1
|
Skayneh H, Jishi B, Hleihel R, Hamieh M, Darwiche N, Bazarbachi A, El Sabban M, El Hajj H. A Critical Review of Animal Models Used in Acute Myeloid Leukemia Pathophysiology. Genes (Basel) 2019; 10:E614. [PMID: 31412687 PMCID: PMC6722578 DOI: 10.3390/genes10080614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most frequent, complex, and heterogeneous hematological malignancies. AML prognosis largely depends on acquired cytogenetic, epigenetic, and molecular abnormalities. Despite the improvement in understanding the biology of AML, survival rates remain quite low. Animal models offer a valuable tool to recapitulate different AML subtypes, and to assess the potential role of novel and known mutations in disease progression. This review provides a comprehensive and critical overview of select available AML animal models. These include the non-mammalian Zebrafish and Drosophila models as well as the mammalian rodent systems, comprising rats and mice. The suitability of each animal model, its contribution to the advancement of knowledge in AML pathophysiology and treatment, as well as its advantages and limitations are discussed. Despite some limitations, animal models represent a powerful approach to assess toxicity, and permit the design of new therapeutic strategies.
Collapse
Affiliation(s)
- Hala Skayneh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Batoul Jishi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Maguy Hamieh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ali Bazarbachi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| |
Collapse
|
2
|
Lee M, Crawford NPS. Defining the Influence of Germline Variation on Metastasis Using Systems Genetics Approaches. Adv Cancer Res 2016; 132:73-109. [PMID: 27613130 DOI: 10.1016/bs.acr.2016.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer is estimated to be responsible for 8 million deaths worldwide and over half a million deaths every year in the United States. The majority of cancer-related deaths in solid tumors is directly associated with the effects of metastasis. While the influence of germline factors on cancer risk and development has long been recognized, the contribution of hereditary variation to tumor progression and metastasis has only gained acceptance more recently. A variety of approaches have been used to define how hereditary variation influences tumor progression and metastasis. One approach that garnered much early attention was epidemiological studies of cohorts of cancer patients, which demonstrated that specific loci within the human genome are associated with a differential propensity for aggressive tumor development. However, a powerful, and somewhat underutilized approach has been the use of systems genetics approaches in transgenic mouse models of human cancer. Such approaches are typically multifaceted, and involve integration of multiple lines of evidence derived, for example, from genetic and transcriptomic screens of genetically diverse mouse models of cancer, coupled with bioinformatics analysis of human cancer datasets, and functional analysis of candidate genes. These methodologies have allowed for the identification of multiple hereditary metastasis susceptibility genes, with wide-ranging cellular functions including regulation of gene transcription, cell proliferation, and cell-cell adhesion. In this chapter, we review how each of these approaches have facilitated the identification of these hereditary metastasis modifiers, the molecular functions of these metastasis-associated genes, and the implications of these findings upon patient survival.
Collapse
Affiliation(s)
- M Lee
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States
| | - N P S Crawford
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States.
| |
Collapse
|
3
|
Al Dallal S, Wolton K, Hentges KE. Zfp521 promotes B-cell viability and cyclin D1 gene expression in a B cell culture system. Leuk Res 2016; 46:10-7. [PMID: 27107743 PMCID: PMC4910839 DOI: 10.1016/j.leukres.2016.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/13/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022]
Abstract
Knockdown of Zfp521 in BCL1 cell culture reduces viability and promotes apoptosis. Genes expressed in B cells are down-regulated in cells with Zfp521 knockdown. Cyclin D1 expression is increased in mouse tumors with Zfp521 over-expression.
Leukemia arises due to the dysregulated proliferation of hematopoietic progenitor cells. Errors in the multi-step commitment process result in excessive numbers of immature lymphocytes, causing malignant disease. Genes involved in the differentiation of lymphocytes are often associated with leukemia. One such gene, Zfp521, has been found to cause B-cell leukemia in mice when over-expressed. The role of Zfp521 in B-cell differentiation, and the mechanisms by which it leads to leukemic transformation, are unclear. In this study we report that Zfp521 knockdown causes apoptosis in a B-cell culture system and promotes down-regulation of genes acting at late stages of B-cell differentiation. We identify Pax5 and cyclin D1 as Zfp521 target genes, and suggest that excessive B-cell proliferation observed in mice with retroviral insertions near the Zfp521 gene is due to an up-regulation of cyclin D1 in B-cells. Overall, these results suggest links between dysregulated Zfp521 and B-cell survival.
Collapse
Affiliation(s)
- Salma Al Dallal
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Kathryn Wolton
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Kathryn E Hentges
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
4
|
Zheng CL, Wilmot B, Walter NA, Oberbeck D, Kawane S, Searles RP, McWeeney SK, Hitzemann R. Splicing landscape of the eight collaborative cross founder strains. BMC Genomics 2015; 16:52. [PMID: 25652416 PMCID: PMC4320832 DOI: 10.1186/s12864-015-1267-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/22/2015] [Indexed: 12/20/2022] Open
Abstract
Background The Collaborative Cross (CC) is a large panel of genetically diverse recombinant inbred mouse strains specifically designed to provide a systems genetics resource for the study of complex traits. In part, the utility of the CC stems from the extensive genome-wide annotations of founder strain sequence and structural variation. Still missing, however, are transcriptome-specific annotations of the CC founder strains that could further enhance the utility of this resource. Results We provide a comprehensive survey of the splicing landscape of the 8 CC founder strains by leveraging the high level of alternative splicing within the brain. Using deep transcriptome sequencing, we found that a majority of the splicing landscape is conserved among the 8 strains, with ~65% of junctions being shared by at least 2 strains. We, however, found a large number of potential strain-specific splicing events as well, with an average of ~3000 and ~500 with ≥3 and ≥10 sequence read coverage, respectively, within each strain. To better understand strain-specific splicing within the CC founder strains, we defined criteria for and identified high-confidence strain-specific splicing events. These splicing events were defined as exon-exon junctions 1) found within only one strain, 2) with a read coverage ≥10, and 3) defined by a canonical splice site. With these criteria, a total of 1509 high-confidence strain-specific splicing events were identified, with the majority found within two of the wild-derived strains, CAST and PWK. Strikingly, the overwhelming majority, 94%, of these strain-specific splicing events are not yet annotated. Strain-specific splicing was also located within genomic regions recently reported to be over- and under-represented within CC populations. Conclusions Phenotypic characterization of CC populations is increasing; thus these results will not only aid in further elucidating the transcriptomic architecture of the individual CC founder strains, but they will also help in guiding the utilization of the CC populations in the study of complex traits. This report is also the first to establish guidelines in defining and identifying strain-specific splicing across different mouse strains. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1267-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina L Zheng
- Department of Medical Informatics and Clinical Epidemiology, Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, Oregon, USA. .,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.
| | - Beth Wilmot
- Department of Medical Informatics and Clinical Epidemiology, Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, Oregon, USA. .,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA. .,Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA.
| | - Nicole Ar Walter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA. .,Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon, USA.
| | - Denesa Oberbeck
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA.
| | - Sunita Kawane
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA.
| | - Robert P Searles
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, Oregon, USA.
| | - Shannon K McWeeney
- Department of Medical Informatics and Clinical Epidemiology, Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, Oregon, USA. .,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA. .,Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA. .,Department of Public Health and Preventative Medicine, Division of Biostatistics, Oregon Health & Science University, Portland, Oregon, USA.
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA. .,Veterans Affairs Research Service, Portland, OR, USA.
| |
Collapse
|
5
|
van der Weyden L, Adams DJ. Cancer of mice and men: old twists and new tails. J Pathol 2013; 230:4-16. [PMID: 23436574 DOI: 10.1002/path.4184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 01/28/2013] [Accepted: 02/16/2013] [Indexed: 12/18/2022]
Abstract
In this review we set out to celebrate the contribution that mouse models of human cancer have made to our understanding of the fundamental mechanisms driving tumourigenesis. We take the opportunity to look forward to how the mouse will be used to model cancer and the tools and technologies that will be applied, and indulge in looking back at the key advances the mouse has made possible.
Collapse
|
6
|
Abstract
Mouse models are indispensible tools for understanding the molecular basis of cancer. However, despite the invaluable data provided regarding tumour biology, owing to inbreeding, current mouse models fail to accurately model human populations. Polymorphism is the essential characteristic that makes each of us unique humans, with different disease susceptibility, presentation and progression. Therefore, as we move closer towards designing clinical treatment that is based on an individual's unique biological makeup, it is imperative that we understand how inherited variability influences cancer phenotypes, how it can confound experiments and how it can be exploited to reveal new truths about cancer biology.
Collapse
Affiliation(s)
- Kent W Hunter
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, 37/5046, 37 Convent Drive, Bethesda, Maryland 20892-4264, USA.
| |
Collapse
|
7
|
Bromodomain-Containing Protein 4: A Dynamic Regulator of Breast Cancer Metastasis through Modulation of the Extracellular Matrix. Int J Breast Cancer 2011; 2012:670632. [PMID: 22295248 PMCID: PMC3262604 DOI: 10.1155/2012/670632] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 12/11/2022] Open
Abstract
Metastasis is an extremely complex process that accounts for most cancer-related deaths. Malignant primary tumors can be removed surgically, but the cells that migrate, invade, and proliferate at distant organs are often the cells that prove most difficult to target therapeutically. There is growing evidence that host factors outside of the primary tumors are of major importance in the development of metastasis. Recently, we have shown that the bromodomain-containing protein 4 or bromodomain 4 (Brd4) functions as an inherited susceptibility gene for breast cancer progression and metastasis. In this paper, we will discuss that host genetic background on which a tumor arises can significantly alter the biology of the subsequent metastatic disease, and we will focus on the role of Brd4 in regulating metastasis susceptibility.
Collapse
|
8
|
Warren M, Chung YJ, Howat WJ, Kitson H, McGinnis R, Hao X, McCafferty J, Fredrickson TN, Bradley A, Morse HC. Irradiated Blm-deficient mice are a highly tumor prone model for analysis of a broad spectrum of hematologic malignancies. Leuk Res 2010; 34:210-20. [PMID: 19709744 PMCID: PMC2815150 DOI: 10.1016/j.leukres.2009.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
Abstract
Mutations in the BLM gene cause human Bloom syndrome (BS), an autosomal recessive disorder of growth retardation, immunodeficiency and cancer predisposition. Homozygous null Blm(m3/m3) mice are cancer prone with a 5-fold increased risk of cancer compared with Blm(m3/+) and Blm(+/+) mice. Irradiation of Blm(m3/m3) mice increased the risk to 28-fold. Tumors occurred mainly in the hematopoietic system and were similar to those in BS based on detailed histologic and immunohistochemical analyses. Irradiated Blm-deficient mice thus provide a novel model for understanding accelerated malignancies in BS and a new platform for investigating the molecular basis for a wide range of hematopoietic neoplasms.
Collapse
Affiliation(s)
- Madhuri Warren
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- University of Cambridge, Department of Histopathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Yeun-Jun Chung
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - William J. Howat
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Hannah Kitson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ralph McGinnis
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Xingpei Hao
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - John McCafferty
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Torgny N. Fredrickson
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Allan Bradley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Herbert C. Morse
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
9
|
The Diasporin Pathway: a tumor progression-related transcriptional network that predicts breast cancer survival. Clin Exp Metastasis 2008; 25:357-69. [PMID: 18301994 DOI: 10.1007/s10585-008-9146-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 02/06/2008] [Indexed: 12/21/2022]
Abstract
Microarray expression signature analyses have suggested that extracellular matrix (ECM) gene dysregulation is predictive of metastasis in both mouse mammary tumorigenesis and human breast cancer. We have previously demonstrated that such ECM dysregulation is influenced by hereditary germline-encoded variation. To identify novel metastasis efficiency modifiers, we performed expression QTL (eQTL) mapping in recombinant inbred mice by characterizing genetic loci modulating metastasis-predictive ECM gene expression. Three reproducible eQTLs were observed on chromosomes 7, 17 and 18. Candidate genes were identified by correlation analyses and known associations with metastasis. Seven candidates were identified (Ndn, Pi16, Luc7l, Rrp1b, Brd4, Centd3 and Csf1r). Stable transfection of the highly metastatic Mvt-1 mouse mammary tumor cell line with expression vectors encoding each candidate modulated metastasis-predictive ECM gene expression. Implantation of these cells into mice demonstrated that candidate gene ectopic expression impacts tumor progression. Gene expression analyses facilitated the construction of a transcriptional network that we have termed the 'Diasporin Pathway'. This pathway contains the seven candidates, as well as metastasis-predictive ECM genes and metastasis suppressors. Brd4 and Rrp1b appear to form a central node within this network, which likely is a consequence of their physical interaction with the metastasis efficiency modifier Sipa1. Furthermore, we demonstrate that the microarray gene expression signatures induced by activation of ECM eQTL genes in the Mvt-1 cell line can be used to accurately predict survival in a human breast cancer cohort. These data imply that the Diasporin Pathway may be an important nexus in tumor progression in both mice and humans.
Collapse
|
10
|
Crawford NPS, Qian X, Ziogas A, Papageorge AG, Boersma BJ, Walker RC, Lukes L, Rowe WL, Zhang J, Ambs S, Lowy DR, Anton-Culver H, Hunter KW. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis. PLoS Genet 2007; 3:e214. [PMID: 18081427 PMCID: PMC2098807 DOI: 10.1371/journal.pgen.0030214] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 10/12/2007] [Indexed: 12/20/2022] Open
Abstract
A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b), was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM) genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis. Metastasis, which is defined as the spread of malignant tumor cells from their original site to other parts of the body, accounts for the vast majority of solid cancer-related mortality. Our laboratory has previously shown that host germline-encoded variation modifies primary tumor metastatic capacity. Here, we detail how germline-encoded Rrp1b variation likely modulates metastasis. In mice, constitutional Rrp1b variation correlates with ECM gene expression, which are genes commonly differentially regulated in metastasis prone tumors. Furthermore, we demonstrate that Rrp1b expression levels are modulated by germline variation in mice with differing metastatic propensities, and that variation of Rrp1b expression in a highly metastatic mouse mammary tumor cell line modifies progression. Differential RRP1B functionality also appears to play an important role in human breast cancer progression. Specifically, we demonstrate that a microarray gene expression signature indicative of differential RRP1B expression predicts breast cancer-specific survival. Furthermore, we show that germline-encoded RRP1B variation is associated with markers of outcome in two breast cancer populations. In summary, these data suggest that Rrp1b may be a germline-encoded metastasis modifier in both mice and humans, which leads to the possibility that knowledge of RRP1B functionality and variation in breast cancer might facilitate improved assessment of prognosis.
Collapse
Affiliation(s)
- Nigel P. S Crawford
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiaolan Qian
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Argyrios Ziogas
- Epidemiology Division, Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Alex G Papageorge
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brenda J Boersma
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Renard C Walker
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Luanne Lukes
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William L Rowe
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jinghui Zhang
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hoda Anton-Culver
- Epidemiology Division, Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Kent W Hunter
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Weiser KC, Liu B, Hansen GM, Skapura D, Hentges KE, Yarlagadda S, Morse Iii HC, Justice MJ. Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma. Mamm Genome 2007; 18:709-22. [PMID: 17926094 PMCID: PMC2042025 DOI: 10.1007/s00335-007-9060-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/30/2007] [Indexed: 01/07/2023]
Abstract
AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFκB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision.
Collapse
Affiliation(s)
- Keith C Weiser
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sørensen KD, Kunder S, Quintanilla-Martinez L, Sørensen J, Schmidt J, Pedersen FS. Enhancer mutations of Akv murine leukemia virus inhibit the induction of mature B-cell lymphomas and shift disease specificity towards the more differentiated plasma cell stage. Virology 2007; 362:179-91. [PMID: 17258785 DOI: 10.1016/j.virol.2006.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 11/22/2006] [Accepted: 12/08/2006] [Indexed: 11/22/2022]
Abstract
This study investigates the role of the proviral transcriptional enhancer for B-lymphoma induction by exogenous Akv murine leukemia virus. Infection of newborn inbred NMRI mice with Akv induced 35% plasma cell proliferations (PCPs) (consistent with plasmacytoma), 33% diffuse large B-cell lymphomas, 25% follicular B-cell lymphomas and few splenic marginal zone and small B-cell lymphomas. Deleting one copy of the 99-bp proviral enhancer sequence still allowed induction of multiple B-cell tumor types, although PCPs dominated (77%). Additional mutation of binding sites for the glucocorticoid receptor, Ets, Runx, or basic helix-loop-helix transcription factors in the proviral U3 region, however, shifted disease induction to almost exclusively PCPs, but had no major influence on tumor latency periods. Southern analysis of immunoglobulin rearrangements and ecotropic provirus integration patterns showed that many of the tumors/cell proliferations induced by each virus were polyclonal. Our results indicate that enhancer mutations weaken the ability of Akv to induce mature B-cell lymphomas prior to the plasma cell stage, whereas development of plasma cell proliferations is less dependent of viral enhancer strength.
Collapse
Affiliation(s)
- Karina Dalsgaard Sørensen
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Bldg. 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
13
|
Ma SL, Sørensen AB, Kunder S, Sørensen KD, Quintanilla-Martinez L, Morris DW, Schmidt J, Pedersen FS. The Icsbp locus is a common proviral insertion site in mature B-cell lymphomas/plasmacytomas induced by exogenous murine leukemia virus. Virology 2006; 352:306-18. [PMID: 16780917 DOI: 10.1016/j.virol.2006.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/16/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
ICSBP (interferon consensus sequence binding protein)/IRF8 (interferon regulatory factor 8) is an interferon gamma-inducible transcription factor expressed predominantly in hematopoietic cells, and down-regulation of this factor has been observed in chronic myelogenous leukemia and acute myeloid leukemia in man. By screening about 1200 murine leukemia virus (MLV)-induced lymphomas, we found proviral insertions at the Icsbp locus in 14 tumors, 13 of which were mature B-cell lymphomas or plasmacytomas. Only one was a T-cell lymphoma, although such tumors constituted about half of the samples screened. This indicates that the Icsbp locus can play a specific role in the development of mature B-lineage malignancies. Two proviral insertions in the last Icsbp exon were found to act by a poly(A)-insertion mechanism. The remaining insertions were found within or outside Icsbp. Since our results showed expression of Icsbp RNA and protein in all end-stage tumor samples, a simple tumor suppressor function of ICSBP is not likely. Interestingly, proviral insertions at Icsbp have not been reported from previous extensive screenings of mature B-cell lymphomas induced by endogenous MLVs. We propose that ICSBP might be involved in an early modulation of an immune response to exogenous MLVs that might also play a role in proliferation of the mature B-cell lymphomas.
Collapse
MESH Headings
- Animals
- Base Sequence
- Interferon Regulatory Factors/genetics
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/virology
- Mice
- Plasmacytoma/etiology
- Plasmacytoma/genetics
- Plasmacytoma/pathology
- Plasmacytoma/virology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Virus Integration/genetics
Collapse
Affiliation(s)
- Shi Liang Ma
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Alle, Bldg. 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Boyd KE, Xiao YY, Fan K, Poholek A, Copeland NG, Jenkins NA, Perkins AS. Sox4 cooperates with Evi1 in AKXD-23 myeloid tumors via transactivation of proviral LTR. Blood 2006; 107:733-41. [PMID: 16204320 PMCID: PMC1895620 DOI: 10.1182/blood-2003-05-1626] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Accepted: 09/02/2005] [Indexed: 01/19/2023] Open
Abstract
Myeloid leukemias in AKXD23 mice contain proviral insertions at Evi1, resulting in transcriptional activation. Although Evi1 is clearly involved in leukemia, gene transfer studies in mice with Evi1 fail to cause leukemia, arguing that cooperating events are necessary. We reanalyzed AKXD-23 tumors for cooperating proviral insertion and found that each tumor had a proviral insertion in Sox4, which encodes an HMG-box transcription factor. RNA analysis revealed these insertions cause increased Sox4 expression. Overexpression of Sox4 in 32Dcl3 cells markedly inhibited cytokine-induced granulocyte maturation, as documented by morphologic and mRNA analysis. Sox4-expressing cells had higher levels of transcripts associated with proliferation, including Evi1. Conversely, in leukemic cells that express Sox4 and bear provirally activated Evi1, suppression of Sox4 with short hairpin RNAs resulted in down-regulation of both Sox4 and Evi1. By cotransfection studies, Sox4 is able to transactivate the AKV long terminal repeat, which likely explains how Sox4 transcriptionally up-regulates provirally activated Evi1; however, Sox4 does not appear to regulate the native Evi1 promoter. We propose that Sox4 proviral activation is selected for in the setting of prior proviral activation of Evi1, because it transactivates the relatively weak LTR of AKV leading to higher Evi1 expression and consequent block to differentiation.
Collapse
Affiliation(s)
- Kathryn E Boyd
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Sørensen KD, Sørensen AB, Quintanilla-Martinez L, Kunder S, Schmidt J, Pedersen FS. Distinct roles of enhancer nuclear factor 1 (NF1) sites in plasmacytoma and osteopetrosis induction by Akv1-99 murine leukemia virus. Virology 2005; 334:234-44. [PMID: 15780873 DOI: 10.1016/j.virol.2005.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 12/30/2004] [Accepted: 01/31/2005] [Indexed: 10/25/2022]
Abstract
Murine leukemia viruses (MLVs) can be lymphomagenic and bone pathogenic. In this work, the possible roles of two distinct proviral enhancer nuclear factor 1 (NF1) binding sites in osteopetrosis and tumor induction by B-lymphomagenic Akv1-99 MLV were investigated. Akv1-99 and mutants either with NF1 site 1, NF1 site 2 or both sites disrupted induced tumors (plasma cell proliferations by histopathology) with remarkably similar incidence and mean latency in inbred NMRI mice. Clonal immunoglobulin gene rearrangement detection, by Southern analysis, confirmed approximately half of the tumors induced by each virus to be plasmacytomas while the remaining lacked detectable clonally rearranged Ig genes and were considered polyclonal; a demonstration that enhancer NF1 sites are dispensable for plasmacytoma induction by Akv1-99. In contrast, X-ray analysis revealed significant differences in osteopetrosis induction by the four viruses strongly indicating that NF1 site 2 is critical for viral bone pathogenicity, whereas NF1 site 1 is neutral or moderately inhibitory. In conclusion, enhancer NF1 sites are major determinants of osteopetrosis induction by Akv1-99 without significant influence on viral oncogenicity.
Collapse
Affiliation(s)
- Karina Dalsgaard Sørensen
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Building 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
16
|
McCormack E, Bruserud O, Gjertsen BT. Animal models of acute myelogenous leukaemia - development, application and future perspectives. Leukemia 2005; 19:687-706. [PMID: 15759039 DOI: 10.1038/sj.leu.2403670] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
From the early inception of the transplant models through to contemporary genetic and xenograft models, evolution of murine leukaemic model systems have been critical to our general comprehension and treatment of cancer, and, more specifically, disease states such as acute myelogenous leukaemia (AML). However, even with modern advances in therapeutics and molecular diagnostics, the majority of AML patients die from their disease. Thus, in the absence of definitive in vitro models which precisely recapitulate the in vivo setting of human AMLs and failure of significant numbers of new drugs late in clinical trials, it is essential that murine AML models are developed to exploit more specific, targeted therapeutics. While various model systems are described and discussed in the literature from initial transplant models such as BNML and spontaneous murine leukaemia virus models, to the more definitive genetic and clinically significant NOD/SCID xenograft models, there exists no single compendium which directly assesses, reviews or compares the relevance of these models. Thus, the function of this article is to provide clinicians and experimentalists a chronological, comprehensive appraisal of all AML model systems, critical discussion on the elucidation of their roles in our understanding of AML and consideration to their efficacy in the development of AML chemotherapeutics.
Collapse
Affiliation(s)
- E McCormack
- Hematology Section, Institute of Medicine, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
17
|
Abstract
Slow transforming retroviruses, such as the Moloney murine leukemia virus (M-MuLV), induce tumors upon infection of a host after a relatively long latency period. The underlying mechanism leading to cell transformation is the activation of proto-oncogenes or inactivation of tumor suppressor genes as a consequence of proviral insertions into the host genome. Cells carrying proviral insertions that confer a selective advantage will preferentially grow out. This means that proviral insertions mark genes contributing to tumorigenesis, as was demonstrated by the identification of numerous proto-oncogenes in retrovirally induced tumors in the past. Since cancer is a complex multistep process, the proviral insertions in one clone of tumor cells also represent oncogenic events that cooperate in tumorigenesis. Novel advances, such as the launch of the complete mouse genome, high-throughput isolation of proviral flanking sequences, and genetically modified animals have revolutionized proviral tagging into an elegant and efficient approach to identify signaling pathways that collaborate in cancer.
Collapse
Affiliation(s)
- Harald Mikkers
- Division of Molecular Genetics and Centre of Biomedical Genetics, Netherlands Cancer Institute 1066 CX, Amsterdam, The Netherlands
| | | |
Collapse
|
18
|
Warming S, Liu P, Suzuki T, Akagi K, Lindtner S, Pavlakis GN, Jenkins NA, Copeland NG. Evi3, a common retroviral integration site in murine B-cell lymphoma, encodes an EBFAZ-related Krüppel-like zinc finger protein. Blood 2003; 101:1934-40. [PMID: 12393497 DOI: 10.1182/blood-2002-08-2652] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral insertional mutagenesis in inbred mouse strains provides a powerful method for cancer gene discovery. Here, we show that a common retroviral integration site (RIS) in AKXD B-cell lymphomas, termed Evi3, encodes a novel zinc finger protein with 30 Krüppel-like zinc finger repeats. Most integrations at Evi3 are located upstream of the first translated exon and result in 3' long-terminal repeat (LTR)-driven overexpression of Evi3. Evi3 is highly related to the early B-cell factor-associated zinc finger gene (Ebfaz), and all 30 zinc fingers found in EVI3 are conserved in EBFAZ. EBFAZ binds to and negatively regulates early B-cell factor (EBF) (also known as olfactory-1, OLF1), a basic helix-loop-helix (bHLH) transcription factor required for B-lineage commitment and the development of the olfactory epithelium. EBFAZ also binds to SMA- and MAD-related protein-1 (SMAD1) and SMAD4 in response to bone morphogenetic protein-2 (BMP2) signaling, which in turn activates the homeobox regulator of Xenopus mesoderm and neural development Xvent-2. Surprisingly, while Ebfaz and Evi3 are coexpressed in many tissues, and both proteins are nuclear, we could not detect Ebfaz expression in B cells by reverse transcriptase-polymerase chain reaction (RT-PCR), whereas Evi3 expression could be detected at all stages of B-cell development. Our results suggest that EVI3, like EBFAZ, is a multifunctional protein that participates in many signaling pathways via its multiple zinc fingers. Furthermore, our results suggest that EVI3, not EBFAZ, is the member of this protein family that interacts with and regulates EBF in B cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/metabolism
- Basic Helix-Loop-Helix Transcription Factors
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Crosses, Genetic
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dimerization
- Gene Expression Regulation, Viral
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/virology
- Mice
- Mice, Inbred AKR
- Mice, Inbred DBA
- Molecular Sequence Data
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Organ Specificity
- Protein Structure, Tertiary
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Repetitive Sequences, Amino Acid
- Retroviridae/genetics
- Retroviridae/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Homology, Amino Acid
- Terminal Repeat Sequences
- Trans-Activators/metabolism
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Virus Integration/genetics
- Xenopus Proteins
- Zinc Fingers/genetics
- Zinc Fingers/physiology
Collapse
Affiliation(s)
- Soren Warming
- Mouse Cancer Genetics Program and the Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Morse HC, McCarty T, Qi CF, Torrey TA, Naghashfar Z, Chattopadhyay SK, Fredrickson TN, Hartley JW. B lymphoid neoplasms of mice: characteristics of naturally occurring and engineered diseases and relationships to human disorders. Adv Immunol 2003; 81:97-121. [PMID: 14711054 DOI: 10.1016/s0065-2776(03)81003-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Herbert C Morse
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hentges KE, Yarlagadda SP, Justice MJ. Tnfrsf13c (Baffr) is mis-expressed in tumors with murine leukemia virus insertions at Lvis22. Genomics 2002; 80:204-12. [PMID: 12160734 DOI: 10.1006/geno.2002.6812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In susceptible strains of mice, leukemia is caused by the somatic integration of murine leukemia retroviruses into the host genome. Integration sites that are common to several tumors are likely to affect genes that are important in oncogenesis. Here we present the analysis of a common site of retroviral integration on mouse chromosome 15, which includes the genomic structure of three genes near the integration site. One of the genes misexpressed at the insertion site has recently been characterized as a B-cell receptor, Tnfrsf13c (formerly Baffr), indicating that this approach is useful in defining genes that function in lymphocyte development and tumor progression. Current genome databases provide powerful resources for the rapid identification of genes at common proviral insertion sites. The characterization of these genes in tumor samples will allow a function to be assigned to many novel loci identified by the genome sequencing projects.
Collapse
Affiliation(s)
- Kathryn E Hentges
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
21
|
Hori M, Xiang S, Qi CF, Chattopadhyay SK, Fredrickson TN, Hartley JW, Kovalchuk AL, Bornkamm GW, Janz S, Copeland NG, Jenkins NA, Ward JM, Morse HC. Non-Hodgkin Lymphomas of Mice. Blood Cells Mol Dis 2001; 27:217-22. [PMID: 11358382 DOI: 10.1006/bcmd.2000.0375] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies of lymphoid neoplasms occurring in normal or genetically engineered mice have revealed parallels and differences to non-Hodgkin lymphomas (NHL) of humans. Some mouse lymphomas have strong histologic similarities to the human NHL subsets including precursor B- and T-cell lymphoblastic, small lymphocytic, splenic marginal zone, and diffuse large-cell B-cell lymphomas (DLCL); whether molecular parallels also exist is under study. Others mouse types such as sIg+ lymphoblastic B-cell lymphoma have no histologic equivalent in human NHL even though they share molecular deregulation of BCL6 with human DLCL. Finally, Burkitt lymphoma does not appear to occur naturally in mice, but it can be induced with appropriately engineered transgenes.
Collapse
Affiliation(s)
- M Hori
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Acar H, Copeland NG, Gilbert DJ, Jenkins NA, Largaespada DA. Detection of integrated murine leukemia viruses in a mouse model of acute myeloid leukemia by fluorescence in situ hybridization combined with tyramide signal amplification. CANCER GENETICS AND CYTOGENETICS 2000; 121:44-51. [PMID: 10958940 DOI: 10.1016/s0165-4608(00)00232-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study was undertaken to develop a reliable method to enumerate and map somatically acquired, clonal, murine leukemia virus (MuLV) proviral insertions in acute myeloid leukemia (AML) cells from the BXH-2 mouse strain. This was achieved by using fluorescence in situ hybridization combined with tyramide signal amplification (FISH-TSA) and an 8.8 kilobase pair (kb) full-length ecotropic MuLV or 2.0 kb MuLV envelope (env) gene probe. Two-color FISH was utilized combining chromosome-specific probes for regions near the telomere and/or centromere and the MuLV probes. The technique reliably detected germline and somatically acquired, tumor-specific, MuLV proviruses in BXH-2 AML cell lines. It was possible to readily verify homozygous insertions at endogenous ecotropic MuLV loci, Emv1 (chromosome 5), Emv2 (chromosome 8) and a BXH-2 strain-specific locus (chromosome 11). This strategy also verified the presence of molecularly cloned proviral insertions within the mouse Nf1 gene and another locus on distal chromosome 11, as well as on chromosome 7 and chromosome 9 in BXH-2 AML cell line B117. The technique was also used to detect several new tumor-specific, proviral insertions in BXH-2 AML cell lines.
Collapse
Affiliation(s)
- H Acar
- University of Minnesota Cancer Center, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
23
|
Largaespada DA. Genetic heterogeneity in acute myeloid leukemia: maximizing information flow from MuLV mutagenesis studies. Leukemia 2000; 14:1174-84. [PMID: 10914539 DOI: 10.1038/sj.leu.2401852] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of myeloid leukemia induced by slow transforming murine leukemia viruses (MuLV) in the laboratory mouse has led to discovery of many important genes with critical roles in regulating the growth, death, lineage determination and development of hematopoietic precursor cells. This review provides an overview of the susceptible strains and virus isolates that cause acute myeloid leukemia (AML) in mice. In addition, newer methodologies, involving the use of the polymerase chain reaction, that have been used to identify cancer genes mutated by proviral insertion in mouse models, will be discussed. As cancer is a multi-gene disease, a system in which pairs of oncogenic mutations are classified as redundant, neutral or synergistic is described. The potential to combine MuLV mutagenesis with recent advances in mouse transgenesis in order to model specific forms of myeloid leukemia or genetic pathways common in human AML will be discussed. Finally, a general strategy for maximizing these genetically rich models to foster a better understanding of AML physiology and developing therapies is proposed.
Collapse
MESH Headings
- Acute Disease
- Animals
- Biological Specimen Banks
- Crosses, Genetic
- DNA, Neoplasm/genetics
- Databases, Factual
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Library
- Genetic Heterogeneity
- Genetic Predisposition to Disease
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/isolation & purification
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Experimental/genetics
- Leukemia, Experimental/pathology
- Leukemia, Experimental/virology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/virology
- Mice
- Mice, Inbred Strains/genetics
- Mice, Inbred Strains/virology
- Mice, Transgenic
- Mutagenesis, Insertional
- Oncogenes
- Polymerase Chain Reaction
- Proto-Oncogenes
- Proviruses/genetics
- Retroviridae Infections/genetics
- Retroviridae Infections/pathology
- Retroviridae Infections/virology
- Transgenes
- Tumor Virus Infections/genetics
- Tumor Virus Infections/pathology
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- D A Largaespada
- Department of Genetics, Cell Biology and Development, Institute of Human Genetics, and University of Minnesota Cancer Center, University of Minnesota, Minneapolis 55455, USA
| |
Collapse
|
24
|
Hartley JW, Chattopadhyay SK, Lander MR, Taddesse-Heath L, Naghashfar Z, Morse HC, Fredrickson TN. Accelerated appearance of multiple B cell lymphoma types in NFS/N mice congenic for ecotropic murine leukemia viruses. J Transl Med 2000; 80:159-69. [PMID: 10701686 DOI: 10.1038/labinvest.3780020] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Spontaneous lymphomas occur at high frequency in NFS x V+ mice, strains congenic for ecotropic murine leukemia virus (MuLV) proviral genes and expressing virus at high titer. In the present study, a total of 703 NFS x V+ lymphomas were studied by histopathology, immunophenotypic analysis, immunoglobulin heavy chain or T cell receptor beta chain rearrangements, and somatic ecotropic MuLV integrations; 90% of the lymphomas tested were of B cell lineage. Low-grade tumors included small lymphocytic, follicular, and splenic marginal zone lymphomas, while high-grade tumors comprised diffuse large-cell (centroblastic and immunoblastic types), splenic marginal zone, and lymphoblastic lymphomas. Comparison of mice of similar genetic background except for presence (NFS x V+) or absence (NFS x V-) of functional ecotropic MuLV genomes showed that NFS x V-clonal lymphomas developed at about one-half the rate of those occurring in NFS x V+ mice, and most were low-grade B cell lymphomas with extended latent periods. In NFS x V+ mice, clonal outgrowth, defined by Ig gene rearrangements, was associated with acquisition of somatic ecotropic proviral integrations, suggesting that, although generation of B cell clones can be virus independent, ecotropic virus may act to increase the rate of generation of clones and speed their evolution to lymphoma. The mechanism remains undefined, because only rare rearrangements were detected in several cellular loci previously associated with MuLV insertional mutagenesis.
Collapse
Affiliation(s)
- J W Hartley
- The Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0760, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Hansen GM, Justice MJ. Activation of Hex and mEg5 by retroviral insertion may contribute to mouse B-cell leukemia. Oncogene 1999; 18:6531-9. [PMID: 10597256 DOI: 10.1038/sj.onc.1203023] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AKXD recombinant inbred mice develop a variety of leukemias and lymphomas due to retrovirally mediated insertional activation of cellular proto-oncogenes. We describe a new retroviral insertion site that is the most frequent genetic alteration in AKXD B-cell leukemias. Multiple genes flank the site of viral insertion, but the expression of just two, Hex and mEg5, is significantly upregulated. Hex is a divergent homeobox gene that is transiently expressed in many hematopoietic lineages, suggesting an involvement in cellular differentiation. mEg5 is a member of the bim-C subfamily of kinesin related proteins that are necessary for spindle formation and stabilization during mitosis. Our data provide the first genetic evidence for the activation of these genes in leukemia, and suggest that unscheduled expression of Hex and mEg5 contributes to the development of B-cell leukemia. In addition, this work highlights the use of genomic approaches for the study of position effect mutations.
Collapse
Affiliation(s)
- G M Hansen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
26
|
Li J, Shen H, Himmel KL, Dupuy AJ, Largaespada DA, Nakamura T, Shaughnessy JD, Jenkins NA, Copeland NG. Leukaemia disease genes: large-scale cloning and pathway predictions. Nat Genet 1999; 23:348-53. [PMID: 10610183 DOI: 10.1038/15531] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retroviral insertional mutagenesis in BXH2 and AKXD recombinant inbred mice induces a high incidence of myeloid or B- and T-cell leukaemia and the proviral integration sites in the leukaemias provide powerful genetic tags for disease gene identification. Some of the disease genes identified by proviral tagging are also associated with human disease, validating this approach for human disease gene identification. Although many leukaemia disease genes have been identified over the years, many more remain to be cloned. Here we describe an inverse PCR (IPCR) method for proviral tagging that makes use of automated DNA sequencing and the genetic tools provided by the Mouse Genome Project, which increases the throughput for disease gene identification. We also use this IPCR method to clone and analyse more than 400 proviral integration sites from AKXD and BXH2 leukaemias and, in the process, identify more than 90 candidate disease genes. Some of these genes function in pathways already implicated in leukaemia, whereas others are likely to define new disease pathways. Our studies underscore the power of the mouse as a tool for gene discovery and functional genomics.
Collapse
Affiliation(s)
- J Li
- Mammalian Genetics Laboratory, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lu LM, Shisa H, Tanuma J, Hiai H. Propylnitrosourea-induced T-lymphomas in LEXF RI strains of rats: genetic analysis. Br J Cancer 1999; 80:855-61. [PMID: 10360666 PMCID: PMC2362294 DOI: 10.1038/sj.bjc.6690432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oral administration of propylnitrosourea (PNU) in drinking water induces high incidence of lympho-haemopoietic malignancies in rats. Previously we reported that F344 strain rats were highly susceptible to T-lymphomas, and LE/Stm rats, to erythro- or myeloid leukaemias. For analysis of the genetic factors determining types of diseases, we have established LEXF recombinant inbred strains of rats comprising 23 substrains, each derived from intercross between F344 and LE/Stm rats. Rats of 23 LEXF substrains were given PNU, and the development of tumours was observed. The overall incidence of haemopoietic tumours ranged from 100% to 66.7%, and the fractions of T-lymphomas, from 100% to 4%, showing a continuous spectrum. Based on the genetic profile published as a strain distribution pattern table for the LEXF, we screened the potential quantitative trait loci involved in determination of the types of disease and length of the latency period. Statistical calculation was performed using the Map Manager QT software developed by Manly. Four loci, on chromosome 4, 7, 10 and 18, were suggested to associate with the T-lymphoma susceptibility and three loci, on chromosome 1, 5 and 16, with the length of the latency period. These putative loci were further examined in backcross (F344 x LE)F1 x LE. Among seven loci suggested by the recombinant inbred study, three loci, on chromosome 5, 7 and 10, were significantly associated with T-lymphomas and another locus on chromosome 1, just weakly. These observations indicate that PNU-induced lymphomagenesis is a multifactorial genetic process involving a number of loci linked with susceptibility and resistance.
Collapse
Affiliation(s)
- L M Lu
- Department of Pathology and Biology of Disease, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
28
|
Wolff L. Contribution of oncogenes and tumor suppressor genes to myeloid leukemia. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1332:F67-104. [PMID: 9196020 DOI: 10.1016/s0304-419x(97)00006-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- L Wolff
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
29
|
Jonkers J, Berns A. Retroviral insertional mutagenesis as a strategy to identify cancer genes. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1287:29-57. [PMID: 8639705 DOI: 10.1016/0304-419x(95)00020-g] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J Jonkers
- The Netherlands Cancer Institute, Division of Molecular Genetics, Amsterdam, Netherlands
| | | |
Collapse
|
30
|
Lopingco MC, Perkins AS. Molecular analysis of Evi1, a zinc finger oncogene involved in myeloid leukemia. Curr Top Microbiol Immunol 1996; 211:211-22. [PMID: 8585952 DOI: 10.1007/978-3-642-85232-9_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Through chromosomal rearrangements and/or proviral insertions, a number of genes encoding nuclear transcription factors have been identified that play key roles in leukemogenesis. One of these is Evi1, which plays a role in both murine and human myeloid leukemia. The exact mechanism by which Evi1 exerts its leukemogenic effect is not clear, but it may involve the inhibition of terminal differentiation, through the abnormal repression of genes necessary for cellular maturation. Our analysis of the DNA binding characteristics of EVI1 indicate a high degree of specificity, which likely indicates that the protein acts on a tightly defined number of targets in the cell. We are beginning to characterize candidate target genes located in the mouse genome near EVI1 binding sites with the expectation that these will yield insight into EVI1 function both in normal cells and in leukemogenesis.
Collapse
Affiliation(s)
- M C Lopingco
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023, USA
| | | |
Collapse
|
31
|
Abstract
The mapping of complex trait loci in mice has recently become very popular thanks to dense genetic maps, better approaches to linkage analysis and the continued value of the mouse as a key model organism for human disease. Nevertheless, the ultimate goal remains very difficult to identify genes that underlie complex traits and to understand their function at a molecular level. In assessing the prospects of current efforts, it helps to review the findings of earlier studies of complex traits and, despite all the technology, to be reminded of the inherent benefits and limitations at the source of genetic variation: the laboratory mouse. With the right perspective it should be possible for geneticists analysing complex traits to take full advantage of the resources that the genome project will provide.
Collapse
Affiliation(s)
- W N Frankel
- Jackson Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
32
|
Tsichlis PN, Lazo PA. Virus-host interactions and the pathogenesis of murine and human oncogenic retroviruses. Curr Top Microbiol Immunol 1991; 171:95-171. [PMID: 1667631 DOI: 10.1007/978-3-642-76524-7_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
MESH Headings
- Animals
- Base Sequence
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genes, Viral
- Genetic Markers
- Genetic Predisposition to Disease
- Growth Substances/genetics
- Growth Substances/physiology
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia Virus, Murine/physiology
- Mice/genetics
- Mice/microbiology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Neoplasms/genetics
- Neoplasms/microbiology
- Neoplasms/veterinary
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/microbiology
- Oncogenes
- Proto-Oncogenes
- Proviruses/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Repetitive Sequences, Nucleic Acid
- Retroviridae/genetics
- Retroviridae/pathogenicity
- Retroviridae/physiology
- Rodent Diseases/genetics
- Rodent Diseases/microbiology
- Signal Transduction
- Virus Integration
- Virus Replication
Collapse
Affiliation(s)
- P N Tsichlis
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
33
|
van Lohuizen M, Berns A. Tumorigenesis by slow-transforming retroviruses--an update. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1032:213-35. [PMID: 2261495 DOI: 10.1016/0304-419x(90)90005-l] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- M van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam
| | | |
Collapse
|
34
|
Copeland NG, Jenkins NA. Retroviral integration in murine myeloid tumors to identify Evi-1, a novel locus encoding a zinc-finger protein. Adv Cancer Res 1990; 54:141-57. [PMID: 2105003 DOI: 10.1016/s0065-230x(08)60810-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- N G Copeland
- Mammalian Genetics Laboratory, NCI-Frederick Cancer Research Facility, Maryland 21701
| | | |
Collapse
|
35
|
Affiliation(s)
- E Hunter
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
36
|
Abstract
Murine myelogenous leukemias can be classified into several distinct subgroups based on morphology, cytochemical staining, and immunoreactivity. The leukemias invariably involve the spleen and the extent of infiltration into other tissues is variable. The myelogenous nature of the leukemia is readily apparent in well-differentiated leukemias on the basis of morphology; with poorly differentiated leukemias, positive staining with chloroacetate esterase, nonspecific esterase, and certain monoclonal antibodies such as Mac-1, is helpful to establish myelogenous differentiation. Subgrouping of myelogenous leukemias depends on the presence or absence of monocytic differentiation, as ascertained by staining with Mac-2, electron microscopy or phagocytosis. Leukemias showing no monocytic differentiation can be classified as myeloblastic, corresponding to the FAB M1 and M2 subtypes in humans. Leukemias exhibiting both monocytic and granulocytic features are myelomonocytic, corresponding to the FAB M4 subtype. Tumors with only monocyte differentiation arise primarily as solid tumors in mice, and a leukemic phase is variable.
Collapse
MESH Headings
- Animals
- Humans
- Leukemia, Monocytic, Acute/pathology
- Leukemia, Myeloid/classification
- Leukemia, Myeloid/diagnosis
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myelomonocytic, Acute/pathology
- Leukemia, Promyelocytic, Acute/pathology
- Mice
Collapse
|
37
|
Demant P, Oomen LC, Oudshoorn-Snoek M. Genetics of tumor susceptibility in the mouse: MHC and non-MHC genes. Adv Cancer Res 1989; 53:117-79. [PMID: 2678946 DOI: 10.1016/s0065-230x(08)60281-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- P Demant
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam
| | | | | |
Collapse
|
38
|
Copeland NG, Buchberg AM, Gilbert DJ, Jenkins NA. Recombinant inbred mouse strains: models for studying the molecular genetic basis of myeloid tumorigenesis. Curr Top Microbiol Immunol 1989; 149:45-57. [PMID: 2543543 DOI: 10.1007/978-3-642-74623-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Berns A. Provirus tagging as an instrument to identify oncogenes and to establish synergism between oncogenes. Arch Virol 1988; 102:1-18. [PMID: 2848473 DOI: 10.1007/bf01315558] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Insertional mutagenesis is one of the mechanisms by which retroviruses can transform cells. Once a provirus was found in the vicinity of c-myc, with the concomitant activation of this gene, other proto-oncogenes were shown to be activated by proviral insertion in retrovirally-induced tumors. Subsequently, cloning of common proviral insertion sites led to the discovery of a series of new (putative) oncogenes. Some of these genes have been shown to fulfill key roles in growth and development. In this review I shall describe how proviruses can be used to identify proto-oncogenes, and list the loci, identified by this method. Furthermore, I shall illuminate the potential of provirus tagging by showing that it not only can mark new oncogenes, but can also be instrumental in defining sets of (onco)genes that guide a normal cell in a step-by-step fashion to its fully transformed, metatasizing, counterpart.
Collapse
Affiliation(s)
- A Berns
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam
| |
Collapse
|