1
|
Kaur D, Agrahari M, Bhattacharya A, Bhattacharya S. The non-LTR retrotransposons of Entamoeba histolytica: genomic organization and biology. Mol Genet Genomics 2022; 297:1-18. [PMID: 34999963 DOI: 10.1007/s00438-021-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022]
Abstract
Genome sequence analysis of Entamoeba species revealed various classes of transposable elements. While E. histolytica and E. dispar are rich in non-long terminal repeat (LTR) retrotransposons, E. invadens contains predominantly DNA transposons. Non-LTR retrotransposons of E. histolytica constitute three families of long interspersed nuclear elements (LINEs), and their short, nonautonomous partners, SINEs. They occupy ~ 11% of the genome. The EhLINE1/EhSINE1 family is the most abundant and best studied. EhLINE1 is 4.8 kb, with two ORFs that encode functions needed for retrotransposition. ORF1 codes for the nucleic acid-binding protein, and ORF2 has domains for reverse transcriptase (RT) and endonuclease (EN). Most copies of EhLINEs lack complete ORFs. ORF1p is expressed constitutively, but ORF2p is not detected. Retrotransposition could be demonstrated upon ectopic over expression of ORF2p, showing that retrotransposition machinery is functional. The newly retrotransposed sequences showed a high degree of recombination. In transcriptomic analysis, RNA-Seq reads were mapped to individual EhLINE1 copies. Although full-length copies were transcribed, no full-length 4.8 kb transcripts were seen. Rather, sense transcripts mapped to ORF1, RT and EN domains. Intriguingly, there was strong antisense transcription almost exclusively from the RT domain. These unique features of EhLINE1 could serve to attenuate retrotransposition in E. histolytica.
Collapse
|
2
|
Wang PL, Luchetti A, Alberto Ruggieri A, Xiong XM, Xu MRX, Zhang XG, Zhang HH. Successful Invasions of Short Internally Deleted Elements (SIDEs) and Its Partner CR1 in Lepidoptera Insects. Genome Biol Evol 2019; 11:2505-2516. [PMID: 31384954 PMCID: PMC6740152 DOI: 10.1093/gbe/evz174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 11/28/2022] Open
Abstract
Although DNA transposons often generated internal deleted derivatives such as miniature inverted-repeat transposable elements, short internally deleted elements (SIDEs) derived from nonlong terminal-repeat retrotransposons are rare. Here, we found a novel SIDE, named Persaeus, that originated from the chicken repeat 1 (CR1) retrotransposon Zenon and it has been found widespread in Lepidoptera insects. Our findings suggested that Persaeus and the partner Zenon have experienced a transposition burst in their host genomes and the copy number of Persaeus and Zenon in assayed genomes are significantly correlated. Accordingly, the activity though age analysis indicated that the replication wave of Persaeus coincided with that of Zenon. Phylogenetic analyses suggested that Persaeus may have evolved at least four times independently, and that it has been vertically transferred into its host genomes. Together, our results provide new insights into the evolution dynamics of SIDEs and its partner non-LTRs.
Collapse
Affiliation(s)
- Ping-Lan Wang
- College of Pharmacy and Life Science, Jiujiang University, China
| | - Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Italy
| | | | | | - Min-Rui-Xuan Xu
- College of Pharmacy and Life Science, Jiujiang University, China
| | - Xiao-Gu Zhang
- College of Pharmacy and Life Science, Jiujiang University, China
| | - Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, China
| |
Collapse
|
3
|
Khan MF, Shrivastava K, Sinha R, Kumar V, Jaitly AK. Genome wide occurrence and insertion preferences of INGI/RIME and SLACS CRE transposable elements in Trypanosoma brucei. Mob Genet Elements 2017; 6:e1240747. [PMID: 28090379 DOI: 10.1080/2159256x.2016.1240747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022] Open
Abstract
Retrotransposons play significant role in genome remodelling of T. brucei and about 5% of its genome consists of retrotransposons including INGI/RIME elements. INGI is one of the dispersed repetitive elements in T. brucei genome which is found distributed throughout all the chromosomes. SLACS (Spliced Leader Associated Conserved Sequence) however, is more conserved in its nature and lacks the typical poly-distributional pattern of LINE like transposons. We have found total 589 copies of these TEs with only 17.06 % (104 copies out of 589) copies with both ends intact thus showing a majority of truncated copies. Complete SLACS CRE were found only on chromosome 9, whereas, complete INGI/RIME were more ubiquitously distributed. The 50 - 70 bp upstream flanking sequence of these elements shows suitable nucleotide biophysical properties to favor transposition.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- Department of Plant Sciences, M.J.P. Rohilkhand University, Bareilly, UP, India; Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Kush Shrivastava
- Division of Animal Genetics, Indian Veterinary Research Institute , Izatnagar, Bareilly, UP, India
| | - Rebeka Sinha
- Dairy Cattle Breeding Division, National Dairy Research Institute , Karnal, Haryana, India
| | - Virendra Kumar
- Department of Plant Sciences, M.J.P. Rohilkhand University , Bareilly, UP, India
| | - A K Jaitly
- Department of Plant Sciences, M.J.P. Rohilkhand University , Bareilly, UP, India
| |
Collapse
|
4
|
Sánchez-Luque F, López MC, Macias F, Alonso C, Thomas MC. Pr77 and L1TcRz: A dual system within the 5'-end of L1Tc retrotransposon, internal promoter and HDV-like ribozyme. Mob Genet Elements 2014; 2:1-7. [PMID: 22754746 PMCID: PMC3383444 DOI: 10.4161/mge.19233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The sequence corresponding to the first 77 nucleotides of the L1Tc and NARTc non-LTR retrotransposons from Trypanosoma cruzi is an internal promoter (Pr77) that generates abundant, although poorly translatable, un-spliced transcripts. It has been recently described that L1TcRz, an HDV-like ribozyme, resides within the 5'-end of the RNA from the L1Tc and NARTc retrotransposons. Remarkably, the same first 77 nucleotides of L1Tc/NARTc elements comprise both the Pr77 internal promoter and the HDV-like L1TcRz. The L1TcRz cleaves on the 5'-side of the +1 nucleotide of the L1Tc element insuring that the promoter and the ribozyme functions travel with the transposon during retrotransposition. The ribozyme activity would prevent the mobilization of upstream sequences and insure the individuality of the L1Tc/NARTc copies transcribed from associated tandems. The Pr77/L1TcRz sequence is also found in other trypanosomatid's non-LTR retrotransposons and degenerated retroposons. The possible conservation of the ribozyme activity in a widely degenerated retrotransposon, as the Leishmania SIDERs, could indicate that the presence of this element and the catalytic activity could play some favorable genetic regulation. The functional implications of the Pr77/L1TcRz dual system in the regulation of the L1Tc/NARTc retrotransposons and in the gene expression of trypanosomatids are also discussed in this paper.
Collapse
|
5
|
Sánchez-Luque FJ, López MC, Carreira PE, Alonso C, Thomas MC. The wide expansion of hepatitis delta virus-like ribozymes throughout trypanosomatid genomes is linked to the spreading of L1Tc/ingi clade mobile elements. BMC Genomics 2014; 15:340. [PMID: 24884364 PMCID: PMC4035085 DOI: 10.1186/1471-2164-15-340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/24/2014] [Indexed: 01/03/2023] Open
Abstract
Background Hepatitis Delta Virus (HDV)-like ribozymes have recently been found in many mobile elements in which they take part in a mechanism that releases intermediate RNAs from cellular co-transcripts. L1Tc in Trypanosoma cruzi is one of the elements in which such a ribozyme is located. It lies in the so-called Pr77-hallmark, a conserved region shared by retrotransposons belonging to the trypanosomatid L1Tc/ingi clade. The wide distribution of the Pr77-hallmark detected in trypanosomatid retrotransposons renders the potential catalytic activity of these elements worthy of study: their distribution might contribute to host genetic regulation at the mRNA level. Indeed, in Leishmania spp, the pervasive presence of these HDV-like ribozyme-containing mobile elements in certain 3′-untranslated regions of protein-coding genes has been linked to mRNA downregulation. Results Intensive screening of publicly available trypanosomatid genomes, combined with manual folding analyses, allowed the isolation of putatively Pr77-hallmarks with HDV-like ribozyme activity. This work describes the conservation of an HDV-like ribozyme structure in the Pr77 sequence of retrotransposons in a wide range of trypanosomatids, the catalytic function of which is maintained in the majority. These results are consistent with the previously suggested common phylogenetic origin of the elements that belong to this clade, although in some cases loss of functionality appears to have occurred and/or perhaps molecular domestication by the host. Conclusions These HDV-like ribozymes are widely distributed within retrotransposons across trypanosomatid genomes. This type of ribozyme was once thought to be rare in nature, but in fact it would seem to be abundant in trypanosomatid transcripts. It can even form part of the pool of mRNA 3′-untranslated regions, particularly in Leishmania spp. Its putative regulatory role in host genetic expression is discussed. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-340) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Manuel Carlos López
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Parque Tecnológico de Ciencias de la Salud, Av, del Conocimiento s/n, 18016 Granada, Spain.
| | | | | | | |
Collapse
|
6
|
Tschudi C, Shi H, Franklin JB, Ullu E. Small interfering RNA-producing loci in the ancient parasitic eukaryote Trypanosoma brucei. BMC Genomics 2012; 13:427. [PMID: 22925482 PMCID: PMC3447711 DOI: 10.1186/1471-2164-13-427] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 08/24/2012] [Indexed: 01/24/2023] Open
Abstract
Background At the core of the RNA interference (RNAi) pathway in Trypanosoma brucei is a single Argonaute protein, TbAGO1, with an established role in controlling retroposon and repeat transcripts. Recent evidence from higher eukaryotes suggests that a variety of genomic sequences with the potential to produce double-stranded RNA are sources for small interfering RNAs (siRNAs). Results To test whether such endogenous siRNAs are present in T. brucei and to probe the individual role of the two Dicer-like enzymes, we affinity purified TbAGO1 from wild-type procyclic trypanosomes, as well as from cells deficient in the cytoplasmic (TbDCL1) or nuclear (TbDCL2) Dicer, and subjected the bound RNAs to Illumina high-throughput sequencing. In wild-type cells the majority of reads originated from two classes of retroposons. We also considerably expanded the repertoire of trypanosome siRNAs to encompass a family of 147-bp satellite-like repeats, many of the regions where RNA polymerase II transcription converges, large inverted repeats and two pseudogenes. Production of these newly described siRNAs is strictly dependent on the nuclear DCL2. Notably, our data indicate that putative centromeric regions, excluding the CIR147 repeats, are not a significant source for endogenous siRNAs. Conclusions Our data suggest that endogenous RNAi targets may be as evolutionarily old as the mechanism itself.
Collapse
Affiliation(s)
- Christian Tschudi
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06536, USA
| | | | | | | |
Collapse
|
7
|
Bringaud F, Berriman M, Hertz-Fowler C. TSIDER1, a short and non-autonomous Salivarian trypanosome-specific retroposon related to the ingi6 subclade. Mol Biochem Parasitol 2011; 179:30-6. [PMID: 21664383 PMCID: PMC3820030 DOI: 10.1016/j.molbiopara.2011.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 12/15/2022]
Abstract
Retroposons of the ingi clade are the most abundant transposable elements identified in the trypanosomatid genomes. Some are long autonomous elements (ingi, L1Tc) while others, such as RIME and NARTc, are short non-coding elements that parasitize the retrotransposition machinery of the active autonomous ones for their own mobilization. Here, we identified a new family of short non-autonomous retroposons of the ingi clade, called TSIDER1, which are present in the genome of Salivarian (African) trypanosomes, Trypanosoma brucei, T. congolense and T. vivax, but absent in the T. cruzi and Leishmania spp. genomes and, as such, TSIDER1 is the only retroposon subfamily conserved at the nucleotide level between African trypanosome species. We identified three TvSIDER1 families within the genome of T. vivax and the high level of sequence conservation within the TvSIDER1a and TvSIDER1b groups suggests that they are still active. We propose that TvSIDER1a/b elements are using the Tvingi retrotransposition machinery, as they are preceded by the same conserved pattern characteristic of the ingi6 subclade, which corresponds to the retroposon-encoded endonuclease binding site. In contrast, TcoSIDER1, TbSIDER1 and TvSIDER1c are too divergent to be considered as active retroposons. The relatively low number of SIDER elements identified in the T. congolense (70 copies), T. vivax (32 copies) and T. brucei (22 copies) genomes confirms that trypanosomes have not expanded short transposable elements, which is in contrast to Leishmania spp. (∼2000 copies), where SIDER play a role in the regulation of gene expression.
Collapse
Affiliation(s)
- Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 rue Léo Saignat, 33076 Bordeaux, France.
| | | | | |
Collapse
|
8
|
Njiru ZK, Gitonga PK, Ndungu K. The typing of Trypanosoma evansi isolates using mobile genetic element (MGE) PCR. Parasitol Res 2011; 108:1583-7. [PMID: 21287202 DOI: 10.1007/s00436-010-2246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 12/22/2010] [Indexed: 11/29/2022]
Abstract
The mobile genetic element PCR (MGE-PCR) is a simple and sensitive technique that can be used to detect genetic variability in Trypanosoma brucei ssp. To investigate the reliability of MGE-PCR in genotyping Trypanosoma evansi, stocks that were isolated directly from camels and after their respective passage in mice were analyzed. Construction of a dendrogram using the MGE-PCR banding profiles revealed a clear distinction between T. evansi and T. brucei, as well as discriminating the T. evansi strains (T. evansi with minicircle types B and A). A minor host-dependent clustering shows a genetic difference of <15%. Changes in the banding profiles were observed after serial passage of T. evansi type B in mice, while those of T. evansi type A were identical. It is apparent that significant random insertion mobile element positional variation occurs when T. evansi isolates are introduced into a new host, a factor that needs to be considered when MGE-PCR is used to determine genetic variation in T. evansi isolates that have different host origins.
Collapse
Affiliation(s)
- Z K Njiru
- School of Veterinary Sciences, University of Queensland, Inner Ring Road, Gatton, 4343, Australia.
| | | | | |
Collapse
|
9
|
Kojima KK, Kapitonov VV, Jurka J. Recent expansion of a new Ingi-related clade of Vingi non-LTR retrotransposons in hedgehogs. Mol Biol Evol 2010; 28:17-20. [PMID: 20716533 DOI: 10.1093/molbev/msq220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Autonomous non-long terminal repeat (non-LTR) retrotransposons and their repetitive remnants are ubiquitous components of mammalian genomes. Recently, we identified non-LTR retrotransposon families, Ingi-1_AAl and Ingi-1_EE, in two hedgehog genomes. Here we rename them to Vingi-1_AAl and Vingi-1_EE and report a new clade "Vingi," which is a sister clade of Ingi that lacks the ribonuclease H domain. In the European hedgehog genome, there are 11 non-autonomous families of elements derived from Vingi-1_EE by internal deletions. No retrotransposons related to Vingi elements were found in any of the remaining 33 mammalian genomes nearly completely sequenced to date, but we identified several new families of Vingi and Ingi retrotransposons outside mammals. Our data suggest the horizontal transfer of Vingi elements to hedgehog, although the vertical transfer cannot be ruled out. The compact structure and trans-mobilization of nonautonomous derivatives of Vingi can make them useful for in vivo retrotransposition assay system.
Collapse
|
10
|
Huntley DM, Pandis I, Butcher SA, Ackers JP. Bioinformatic analysis of Entamoeba histolytica SINE1 elements. BMC Genomics 2010; 11:321. [PMID: 20497534 PMCID: PMC2996970 DOI: 10.1186/1471-2164-11-321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 05/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Invasive amoebiasis, caused by infection with the human parasite Entamoeba histolytica remains a major cause of morbidity and mortality in some less-developed countries. Genetically E. histolytica exhibits a number of unusual features including having approximately 20% of its genome comprised of repetitive elements. These include a number of families of SINEs - non-autonomous elements which can, however, move with the help of partner LINEs. In many eukaryotes SINE mobility has had a profound effect on gene expression; in this study we concentrated on one such element - EhSINE1, looking in particular for evidence of recent transposition. RESULTS EhSINE1s were detected in the newly reassembled E. histolytica genome by searching with a Hidden Markov Model developed to encapsulate the key features of this element; 393 were detected. Examination of their sequences revealed that some had an internal structure showing one to four 26-27 nt repeats. Members of the different classes differ in a number of ways and in particular those with two internal repeats show the properties expected of fairly recently transposed SINEs - they are the most homogeneous in length and sequence, they have the longest (i.e. the least decayed) target site duplications and are the most likely to show evidence (in a cDNA library) of active transcription. Furthermore we were able to identify 15 EhSINE1s (6 pairs and one triplet) which appeared to be identical or very nearly so but inserted into different sites in the genome; these provide good evidence that if mobility has now ceased it has only done so very recently. CONCLUSIONS Of the many families of repetitive elements present in the genome of E. histolytica we have examined in detail just one - EhSINE1. We have shown that there is evidence for waves of transposition at different points in the past and no evidence that mobility has entirely ceased. There are many aspects of the biology of this parasite which are not understood, in particular why it is pathogenic while the closely related species E. dispar is not, the great genetic diversity found amongst patient isolates and the fact, which may be related, that only a small proportion of those infected develop clinical invasive amoebiasis. Mobile genetic elements, with their ability to alter gene expression may well be important in unravelling these puzzles.
Collapse
Affiliation(s)
- Derek M Huntley
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | | |
Collapse
|
11
|
Thomas MC, Macias F, Alonso C, López MC. The biology and evolution of transposable elements in parasites. Trends Parasitol 2010; 26:350-62. [PMID: 20444649 DOI: 10.1016/j.pt.2010.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 12/19/2022]
Abstract
Transposable elements (TEs) are dynamic elements that can reshape host genomes by generating rearrangements with the potential to create or disrupt genes, to shuffle existing genes, and to modulate their patterns of expression. In the genomes of parasites that infect mammals several TEs have been identified that probably have been maintained throughout evolution due to their contribution to gene function and regulation of gene expression. This review addresses how TEs are organized, how they colonize the genomes of mammalian parasites, the functional role these elements play in parasite biology, and the interactions between these elements and the parasite genome.
Collapse
Affiliation(s)
- M Carmen Thomas
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra - CSIC, Parque Tecnológico de Ciencias de la Salud, 18100 Granada, Spain
| | | | | | | |
Collapse
|
12
|
|
13
|
Novikova OS, Blinov AG. Origin, evolution, and distribution of different groups of non-LTR retrotransposons among eukaryotes. RUSS J GENET+ 2009. [DOI: 10.1134/s102279540902001x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Role of transposable elements in trypanosomatids. Microbes Infect 2008; 10:575-81. [PMID: 18467144 DOI: 10.1016/j.micinf.2008.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 02/08/2008] [Indexed: 11/20/2022]
Abstract
Transposable elements constitute 2-5% of the genome content in trypanosomatid parasites. Some of them are involved in critical cellular functions, such as the regulation of gene expression in Leishmania spp. In this review, we highlight the remarkable role extinct transposable elements can play as the source of potential new functions.
Collapse
|
15
|
Patrick KL, Luz PM, Ruan JP, Shi H, Ullu E, Tschudi C. Genomic rearrangements and transcriptional analysis of the spliced leader-associated retrotransposon in RNA interference-deficient Trypanosoma brucei. Mol Microbiol 2007; 67:435-47. [PMID: 18067542 DOI: 10.1111/j.1365-2958.2007.06057.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Trypanosoma brucei genome is colonized by the site-specific non-LTR retrotransposon SLACS, or spliced leader-associated conserved sequence, which integrates exclusively into the spliced leader (SL) RNA genes. Although there is evidence that the RNA interference (RNAi) machinery regulates SLACS transcript levels, we do not know whether RNAi deficiency affects the genomic stability of SLACS, nor do we understand the mechanism of SLACS transcription. Here, we report that prolonged culturing of RNAi-deficient T. brucei cells, but not wild-type cells, results in genomic rearrangements of SLACS. Furthermore, two populations of SLACS transcripts persist in RNAi-deficient cells: a full-length transcript of approximately 7 kb and a heterogeneous population of small SLACS transcripts ranging in size from 450 to 550 nt. We provide evidence that SLACS transcription initiates at the +1 of the interrupted SL RNA gene and proceeds into the 5' UTR and open reading frame 1 (ORF1). This transcription is carried out by an RNA polymerase with alpha-amanitin sensitivity reminiscent of SL RNA synthesis and is dependent on the SL RNA promoter. Additionally, we show that both sense and antisense small SLACS transcripts originate from ORF1 and that they are associated with proteins in vivo. We speculate that the small SLACS transcripts serve as substrates for the production of siRNAs to regulate SLACS expression.
Collapse
Affiliation(s)
- Kristin L Patrick
- Department of Epidemiology and Public Health, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | | | | | | | | | | |
Collapse
|
16
|
Durand-Dubief M, Absalon S, Menzer L, Ngwabyt S, Ersfeld K, Bastin P. The Argonaute protein TbAGO1 contributes to large and mini-chromosome segregation and is required for control of RIME retroposons and RHS pseudogene-associated transcripts. Mol Biochem Parasitol 2007; 156:144-53. [PMID: 17822785 DOI: 10.1016/j.molbiopara.2007.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/15/2007] [Accepted: 07/24/2007] [Indexed: 12/11/2022]
Abstract
The protist Trypanosoma brucei possesses a single Argonaute gene called TbAGO1 that is necessary for RNAi silencing. We previously showed that in strain 427, TbAGO1 knock-out leads to a slow growth phenotype and to chromosome segregation defects. Here we report that the slow growth phenotype is linked to defects in segregation of both large and mini-chromosome populations, with large chromosomes being the most affected. These phenotypes are completely reversed upon inducible re-expression of TbAGO1 fused to GFP, demonstrating their link with TbAGO1. Trypanosomes that do not express TbAGO1 show a general increase in the abundance of transcripts derived from the short retroposon RIME (Ribosomal Interspersed Mobile Element). Supplementary large RIME transcripts emerge in the absence of RNAi, a phenomenon coupled to the disappearance of short transcripts. These fluctuations are reversed by inducible expression of GFP::TbAGO1. Furthermore, we use a combination of Northern blots, RT-PCR and sequencing to reveal that RNAi controls expression of transcripts derived from RHS (Retrotransposon Hot Spot) pseudogenes (RHS genes with retro-element(s) integrated within their coding sequence). Absence of RNAi also leads to an increase of steady-state transcripts from regular RHS genes (those without retro-element), indicating a role for pseudogene in control of gene expression. However, analysis of retroposon abundance and arrangement in the genome of multiple clonal cell lines of TbAGO1-/- failed to reveal movement of mobile elements despite the increased amounts of retroposon transcripts.
Collapse
Affiliation(s)
- Mickaël Durand-Dubief
- Régulation et Dynamique des Génomes, Muséum National d'Histoire Naturelle, INSERM & CNRS, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
17
|
Bringaud F, Müller M, Cerqueira GC, Smith M, Rochette A, El-Sayed NMA, Papadopoulou B, Ghedin E. Members of a large retroposon family are determinants of post-transcriptional gene expression in Leishmania. PLoS Pathog 2007; 3:1291-307. [PMID: 17907803 PMCID: PMC2323293 DOI: 10.1371/journal.ppat.0030136] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 07/27/2007] [Indexed: 01/29/2023] Open
Abstract
Trypanosomatids are unicellular protists that include the human pathogens Leishmania spp. (leishmaniasis), Trypanosoma brucei (sleeping sickness), and Trypanosoma cruzi (Chagas disease). Analysis of their recently completed genomes confirmed the presence of non-long-terminal repeat retrotransposons, also called retroposons. Using the 79-bp signature sequence common to all trypanosomatid retroposons as bait, we identified in the Leishmania major genome two new large families of small elements--LmSIDER1 (785 copies) and LmSIDER2 (1,073 copies)--that fulfill all the characteristics of extinct trypanosomatid retroposons. LmSIDERs are approximately 70 times more abundant in L. major compared to T. brucei and are found almost exclusively within the 3'-untranslated regions (3'UTRs) of L. major mRNAs. We provide experimental evidence that LmSIDER2 act as mRNA instability elements and that LmSIDER2-containing mRNAs are generally expressed at lower levels compared to the non-LmSIDER2 mRNAs. The considerable expansion of LmSIDERs within 3'UTRs in an organism lacking transcriptional control and their role in regulating mRNA stability indicate that Leishmania have probably recycled these short retroposons to globally modulate the expression of a number of genes. To our knowledge, this is the first example in eukaryotes of the domestication and expansion of a family of mobile elements that have evolved to fulfill a critical cellular function.
Collapse
Affiliation(s)
- Frédéric Bringaud
- Laboratoire de Génomique Fonctionnelle des Trypanosomatides, Université Victor Segalen Bordeaux 2, Bordeaux, France
- UMR-5234 CNRS, Bordeaux, France
| | - Michaela Müller
- Infectious Diseases Research Center, Centre Hospitalier de l'Université Laval Research Center, Quebec, Canada
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Gustavo Coutinho Cerqueira
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Departamento de Bioquimica e Imunologica, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Martin Smith
- Infectious Diseases Research Center, Centre Hospitalier de l'Université Laval Research Center, Quebec, Canada
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Annie Rochette
- Infectious Diseases Research Center, Centre Hospitalier de l'Université Laval Research Center, Quebec, Canada
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Najib M. A El-Sayed
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, The University of Maryland, College Park, Maryland, United States of America
| | - Barbara Papadopoulou
- Infectious Diseases Research Center, Centre Hospitalier de l'Université Laval Research Center, Quebec, Canada
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Elodie Ghedin
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
18
|
Smith DF, Peacock CS, Cruz AK. Comparative genomics: from genotype to disease phenotype in the leishmaniases. Int J Parasitol 2007; 37:1173-86. [PMID: 17645880 PMCID: PMC2696322 DOI: 10.1016/j.ijpara.2007.05.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/18/2007] [Accepted: 05/21/2007] [Indexed: 11/29/2022]
Abstract
Recent progress in sequencing the genomes of several Leishmania species, causative agents of cutaneous, mucocutaneous and visceral leishmaniasis, is revealing unusual features of potential relevance to parasite virulence and pathogenesis in the host. While the genomes of Leishmania major, Leishmania braziliensis and Leishmania infantum are highly similar in content and organisation, species-specific genes and mechanisms distinguish one from another. In particular, the presence of retrotransposons and the components of a putative RNA interference machinery in L. braziliensis suggest the potential for both greater diversity and more tractable experimentation in this Leishmania Viannia species.
Collapse
Affiliation(s)
- Deborah F Smith
- Immunology and Infection Unit, Department of Biology/Hull York Medical School, University of York, Heslington, York YO10 5YW, UK.
| | | | | |
Collapse
|
19
|
Raghavan N, Tettelin H, Miller A, Hostetler J, Tallon L, Knight M. Nimbus (BgI): an active non-LTR retrotransposon of the Schistosoma mansoni snail host Biomphalaria glabrata. Int J Parasitol 2007; 37:1307-18. [PMID: 17521654 PMCID: PMC2705964 DOI: 10.1016/j.ijpara.2007.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 03/29/2007] [Accepted: 04/05/2007] [Indexed: 11/22/2022]
Abstract
The freshwater snail Biomphalaria glabrata is closely associated with the transmission of human schistosomiasis. An ecologically sound method has been proposed to control schistosomiasis using genetically modified snails to displace endemic, susceptible ones. To assess the viability of this form of biological control, studies towards understanding the molecular makeup of the snail relative to the presence of endogenous mobile genetic elements are being undertaken since they can be exploited for genetic transformation studies. We previously cloned a 1.95kb BamHI fragment in B. glabrata (BGR2) with sequence similarity to the human long interspersed nuclear element (LINE or L1). A contiguous, full-length sequence corresponding to BGR2, hereafter-named nimbus (BgI), has been identified from a B. glabrata bacterial artificial chromosome (BAC) library. Sequence analysis of the 65,764bp BAC insert contained one full-length, complete nimbus (BgI) element (element I), two full-length elements (elements II and III) containing deletions and flanked by target site duplications and 10 truncated copies. The intact nimbus (BgI) contained two open-reading frames (ORFs 1 and 2) encoding the characteristic hallmark domains found in non-long terminal repeat retrotransposons belonging to the I-clade; a nucleic acid binding protein in ORF1 and an apurinic/apyrimidinic endonuclease, reverse transcriptase and RNase H in ORF2. Phylogenetic analysis revealed that nimbus (BgI) is closely related to Drosophila (I factor), mosquito Aedes aegypti (MosquI) and chordate ascidian Ciona intestinalis (CiI) retrotransposons. Nimbus (BgI) represents the first complete mobile element characterised from a mollusk that appears to be transcriptionally active and is widely distributed in snails of the neotropics and the Old World.
Collapse
Affiliation(s)
- Nithya Raghavan
- Biomedical Research Institute (BRI), 12111 Parklawn Drive, Rockville, MD 20852, USA
| | - Hervé Tettelin
- The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - André Miller
- Biomedical Research Institute (BRI), 12111 Parklawn Drive, Rockville, MD 20852, USA
| | - Jessica Hostetler
- The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Luke Tallon
- The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Matty Knight
- Biomedical Research Institute (BRI), 12111 Parklawn Drive, Rockville, MD 20852, USA
- Corresponding author. Tel.: +1-301-881-3300 ext 26; fax: +1-301-770-4756. E-mail address:
| |
Collapse
|
20
|
Abstract
Modern molecular technologies are having a substantial impact in many fundamental and applied areas of parasitology. In particular, polymerase chain reaction (PCR)-coupled approaches have found broad applicability because their sensitivity permits the enzymatic amplification of gene fragments from minute quantities of nucleic acids from tiny amounts of parasite material. Also, high-resolution electrophoretic and genomic methods are finding increased utility. This paper briefly discusses some developments and applications of DNA methods to parasites and highlights their usefulness or potential for those of veterinary importance. Selected examples of applications with implications in fundamental (systematics, population genetics, epidemiology and ecology) and applied (diagnosis, prevention and control) areas are presented. The focus is mainly on tools for the accurate identification of parasitic nematodes and protozoa of socio-economic importance, the diagnosis of infections and the detection of genetic variability using PCR-coupled mutation scanning technology.
Collapse
Affiliation(s)
- Robin B Gasser
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria 3030, Australia.
| |
Collapse
|
21
|
Li FJ, Gasser RB, Zheng JY, Claes F, Zhu XQ, Lun ZR. Application of multiple DNA fingerprinting techniques to study the genetic relationships among three members of the subgenus Trypanozoon (Protozoa: Trypanosomatidae). Mol Cell Probes 2005; 19:400-7. [PMID: 16146682 DOI: 10.1016/j.mcp.2005.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
Three different DNA fingerprinting techniques, the mobile genetic element (MGE)-PCR, simple sequence repeat (SSR)-PCR and random amplified polymorphic DNA (RAPD)-PCR, were used to define a large set of genetic markers to study genetic similarity within and among Trypanosoma brucei, Trypanosoma equiperdum and Trypanosoma evansi strains (n=18) from China, Africa and South America and to investigate their genetic relationships. Using the three fingerprinting techniques, >890 bands (ranging in size from 0.2 to 2kb) were defined for all 18 strains of Trypanosoma. Within each of the strains, 39-59 bands were defined. The similarity coefficients between strains ranged from approximately 41 to 94%, with a mean of 65%. There was more genetic similarity among strains within T. evansi (mean of approximately 79%) compared with T. equiperdum ( approximately 65%) and T. brucei ( approximately 59%). The similarity coefficient data were used to construct the dendrogram, which revealed that (irrespective of species) the majority of strains from China and South America grouped together to the exclusion of those from Africa. The exceptions were a T. brucei strain from Africa and a T. equiperdum strain of unknown origin. Hence, employing data sets generated using the three different fingerprinting methods, it was not possible to unequivocally distinguish among T. brucei, T. evansi and T. equiperdum, although there was a tendency for T. evansi strains to group together to the exclusion of T. brucei. The findings provide support for the hypothesis that T. evansi originated from a mutated form of T. equiperdum and stimulate further investigations of the genetic make-up and evolution of members of the subgenus Trypanozoon.
Collapse
Affiliation(s)
- Feng-Jun Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Center for Parasitic Organisms, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Bringaud F, Bartholomeu DC, Blandin G, Delcher A, Baltz T, El-Sayed NMA, Ghedin E. The Trypanosoma cruzi L1Tc and NARTc non-LTR retrotransposons show relative site specificity for insertion. Mol Biol Evol 2005; 23:411-20. [PMID: 16267142 DOI: 10.1093/molbev/msj046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The trypanosomatid protozoan Trypanosoma cruzi contains long autonomous (L1Tc) and short nonautonomous (NARTc) non-long terminal repeat retrotransposons. NARTc (0.25 kb) probably derived from L1Tc (4.9 kb) by 3'-deletion. It has been proposed that their apparent random distribution in the genome is related to the L1Tc-encoded apurinic/apyrimidinic endonuclease (APE) activity, which repairs modified residues. To address this question we used the T. cruzi (CL-Brener strain) genome data to analyze the distribution of all the L1Tc/NARTc elements present in contigs larger than 10 kb. This data set, which represents 0.91x sequence coverage of the haploid nuclear genome ( approximately 55 Mb), contains 419 elements, including 112 full-length L1Tc elements (14 of which are potentially functional) and 84 full-length NARTc. Approximately half of the full-length elements are flanked by a target site duplication, most of them (87%) are 12 bp long. Statistical analyses of sequences flanking the full-length elements show the same highly conserved pattern upstream of both the L1Tc and NARTc retrotransposons. The two most conserved residues are a guanine and an adenine, which flank the site where first-strand cleavage is performed by the element-encoded endonuclease activity. This analysis clearly indicates that the L1Tc and NARTc elements display relative site specificity for insertion, which suggests that the APE activity is not responsible for first-strand cleavage of the target site.
Collapse
Affiliation(s)
- Frédéric Bringaud
- Laboratoire de Génomique Fonctionnelle des Trypanosomatides, UMR-5162 Centre National de la Recherche Scientifique, Université Victor Segalen Bordeaux 2, Bordeaux Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Zingler N, Weichenrieder O, Schumann GG. APE-type non-LTR retrotransposons: determinants involved in target site recognition. Cytogenet Genome Res 2005; 110:250-68. [PMID: 16093679 DOI: 10.1159/000084959] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 02/05/2004] [Indexed: 10/25/2022] Open
Abstract
Non-long terminal repeat (Non-LTR) retrotransposons represent a diverse and widely distributed group of transposable elements and an almost ubiquitous component of eukaryotic genomes that has a major impact on evolution. Their copy number can range from a few to several million and they often make up a significant fraction of the genomes. The members of the dominating subtype of non-LTR retrotransposons code for an endonuclease with homology to apurinic/apyrimidinic endonucleases (APE), and are thus termed APE-type non-LTR retrotransposons. In the last decade both the number of identified non-LTR retrotransposons and our knowledge of biology and evolution of APE-type non-LTR retrotransposons has increased tremendously.
Collapse
Affiliation(s)
- N Zingler
- Paul-Ehrlich-Institut, Langen, Germany
| | | | | |
Collapse
|
24
|
Lorenzi HA, Robledo G, Levin MJ. The VIPER elements of trypanosomes constitute a novel group of tyrosine recombinase-enconding retrotransposons. Mol Biochem Parasitol 2005; 145:184-94. [PMID: 16297462 DOI: 10.1016/j.molbiopara.2005.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 10/02/2005] [Accepted: 10/04/2005] [Indexed: 11/29/2022]
Abstract
VIPER was initially characterized as a 2326bp LTR-like retroelement associated to SIRE, a short interspersed repetitive element specific of Trypanosoma cruzi. It carried a single ORF that coded for a putative reverse transcriptase-RNAse H protein, suggesting that it could be a truncated copy of a longer retroelement. Herein we report the identification and characterization of a complete 4480bp long VIPER in the T. cruzi genome. The complete VIPER harbored three non-overlapped domains encoding for a GAG-like, a tyrosine recombinase and a reverse transcriptase-RNAse H proteins. VIPER elements were also found in the genomes of Trypanosoma brucei and Trypanosoma vivax, but not in Leishmania sp. On the basis of its reverse transcriptase phylogeny, VIPER was classified as an LTR retroelement. However, VIPER was structurally related to the tyrosine recombinase encoding retroelements, DIRS and Ngaro. Phylogenetic analysis showed that VIPER's tyrosine recombinase grouped with the transposases RCI1 of Escherichia coli and Ye24 and Ye72 of Haemophilus influenzae within a major branch of prokaryotic recombinases. Taken together, VIPER's structure, the nature of its tyrosine recombinase, the unique features of its reverse transcriptase catalytic consensus motif and the fact that it was found in Trypanosomes, an early branching eukaryote, suggest that VIPER may be the closest relative of the founder element of the tyrosine recombinase encoding retrotransposons known up to date. Our analysis revealed that tyrosine recombinase-encoding retroelements were originated as early in evolution as non-LTR retroelements and suggests that VIPER, Ngaro and DIRS elements may constitute a third group of retrotransposons, distinct from both LTR and non-LTR retroelements.
Collapse
Affiliation(s)
- Hernan A Lorenzi
- Laboratorio de Biologia Molecular de la Enfermedad de Chagas (LaBMECh) INGEBI, National Research Council (CONICET), Centro de Genomica Aplicada (CeGA), University of Buenos Aires, Vuelta de Obligado 2490 2P, 1428, Buenos Aires, Argentina
| | | | | |
Collapse
|
25
|
Bringaud F, Ghedin E, Blandin G, Bartholomeu DC, Caler E, Levin MJ, Baltz T, El-Sayed NM. Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements. Mol Biochem Parasitol 2005; 145:158-70. [PMID: 16257065 DOI: 10.1016/j.molbiopara.2005.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 09/25/2005] [Accepted: 09/27/2005] [Indexed: 11/22/2022]
Abstract
The ingi and L1Tc non-LTR retrotransposons--which constitute the ingi clade--are abundant in the genome of the trypanosomatid species Trypanosoma brucei and Trypanosoma cruzi, respectively. The corresponding retroelements, however, are not present in the genome of a closely related trypanosomatid, Leishmania major. To study the evolution of non-LTR retrotransposons in trypanosomatids, we have analyzed all ingi/L1Tc elements and highly degenerate ingi/L1Tc-related sequences identified in the recently completed T. brucei, T. cruzi and L. major genomes. The coding sequences of 242 degenerate ingi/L1Tc-related elements (DIREs) in all three genomes were reconstituted by removing the numerous frame shifts. Three independent phylogenetic analyses conducted on the conserved domains encoded by these elements show that all DIREs, including the 52 L. major DIREs, form a monophyletic group belonging to the ingi clade. This indicates that the trypanosomatid ancestor contained active mobile elements that have been retained in the Trypanosoma species, but were lost from L. major genome, where only remnants (DIRE) are detectable. All 242 DIREs analyzed group together according to their species origin with the exception of 11 T. cruzi DIREs which are close to the T. brucei ingi/DIRE families. Considering the absence of known horizontal transfer between the African T. brucei and the South-American T. cruzi, this suggests that this group of elements evolved at a lower rate when compared to the other trypanosomatid elements. Interestingly, the only nucleotide sequence conserved between ingi and L1Tc (the first 79 residues) is also present at the 5'-extremity of all the full length DIREs and suggests a possible role for this conserved motif, as well as for DIREs.
Collapse
Affiliation(s)
- Frédéric Bringaud
- Laboratoire de Génomique Fonctionnelle Des Trypanosomatides, Université Victor Segalen Bordeaux 2, UMR-5162 CNRS, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Retrotransposons are mobile genetic elements that have invaded a wide variety of organisms. While these mobile elements share gene homologies and structural features with retroviruses, they have lost the ability to produce infectious particles. Typically these elements are 5-10 kilobases (kb) in length, are conserved in their structural organization and are present in many copies in the genomes into which they have integrated(1). Retrotransposons generally interrupt their host genome promiscuously and thus cause a variety of random effects. In general, their insertion results in mutations, inversions, deletions or rearrangements among host sequences. All of these changes are thought to add to the plasticity of the host genome and thus contribute to a faster pace of evolutionary development. However, because of the random nature of insertions, it has been difficult to attribute any one specific function to these diverse elements. Here, Serap Aksoy describes a newly recognized family of mobile elements that are different from most retrotransposons in that they have the ability to integrate into specific host sequences.
Collapse
Affiliation(s)
- S Aksoy
- Yale University MacArthur Center for Molecular Parasitology, 333 Cedar Street, 700 LEPH, New Haven, CT 06510-8056, USA
| |
Collapse
|
27
|
Requena JM, López MC, Alonso C. Genomic repetitive DNA elements of Trypanosoma cruzi. ACTA ACUST UNITED AC 2005; 12:279-83. [PMID: 15275193 DOI: 10.1016/0169-4758(96)10024-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Repetitive DNA sequences are interspersed throughout the genomes of mammals and other higher eukaryotes, and represent a substantial portion of the genome. Although it has been generally assumed that the redundant DNA is present only in the complex genomes of high order organisms, over the past few years a number of repetitive DNA sequences have been also detected in the protozoan parasite Trypanosoma cruzi. A compilation of the repetitive DNA sequences found in the T. cruzi genome is here presented by Jose Maria Requena, Manuel Carlos López and Carlos Alonso, who also speculate on their possible origin and functional implications regarding retrotransposition and gene regulation.
Collapse
Affiliation(s)
- J M Requena
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | |
Collapse
|
28
|
Ghedin E, Bringaud F, Peterson J, Myler P, Berriman M, Ivens A, Andersson B, Bontempi E, Eisen J, Angiuoli S, Wanless D, Von Arx A, Murphy L, Lennard N, Salzberg S, Adams MD, White O, Hall N, Stuart K, Fraser CM, El-Sayed NMA. Gene synteny and evolution of genome architecture in trypanosomatids. Mol Biochem Parasitol 2004; 134:183-91. [PMID: 15003838 DOI: 10.1016/j.molbiopara.2003.11.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
The trypanosomatid protozoa Trypanosoma brucei, Trypanosoma cruzi and Leishmania major are related human pathogens that cause markedly distinct diseases. Using information from genome sequencing projects currently underway, we have compared the sequences of large chromosomal fragments from each species. Despite high levels of divergence at the sequence level, these three species exhibit a striking conservation of gene order, suggesting that selection has maintained gene order among the trypanosomatids over hundreds of millions of years of evolution. The few sites of genome rearrangement between these species are marked by the presence of retrotransposon-like elements, suggesting that retrotransposons may have played an important role in shaping trypanosomatid genome organization. A degenerate retroelement was identified in L. major by examining the regions near breakage points of the synteny. This is the first such element found in L. major suggesting that retroelements were found in the common ancestor of all three species.
Collapse
Affiliation(s)
- Elodie Ghedin
- Parasity Genomics, The Institute for Genomics Research, 9712 Medical Center Dr. Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tilley A, Welburn SC, Fèvre EM, Feil EJ, Hide G. Trypanosoma brucei: trypanosome strain typing using PCR analysis of mobile genetic elements (MGE-PCR). Exp Parasitol 2003; 104:26-32. [PMID: 12932756 DOI: 10.1016/s0014-4894(03)00114-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We describe the development of a single-primer amplification system, which uses the trypanosomal mobile genetic element RIME as a molecular marker for the differentiation of Trypanosoma brucei stocks. Using a well-characterised set of T. brucei stocks from southeast Uganda, Kenya and Zambia, we have evaluated the application of this technique, termed MGE-PCR (mobile genetic element PCR) for the typing of trypanosome strains. The technique revealed considerable variation between stocks and was sufficiently specific to amplify trypanosomal DNA in the presence of host DNA. The results showed a clear distinction between human-infective and non-human-infective stocks. Comparative studies on these stocks using markers for the human serum resistance associated (SRA) gene, which identifies human-infective stocks, demonstrated complete agreement between MGE-PCR derived groups and human-infectivity status. Furthermore, MGE-PCR detects high levels of variability within the T. b. brucei and T. b. rhodesiense groups and is therefore a powerful discriminatory tool for tracking individual T. brucei genotypes and strains.
Collapse
Affiliation(s)
- A Tilley
- Centre for Tropical Veterinary Medicine, Royal (Dick) School of Veterinary Science, University of Edinburgh, Easter Bush, Roslin, Midlothian, Scotland EH25 9RG, UK.
| | | | | | | | | |
Collapse
|
30
|
Barry JD, Ginger ML, Burton P, McCulloch R. Why are parasite contingency genes often associated with telomeres? Int J Parasitol 2003; 33:29-45. [PMID: 12547344 DOI: 10.1016/s0020-7519(02)00247-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Contingency genes are common in pathogenic microbes and enable, through pre-emptive mutational events, rapid, clonal switches in phenotype that are conducive to survival and proliferation in hosts. Antigenic variation, which is a highly successful survival strategy employed by eubacterial and eukaryotic pathogens, involves large repertoires of distinct contingency genes that are expressed differentially, enabling evasion of host acquired immunity. Most, but not all, antigenic variation systems make extensive use of subtelomeres. Study of model systems has shown that subtelomeres have unusual properties, including reversible silencing of genes mediated by proteins binding to the telomere, and engagement in ectopic recombination with other subtelomeres. There is a general theory that subtelomeric location confers a capacity for gene diversification through such recombination, although experimental evidence is that there is no increased mitotic recombination at such loci and that sequence homogenisation occurs. Possible benefits of subtelomeric location for pathogen contingency systems are reversible gene silencing, which could contribute to systems for gene switching and mutually exclusive expression, and ectopic recombination, leading to gene family diversification. We examine, in several antigenic variation systems, what possible benefits apply.
Collapse
Affiliation(s)
- J D Barry
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, UK.
| | | | | | | |
Collapse
|
31
|
Abstract
Mobile genetic elements, by virtue of their ability to move to new chromosomal locations, are considered important in shaping the evolutionary course of the genome. They are widespread in the biological kingdom. Among the protozoan parasites several types of transposable elements are encountered. The largest variety is seen in the trypanosomatids-Trypanosoma brucei, Trypanosoma cruzi and Crithidia fasciculata. They contain elements that insert site-specifically in the spliced-leader RNA genes, and others that are dispersed in a variety of genomic locations. Giardia lamblia contains three families of transposable elements. Two of these are subtleomeric in location while one is chromosome-internal. Entamoeba histolytica has an abundant retrotransposon dispersed in the genome. Nucleotide sequence analysis of all the elements shows that they are all retrotransposons, and, with the exception of one class of elements in T. cruzi, all of them are non-long-terminal-repeat retrotransposons. Although most copies have accumulated mutations, they can potentially encode reverse transcriptase, endonuclease and nucleic-acid-binding activities. Functionally and phylogenetically they do not belong to a single lineage, showing that retrotransposons were acquired early in the evolution of protozoan parasites. Many of the potentially autonomous elements that encode their own transposition functions have nonautonomous counterparts that probably utilize the functions in trans. In this respect these elements are similar to the mammalian LINEs and SINEs (long and short interspersed DNA elements), showing a common theme in the evolution of retrotransposons. So far there is no report of a DNA transposon in any protozoan parasite. The genome projects that are under way for most of these organisms will help understand the evolution and possible function of these genetic elements.
Collapse
Affiliation(s)
- Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| | | | | |
Collapse
|
32
|
Berriman M, Hall N, Sheader K, Bringaud F, Tiwari B, Isobe T, Bowman S, Corton C, Clark L, Cross GAM, Hoek M, Zanders T, Berberof M, Borst P, Rudenko G. The architecture of variant surface glycoprotein gene expression sites in Trypanosoma brucei. Mol Biochem Parasitol 2002; 122:131-40. [PMID: 12106867 DOI: 10.1016/s0166-6851(02)00092-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trypanosoma brucei evades the immune system by switching between Variant Surface Glycoprotein (VSG) genes. The active VSG gene is transcribed in one of approximately 20 telomeric expression sites (ESs). It has been postulated that ES polymorphism plays a role in host adaptation. To gain more insight into ES architecture, we have determined the complete sequence of Bacterial Artificial Chromosomes (BACs) containing DNA from three ESs and their flanking regions. There was variation in the order and number of ES-associated genes (ESAGs). ESAGs 6 and 7, encoding transferrin receptor subunits, are the only ESAGs with functional copies in every ES that has been sequenced until now. A BAC clone containing the VO2 ES sequences comprised approximately half of a 330 kb 'intermediate' chromosome. The extensive similarity between this intermediate chromosome and the left telomere of T. brucei 927 chromosome I, suggests that this previously uncharacterised intermediate size class of chromosomes could have arisen from breakage of megabase chromosomes. Unexpected conservation of sequences, including pseudogenes, indicates that the multiple ESs could have arisen through a relatively recent amplification of a single ES.
Collapse
|
33
|
Urakawa T, Verloo D, Moens L, Büscher P, Majiwa PA. Trypanosoma evansi: cloning and expression in Spodoptera frugiperda [correction of fugiperda] insect cells of the diagnostic antigen RoTat1.2. Exp Parasitol 2001; 99:181-9. [PMID: 11888244 DOI: 10.1006/expr.2001.4670] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A complementary DNA encoding the variant surface glycoprotein (VSG) of Trypanosoma evansi Rode Trypanozoon antigenic type (RoTat)1.2, currently used for experimental serological diagnosis of T. evansi infection in livestock, was cloned as a recombinant plasmid and sequenced. A recombinant baculovirus containing the coding region of RoTat1.2 VSG was constructed to express the protein in Spodoptera frugiperda [corrected] insect cells. From this, sufficient quantities of the recombinant protein are being produced for empirical and wide-scale objective assessment of the diagnostic potential of this antigen. The gene encoding the RoTat1.2 VSG was shown by PCR to be present in the genomes of many different cloned isolates of T. evansi, but not T. brucei, from geographically separate regions of Africa, Asia, and South America. With the recombinant RoTat1.2 at hand, it is now possible to investigate the extent to which epitopes on this VSG are conserved among different T. evansi isolates.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Domestic
- Antigens, Protozoan/biosynthesis
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Surface/biosynthesis
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Base Sequence
- Cell Line
- Cloning, Molecular
- DNA, Complementary/chemistry
- Gene Expression Regulation
- Molecular Sequence Data
- Polymerase Chain Reaction/veterinary
- Protozoan Proteins
- RNA, Protozoan/chemistry
- Sequence Alignment/veterinary
- Sequence Homology, Nucleic Acid
- Spodoptera
- Transfection/veterinary
- Trypanosoma/genetics
- Trypanosoma/immunology
- Trypanosomatina/genetics
- Trypanosomatina/immunology
- Trypanosomiasis, African/diagnosis
- Trypanosomiasis, African/veterinary
Collapse
Affiliation(s)
- T Urakawa
- International Livestock Research Institute, ILRI, Nairobi, Kenya
| | | | | | | | | |
Collapse
|
34
|
Djikeng A, Shi H, Tschudi C, Ullu E. RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24-26-nucleotide RNAs. RNA (NEW YORK, N.Y.) 2001; 7:1522-1530. [PMID: 11720282 PMCID: PMC1370195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In animals and protozoa, gene-specific double-stranded RNA (dsRNA) triggers degradation of homologous cellular RNAs, a phenomenon known as RNA interference (RNAi). In vitro and in vivo dsRNA is processed by a nuclease to produce 21-25-nt small interfering RNAs (siRNAs) that guide target RNA degradation. Here we show that activation of RNAi in Trypanosoma bruceiby expression or electroporation of actin dsRNA results in production of actin siRNAs and that 10% of these RNAs sediment as high-molecular-weight complexes at 100,000 x g. To characterize actin siRNAs, we established a cloning and enrichment strategy starting from 20-30 nt RNAs isolated from high-speed pellet and supernatant fractions. Sequence analysis revealed that actin siRNAs are 24-26 nt long and their distribution relative to actin dsRNA was similar in the two fractions. By sequencing over 1,300 fragments derived from the high-speed pellet fraction RNA, we found abundant 24-26-nt-long fragments homologous to the ubiquitous retroposon INGI and the site-specific retroposon SLACS. Northern hybridization with strand-specific probes confirmed that retroposon-derived 24-26-nt RNAs are present in both supernatant and high-speed pellet fractions and that they are constitutively expressed. We speculate that RNAi in trypanosomes serves a housekeeping function and is likely to be involved in silencing retroposon transcripts.
Collapse
Affiliation(s)
- A Djikeng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022, USA
| | | | | | | |
Collapse
|
35
|
Pays E, Lips S, Nolan D, Vanhamme L, Pérez-Morga D. The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts. Mol Biochem Parasitol 2001; 114:1-16. [PMID: 11356509 DOI: 10.1016/s0166-6851(01)00242-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The variant surface glycoprotein (VSG) genes of Trypanosoma brucei are transcribed in telomeric loci termed VSG expression sites (ESs). Despite permanent initiation of transcription in most if not all of these multiple loci, RNA elongation is abortive except in bloodstream forms where full transcription up to the VSG occurs only in a single ES at a time. The ESs active in bloodstream forms are polycistronic and contain several genes in addition to the VSG, named ES-associated genes (ESAGs). So far 12 ESAGs have been identified, some of which are present only in some ESs. Most of these genes encode surface proteins and this list includes different glycosyl phosphatidyl inositol (GPI)-anchored proteins such as the heterodimeric receptor for the host transferrin (ESAG7/6), integral membrane proteins such as the receptor-like transmembrane adenylyl cyclase (ESAG4) and a surface transporter (ESAG10). An interesting exception is ESAG8, which may encode a cell cycle regulator involved in the differentiation of long slender into short stumpy bloodstream forms. Several ESAGs belong to multigene families including pseudogenes and members transcribed out of the ESs, named genes related to ESAGs (GRESAGs). However, some ESAGs (7, 6 and 8) appear to be restricted to the ESs. Most of these genes can be deleted from the active ES without apparently affecting the phenotype of bloodstream form trypanosomes, probably either due to the expression of ESAGs from 'inactive' ESs (ESAG7/6) or due to the expression of GRESAGs (in particular, GRESAGs4 and GRESAGs1). At least three ESAGs (ESAG7, ESAG6 and SRA) share the evolutionary origin of VSGs. The presence of these latter genes in ESs may confer an increased capacity of the parasite for adaptation to various mammalian hosts, as suggested in the case of ESAG7/6 and proven for SRA, which allows T. brucei to infect humans. Similarly, the existence of a collection of slightly different ESAG4s in the multiple ESs might provide the parasite with adenylyl cyclase isoforms that may regulate growth in response to different environmental conditions. The high transcription rate and high recombination level that prevail in VSG ESs may have favored the generation and/or recruitment in these sites of genes whose hyper-evolution allows adaptation to a larger variety of hosts.
Collapse
Affiliation(s)
- E Pays
- Laboratory of Molecular Parasitology, IBMM, Department of Molecular Biology, Free University of Brussels, 12, rue des Professeurs Jeener et Brachet, B-6041, Gosselies, Belgium.
| | | | | | | | | |
Collapse
|
36
|
Alsford S, Wickstead B, Ersfeld K, Gull K. Diversity and dynamics of the minichromosomal karyotype in Trypanosoma brucei. Mol Biochem Parasitol 2001; 113:79-88. [PMID: 11254956 DOI: 10.1016/s0166-6851(00)00388-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The genome of African trypanosomes contains a large number of minichromosomes. Their only proposed role is in the expansion of the parasites' repertoire of telomeric variant surface glycoprotein (VSG) genes as minichromosomes carry silent VSG gene copies in telomeric locations. Despite their importance as VSG gene donors, little is known about the actual composition of the minichromosomal karyotype and the stability of its inheritance. In this study we show, by using high-resolution pulsed-field electrophoresis, that a non-clonal trypanosome population contains an extremely diverse pattern of minichromosomes, which can be resolved into less complex clone-specific karyotypes by non-selective cloning. We show that the minichromosome patterns of such clones are stable over at least 360 generations. Furthermore, using DNA markers for specific minichromosomes, we demonstrate the mitotic stability of these minichromosomes within the population over a period of more than 5 years. Length variation is observed for an individual minichromosome and is most likely caused by a continuous telomeric growth of approximately 6 bp per telomere per cell division. This steady telomeric growth, counteracted by stochastic large losses of telomeric sequences is the most likely cause of minichromosome karyotype heterogeneity within a population.
Collapse
Affiliation(s)
- S Alsford
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
37
|
Mugittu KN, Silayo RS, Majiwa PA, Kimbita EK, Mutayoba BM, Maselle R. Application of PCR and DNA probes in the characterisation of trypanosomes in the blood of cattle in farms in Morogoro, Tanzania. Vet Parasitol 2001; 94:177-89. [PMID: 11113548 DOI: 10.1016/s0304-4017(00)00365-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Polymerase chain reaction (PCR) and deoxyribonucleic acid (DNA) probes were used to characterise trypanosomes from cattle in Morogoro region of Tanzania. Blood samples collected from 390 beef and dairy cattle in selected farms in Morogoro region were examined for presence of trypanosomes using the buffy coat technique (BCT) and blood smears (BSs). Fifty-two animals were found infected: 40 with Trypanosoma congolense, 10 with T. vivax and two with both T. congolense and T. vivax. DNA extracted from all the parasitologically positive and 62 randomly selected parasitologically negative samples were subjected to PCR amplification using primers specific for different trypanosome species. Using a set of seven specific-pairs of primers on the parasitologically positive samples, we detected only T. congolense, either the Savannah- or the Kilifi-type, as single or mixed infections. With the PCR, trypanosome DNA could be detected in 27 (43%) out of 62 samples that were parasitologically negative. DNA hybridisation using probes specific for Savannah- or Kilifi-types T. congolense, or T. vivax, confirmed the presence of these parasites in cattle kept on some farms in Morogoro region of Tanzania. From these studies, it is clear that there is a need to undertake molecular epidemiological studies to determine the distribution of trypanosome species and subspecies, and to assess the economic impact of these parasites in the productivity of livestock in Tanzania. In particular, it would be desirable to verify the assumed association between the different presentations of trypanosomosis on one hand and genotypes of T. congolense on the other.
Collapse
Affiliation(s)
- K N Mugittu
- Ifakara Health Research and Development Centre, PO Box 53, Ifakara, Tanzania.
| | | | | | | | | | | |
Collapse
|
38
|
Olivares M, del Carmen Thomas M, López-Barajas A, Requena JM, García-Pérez JL, Angel S, Alonso C, López MC. Genomic clustering of the Trypanosoma cruzi nonlong terminal L1Tc retrotransposon with defined interspersed repeated DNA elements. Electrophoresis 2000; 21:2973-82. [PMID: 11001312 DOI: 10.1002/1522-2683(20000801)21:14<2973::aid-elps2973>3.0.co;2-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have analyzed the genomic distribution and organization of the long interspersed nucleotide element (LINE) L1Tc, a nonlong terminal repeat (LTR) retrotransposon of Trypanosoma cruzi. The results indicate that the L1Tc element is dispersed along the parasite genome and that in some regions it is organized in tandem repeats. The data allowed us to define the existence of short direct-repeated sequences flanking the genomic L1Tc elements. Relevant is the finding that the LINE L1Tc is located in genomic regions rich in short interspersed nucleotide elements (SINE)-like sequences. In particular, the L1Tc element is found associated to E13-related sequences, redefined in this work and renamed RS13Tc, and to a newly described RS1Tc sequence. The RS1Tc sequence is present, per haploid genome, in about 3,200 copies. Northern blot analysis showed that the RS1Tc is being transcribed into RNAs of different sizes. The analysis of the chromosomal distribution of these elements in various strains of T. cruzi suggested that this type of clustering might be a common feature of the genome of these parasites.
Collapse
Affiliation(s)
- M Olivares
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The haploid nuclear genome of the African trypanosome, Trypanosoma brucei, is about 35 Mb and varies in size among different trypanosome isolates by as much as 25%. The nuclear DNA of this diploid organism is distributed among three size classes of chromosomes: the megabase chromosomes of which there are at least 11 pairs ranging from 1 Mb to more than 6 Mb (numbered I-XI from smallest to largest); several intermediate chromosomes of 200-900 kb and uncertain ploidy; and about 100 linear minichromosomes of 50-150 kb. Size differences of as much as four-fold can occur, both between the two homologues of a megabase chromosome pair in a specific trypanosome isolate and among chromosome pairs in different isolates. The genomic DNA sequences determined to date indicated that about 50% of the genome is coding sequence. The chromosomal telomeres possess TTAGGG repeats and many, if not all, of the telomeres of the megabase and intermediate chromosomes are linked to expression sites for genes encoding variant surface glycoproteins (VSGs). The minichromosomes serve as repositories for VSG genes since some but not all of their telomeres are linked to unexpressed VSG genes. A gene discovery program, based on sequencing the ends of cloned genomic DNA fragments, has generated more than 20 Mb of discontinuous single-pass genomic sequence data during the past year, and the complete sequences of chromosomes I and II (about 1 Mb each) in T. brucei GUTat 10.1 are currently being determined. It is anticipated that the entire genomic sequence of this organism will be known in a few years. Analysis of a test microarray of 400 cDNAs and small random genomic DNA fragments probed with RNAs from two developmental stages of T. brucei demonstrates that the microarray technology can be used to identify batteries of genes differentially expressed during the various life cycle stages of this parasite.
Collapse
Affiliation(s)
- N M El-Sayed
- The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | |
Collapse
|
40
|
Pedram M, Donelson JE. The anatomy and transcription of a monocistronic expression site for a metacyclic variant surface glycoprotein gene in Trypanosoma brucei. J Biol Chem 1999; 274:16876-83. [PMID: 10358033 DOI: 10.1074/jbc.274.24.16876] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
African trypanosomes evade the immune response of their mammalian hosts by switching the expression of their variant surface glycoprotein genes (vsg). The bloodstream trypanosome clone MVAT4 of Trypanosoma brucei rhodesiense expresses a metacyclic vsg as a monocistronic RNA from a promoter located 2 kilobases (kb) upstream of its start codon. Determination of 23 kb of sequence at the metacyclic variant antigen type 4 (MVAT) vsg expression site (ES) revealed an ES-associated gene (esag) 1 preceded by an ingi retroposon and an inverted region containing an unrelated vsg, short stretches of 70-bp repeats and a pseudo esag 3. Nuclear run-on experiments indicate that the 18-kb region upstream of the MVAT4 vsg promoter is transcriptionally silent. However, multiple members of different esag families are expressed from elsewhere in the genome. The MVAT4 vsg promoter is highly repressed in the procyclic stage, in contrast to the known polycistronic vsg ESs which undergo abortive transcription. Activation of the MVAT4 vsg ES occurs in situ without nucleotide sequence changes, although this monocistronic ES undergoes a pattern of base J modifications similar to that reported for the polycistronic ESs. The relative simplicity of the MVAT4 vsg ES and the uncoupled expression of the vsg and esags provide a unique opportunity for investigating the molecular mechanisms responsible for antigenic variation in African trypanosomes.
Collapse
Affiliation(s)
- M Pedram
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
41
|
Oriol R, Mollicone R, Cailleau A, Balanzino L, Breton C. Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology 1999; 9:323-34. [PMID: 10089206 DOI: 10.1093/glycob/9.4.323] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
On the basis of function and sequence similarities, the vertebrate fucosyltransferases can be classified into three groups: alpha-2-, alpha-3-, and alpha-6-fucosyltransferases. Thirty new putative fucosyltransferase genes from invertebrates and bacteria and six conserved peptide motifs have been identified in DNA and protein databanks. Two of these motifs are specific of alpha-3-fucosyltransferases, one is specific of alpha-2-fucosyltransferases, another is specific of alpha-6-fucosyltransferases, and two are shared by both alpha-2- and alpha-6-fucosyltranserases. Based on these data, literature data, and the phylogenetic analysis of the conserved peptide motifs, a model for the evolution offucosyltransferase genes by successive duplications, followed by divergent evolution is proposed, with either two different ancestors, one for the alpha-2/6-fucosyltransferases and one for the alpha-3-fucosyltransferases or a single common ancestor for the two families. The expected properties of such an hypothetical ancestor suggest that the plant or insect alpha-3-fucosyltransferases using chitobiose as acceptor might be the present forms of this ancestor, since fucosyltransferases using chitobiose as acceptor are expected to be of earlier appearance in evolution than enzymes using N -acetyllactosamine. However, an example of convergent evolution of fucosyltransferase genes is suggested for the appearance of the Leaepitopes found in plants and primates.
Collapse
Affiliation(s)
- R Oriol
- INSERM U504, University of Paris South XI, 94807 Villejuif Cedex, France and CERMAV-CNRS, BP 53, 38041 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
42
|
Ersfeld K, Melville SE, Gull K. Nuclear and genome organization of Trypanosoma brucei. PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:58-63. [PMID: 10234187 DOI: 10.1016/s0169-4758(98)01378-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this article, Klaus Ersfeld, Sara Melville and Keith Gull review current understanding of the structural organization of the nucleus of Trypanosoma brucei, and summarize recent data pertinent to the organization of its genome. Until recently, the cell biology of the trypanosome nucleus and issues of DNA organization and gene expression have often been treated as separate themes. However, recent work emphasizes the need for a more holistic approach to understanding these aspects of the biology of this parasite.
Collapse
Affiliation(s)
- K Ersfeld
- University of Manchester, School of Biological Sciences, 2.205 Stopford Building, Oxford Road, Manchester, UK M13 9PT.
| | | | | |
Collapse
|
43
|
Djikeng A, Agufa C, Donelson JE, Majiwa PA. Generation of expressed sequence tags as physical landmarks in the genome of Trypanosoma brucei. Gene 1998; 221:93-106. [PMID: 9852954 DOI: 10.1016/s0378-1119(98)00427-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous molecular genetic studies on the African trypanosome have focused on only a few genes and gene products, the majority of which are concerned with surface antigenic variation; consequently, an insignificant number of the genes of this organism have been characterized to date. In order to: (1) identify new genes and analyze their expression profile, (2) generate expressed sequence tags (ESTs) for derivation of a physical map of the trypanosome genome, and (3) make available the partial sequence information and the corresponding clones for general biomedical research on the parasite, we have performed single-pass sequencing of random, directionally cloned cDNAs from a bloodstream form Trypanosoma brucei rhodesiense library. Analysis of 2128 such ESTs sequenced so far in this study showed significant similarities [BLASTX P(n)-value < 10(-4), and a match > 10 amino acid residues] with proteins whose genes have been described in diverse organisms including man, rodents, kinetoplastids, yeasts and plants. A number of the ESTs encode homologues of proteins involved in various functions including signal reception and transduction, cell division, gene regulation, DNA repair and replication, general metabolism, and structural integrity. Although some of these genes may have been expected to be present in the African trypanosomes, the majority of them had not previously been described in these organisms. A large proportion, 768 individual ESTs (36%, representing 385 different transcripts), had a significant homology with genes described in organisms other than the African trypanosomes; however, 15% of the ESTs were from genes already described in trypanosomes. Among the ESTs analysed were 462 distinct known genes, only 77 of which have been described in T. brucei. Approximately 52% of the ESTs did not show any significant homology with the sequences in any of the public domain databases.
Collapse
Affiliation(s)
- A Djikeng
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | | | | | | |
Collapse
|
44
|
Kubis SE, Heslop-Harrison JS, Desel C, Schmidt T. The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms. PLANT MOLECULAR BIOLOGY 1998; 36:821-831. [PMID: 9520275 DOI: 10.1023/a:1005973932556] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have isolated and characterized conserved regions of the reverse transcriptase gene from non-LTR retrotransposons, also called long interspersed nuclear elements (LINEs), from Beta vulgaris, B. lomatogona and B. nana. The novel elements show strong homology to other non-LTR retrotransposons from plants, man and animals. LINEs are present in all species of the genus Beta tested, but there was variation in copy number. Analysis by Southern hybridization and fluorescent in situ hybridization revealed the clustered organization of these retroelements in beet species. PCR amplification using degenerate primers to conserved motifs of the predicted LINE protein sequence enabled the cloning of LINEs from both Monocotyledonae (Allium cepa, Oryza sativa and Secale cereale) and Dicotyledonae (Nicotiana tabacum and Antirrhinum majus) indicating that LINEs are a universal feature of plant genomes. A dendrogram of fifteen new and six previously isolated sequences showed the high level of sequence divergence while revealing families characteristic of some genera. The genomic organization of non-LTR retrotransposons was examined more detailed in A. majus and O. sativa.
Collapse
Affiliation(s)
- S E Kubis
- Norman Borlaug Institute, DeMontfort University Leicester, Scraptoft, UK
| | | | | | | |
Collapse
|
45
|
Abstract
We have recently described a novel method of estimating neutral rates and patterns of spontaneous mutation (Petrov et al., 1996). This method takes advantage of the propensity of non-LTR retrotransposable elements to create non-functional, 'dead-on-arrival' copies as a product of transposition. Maximum parsimony analysis is used to separate the evolution of actively transposing lineages of a non-LTR element from the fate of individual inactive insertions, and thereby allows one to assess directly the relative rates of different types of mutation, including point substitutions, deletions and insertions. Because non-LTR elements enjoy wide phylogenetic distribution, this method can be used in taxa that do not harbor a significant number of bona fide pseudogenes, as is the case in Drosophila (Jeffs and Ashburner, 1991; Weiner et al., 1986). We used this method with Helena, a non-LTR retrotransposable element present in the Drosophila virilis species group. A striking finding was the virtual absence of insertions and remarkably high incidence of large deletions, which combine to produce a high overall rate of DNA loss. On average, the rate of DNA loss in D. virilis is approximately 75 times faster than that estimated for mammalian pseudogenes (Petrov et al., 1996). The high rate of DNA loss should lead to rapid elimination of non-essential DNA and thus may explain the seemingly paradoxical dearth of pseudogenes in Drosophila. Varying rates of DNA loss may also contribute to differences in genome size (Graur et al., 1989; Petrov et al., 1996), thus explaining the celebrated 'C-value' paradox (John and Miklos, 1988). In this paper we outline the theoretical basis of our method, examine the data from this perspective, and discuss potential problems that may bias our estimates.
Collapse
Affiliation(s)
- D A Petrov
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
46
|
Reifenberg JM, Solano P, Duvallet G, Cuisance D, Simpore J, Cuny G. Molecular characterization of trypanosome isolates from naturally infected domestic animals in Burkina, Faso. Vet Parasitol 1997; 71:251-62. [PMID: 9299694 DOI: 10.1016/s0304-4017(97)00011-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A total of 33 trypanosome cryostabilates isolated from domestic animals (bovine and dogs) were analysed using the polymerase chain reaction (PCR). The PCR was undertaken on diluted and treated buffy coat solutions according to an easy protocol of purification, using primers specific to Trypanosoma (Nannomonas) congolense of Savannah, Riverine-Forest, Kilifi and Tsavo types, T. (N) simiae, T. (Trypanozoon) brucei and T. (Duttonella) vivax. The results showed a lack of PCR sensitivity when target solutions were simply diluted, probably a reflection of the inaccuracy of the dilution procedure at very low trypanosome numbers. Nine mixed infections were found in purified samples whereas only three were detected in diluted crude solutions. T. congolense Savannah-type was present in all stabilates. Double infections involving this type with the Riverine-Forest type, T. vivax or T. brucei, were found. One stabilate was found to be infected with the three trypanosome types, namely T. congolense Savannah and Riverine-Forest genotypes and T. vivax. No infection attributable to T. congolense Kilifi and Tsavo types or T. simiae was detected in these stabilates. This work confirmed the abundance of mixed infections in the field, which could not have been detected by the classical parasitological methods. Amongst the T. congolense infections, the Savannah genotype was found to be predominant over the Riverine-Forest type; that could be a consequence of differences in genotype virulence in cattle. The detection of T. congolense Riverine-Forest type in vertebrate hosts living in wet areas could be confirmation of the suspected affinity of relationships between this taxa and the riverine forest tsetse fly species.
Collapse
Affiliation(s)
- J M Reifenberg
- CIRAD-EMVT (Centre de coopération Internationale en Recherche Agronomique pour le Développement--Département d'Elevage et de Médecine Vétérinaire), Montpellier, France
| | | | | | | | | | | |
Collapse
|
47
|
Takahashi H, Okazaki S, Fujiwara H. A new family of site-specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, Bombyx mori. Nucleic Acids Res 1997; 25:1578-84. [PMID: 9092665 PMCID: PMC146635 DOI: 10.1093/nar/25.8.1578] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The telomeres of the silkworm, Bombyx mori, consist of pentanucleotide repeats (TTAGG)n . We previously characterized the non-LTR element TRAS1, which terminates with oligo (A) in a head to tail orientation at the exact position (between A and C) of the (CCTAA) n repeats. Here we characterized another family of telomere-specific non-LTR retrotransposon named SART1. The SART1 family was inserted at another site of the (TTAGG) n in a reverse orientation from that of TRAS1. The complete unit of SART1, 6.7 kb in length with a poly (A) stretch, contains two open reading frames encoding putative gag and pol products, overlapping by 54 bp in the -1 reading frame. Most of the 600 SART1 copies in the silkworm haploid genome are completely conserved in structure without 5'truncation. All SART1 sequences analyzed were inserted at the same position (between T and A) within the (TTAGG) n repeats. Fluorescence in situ hybridization showed that many of the SART1 copies were localized in the chromosomal ends. A phylogenetic tree showed that the SART1, TRAS1 and two other site-specific elements, R1 and RT, which insert into 28S ribosomal RNA genes in insects, belong to the same group. Based on the orientation for the chromosomal insertion and structural similarities, these elements could be further classified into two subgroups, R1/TRAS1 and RT/SART1, suggesting that the target specificity of the two telomere-associated elements was changed independently.
Collapse
Affiliation(s)
- H Takahashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | |
Collapse
|
48
|
el-Sayed NM, Donelson JE. A survey of the Trypanosoma brucei rhodesiense genome using shotgun sequencing. Mol Biochem Parasitol 1997; 84:167-78. [PMID: 9084037 DOI: 10.1016/s0166-6851(96)02792-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A comparison of the efficiency of sequencing random genomic DNA fragments versus random cDNAs for the discovery of new genes in African trypanosomes was undertaken. Trypanosome DNA was sheared to a 1.5-2.5 kb size distribution, cloned into a plasmid and the sequences at both ends of 183 cloned fragments determined. Sequences of both kinetoplast and nuclear DNA were identified. New coding regions were discovered for a variety of proteins, including cell division proteins, an RNA-binding protein and a homologue of the Leishmania surface protease GP63. In some cases, each end of a fragment was found to contain a different gene, demonstrating the proximity of those genes and suggesting that the density of genes in the African trypanosome genome is quite high. Repetitive sequence elements found included telomeric hexamer repeats, 76 bp repeats associated with VSG gene expression sites, 177 bp satellite repeats in minichromosomes and the Ingi transposon-like elements. In contrast to cDNA sequencing, no ribosomal protein genes were detected. For the sake of comparison, the sequences of 190 expressed sequence tags (ESTs) were also determined, and a similar number of new trypanosomal homologues were found including homologues of another putative surface protein and a human leucine-rich repeat-containing protein. We conclude from this analysis and our previous work that sequencing random DNA fragments in African trypanosomes is as efficient for gene discovery as is sequencing random cDNA clones.
Collapse
Affiliation(s)
- N M el-Sayed
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
49
|
Blinov AG, Sobanov YV, Scherbik SV, Aimanova KG. The Chironomus (Camptochironomus) tentans genome contains two non-LTR retrotransposons. Genome 1997; 40:143-50. [PMID: 9061921 DOI: 10.1139/g97-021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A cDNA library from salivary gland cells of Chironomus tentans was screened with a probe containing the NLRCth1 non-LTR (long terminal repeat) retrotransposon from Chironomus thummi. Several positive clones were obtained and one of them, p62, was characterized by in situ hybridization and sequencing. The sequencing analysis showed that this clone contained a 4607 bp nucleotide sequence of a new transposable element that hybridized in situ to more than 100 sites over all four C. tentans chromosomes. The detailed analysis of this sequence revealed the presence of the 3'-end of open reading frame 1 (ORF1), a complete ORF2, and a 1.3-kb 3'-end untranslated region (UTR). The new element has been designated NLRCt2 (non-LTR retrotransposon 2 from C. tentans). A comparison of the nucleotide sequences of NLRCth1 and NLRCt2 showed 30% similarity in the region of ORF1 and 70% similarity in the region of ORF2. Based on the results of Southern blot analysis, two transposable elements have been found in the C. tentans genome, one of which is identical to NLRCth1 from C. thummi. This may be explained by horizontal transmission. The second element, NLRCt2, has been found in two different forms in the C. tentans genome. These can be distinguished by the presence of the 1.3-kb 3'-end UTR in one of the forms. Since the cDNA clone investigated was isolated from a tissue-specific cDNA library, the data showed that NRLCt2 is expressed in somatic cells.
Collapse
Affiliation(s)
- A G Blinov
- Institute of Cytology and Genetics, Siberian Department of Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | |
Collapse
|
50
|
González CI, Thomas MC, Martín F, Alcami J, Alonso C, López MC. Reverse transcriptase-like activity in Trypanosoma cruzi. Acta Trop 1997; 63:117-26. [PMID: 9088425 DOI: 10.1016/s0001-706x(96)00611-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of specific synthetic RNA homopolymers as templates and short oligonucleotides as primers has allowed evidence of the existence of a reverse transcriptase-like activity in Trypanosoma cruzi, to be revealed. The RNA:DNA products derived from this reaction are of approximately 110 nucleotides in length. The enzyme has greater affinity for poly(rA)/ oligo(dT) templates than for poly(rC)/oligo(dG) having a 20 mM Mg+2 ion requirement. The detected reverse transcriptase-like activity is not affected by aphidicolin and ddTTP but is inhibited by actinomycin D. novobiocin, rifamycin SV and AZT.
Collapse
Affiliation(s)
- C I González
- Departamento de Biología Molecular, Instituto de Parasitologia y Biomedicina, Lopez Negra CSIC, Granada, Spain
| | | | | | | | | | | |
Collapse
|