-sensitive repair-deficient CHO cell line 43-3B. II. Induction of cell killing, chromosomal aberrations and sister-chromatid exchanges by 4NQO, mono- and bi-functional alkylating agents. Mutat Res 1989; 212:103-12. [PMID: 2499773 DOI: 10.1016/0027-5107(89)90061-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An established cell line of Chinese hamster ovary (CHO-9) cells and its UV-sensitive mutant 43-3B have been studied for the induction of cell killing, chromosomal aberrations and sister-chromatid exchanges (SCEs) after exposure to different types of DNA-damaging agents such as 4-nitroquinoline-1-oxide (4NQO), mitomycin C (MMC), diepoxybutane (DEB), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and ethyl nitrosourea (ENU). In comparison with the wild-type CHO cells, 43-3B cells showed very high sensitivity to the UV-mimetic agent 4NQO and the DNA cross-linking agents MMC and DEB. The 43-3B cells responded with higher sensitivity to the monofunctional alkylating agents (MMS, EMS and ENU). The increased cytotoxic effects of all these chemicals correlated well with the elevated increase in the frequency of chromosomal aberrations. In 43-3B cells exposed to 4NQO, MMC or DEB the increase in the frequency of chromosomal aberrations was much higher than the increase in the frequency of SCEs (4-10-fold) when compared to the wild-type CHO cells. This suggests that SCEs are results of fundamentally different cellular events. The responses of 43-3B cells to UV, 4NQO, MMC and DEB resemble those of 2 human syndromes, i.e., xeroderma pigmentosum and Fanconi's anemia. These data suggest that 43-3B cells are defective in excision repair as well as the other pathways involved in the repair of cross-links (MMC, DEB) and bulky DNA adducts (4NQO).
Collapse
Affiliation(s)
- F Darroudi
- Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, The Netherlands
| | | | | |
Collapse
|
6
|
James MR, Stary A, Daya-Grosjean L, Drougard C, Sarasin A. Comparative study of Epstein-Barr virus and SV40-based shuttle-expression vectors in human repair-deficient cells. Mutat Res 1989; 220:169-85. [PMID: 2538738 DOI: 10.1016/0165-1110(89)90023-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Shuttle vectors and expression vectors have been used in human cells to examine various aspects of DNA repair including effects of DNA damage on mutagenesis, transcription, replication and recombination. A combined shuttle-expression system should provide further advantages for the stable expression of and perhaps selection/rescue strategies for DNA repair genes. We describe 2 such systems. The first is a simian virus 40 (SV40) shuttle system which allows a quasi-stable episomal vector/host relationship in which the shuttle vector may be recovered in extrachromosomal DNA preparations many months after transfection and selection but in which a high proportion of the plasmids rescued in bacteria are heavily mutated and rearranged. Secondly, we describe Epstein-Barr virus-based shuttle-expression vectors which exist as stable, multicopy episomes in human cells. Using a reporter gene and a metal-inducible promoter we have obtained low basal and very high induced expression from episomal vectors in a variety of human cells including xeroderma pigmentosum and ataxia telangiectasia cell lines. This should facilitate many molecular genetic experiments in human cells and may have particular application to molecular cloning, expression and analysis of DNA repair genes.
Collapse
Affiliation(s)
- M R James
- Laboratory of Molecular Genetics, Institut de Recherches Scientifiques sur le Cancer, Villejuif, France
| | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- S I Rattan
- Department of Chemistry, Aarhus University, Denmark
| |
Collapse
|
8
|
Dulhanty AM, Rubin JS, Whitmore GF. Complementation of the DNA-repair defect in a CHO mutant by human DNA that lacks highly abundant repetitive sequences. Mutat Res 1988; 194:207-17. [PMID: 3141799 DOI: 10.1016/0167-8817(88)90022-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recently, two human DNA-repair genes have been cloned which complement the defects in complementation groups 1 and 2 of the CHO mutants which are sensitive to ultraviolet light and deficient in the incision step of excision repair. Here we report human gene transfer-mediated complementation of a group 4 CHO mutant sensitive to ultraviolet light and mitomycin C (MMC). The transfectants generated by transfecting human DNA into the repair-deficient cell line demonstrate the repair-proficient phenotype, as they have wild-type levels of resistance to UV light and MMC and are competent in performing the incision step of excision repair in response to UV irradiation. 3 of the 8 transfectants isolated display no detectable human repetitive sequences, while the other 5 contain varying amounts of human repetitive DNA. As the evidence suggests that all of the transfectants are repair-proficient as a result of the uptake of human DNA, we conclude that the human gene that complements the repair defect in group 4 CHO mutants contains no highly abundant human repetitive sequences. This imposes the necessity of developing cloning strategies involving the identification of sequences that flank the gene.
Collapse
Affiliation(s)
- A M Dulhanty
- University of Toronto Department of Medical Biophysics, Canada
| | | | | |
Collapse
|
9
|
Abstract
This review describes the evolution of research into the genetic basis of how different organisms use the process of excision repair to recognize and remove lesions from their cellular DNA. One particular aspect of excision repair, DNA incision, and how it is controlled at the genetic level in bacteriophage, bacteria, S. cerevisae, D. melanogaster, rodent cells and humans is examined. In phage T4, DNA is incised by a DNA glycosylase-AP endonuclease that is coded for by the denV gene. In E. coli, the products of three genes, uvrA, uvrB and uvrC, are required to form the UVRABC excinuclease that cleaves DNA and releases a fragment 12-13 nucleotides long containing the site of damage. In S. cerevisiae, genes complementing five mutants of the RAD3 epistasis group, rad1, rad2, rad3, rad4 and rad10 have been cloned and analyzed. Rodent cells sensitive to a variety of mutagenic agents and deficient in excision repair are being used in molecular studies to identify and clone human repair genes (e.g. ERCC1) capable of complementing mammalian repair defects. Most studies of the human system, however, have been done with cells isolated from patients suffering from the repair defective, cancer-prone disorder, xeroderma pigmentosum, and these cells are now beginning to be characterized at the molecular level. Studies such as these that provide a greater understanding of the genetic basis of DNA repair should also offer new insights into other cellular processes, including genetic recombination, differentiation, mutagenesis, carcinogenesis and aging.
Collapse
Affiliation(s)
- J S Rubin
- Center for Radiological Research, College of Physicians & Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
10
|
Beckett MA, Weichselbaum RR. Southern analysis of human head and neck cancer cells for homologous sequences using yeast gamma repair genes. J Surg Oncol 1988; 38:257-60. [PMID: 3045425 DOI: 10.1002/jso.2930380410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We employed southern analysis to examine homology between yeast genes RAD 51, RAD 52, RAD 54, and RAD 55 for possible gamma repair genes in radioresistant or repair proficient human tumor cell lines and normal placental DNA. No homology wa observed; however, other strategies including further gene restriction and transfection are underway to identify repair genes in human tumors. Understanding mechanisms of radiation repair might lead to more effective clinical radiation treatment protocols.
Collapse
Affiliation(s)
- M A Beckett
- Michael Reese/University of Chicago Center for Radiation Therapy, IL
| | | |
Collapse
|
11
|
van Duin M, Janssen JH, de Wit J, Hoeijmakers JH, Thompson LH, Bootsma D, Westerveld A. Transfection of the cloned human excision repair gene ERCC-1 to UV-sensitive CHO mutants only corrects the repair defect in complementation group-2 mutants. Mutat Res 1988; 193:123-30. [PMID: 3347205 DOI: 10.1016/0167-8817(88)90042-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human DNA-excision repair gene ERCC-1 is cloned by its ability to correct the excision-repair defect of the ultraviolet light- and mitomycin-C-sensitive CHO mutant cell line 43-3B. This mutant is assigned to complementation group 2 of the excision-repair-deficient CHO mutants. In order to establish whether the correction by ERCC-1 is confined to CHO mutants of one complementation group, the cloned repair gene, present on cosmid 43-34, was transfected to representative cell lines of the 6 complementation groups that have been identified to date. Following transfection, mycophenolic acid was used to select for transferants expressing the dominant marker gene Ecogpt, also present on cosmid 43-34. Cotransfer of the ERCC-1 gene was shown by Southern blot analysis of DNA from pooled (500-2000 independent colonies) transformants of each mutant. UV survival and UV-induced UDS showed that only mutants belonging to complementation group 2 and no mutants of other groups were corrected by the ERCC-1 gene. This demonstrates that ERCC-1 does not provide an aspecific bypass of excision-repair defects in CHO mutants and supports the assumption that the complementation analysis is based on mutations in different repair genes.
Collapse
Affiliation(s)
- M van Duin
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Xeroderma pigmentosum, Cockayne's syndrome, ataxia telangiectasia, Fanconi anemia, and Bloom's syndrome are autosomal recessive diseases with cellular defects in the ability to process DNA damage. Although these diseases are rare, they are seen occasionally in practice and provide insight into the mechanisms of DNA repair and replication in humans. The authors will review the clinical and cytological presentation of each disease, the genetic heterogeneity, as inferred by complementation analysis, and the differentiating characteristics of each. The authors will conclude with a discussion of the state of current research on each disease and possible directions for future research.
Collapse
Affiliation(s)
- T L Timme
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
13
|
Abstract
DNA repair confers resistance to anticancer drugs which kill cells by reacting with DNA. A review of our current information on the topic will be presented here. Our understanding of the molecular biology of repair of 0(6)-alkylguanine adducts in DNA has advanced as a result of the molecular cloning of the E. coli ada gene but the precise role of this lesion in the cytotoxic effects of alkylating agents in mammalian cells is not completely understood. Less progress has been made in understanding the enzymology and molecular biology of DNA cross-link repair even though such lesions are important for the cytotoxic effects of the widely used bifunctional alkylating agents and platinum compounds. It is evident that drug sensitive or resistant phenotypes are as highly complex as are the effects of DNA damage on cell metabolism and various aspects of these effects are discussed. Few clear correlations have been made between quantitative differences in DNA repair capacity and cellular sensitivity but assays which were developed to measure fidelity and intragenomic heterogeneity in DNA repair are beginning to be applied. Such studies may reveal subtle differences between sensitive and resistant cell lines. The molecular cloning of human DNA repair genes by transfection into drug sensitive rodent cells has been attempted. Some success has been achieved in this area but the functions of the cloned genes have yet to be identified.
Collapse
Affiliation(s)
- M Fox
- Paterson Institute for Cancer Research, Christie Hospital and Holt Radium Institute, Manchester, UK
| | | |
Collapse
|
14
|
Buchwald M, Ng J, Clarke C, Duckworth-Rysiecki G. Studies of gene transfer and reversion to mitomycin C resistance in Fanconi anemia cells. Mutat Res 1987; 184:153-9. [PMID: 3114627 DOI: 10.1016/0167-8817(87)90072-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a first step to the cloning of the Fanconi anemia (FA) gene, we have attempted to correct the sensitivity of FA cells to DNA crosslinking agents by the introduction of wild-type DNA. The protocol involved the introduction of both genomic and pRSVneo DNA, selection for G418-resistant colonies and the subsequent selection of mitomycin C-resistant cells from the latter. Preliminary experiments indicated that untransformed FA cells were not suitable recipients for the introduction of foreign DNA, so all experiments were performed with an SV40-transformed FA cell line. Approximately 40,000 G418-resistant colonies were obtained in 5 separate experiments at an overall frequency of about 5 X 10(-4). These were then selected in mitomycin C and 15 colonies were recovered. Colonies were obtained with wild-type DNA (both human and rodent) and with FA DNA at about the same frequency of 2 X 10(-7). Colonies were isolated and shown to have a stable, partial (from 25 to 90% of wild-type) resistance to mitomycin C. One colony was also shown to be partially resistant to two other DNA crosslinking agents, diepoxybutane and nitrogen mustard. This clone also had an intermediate level of spontaneous and MMC-induced chromosome aberrations. pRSVneo, but not rodent, DNA could be demonstrated in the high molecular weight fraction of several colonies. Thus, it is likely that these colonies represent partial revertants rather than transfectants. These mitomycin C-resistant FA cells should be useful for the biochemical analysis of the FA mutation.
Collapse
|
15
|
Thompson LH, Carrano AV, Sato K, Salazar EP, White BF, Stewart SA, Minkler JL, Siciliano MJ. Identification of nucleotide-excision-repair genes on human chromosomes 2 and 13 by functional complementation in hamster-human hybrids. SOMATIC CELL AND MOLECULAR GENETICS 1987; 13:539-51. [PMID: 3477874 DOI: 10.1007/bf01534495] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The CHO UV-sensitive mutants UV24 and UV135 (complementation groups 3 and 5, respectively) are defective in nucleotide excision repair. After fusing each mutant with human lymphocytes, resistant hybrid clones showing genetic complementation were isolated by repeated exposure to UV radiation. Using a combination of isozyme markers, DNA probes, and cytogenetic methods to analyze the primary hybrids and their subclones, correction of the repair defect was shown to be correlated with the presence of a specific human chromosome in each case. Chromosome 2 corrected UV24, and the gene responsible was designated ERCC3. Line UV135 was corrected by human chromosome 13 and the gene designated ERCC5. The UV-sensitive mouse cell line, Q31, was shown not to complement UV135 and thus appears to be mutated in the same genetic locus (homologous to ERCC5) as UV135. Breakage of complementing chromosomes with retention of the genes correcting repair defects allowed the following provisional assignments: regional localization of ERCC5 to 13q14-q34, exclusion of ERCC3 from the region of chromosome 2 distal to p23, and relief of the ambiguity of ACP1 assignment (2p23 or 2p25) to 2p23 proximal to MDH1.
Collapse
Affiliation(s)
- L H Thompson
- Biomedical Sciences Division, Lawrence Livermore National Laboratory, California 94550
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Keijzer W, Stefanini M, Bootsma D, Verkerk A, Geurts van Kessel AH, Jongkind JF, Westerveld A. Localization of a gene involved in complementation of the defect in xeroderma pigmentosum group A cells on human chromosome 1. Exp Cell Res 1987; 169:490-501. [PMID: 3556430 DOI: 10.1016/0014-4827(87)90209-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human, Chinese hamster or Chinese hamster/human hybrid cytoplasts were fused with UV-irradiated xeroderma pigmentosum group A (XP-A) cells. Unscheduled DNA synthesis (UDS) of the XP-A nucleus was measured 0-2 and 2-4 h after seeding of the fused population. Human cytoplasts did correct the defect in the XP-A nucleus immediately after fusion, whereas the chinese hamster cytoplasts did not show this rapid increase in excision repair. The results obtained after fusion of cytoplasts isolated from a panel of 26 Chinese hamster-human hybrids showed that chromosome 1 bears genetic information that is necessary for the rapid correction of the XP-A defect. Furthermore, this genetic information was regionally assigned to 1q42-qter by analysing hybrid cell lines having retained various segments of chromosome 1. Cytoplasts from a Chinese hamster/XP-A hybrid containing chromosome 1 of XP-A origin corrected also the defect with fast kinetics. This result indicate that the correcting factor consists of human and Chinese hamster components. As a consequence, the gene mapped on chromosome 1 may not be the gene which is mutated in XP-A cells.
Collapse
|
17
|
Cleaver JE, Karentz D. DNA repair in man: regulation by a multigene family and association with human disease. Bioessays 1987; 6:122-7. [PMID: 3579894 DOI: 10.1002/bies.950060307] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Shankel DM, Hartman PE, Kada T, Hollaender A. Synopsis of the first International Conference on Antimutagenesis and Anticarcinogenesis: mechanisms. ENVIRONMENTAL MUTAGENESIS 1987; 9:87-103. [PMID: 3100291 DOI: 10.1002/em.2860090110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Siciliano MJ, Carrano AV, Thompson LH. Assignment of a human DNA-repair gene associated with sister-chromatid exchange to chromosome 19. Mutat Res 1986; 174:303-8. [PMID: 3736579 DOI: 10.1016/0165-7992(86)90051-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Chinese hamster ovary (CHO) cell mutant, EM9, is defective in rejoining strand breaks, hypersensitive to chlorodeoxyuridine (CldUrd), and has a high frequency of sister-chromatid exchange (SCE). Somatic cell hybrids constructed from fusion of EM9 cells with normal human lymphocytes and fibroblasts, and selected in CldUrd, extensively segregate human chromosomes but preferentially retain markers of human chromosome 19. The SCE frequency in the hybrid clones is low as in normal CHO cells, but in CldUrd-sensitive subclones, which lose the human chromosome 19 markers, SCE frequencies return to mutant levels. We therefore assign a human gene designated repair complementing defective repair in Chinese-hamster (RCC) to chromosome 19. Since this is the second (of two) human genes complementing repair-deficiency mutations in CHO cells assigned to the 19, the assignment and organization of DNA-repair genes is discussed in the light of hemizygosity in CHO cells and the evolutionary conservation of mammalian linkage groups.
Collapse
|
20
|
Cleaver JE. DNA repair and replication in xeroderma pigmentosum and related disorders. BASIC LIFE SCIENCES 1986; 39:425-38. [PMID: 3767846 DOI: 10.1007/978-1-4684-5182-5_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Xeroderma pigmentosum (XP), ataxia telangiectasia (AT), and Cockayne syndrome (CS) are human diseases that exhibit increased sensitivity to environmental carcinogens [e.g., ultraviolet (UV) light, ionizing radiations, chemicals] because of genetic defects in the patient's capacity to repair and replicate damaged DNA accurately. The major defect in XP is a failure to repair UV damage to DNA; in AT, the failure is in repair or replication of double-strand breaks in DNA; in CS, the failure is in recovery of DNA replication after UV irradiation. Cancer is a major clinical feature of XP and AT, but not of CS. Each disease is complex, with multiple groups defined by complementation in cell-cell hybridization. Overlap is reported between some XP and CS groups. UV-sensitive hamster cell mutants are also known: most of these complement XP groups, and a human gene on chromosome 19 can correct the defects in hamster mutants, but not XP. XP group C is distinct from the other groups in exhibiting a strongly clustered mode of repair, as if only certain regions of the genome can be mended. This mode mainly occurs in confluent group C cells under conditions that permit much greater survival than in exponential growth, and therefore represents a more efficient mode of repair. These diseases all represent important examples of perturbation in the way carcinogen damage in DNA is metabolized, and further research aimed at identifying the kinds of molecular changes involved in the malignancy will be important.
Collapse
|
21
|
Lambert ME, Garrels JI, McDonald J, Weinstein IB. Inducible cellular responses to DNA damage in mammalian cells. BASIC LIFE SCIENCES 1986; 39:291-311. [PMID: 3767838 DOI: 10.1007/978-1-4684-5182-5_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
|