1
|
Wei H, Kaznessis Y. Inferring gene regulatory relationships by combining target-target pattern recognition and regulator-specific motif examination. Biotechnol Bioeng 2005; 89:53-77. [PMID: 15540196 DOI: 10.1002/bit.20305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although microarray data have been successfully used for gene clustering and classification, the use of time series microarray data for constructing gene regulatory networks remains a particularly difficult task. The challenge lies in reliably inferring regulatory relationships from datasets that normally possess a large number of genes and a limited number of time points. In addition to the numerical challenge, the enormous complexity and dynamic properties of gene expression regulation also impede the progress of inferring gene regulatory relationships. Based on the accepted model of the relationship between regulator and target genes, we developed a new approach for inferring gene regulatory relationships by combining target-target pattern recognition and examination of regulator-specific binding sites in the promoter regions of putative target genes. Pattern recognition was accomplished in two steps: A first algorithm was used to search for the genes that share expression profile similarities with known target genes (KTGs) of each investigated regulator. The selected genes were further filtered by examining for the presence of regulator-specific binding sites in their promoter regions. As we implemented our approach to 18 yeast regulator genes and their known target genes, we discovered 267 new regulatory relationships, among which 15% are rediscovered, experimentally validated ones. Of the discovered target genes, 36.1% have the same or similar functions to a KTG of the regulator. An even larger number of inferred genes fall in the biological context and regulatory scope of their regulators. Since the regulatory relationships are inferred from pattern recognition between target-target genes, the method we present is especially suitable for inferring gene regulatory relationships in which there is a time delay between the expression of regulating and target genes.
Collapse
Affiliation(s)
- Hairong Wei
- Department of Chemical Engineering and Material Sciences, and Digital Technology Center, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
2
|
Peculis BA, DeGregorio S, McDowell K. The U8 snoRNA gene family: identification and characterization of distinct, functional U8 genes in Xenopus. Gene 2001; 274:83-92. [PMID: 11675000 DOI: 10.1016/s0378-1119(01)00596-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
U8 snoRNA is the RNA component of a small nucleolar ribonucleoprotein (U8 snoRNP) required for accumulation of mature 5.8S and 28S rRNAs, components of the large ribosomal subunit. We have identified two putative U8 genes in Xenopus laevis. Sequence analysis of the coding regions of these two genes indicate that both differ at several positions from the previously characterized U8 RNA and that the two differ from each other. Functional analysis of these genes indicates that both are transcribed in vivo, produce stable U8 transcripts, and are capable of facilitating pre-rRNA processing in vivo. These data demonstrate that natural sequence variation exists among the U8 snoRNA genes in Xenopus. Alignment of these three Xenopus U8 sequences with the previously described mammalian U8 homologues in mouse, rat and human has provided information about evolutionarily conserved sequence and structural elements in U8 RNA. Identification and functional characterization of these naturally occurring variants in Xenopus has helped identify regions in U8 RNA that may be critical for function.
Collapse
Affiliation(s)
- B A Peculis
- National Institutes of Health, NIDDK, Genetics and Biochemistry Branch, 10 Center Drive, 8N322, Bethesda, MD 20892-1766, USA.
| | | | | |
Collapse
|
3
|
Kunkel GR, Hixson JD. The distal elements, OCT and SPH, stimulate the formation of preinitiation complexes on a human U6 snRNA gene promoter in vitro. Nucleic Acids Res 1998; 26:1536-43. [PMID: 9490803 PMCID: PMC147430 DOI: 10.1093/nar/26.6.1536] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The distal control region of a human U6 small nuclear RNA (snRNA) gene promoter contains two separable elements, octamer (OCT) and SPH, found in many vertebrate snRNA genes. Complete distal regions generally account for a 4- to 100-fold stimulation of snRNA gene promoters. We examined the mechanism of transcriptional stimulation by each element when linked to the proximal U6 promoter. Multimers of either OCT or SPH did not increase transcriptional levels above that with a single copy, either in transfected human cells or after in vitro transcription in a HeLa S100 extract. The orientation of a single SPH element differentially stimulated transcription in transfected cells, whereas the orientation of an octamer element was not important. Using Sarkosyl to limit transcription to a single-round, we concluded that promoters containing either OCT or SPH elements supported an increased number of preinitiation complexes in vitro. Furthermore, the rate of formation of U6 promoter preinitiation complexes resistant to low (0.015%) concentrations of Sarkosyl was accelerated on templates containing either OCT or SPH. However, neither element had a significant effect on the number of rounds of reinitiation in the S100 extract.
Collapse
Affiliation(s)
- G R Kunkel
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX 77843-2128, USA.
| | | |
Collapse
|
4
|
Yalamanchili P, Weidman K, Dasgupta A. Cleavage of transcriptional activator Oct-1 by poliovirus encoded protease 3Cpro. Virology 1997; 239:176-85. [PMID: 9426457 DOI: 10.1006/viro.1997.8862] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In HeLa cells, RNA polymerase II mediated transcription is severely inhibited by poliovirus infection. Both basal and activated transcription are affected to bring about a complete shutoff of host cell transcription. We demonstrate here that the octamer binding transcription factor, Oct-1, is cleaved in HeLa cells infected with poliovirus. Incubation of Oct-1 with the purified, recombinant 3Cpro results in the generation of the cleaved Oct-1 product seen in virus infected cells. Poliovirus infection leads to the formation of altered Oct-1 DNA complexes that can also be generated by incubation of Oct-1 with purified 3Cpro. We also show that Oct-1 cleaved by 3Cpro loses its ability to inhibit transcriptional activation by the SV40 B enhancer. These results suggest that cleavage of Oct-1 in poliovirus infected cells leads to the loss of its activity.
Collapse
Affiliation(s)
- P Yalamanchili
- Department of Microbiology and Immunology, UCLA School of Medicine 90095-1747, USA
| | | | | |
Collapse
|
5
|
Bordallo J, Suárez-Rendueles P. Cis and trans-acting regulatory elements required for regulation of the CPS1 gene in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:580-9. [PMID: 7700231 DOI: 10.1007/bf00298964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To clarify the transcriptional regulation by nutrient limitation of the gene encoding carboxypeptidase yscS in Saccharomyces cerevisiae (CPS1), we performed an analysis of its 5' noncoding region. In deletion experiments a sequence located between positions -644 and -591 was found to be responsible for transcriptional repression of the CPS1 gene in yeast cells grown on rich nitrogen sources. Furthermore, a 162 bp fragment spanning positions -644 to -482 of the promoter of the CPS1 gene repressed gene expression when placed 3' to the upstream activation sequence (UAS) of the heterologous gene CYC1. A fragment containing this putative upstream repression sequence (URS) was shown specifically to bind protein from a yeast extract as demonstrated by gel retardation experiments. Although a sequence mediating the control of gene expression by GCN4 was found within the URS element, the GCN4 gene product is not required for DNA-binding activity. In addition, at least three other upstream activation UASs responsible for the activation of CPS1 expression by glucose under nitrogen starvation conditions were found to be located between positions -673 and -644, -482 and -353, and -243 and -186, respectively. The putative mechanism of the nitrogen limitation-dependent regulation of CPS1 expression via these regulatory elements is discussed.
Collapse
Affiliation(s)
- J Bordallo
- Departamento de Biología Funcional, Universidad de Oviedo, Spain
| | | |
Collapse
|
6
|
Goomer RS, Urso O, Kunkel GR. A complex that contains proteins binding to the PSE and TATA sites in a human U6 small nuclear RNA promoter. Gene 1994; 148:269-75. [PMID: 7958954 DOI: 10.1016/0378-1119(94)90698-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The proximal promoter of a human U6 small nuclear RNA (snRNA)-encoding gene contains two separate elements, the proximal sequence element (PSE) and the TATA box. We investigated the interaction of the PSE- and TATA-binding proteins (PBP and TBP) with normal and mutant U6 proximal promoters using an electrophoretic mobility shift assay. We detected a complex containing both PBP and TBP bound to the wild-type U6 promoter. Efficient formation of the triple complex was dependent on the presence of the PSE and the TATA box on the template DNA. Mutant U6 promoters containing an increased spacing between the PSE and TATA box of 5 or 10 bp were impaired in the ability to form a complex that includes TBP. We infer from these results that PBP and TBP interact when their binding sites are properly positioned in a U6 gene promoter.
Collapse
Affiliation(s)
- R S Goomer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128
| | | | | |
Collapse
|
7
|
Abstract
A subclone containing a single Xenopus borealis U7 snRNA-encoding gene has been microinjected into X. laevis oocyte nuclei to examine its expression using [32P]GTP as an in vivo label. Only two U7 snRNA bands were detected after incubation, and subsequent fractionation of the oocyte showed that only the larger transcript is present in the nucleus. The sequence of this functional U7 gene shows that, in addition to the coding region, it contains, in the appropriate locations, the 3'-box and proximal sequence element (PSE) which are typical of Pol II-transcribed snRNA genes. Surprisingly, the Xenopus U7 gene contains two adjacent octamer-binding motifs located only 12 and 24 bp upstream from the PSE, instead of the usual location around 150-200 bp upstream. No other cis-acting elements appear to be present. A 5' deletion analysis shows that the transcription level of this U7 gene remains constant if sequences upstream of the two octamer motifs are removed, yet is undetectable when an additional 34 bp containing both octamers and the PSE are removed. This confirms that the Xenopus U7 gene is the most compact snRNA-encoding gene isolated to date. A comparison of U7 sequences shows there is a much greater conservation in the 5' half of the molecule, which contains sequences that base-pair with target pre-mRNA, than in the 3' half which can form a single stem-loop structure that varies in size.
Collapse
Affiliation(s)
- N J Watkins
- Department of Biochemistry, University of Liverpool, UK
| | | | | |
Collapse
|
8
|
Abstract
Expression of the U7 gene, encoding mouse U7 snRNA, following microinjection into Xenopus oocytes is both accurate and efficient, giving rise to mature U7 snRNA and a precursor with an 8-nucleotide (nt) 3' extension. The mouse U7 gene promoter, which is similar to that of the vertebrate major U genes comprising a DSE, a PSE and a 3' box, with the same spatial arrangement, is as efficient as the Xenopus U2 gene promoter in this assay. A deletion analysis of the mouse U7 gene identified sequences downstream from the 3' box, within the region (nt +74 to +196), which seem to have a negative regulatory effect upon the frequency of transcription initiation and are also required for accurate 3' end formation. Sequences in the nt -1699 to -431 region also seemed to have a negative effect on the level of transcription. In addition, sequences upstream from the PSE, within the nt -65 to -421 region, are necessary for accurate and efficient synthesis of mature U7 snRNA. Finally, the mouse U7 snRNA may not form a functional snRNP in Xenopus oocytes due to defective snRNP assembly and/or nuclear import.
Collapse
Affiliation(s)
- S C Phillips
- Department of Biochemistry, University of Liverpool, UK
| | | |
Collapse
|
9
|
Phillips SC, Birnstiel ML. Analysis of a gene cluster coding for the Xenopus laevis U7 snRNA. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1131:95-8. [PMID: 1374647 DOI: 10.1016/0167-4781(92)90104-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A cluster of Xenopus laevis U7 snRNA genes has been isolated and sequenced. The gene structure is more compact than, but otherwise comparable to, the major U snRNA genes since the distal sequence element (DSE) is located only 4 nt upstream of the PSE. The corresponding RNA is present in the oocyte and accumulates early in oogenesis.
Collapse
Affiliation(s)
- S C Phillips
- Research Institute of Molecular Pathology, Vienna, Austria
| | | |
Collapse
|
10
|
Janson L, Pettersson U. Transcription factor requirements for U2 snRNA-encoding gene activation in B lymphoid cells. Gene 1991; 109:297-301. [PMID: 1765275 DOI: 10.1016/0378-1119(91)90625-l] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transcription of a human U2 small nuclear RNA(snRNA)-encoding gene in HeLa cells requires a distal enhancer element, which is composed of one octamer motif (Oct) and three Sp 1-binding sites. To study the transcription factor requirement in B-cells, different U2 enhancer constructions were transfected into the lymphoid cell line, BJA-B. The results showed that the activation of U2 snRNA transcription in B-cells also requires an enhancer comprising both the Oct and at least one Sp 1-binding site. Deletion of all the Sp 1-binding sites from the enhancer reduces transcription by 80-90% in HeLa, as well as in BJA-B cells, whereas the removal of the octamer-binding site reduces transcription to levels below detection in both cell types. Enhancers containing a single Oct have, nevertheless, the capacity to partially activate U2 snRNA transcription in both HeLa cells, in which only OTF-1 is expressed, and in BJA-B cells in which OTF-2 is the predominantly expressed octamer-binding factor. The most likely interpretation of our results is that both the ubiquitous transcription factor, OTF-1, and the B-cell-specific transcription factor, OTF-2, can activate U2 snRNA transcription. The results also revealed a similar functional cooperation between the transcription factors which bind to the Oct and the adjacent Sp 1-binding site in BJA-B cells, as has been observed in HeLa cells, since a template which contains a weak binding site for OTFs expresses wild-type levels of U2 snRNA in both cell types when the weak octamer-binding site is combined with a Sp 1-binding site.
Collapse
Affiliation(s)
- L Janson
- Department of Medical Genetics, Uppsala University, Sweden
| | | |
Collapse
|
11
|
Abstract
The removal of introns from messenger RNA precursors requires five small nuclear RNAs (snRNAs), contained within ribonucleoprotein particles (snRNPs), which complex with the pre-mRNA and other associated factors to form the spliceosome. In both yeast and mammals, the U2 snRNA base pairs with sequences surrounding the site of lariat formation. Binding of U2 snRNP to the highly degenerate branchpoint sequence in mammalian introns is absolutely dependent on an auxiliary protein, U2AF, which recognizes a polypyrimidine stretch adjacent to the 3' splice site. The absence of this sequence motif in yeast introns has strengthened arguments that the two systems are fundamentally different. Deletion analyses of the yeast U2 gene have confirmed that the highly conserved 5' domain is essential, although the adjacent approximately 950 nucleotides can be deleted without any phenotypic consequence. A 3'-terminal domain of approximately 100 nucleotides is also required for wild-type growth rates; the highly conserved terminal loop within this domain (loop IV) may provide specific binding contacts for two U2-specific snRNP proteins. We have replaced the single copy yeast U2 (yU2) gene with human U2 (hU2), expecting that weak or no complementation would provide an assay for cloning additional splicing factors, such as U2AF. We report here that hU2 can complement the yeast deletion with surprising efficiency. The interactions governing spliceosome assembly and intron recognition are thus more conserved than previously suspected. Paradoxically, the conserved loop IV sequence is dispensable in yeast.
Collapse
Affiliation(s)
- E O Shuster
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| | | |
Collapse
|
12
|
Potashkin J, Frendewey D. A mutation in a single gene of Schizosaccharomyces pombe affects the expression of several snRNAs and causes defects in RNA processing. EMBO J 1990. [PMID: 2406130 PMCID: PMC551696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A bank of temperature sensitive (ts-) mutants of Schizosaccharomyces pombe was screened for snRNA expression mutants using an oligodeoxynucleotide that recognizes U2 RNA. One mutant with a novel phenotype was identified that has reduced steady-state levels of the spliceosomal snRNAs U1, U2, U4, U5 and U6. In addition, the mutant exhibits a temperature-dependent accumulation of aberrant U2 and U4 transcripts elongated at their 3' end. The steady-state concentration of the RNA component of RNase P is also reduced in the mutant, whereas the amount of U3 RNA, 7SL RNA, tRNA, rRNA and mRNA are the same as wild-type. Pre-mRNA, pre-tRNA and U6 RNA precursor processing are impaired in the mutant. Genetic analysis demonstrates that the snRNA defects are tightly linked to the ts- growth defect and are recessive. We have named this mutant snm1 to indicate a defect in snRNA maintenance. The data on snm1 suggest that a single trans-acting factor is essential for the maintenance of steady-state levels of several snRNAs and for proper 3' end formation of U2 and U4 RNAs.
Collapse
|
13
|
Affiliation(s)
- G W Zieve
- Department of Basic Sciences, Hutchinson Cancer Research, Seattle, Washington
| | | |
Collapse
|
14
|
Abstract
Small, reversibly biotinylated RNAs as described here are versatile ligands for affinity chromatography of RNA-binding components. These RNAs can be attached to a solid support by binding to avidin and used as ligands, or they may be hybridized to another RNA which acts as the ligand. The incorporation of a disulfide bond in the linker arm connecting biotin to the RNA makes it possible to dissociate the RNA from avidin under mild conditions. Our results regarding the binding and elution of the biotinylated RNA may be applied to other, reversibly biotinylated molecules.
Collapse
|
15
|
Abstract
Two loci encoding human U4 RNA, designated U4/7 and U4/14, have been isolated and sequenced. Both are pseudogenes in that their sequences do not match any identified human U4 RNA species perfectly. The U4/7 locus harbours a full-length pseudogene of 144 bp with eight base substitutions in the structural region. This pseudogene might be derived from a hitherto unidentified human U4 RNA gene. The second locus, U4/14, has a complex structure; the structural sequence of a U4 gene has apparently been integrated into an Alu sequence.
Collapse
Affiliation(s)
- C Bark
- Department of Medical Genetics, Uppsala University, Sweden
| | | |
Collapse
|
16
|
Lobo SM, Hernandez N. A 7 bp mutation converts a human RNA polymerase II snRNA promoter into an RNA polymerase III promoter. Cell 1989; 58:55-67. [PMID: 2752422 DOI: 10.1016/0092-8674(89)90402-9] [Citation(s) in RCA: 198] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The human U2 snRNA promoter directs the formation of a specialized RNA polymerase II transcription complex that recognizes the snRNA gene 3' box as a signal for RNA 3' end formation. In contrast, the human U6 promoter is recognized by RNA polymerase III and transcription terminates in a run of Ts. We show that transcription from the U6 promoter is dependent on a sequence similar to the U2 proximal element and on an AT-rich element centered around position -27. Mutation of the AT-rich element induces RNA polymerase II transcription from the U6 promoter, whereas insertion of this element within the U2 promoter converts it into a predominantly RNA polymerase III promoter. The site of transcription termination always correlates with the nature of the transcribing polymerase: the 3' box with RNA polymerase II and a run of Ts with RNA polymerase III. Thus, a single element determines the RNA polymerase specificity of snRNA promoters and hence the site of transcription termination.
Collapse
Affiliation(s)
- S M Lobo
- Cold Spring Harbor Laboratory, New York 11724
| | | |
Collapse
|
17
|
Yuan Y, Reddy R. Genes for human U3 small nucleolar RNA contain highly conserved flanking sequences. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1008:14-22. [PMID: 2719960 DOI: 10.1016/0167-4781(89)90164-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Six human genomic clones containing sequences homologous to the U3 small nuclear RNA (snRNA) were isolated and characterized. Four of these clones were real U3 snRNA genes because they were transcribed in frog oocytes and the DNA sequences corresponding to the U3 snRNA were identical to the U3 snRNA of HeLa cells. The nucleotide sequences of four true U3 snRNA genes, 537 nucleotides on the 5'-flanking region and 340 nucleotides on the 3'-flanking region, were found to be identical. In addition, the restriction patterns, upto 2 kb on the 5' side and 2.2 kb on the 3' side, appeared to be same. All the isolated U3 clones, containing 15-20 kb of genomic DNA, contained only one U3 snRNA gene, indicating that the human U3 snRNA genes are several kilobases apart. One of the U3 clones contained a full-length U3 pseudogene. Southern blot analysis of genomic DNA with cloned U3 DNA as probe indicated that human DNA contains two families of U3 genes which differ in their flanking sequences. In the 5' flanking region of human U3 snRNA genes, homology to U-gene promoter element, an octamer motif, the 'U3 box', SP1 binding sites and a consensus 3' box in the 3' flanking region, were observed. These data show that the genomic organization and the sequence motifs that control transcription of human nucleolar U3 snRNA genes are similar to those of human U1 and U2 snRNA genes and suggest common mechanism(s) in the evolution of snRNA genes.
Collapse
Affiliation(s)
- Y Yuan
- Baylor College of Medicine, Department of Pharmacology, Houston, TX 77030
| | | |
Collapse
|
18
|
Greaves R, O'Hare P. Separation of requirements for protein-DNA complex assembly from those for functional activity in the herpes simplex virus regulatory protein Vmw65. J Virol 1989; 63:1641-50. [PMID: 2538647 PMCID: PMC248411 DOI: 10.1128/jvi.63.4.1641-1650.1989] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A transient expression system was developed which results in efficient synthesis of the regulatory protein Vmw65 of herpes simplex virus type 1 in eucaryotic cells. The gene for Vmw65 was linked to the cytomegalovirus immediate-early (IE) promoter-enhancer region in a plasmid containing the simian virus 40 origin of replication. When transfected into COS cells, Vmw65 was expressed from this vector in 25 to 50% of the cells, with total levels of the protein approaching 20% of those observed in infected cells. Vmw65 expressed in this system is functional for specific DNA-binding complex formation with the host cell octamer-binding protein TRF and for transactivation of IE gene expression. We therefore produced a series of carboxy-terminal truncated forms of Vmw65 to examine the structural requirements of the protein for these activities. Deletion of the acidic carboxy-terminal 56 amino acids had no effect on DNA-binding complex formation but completely abolished the ability to transactivate. Amino acids between residues 434 and 453, a region which exhibits a high negative charge, were critical for IE transactivation. In contrast, the requirements for complex formation are located entirely within the N-terminal 403 amino acids, and our results indicate a requirement for this activity for residues between 316 and 403. Together with our previous work, the results presented here indicate that recruitment of TRF into a specific DNA-binding complex on IE consensus signals is required but not sufficient for functional IE transactivation by Vmw65.
Collapse
Affiliation(s)
- R Greaves
- Marie Curie Research Institute, Surrey, United Kingdom
| | | |
Collapse
|
19
|
Janson L, Weller P, Pettersson U. Nuclear factor I can functionally replace transcription factor Sp1 in a U2 small nuclear RNA gene enhancer. J Mol Biol 1989; 205:387-96. [PMID: 2926813 DOI: 10.1016/0022-2836(89)90349-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polymerase II transcription of a human gene for the small nuclear RNA U2 is dependent on two different promoter elements: a TATA-equivalent proximal sequence element and a distal enhancer element, which has been shown to contain Sp1- and octamer-binding sites. We have investigated the functional interplay between these transcription factor-binding sites of the enhancer, following transfection of U2 maxigene constructions into HeLa cells. There is a functional non-additive co-operation between the octamer-binding factor and Sp1, which is not dependent on the evolutionally conserved steric arrangement of these binding sites. We demonstrate that the conserved Sp1-binding site of the U2 enhancer can be fully substituted by a nuclear factor I (NFI) binding site, and that the octamer-binding factor functions in stimulating transcription in conjunction with either Sp1 or NFI. Since the octamer-binding factor is most probably the same protein as nuclear factor III (NFIII), the results imply that the NFI/NFIII complex, involved in adenovirus DNA replication, also can function as an efficient activator of transcription.
Collapse
Affiliation(s)
- L Janson
- Department of Medical Genetics, Uppsala University, Biomedical Center, Sweden
| | | | | |
Collapse
|
20
|
Chang DD, Clayton DA. Mouse RNAase MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate. Cell 1989; 56:131-9. [PMID: 2910496 DOI: 10.1016/0092-8674(89)90991-4] [Citation(s) in RCA: 171] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Using complementary oligonucleotide probes, we have isolated the nuclear gene for the RNA moiety of RNAase MRP; it is present as a single copy and encodes an uncapped primary transcript of 275 nucleotides. Direct sequence analysis revealed that the 136 nucleotide RNA that copurifies with RNAase MRP represents the 3' half of the 275 nucleotide primary transcript. The 5'-flanking region of the gene has putative transcriptional control elements homologous to the promoters of RNA polymerase II-transcribed U-series snRNA genes; however, the coding region possesses a box A sequence and terminates at four T residues, both features characteristic of polymerase III-transcribed genes. A decamer sequence, 5'-CGA-CCCCUCC-3', complementary to a conserved sequence adjacent to the enzymatic cleavage site on the mitochondrial RNA substrate, is present in the RNAase MRP RNA. Isolation of a nuclear gene for the RNA component of a mitochondrial enzyme implies that nucleic acids can be transported across mitochondrial membranes.
Collapse
Affiliation(s)
- D D Chang
- Department of Pathology, Stanford University School of Medicine, California 94305-5324
| | | |
Collapse
|
21
|
|
22
|
|
23
|
Slezynger TC, Scheffler IE. Steady-state and nuclear run-on analyses of transcription in a temperature-sensitive Chinese hamster cell mutant with a defect in RNA metabolism. SOMATIC CELL AND MOLECULAR GENETICS 1988; 14:439-59. [PMID: 2459782 DOI: 10.1007/bf01534711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have further characterized a temperature-sensitive mutant of Chinese hamster lung fibroblasts in tissue culture with a defect in RNA metabolism. The mutant phenotype is reflected in transcription in crude extracts or in isolated nuclei, when these are made from cells shifted to the nonpermissive temperature; however, differential heat inactivation between mutant and wild-type extracts cannot be demonstrated with cell-free systems. We tentatively conclude that the mutation may affect initiation of transcription which cannot be observed in our in vitro systems. Partially purified RNA polymerase I, II, and III fractions are indistinguishable from wild type. A temperature shift does not affect transcription by RNA polymerase III measured with intact cells or by nuclear run-on experiments. The nuclear run-on and other experiments suggest that RNA polymerase II-dependent transcription is inhibited before RNA polymerase I-dependent transcription. This conclusion is also supported by Northern analyses of selected mRNAs in nonsynchronized and synchronized cells after a shift to the nonpermissive temperature.
Collapse
Affiliation(s)
- T C Slezynger
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|
24
|
Moshier JA, Deutch AH, Huang RC. Sequence of a mouse U2 snRNA gene expressed in transfected mouse cells. Nucleic Acids Res 1988; 16:7203. [PMID: 3405775 PMCID: PMC338384 DOI: 10.1093/nar/16.14.7203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- J A Moshier
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | | | |
Collapse
|
25
|
Watanabe N, Ohshima Y. Three types of rat U1 small nuclear RNA genes with different flanking sequences are induced to express in vivo. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 174:125-32. [PMID: 3371356 DOI: 10.1111/j.1432-1033.1988.tb14071.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There are about 50 copies of U1 RNA genes/pseudogenes in the rat genome. To date, we have isolated so far 25 phage clones carrying a U1 RNA gene/pseudogene from two rat genomic libraries. The 12 clones were selected by hybridization with the U1 RNA coding region under a stringent condition, and were mapped and sequenced. Here, we report three types of U1 RNA genes with different flanking sequences, all of which were shown to be induced to express in vivo by transfection with their polylinker-inserted maxi U1 RNA genes into cultured rat cells. Although these three classes of U1 RNA genes have few homologous flanking sequences, they provide both upstream and downstream of the genes two conserved blocks, which may possibly play an important role in U1 RNA expression.
Collapse
Affiliation(s)
- N Watanabe
- Institute of Biological Sciences, University of Tsukuba, Japan
| | | |
Collapse
|
26
|
O'Hare P, Goding CR. Herpes simplex virus regulatory elements and the immunoglobulin octamer domain bind a common factor and are both targets for virion transactivation. Cell 1988; 52:435-45. [PMID: 2830987 DOI: 10.1016/s0092-8674(88)80036-9] [Citation(s) in RCA: 323] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Functional upstream activator sequences (TAATGARAT motifs) of herpes simplex virus immediate-early genes were identified and shown both to bind a factor (TRF) present in uninfected HeLa cells and to confer inducibility by the virus regulatory protein, Vmw65, on a normally nonresponsive promoter. Point-mutation analyses demonstrated binding specificity and correlated binding with Vmw65 induction. Furthermore, the octamer domains of the adenovirus DNA replication origin, the histone H2B, and the immunoglobulin light chain genes bound and competed for TRF. The immunoglobulin octamer also conferred Vmw65 inducibility on the TK promoter. In addition, a modified form of TRF was specifically detected in infected cells. We conclude that TRF is similar or identical to the previously described octamer binding protein and is likely to be the target for coordinate induction of immediate-early gene expression by Vmw65.
Collapse
Affiliation(s)
- P O'Hare
- Marie Curie Research Institute, Surrey, England
| | | |
Collapse
|
27
|
Carbon P, Murgo S, Ebel JP, Krol A, Tebb G, Mattaj LW. A common octamer motif binding protein is involved in the transcription of U6 snRNA by RNA polymerase III and U2 snRNA by RNA polymerase II. Cell 1987; 51:71-9. [PMID: 3652209 DOI: 10.1016/0092-8674(87)90011-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The structure of a Xenopus U6 gene promoter has been investigated. Three regions in the 5'-flanking sequences of the gene that are important for U6 expression are defined. Deletion of the first, between positions -156 and -280 relative to the site of transcription initiation, reduces transcription to roughly 5% of its original level. Deletion of the second, between -60 and -77, abolishes transcription. These regions contain not only functional but also sequence homology to the previously defined distal and proximal sequence elements (DSE and PSE) of the Xenopus U2 promoter, although U2 is transcribed by RNA polymerase II and U6 by RNA polymerase III. Competition experiments show that at least the distal sequence elements of the two promoters bind to a common factor both in vivo and in vitro. Part of the sequence recognized by this factor is the octamer motif (ATG-CAAAT). A sequence similar to the common RNA polymerase II TATA box is also shown to have an effect, albeit minor, on U6 transcription. The U6 coding region contains a good match to the A box, part of all previously characterized RNA polymerase III promoters. Deletion of this region has no apparent effect on the efficiency or accuracy of U6 transcription.
Collapse
Affiliation(s)
- P Carbon
- Institut de Biologie Moleculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
28
|
Functional elements of the human U1 RNA promoter. Identification of five separate regions required for efficient transcription and template competition. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75709-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Bohmann D, Keller W, Dale T, Schöler HR, Tebb G, Mattaj IW. A transcription factor which binds to the enhancers of SV40, immunoglobulin heavy chain and U2 snRNA genes. Nature 1987; 325:268-72. [PMID: 3027566 DOI: 10.1038/325268a0] [Citation(s) in RCA: 140] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In eukaryotes the transcriptional control of RNA polymerase II-mediated gene expression is exerted by cis-acting regulatory DNA elements classified as promoter and enhancer sequences. These elements are composed of a number of different protein binding sites. The regulatory factors that recognize such 'modules' may be ubiquitous, tissue- or stage-specific, and positively or negatively acting. According to this model the transcriptional activity of a given gene is programmed by a combination of different modules. We analysed such a site of protein-DNA interaction, the octamer motif, in the enhancers of the simian virus (SV40) early genes and the murine immunoglobulin heavy-chain gene, and in the distal sequence element (DSE) of the U2 small nuclear (sn)RNA gene of Xenopus laevis. The corresponding DNA-binding factor appears to be the same in the three cases. Moreover, a fraction containing partially purified octamer motif binding factor has a stimulatory effect on transcription in an in vitro system.
Collapse
|
30
|
Transcription of Xenopus U snRNA genes. Mol Biol Rep 1987. [DOI: 10.1007/bf00356870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Primate Sequences. Primates 1987. [DOI: 10.1016/b978-0-12-512511-6.50005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
|
33
|
Westin G, Zabielski J, Janson L, Pettersson U. Properties of a distal regulatory element controlling transcription of the U2 small nuclear RNA. Gene 1987; 59:183-90. [PMID: 3436529 DOI: 10.1016/0378-1119(87)90326-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The upstream region of human U2 genes contains a distal transcriptional control element, previously mapped between nucleotide (nt) positions -198 and -258 (Westin et al., 1984b). In the present study we show that it resembles transcriptional enhancers in being active even from a distance of 1.4 kb. However, in contrast to most other enhancers it functions unidirectionally in Xenopus laevis oocytes. The distal control element was further mapped by construction of truncated templates for U2 RNA transcription. The results showed that templates, which extended to either of nt positions -214 and -218, were inactive. Templates comprising sequences to nt positions -225 or -226 displayed an intermediate level of activity whereas templates which extend to nt -258 were fully active. It has previously been shown that the human U2 enhancer contains binding sites for the so-called octamer binding protein and for transcription factor Sp1 [Janson et al., Nucl. Acids Res. 15 (1987) 4997-5016]. The partially active templates included one binding site for the octamer binding protein, whereas the fully active template included, in addition, two Sp1 binding sites, thus indicating that these transcription factors are of importance for U2 RNA transcription. The structure of the enhancer was also probed by inserting a pair of complementary synthetic oligodeoxynucleotides which represented the region between nt positions -235 and -215 into a truncated template which lacked the enhancer. The oligodeoxynucleotide enhanced transcription to approximately 50% of the level obtained with templates extending to position -258.
Collapse
Affiliation(s)
- G Westin
- Department of Medical Genetics and Microbiology, University of Uppsala, Sweden
| | | | | | | |
Collapse
|
34
|
de Vegvar HE, Lund E, Dahlberg JE. 3' end formation of U1 snRNA precursors is coupled to transcription from snRNA promoters. Cell 1986; 47:259-66. [PMID: 3021336 DOI: 10.1016/0092-8674(86)90448-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Promoters of small nuclear RNA (snRNA) genes are partly responsible for 3' end formation of snRNA precursors. In injected X. laevis oocytes, substitution of an mRNA promoter (HSV tk) for the snRNA promoter significantly reduces the utilization of a conserved snRNA 3' end signal and permits recognition of a downstream polyadenylation site. Neither the U1 enhancer nor the U1 coding region is essential for recognition of the snRNA 3' end signal. Deletion of the U1 3' end signal from genes with a U1 promoter results in utilization of "cryptic" signals resembling the consensus sequence. However, these snRNA gene-promoted transcripts are not polyadenylated, in spite of the functional polyadenylation signal they contain. Thus, the ability to recognize 3' end signals is determined during initiation, presumably by interaction of transcription complexes with specific processing or termination factors.
Collapse
|
35
|
Abstract
U1 and U2 snRNAs are thought to be transcribed by RNA polymerase II. A conserved sequence known as the 3' box is located just downstream from the snRNA coding region and directs formation of the 3' end of pre-U1 and pre-U2 snRNA. We show here that a U1 or U2 promoter containing an intact snRNA enhancer is required for the U1 3' box to function efficiently. Promoters for genes encoding mRNAs cannot substitute for the snRNA promoter. Thus snRNAs must be transcribed by a specialized transcription complex that differs from transcription complexes synthesizing mRNAs. Moreover, in contrast to polyadenylated and nonpolyadenylated mRNAs, the 3' ends of pre-snRNAs must be generated either by termination of transcription, or by an RNA processing event intimately coupled to transcription.
Collapse
|
36
|
Ares M. U2 RNA from yeast is unexpectedly large and contains homology to vertebrate U4, U5, and U6 small nuclear RNAs. Cell 1986; 47:49-59. [PMID: 3530502 DOI: 10.1016/0092-8674(86)90365-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
I have determined the structure of the gene from Saccharomyces cerevisiae coding for the yeast homolog of vertebrate U2 snRNA. Surprisingly, the RNA is 1175 nucleotides long, six times larger than U2 RNAs from other organisms, including Schizosaccharomyces pombe. Nearly 100 nucleotides of the large RNA share sequence homology and potential secondary structure with metazoan U2. The large RNA also contains homology to vertebrate U4, U5, and U6 snRNAs, implying a "poly-snRNP" structure for the RNP containing the large RNA. The gene LSR1, encoding the large RNA, is essential for growth, suggesting that the yeast spliceosome can be dissected using genetic approaches. The different organization of spliceosomal RNA may underlie differences in splicing between yeast and metazoans.
Collapse
|
37
|
Landolfi NF, Capra JD, Tucker PW. Interaction of cell-type-specific nuclear proteins with immunoglobulin VH promoter region sequences. Nature 1986; 323:548-51. [PMID: 3093895 DOI: 10.1038/323548a0] [Citation(s) in RCA: 266] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
All human and murine immunoglobulin heavy chain variable region (VH) genes contain the sequence ATGCAAAT approximately 70 nucleotides 5' from the site of transcription initiation. This octanucleotide, in reverse orientation, is also found in all light chain variable region (VL) genes, and in the immunoglobulin heavy chain transcriptional enhancer. Transfection studies have established that this octamer is involved in the lymphoid-specific transcription of immunoglobulin genes. Octamer-containing fragments have been reported to bind a factor present in nuclear extracts of human cell lines; however, identical binding activity was detected in both B lymphoid and non-lymphoid cells. Here we establish that nuclear extracts from distinct cell types differ in their ability to interact with octamer-containing fragments. We have also detected a DNA-protein interaction that may be involved in the cell-type specificity of immunoglobulin expression, and we have determined that a sequence upstream of the octamer participates in an interaction with a nuclear protein(s).
Collapse
|
38
|
Abstract
Trimethyl capping of U2 snRNA has been studied using U2 genes with mutations located in either the 5' flanking or the coding region. A monomethyl (7-methylguanosine) cap is added to U2 cotranscriptionally, trimethylation being posttranscriptional. The immediate 5' flanking sequences have no influence on trimethylation; furthermore, trimethylation is not affected by changing the position and sequence of the cap site. The efficiency of trimethylation is reduced by deleting the Sm binding site from U2 RNA, but it is not altered by other mutations in the coding sequence. Insertion of artificial Sm binding sites either into a mutant U2 from which the natural binding site has been deleted or into SP6 transcripts generated in vitro allows these RNAs to become trimethylated. The trimethylase activity in Xenopus laevis oocytes is cytoplasmic.
Collapse
|
39
|
Saba JA, Busch H, Wright D, Reddy R. Isolation and characterization of two putative full-length Drosophila U4 small nuclear RNA genes. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)84445-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Singh H, Sen R, Baltimore D, Sharp PA. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 1986; 319:154-8. [PMID: 3079885 DOI: 10.1038/319154a0] [Citation(s) in RCA: 990] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Trans-acting factors that mediate B-cell specific transcription of immunoglobulin genes have been postulated based on an analysis of the expression of exogenously introduced immunoglobulin gene recombinants in lymphoid and non-lymphoid cells. Two B-cell-specific, cis-acting transcriptional regulatory elements have been identified. One element is located in the intron between the variable (V) and constant (C) regions of both heavy and kappa light-chain genes and acts as a transcriptional enhancer. The second element is found upstream of both heavy and kappa light-chain gene promoters. This element directs lymphoid-specific transcription even in the presence of viral enhancers. We have sought nuclear factors that might bind specifically to these two regulatory elements by application of a modified gel electrophoresis DNA binding assay. We report here the identification of a human B-cell nuclear factor (IgNF-A) that binds to DNA sequences in the upstream regions of both the mouse heavy and kappa light-chain gene promoters and also to the mouse heavy-chain gene enhancer. This sequence-specific binding is probably mediated by a highly conserved sequence motif, ATTTGCAT, present in all three transcriptional elements. Interestingly, a factor showing similar binding specificity to IgNF-A is also present in human HeLa cells.
Collapse
|
41
|
Abstract
A study of human genes coding for U4 small nuclear RNA is presented. It is known from previous studies that mammalian cells contain three major U4 RNA species, designated U4A, U4B, and U4C (Krol and Branlant, 1981). A clone was isolated from a human DNA library which contained two transcriptionally active genes for U4 RNA. U4 transcription was sensitive to low concentrations of alpha-amanitin, inferring that U4 RNA is a product of RNA polymerase II or RNA polymerase II-like activity. One of the two genes contains a coding region which matches the sequence of U4C RNA perfectly. The coding region of the second gene resembles U4B RNA although there are two differences between the sequence of this gene and the U4B RNA sequence, suggesting that it may encode a minor, hitherto undetected U4 RNA species. The 5'-flanking regions of the two U4 genes contain several almost perfectly conserved sequence motifs. One is located between positions -50 and -60. This motif is present in equivalent positions in the two U4 genes as well as in human U1 and U2 genes. A second motif, which is 19 nucleotides (nt) long and centered around nt position -140, is present in the two U4 genes but absent from U2 RNA genes. A third highly conserved region, located between nt positions -210 and -250, is a putative enhancer element. It includes one copy of the so-called octanucleotide motif, previously identified as adjacent to the early SV40 promoter and immunoglobulin promoters. Another highly conserved sequence motif, CTCTGTGA, is located approximately one helical turn upstream from the octanucleotide motif in both U2 and U4 genes. The human genome appears to contain a family of U4 RNA genes comprising at least 100 copies.
Collapse
|
42
|
Abstract
Xenopus oocytes injected with human U2 snRNA genes synthesize mature U2 as well as a U2 precursor with about 10 extra 3' nucleotides (human pre-U2 RNA). Formation of the pre-U2 3' end requires a downstream element located between position +16 and +37 in the U2 3'-flanking sequence. The distance between this element and the U2 coding region can be increased without affecting formation of the pre-U2 3' end. When the natural sequence surrounding the pre-U2 3' end is changed, novel 3' ends are still generated within a narrow range upstream from the element. The 3' terminal stem-loop of U2 snRNA is not required for pre-U2 3' end formation. A sequence within the 3' element (GTTTN0-3AAAPuNNAGA) is conserved among snRNA genes transcribed by RNA polymerase II. Our results suggest that the 3' ends of pre-U2 RNA and histone mRNA may be generated by related but distinct RNA processing mechanisms.
Collapse
|