1
|
Ramalingam R, Blume JE, Ganguly K, Ennis HL. AT-rich upstream sequence elements regulate spore germination-specific expression of the Dictyostelium discoideum celA gene. Nucleic Acids Res 1995; 23:3018-25. [PMID: 7659526 PMCID: PMC307144 DOI: 10.1093/nar/23.15.3018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two members of a family of spore germination-specific cDNAs, celA and celB, are expressed coordinately, exclusively during spore germination. In the present study the regulatory sequence elements responsible for celA germination-specific expression have been identified. The very AT-rich 81 bp sequence between -664 and -584 upstream of the translation initiation site was required for proper temporal transcription of the celA gene. This sequence is comprised of two cis elements, each of which was active by itself in allowing celA expression. Electrophoretic mobility shift assays showed that a factor(s) in an extract prepared from germinating spores bound to the celA regulatory region. One of the three complexes formed was specific for the germinating spore extract. The results are consistent with the notion that the factor(s) that binds to this regulatory region is involved in expression of celA.
Collapse
Affiliation(s)
- R Ramalingam
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110, USA
| | | | | | | |
Collapse
|
2
|
Titus MA, Kuspa A, Loomis WF. Discovery of myosin genes by physical mapping in Dictyostelium. Proc Natl Acad Sci U S A 1994; 91:9446-50. [PMID: 7937787 PMCID: PMC44829 DOI: 10.1073/pnas.91.20.9446] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The diversity of the myosin family in a single organism, Dictyostelium discoideum, has been investigated by a strategy devised to rapidly identify and clone additional members of a gene family. An ordered array of yeast artificial chromosome clones that encompasses the Dictyostelium genome was probed at low stringency with conserved regions of the myosin motor domain to identify all possible myosin loci. The previously identified myosin loci (mchA, myoA-E) were detected by hybridization to the probes, as well as an additional seven previously unidentified loci (referred to as myoF-L). Clones corresponding to four of these additional loci (myoF, myoH-J) were obtained by using the isolated yeast artificial chromosomes as templates in a PCR employing degenerate primers specific for conserved regions of the myosin head. Sequence analysis and physical mapping of these clones confirm that these PCR products are derived from four previously unidentified myosin genes. Preliminary analysis of these sequences suggests that at least one of the genes (myoJ) encodes a member of a potentially different class of myosins. With the development of whole genome libraries for a variety of organisms, this approach can be used to rapidly explore the diversity of this and other gene families in a number of systems.
Collapse
Affiliation(s)
- M A Titus
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
3
|
Schiedlmeier B, Schmitt R. Repetitious structure and transcription control of a polyubiquitin gene in Volvox carteri. Curr Genet 1994; 25:169-77. [PMID: 8087887 DOI: 10.1007/bf00309544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Southern analysis indicated the presence of at least four ubiquitin gene loci in the Volvox carteri genome. Three of these, a polyubiquitin gene described here and a non-segregating ubiquitin gene pair, were assigned to two different linkage groups by RFLP mapping; the non-polymorphic fourth gene locus remained unassigned. The polyubiquitin gene was cloned and its 2,116-bp sequence determined. It contains six exons each interrupted by an intron at Gly35, and it encodes a pentameric polyubiquitin polypeptide consisting of five runs of 76 identical amino-acid residues and a C-terminal extension of one leucine. The five tandem repeats of coding units plus introns exhibit an unusually high degree of overall sequence identity indicating an efficient process of gene homogenization in this region of the V. carteri genome. S1 mapping revealed two closely-spaced transcription starts, 24 and 28 nucleotides downstream from a putative TATA sequence. Preceding the TATA box are two 14-bp conserved heat-shock elements (HSEs) and two octameric sequences closely resembling an yesat HSE. Consistent with a 1.6-kb transcript seen on Northern blots are two polyadenylation signals (TGTAA) located 99 bp and 169 bp downstream from the TGA translational stop. The polyubiquitin gene was transcribed throughout the Volvox life cycle with peaks in the 1.6-kb mRNA levels during pre-cleavage, cleavage, and post-inversion. In contrast, an 0.6-kb monoubiquitin transcript was abundant only at the pre-cleavage stage suggesting a different type of gene control. Heat shock increased the level of polyubiquitin mRNA, whereas the level of monoubiquitin mRNA was down-regulated.
Collapse
|
4
|
Abstract
Ubiquitin is ubiquitous in all eukaryotes and its amino acid sequence shows extreme conservation. Ubiquitin genes comprise direct repeats of the ubiquitin coding unit with no spacers. The nucleotide sequences coding for 13 ubiquitin genes from 11 species reported so far have been compiled and analyzed. The G + C content of codon third base reveals a positive linear correlation with the genome G + C content of the corresponding species. The slope strongly suggests that the overall G + C content of codons of polyubiquitin genes clearly reflects the genome G + C content by AT/GC substitutions at the codon third position. The G + C content of ubiquitin codon third base also shows a positive linear correlation with the overall G + C content of coding regions of compiled genes, indicating the codon choices among synonymous codons reflect the average codon usage pattern of corresponding species. On the other hand, the monoubiquitin gene, which is different from the polyubiquitin gene in gene organization, gene expression, and function of the encoding protein, shows a different codon usage pattern compared with that of the polyubiquitin gene. From comparisons of the levels of synonymous substitutions among ubiquitin repeats and the homology of the amino acid sequence of the tail of monomeric ubiquitin genes, we propose that the molecular evolution of ubiquitin genes occurred as follows: Plural primitive ubiquitin sequences were dispersed on genome in ancestral eukaryotes. Some of them situated in a particular environment fused with the tail sequence to produce monomeric ubiquitin genes that were maintained across species. After divergence of species, polyubiquitin genes were formed by duplication of the other primitive ubiquitin sequences on different chromosomes. Differences in the environments in which ubiquitin genes are embedded reflect the differences in codon choice and in gene expression pattern between poly- and monomeric ubiquitin genes.
Collapse
Affiliation(s)
- K Mita
- Division of Biology, National Institute of Radiological Sciences, Chiba, Japan
| | | | | |
Collapse
|
5
|
Baker RT, Board PG. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucleic Acids Res 1991; 19:1035-40. [PMID: 1850507 PMCID: PMC333777 DOI: 10.1093/nar/19.5.1035] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Complementary DNA clones encoding ubiquitin fused to a 52 amino acid tail protein were isolated from human placental and adrenal gland cDNA libraries. The deduced human 52 amino acid tail protein is very similar to the homologous protein from other species, including the conservation of the putative metal-binding, nucleic acid-binding domain observed in these proteins. Northern blot analysis with a tail-specific probe indicated that the previously identified UbA mRNA species most likely represents comigrating transcripts of the 52 amino acid tail (UbA52) and 80 amino acid tail (UbA80) ubiquitin fusion genes. The UbA52 gene was isolated from a human genomic library and consists of five exons distributed over 3400 base pairs. One intron is in the 5' non-coding region, two interrupt the single ubiquitin coding unit, and the fourth intron is within the tail coding region. Several members of the Alu family of repetitive DNA are associated with the gene. The UbA52 promoter has several features in common with mammalian ribosomal protein genes, including its location in a CpG-rich island, initiation of transcription within a polypyrimidine tract, the lack of a consensus TATA motif, and the presence of Sp1 binding sites, observations that are consistent with the recent identification of the ubiquitin-free tail proteins as ribosomal proteins. Thus, in spite of its unusual feature of being translationally fused to ubiquitin, the 52 amino acid tail ribosomal protein is expressed from a structurally typical ribosomal protein gene.
Collapse
Affiliation(s)
- R T Baker
- Human Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra
| | | |
Collapse
|
6
|
Rocamora N, Agell N. Methylation of chick UbI and UbII polyubiquitin genes and their differential expression during spermatogenesis. Biochem J 1990; 267:821-9. [PMID: 2160238 PMCID: PMC1131372 DOI: 10.1042/bj2670821] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Northern analysis demonstrated that levels of ubiquitin transcript increased during the chicken testis maturation process, in agreement with the previously published increase of ubiquitin during this differentiation process. Specific probes for four different ubiquitin genes (two polyubiquitins, UbI and UbII, and two ubiquitin-fusion genes, UbCep52 and UbCep80) allowed us to analyse the expression of each individual gene. UbI polyubiquitin gene was expressed in all the tissues tested, and its transcript was the most abundant ubiquitin RNA in all of them. Unspliced UbI transcript, already detected in stressed chicken-embryo fibroblast, was also present in immature testis and reticulocytes. UbII, a chicken polyubiquitin gene not previously found expressed and not heat-shock-inducible, was specifically stimulated during the testis maturation process. Two minor ubiquitin fusion transcripts of 0.6 and 0.7 kb, corresponding to UbCep52 and UbCep80 respectively, were also found in chicken testis. Although differentially expressed, it was found that UbI and UbII chicken polyubiquitin genes had an HTF ('HpaII tiny fragments') island (CpG-rich and constitutively unmethylated region) in their 5' proximal non-coding region. In addition, we demonstrated the coexistence of 3' and/or 5' relatively distal methylated sites together with these 5' proximal HTF islands in both chicken polyubiquitin genes. 3' and 5' distal UbI CCGG sites were specifically hypermethylated in mature testis, whereas a 3' distal UbII CCGG site was found to be about 50% methylated in all DNAs tested.
Collapse
Affiliation(s)
- N Rocamora
- Department of Physiological Sciences, Faculty of Medicine, University of Barcelona, Spain
| | | |
Collapse
|
7
|
The cyclic nucleotide phosphodiesterase gene of Dictyostelium discoideum utilizes alternate promoters and splicing for the synthesis of multiple mRNAs. Mol Cell Biol 1989. [PMID: 2779573 DOI: 10.1128/mcb.9.9.3938] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cyclic nucleotide phosphodiesterase (phosphodiesterase) gene plays essential roles in the development of Dictyostelium discoideum during cellular aggregation and postaggregation morphogenesis. Genomic clones spanning the gene were isolated and used to determine the sequence and structure of the phosphodiesterase gene. We found an unusually complex organization for a gene of D. discoideum. Two transcripts of 2.4 and 1.9 kilobases (kb) were synthesized from start sites separated by 1.1 kb. A developmentally regulated promoter was utilized for the 2.4-kb mRNA, and a constitutive promoter regulated synthesis of the 1.9-kb transcript. The gene was found to be divided into four exons that are alternately spliced to give rise to the two mRNAs. The precursor of the 2.4-kb mRNA contained a 2.3-kb intron, whereas the precursor of the constitutive transcript was synthesized with a 1.7-kb intron. The two transcripts contained identical protein-coding regions and 400-nucleotide 3' untranslated sequences. The 2.4-kb developmentally regulated mRNA was distinguished by a long 5' untranslated leader of 666 nucleotides. The complex structure of the gene may allow multiple levels of control of the expression of the phosphodiesterase during development.
Collapse
|
8
|
Podgorski GJ, Franke J, Faure M, Kessin RH. The cyclic nucleotide phosphodiesterase gene of Dictyostelium discoideum utilizes alternate promoters and splicing for the synthesis of multiple mRNAs. Mol Cell Biol 1989; 9:3938-50. [PMID: 2779573 PMCID: PMC362456 DOI: 10.1128/mcb.9.9.3938-3950.1989] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cyclic nucleotide phosphodiesterase (phosphodiesterase) gene plays essential roles in the development of Dictyostelium discoideum during cellular aggregation and postaggregation morphogenesis. Genomic clones spanning the gene were isolated and used to determine the sequence and structure of the phosphodiesterase gene. We found an unusually complex organization for a gene of D. discoideum. Two transcripts of 2.4 and 1.9 kilobases (kb) were synthesized from start sites separated by 1.1 kb. A developmentally regulated promoter was utilized for the 2.4-kb mRNA, and a constitutive promoter regulated synthesis of the 1.9-kb transcript. The gene was found to be divided into four exons that are alternately spliced to give rise to the two mRNAs. The precursor of the 2.4-kb mRNA contained a 2.3-kb intron, whereas the precursor of the constitutive transcript was synthesized with a 1.7-kb intron. The two transcripts contained identical protein-coding regions and 400-nucleotide 3' untranslated sequences. The 2.4-kb developmentally regulated mRNA was distinguished by a long 5' untranslated leader of 666 nucleotides. The complex structure of the gene may allow multiple levels of control of the expression of the phosphodiesterase during development.
Collapse
Affiliation(s)
- G J Podgorski
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | | |
Collapse
|
9
|
Taccioli GE, Grotewold E, Aisemberg GO, Judewicz ND. Ubiquitin expression in Neurospora crassa: cloning and sequencing of a polyubiquitin gene. Nucleic Acids Res 1989; 17:6153-65. [PMID: 2549509 PMCID: PMC318268 DOI: 10.1093/nar/17.15.6153] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have cloned and sequenced a polyubiquitin gene from Neurospora crassa that is organized in a four repeat-tandem array. The first repeat contains a small intron and the last is fused to an extra glutamine codon. In Northern blots, two RNA species of 1.3 kb and 0.7 kb hybridize to the isolated clone. The larger ubiquitin (UBI) transcript accumulates after partial inhibition of protein synthesis with cycloheximide, and the smaller one preferentially accumulates in conidia after germination. Unexpectedly, constitutive expression of UBI transcripts in exponentially grown mycelia is not altered by heat-shock or exposure to arsenite.
Collapse
Affiliation(s)
- G E Taccioli
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
10
|
UbiA, the major polyubiquitin locus in Caenorhabditis elegans, has unusual structural features and is constitutively expressed. Mol Cell Biol 1989. [PMID: 2538720 DOI: 10.1128/mcb.9.1.268] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin is a multifunctional 76-amino-acid protein which plays critical roles in many aspects of cellular metabolism. In Caenorhabditis elegans, the major source of ubiquitin RNA is the polyubiquitin locus, UbiA. UbiA is transcribed as a polycistronic mRNA which contains 11 tandem repeats of ubiquitin sequence and possesses a 2-amino-acid carboxy-terminal extension on the final repeat. The UbiA locus possesses several unusual features not seen in the ubiquitin genes of other organisms studied to date. Mature UbiA mRNA acquires a 22-nucleotide leader sequence via a trans-splicing reaction involving a 100-nucleotide splice leader RNA derived from a different chromosome. UbiA is also unique among known polyubiquitin genes in containing four cis-spliced introns within its coding sequence. Thus, UbiA is one of a small class of genes found in higher eucaryotes whose heterogeneous nuclear RNA undergoes both cis and trans splicing. The putative promoter region of UbiA contains a number of potential regulatory elements: (i) a cytosine-rich block, (ii) two sequences resembling the heat shock regulatory element, and (iii) a palindromic sequence with homology to the DNA-binding site of the mammalian steroid hormone receptor. The expression of the UbiA gene has been studied under various heat shock conditions and has been monitored during larval moulting and throughout the major stages of development. These studies indicate that the expression of the UbiA gene is not inducible by acute or chronic heat shock and does not appear to be under nutritional or developmental regulation in C. elegans.
Collapse
|
11
|
Abstract
We isolated and characterized two related ubiquitin genes from Drosophila melanogaster, polyubiquitin and UB3-D. The polyubiquitin gene contained 18 repeats of the 228-base-pair monomeric ubiquitin-encoding unit arranged in tandem. This gene was localized to a minor heat shock puff site, 63F, and it encoded a constitutively expressed 4.4-kilobase polyubiquitin-encoding mRNA, whose level was induced threefold by heat shock. To investigate the pattern of expression of the polyubiquitin gene in developing animals, a polyubiquitin-lacZ fusion gene was introduced into the Drosophila genome by germ line transformation. The fusion gene was expressed at high levels in a tissue-general manner at all life stages assayed. The ubiquitin-encoding gene, UB3-D, consisted of one ubiquitin-encoding unit directly fused, in frame, to a nonhomologous tail sequence. The amino acid sequence of the tail portion of the protein had 65% positional identity with that of yeast UBI3 protein, including a region that contained a potential nucleic acid-binding motif. The Drosophila UB3-D gene hybridized to a 0.9-kilobase mRNA that was constitutively expressed, and in contrast to the polyubiquitin gene, it was not inducible by heat shock.
Collapse
|
12
|
Graham RW, Jones D, Candido EP. UbiA, the major polyubiquitin locus in Caenorhabditis elegans, has unusual structural features and is constitutively expressed. Mol Cell Biol 1989; 9:268-77. [PMID: 2538720 PMCID: PMC362169 DOI: 10.1128/mcb.9.1.268-277.1989] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ubiquitin is a multifunctional 76-amino-acid protein which plays critical roles in many aspects of cellular metabolism. In Caenorhabditis elegans, the major source of ubiquitin RNA is the polyubiquitin locus, UbiA. UbiA is transcribed as a polycistronic mRNA which contains 11 tandem repeats of ubiquitin sequence and possesses a 2-amino-acid carboxy-terminal extension on the final repeat. The UbiA locus possesses several unusual features not seen in the ubiquitin genes of other organisms studied to date. Mature UbiA mRNA acquires a 22-nucleotide leader sequence via a trans-splicing reaction involving a 100-nucleotide splice leader RNA derived from a different chromosome. UbiA is also unique among known polyubiquitin genes in containing four cis-spliced introns within its coding sequence. Thus, UbiA is one of a small class of genes found in higher eucaryotes whose heterogeneous nuclear RNA undergoes both cis and trans splicing. The putative promoter region of UbiA contains a number of potential regulatory elements: (i) a cytosine-rich block, (ii) two sequences resembling the heat shock regulatory element, and (iii) a palindromic sequence with homology to the DNA-binding site of the mammalian steroid hormone receptor. The expression of the UbiA gene has been studied under various heat shock conditions and has been monitored during larval moulting and throughout the major stages of development. These studies indicate that the expression of the UbiA gene is not inducible by acute or chronic heat shock and does not appear to be under nutritional or developmental regulation in C. elegans.
Collapse
Affiliation(s)
- R W Graham
- Department of Biochemistry, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
13
|
Abstract
We isolated and characterized two related ubiquitin genes from Drosophila melanogaster, polyubiquitin and UB3-D. The polyubiquitin gene contained 18 repeats of the 228-base-pair monomeric ubiquitin-encoding unit arranged in tandem. This gene was localized to a minor heat shock puff site, 63F, and it encoded a constitutively expressed 4.4-kilobase polyubiquitin-encoding mRNA, whose level was induced threefold by heat shock. To investigate the pattern of expression of the polyubiquitin gene in developing animals, a polyubiquitin-lacZ fusion gene was introduced into the Drosophila genome by germ line transformation. The fusion gene was expressed at high levels in a tissue-general manner at all life stages assayed. The ubiquitin-encoding gene, UB3-D, consisted of one ubiquitin-encoding unit directly fused, in frame, to a nonhomologous tail sequence. The amino acid sequence of the tail portion of the protein had 65% positional identity with that of yeast UBI3 protein, including a region that contained a potential nucleic acid-binding motif. The Drosophila UB3-D gene hybridized to a 0.9-kilobase mRNA that was constitutively expressed, and in contrast to the polyubiquitin gene, it was not inducible by heat shock.
Collapse
Affiliation(s)
- H S Lee
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
14
|
Abstract
Dictyostelium discoideum is of increasing interest as a model eukaryotic cell because its many attributes have recently been expanded to include improved genetic and biochemical manipulability. The ability to transform Dictyostelium using drug resistance as a selectable marker (1) and to gene target by high frequency homologous integration (2) makes this organism particularly useful for molecular genetic approaches to cell structure and function. Given this background, it becomes important to analyze the codon preference used in this organism. Dictyostelium displays a strong and unique overall codon preference. This preference varies between different coding regions and even varies between coding regions from the same gene family. The degree of codon preference may be correlated with expression levels but not with the developmental time of expression of the gene product. The strong codon preference can be applied to identify coding regions in Dictyostelium DNA and aid in the design of oligonucleotide probes for cloning Dictyostelium genes.
Collapse
Affiliation(s)
- H M Warrick
- Department of Cell Biology, Stanford University Medical School, CA 94305
| | | |
Collapse
|
15
|
Witke W, Nellen W, Noegel A. Homologous recombination in the Dictyostelium alpha-actinin gene leads to an altered mRNA and lack of the protein. EMBO J 1987; 6:4143-8. [PMID: 2832153 PMCID: PMC553897 DOI: 10.1002/j.1460-2075.1987.tb02760.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mutation of the alpha-actinin gene in Dictyostelium has been achieved by transforming cells with the Dictyostelium transformation vector pDNeoII containing a 1.2 kb fragment of the alpha-actinin gene. Transformants deficient in alpha-actinin, an actin-binding protein, produced an altered mRNA that lacked the 3' portion of the coding region. The defect in alpha-actinin production was not due to integration of the vector within the gene, but was apparently caused by errors produced during homologous recombination between the introduced alpha-actinin sequence and its complementary sequence in the coding region of the endogenous gene.
Collapse
Affiliation(s)
- W Witke
- Max-Planck-Institut für Biochemie, Martinsried, FRG
| | | | | |
Collapse
|