1
|
Moesslacher CS, Kohlmayr JM, Stelzl U. Exploring absent protein function in yeast: assaying post translational modification and human genetic variation. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:164-183. [PMID: 34395585 PMCID: PMC8329848 DOI: 10.15698/mic2021.08.756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023]
Abstract
Yeast is a valuable eukaryotic model organism that has evolved many processes conserved up to humans, yet many protein functions, including certain DNA and protein modifications, are absent. It is this absence of protein function that is fundamental to approaches using yeast as an in vivo test system to investigate human proteins. Functionality of the heterologous expressed proteins is connected to a quantitative, selectable phenotype, enabling the systematic analyses of mechanisms and specificity of DNA modification, post-translational protein modifications as well as the impact of annotated cancer mutations and coding variation on protein activity and interaction. Through continuous improvements of yeast screening systems, this is increasingly carried out on a global scale using deep mutational scanning approaches. Here we discuss the applicability of yeast systems to investigate absent human protein function with a specific focus on the impact of protein variation on protein-protein interaction modulation.
Collapse
Affiliation(s)
- Christina S Moesslacher
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| | - Johanna M Kohlmayr
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| |
Collapse
|
2
|
The Yeast Hsp70 Cochaperone Ydj1 Regulates Functional Distinction of Ssa Hsp70s in the Hsp90 Chaperoning Pathway. Genetics 2020; 215:683-698. [PMID: 32299842 DOI: 10.1534/genetics.120.303190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/13/2020] [Indexed: 01/23/2023] Open
Abstract
Heat-shock protein (Hsp) 90 assists in the folding of diverse sets of client proteins including kinases and growth hormone receptors. Hsp70 plays a major role in many Hsp90 functions by interacting and modulating conformation of its substrates before being transferred to Hsp90s for final maturation. Each eukaryote contains multiple members of the Hsp70 family. However, the role of different Hsp70 isoforms in Hsp90 chaperoning actions remains unknown. Using v-Src as an Hsp90 substrate, we examined the role of each of the four yeast cytosolic Ssa Hsp70s in regulating Hsp90 functions. We show that the strain expressing stress-inducible Ssa3 or Ssa4, and the not constitutively expressed Ssa1 or Ssa2, as the sole Ssa Hsp70 isoform reduces v-Src-mediated growth defects. The study shows that although different Hsp70 isoforms interact similarly with Hsp90s, v-Src maturation is less efficient in strains expressing Ssa4 as the sole Hsp70. We further show that the functional distinction between Ssa2 and Ssa4 is regulated by its C-terminal domain. Further studies reveal that Ydj1, which is known to assist substrate transfer to Hsp70s, interacts relatively weakly with Ssa4 compared with Ssa2, which could be the basis for poor maturation of the Hsp90 client in cells expressing stress-inducible Ssa4 as the sole Ssa Hsp70. The study thus reveals a novel role of Ydj1 in determining the functional distinction among Hsp70 isoforms with respect to the Hsp90 chaperoning action.
Collapse
|
3
|
A methylated lysine is a switch point for conformational communication in the chaperone Hsp90. Nat Commun 2020; 11:1219. [PMID: 32139682 PMCID: PMC7057950 DOI: 10.1038/s41467-020-15048-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Methylation of a conserved lysine in C-terminal domain of the molecular chaperone Hsp90 was shown previously to affect its in vivo function. However, the underlying mechanism remained elusive. Through a combined experimental and computational approach, this study shows that this site is very sensitive to sidechain modifications and crucial for Hsp90 activity in vitro and in vivo. Our results demonstrate that this particular lysine serves as a switch point for the regulation of Hsp90 functions by influencing its conformational cycle, ATPase activity, co-chaperone regulation, and client activation of yeast and human Hsp90. Incorporation of the methylated lysine via genetic code expansion specifically shows that upon modification, the conformational cycle of Hsp90 is altered. Molecular dynamics simulations including the methylated lysine suggest specific conformational changes that are propagated through Hsp90. Thus, methylation of the C-terminal lysine allows a precise allosteric tuning of Hsp90 activity via long distances. Methylation of a lysine residue in Hsp90 is a recently discovered post-translational modification but the mechanistic effects of this modification have remained unknown so far. Here the authors combine biochemical and biophysical approaches, molecular dynamics (MD) simulations and functional experiments with yeast and show that this lysine is a switch point, which specifically modulates conserved Hsp90 functions including co-chaperone regulation and client activation.
Collapse
|
4
|
Corwin T, Woodsmith J, Apelt F, Fontaine JF, Meierhofer D, Helmuth J, Grossmann A, Andrade-Navarro MA, Ballif BA, Stelzl U. Defining Human Tyrosine Kinase Phosphorylation Networks Using Yeast as an In Vivo Model Substrate. Cell Syst 2019; 5:128-139.e4. [PMID: 28837810 DOI: 10.1016/j.cels.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/02/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
Systematic assessment of tyrosine kinase-substrate relationships is fundamental to a better understanding of cellular signaling and its profound alterations in human diseases such as cancer. In human cells, such assessments are confounded by complex signaling networks, feedback loops, conditional activity, and intra-kinase redundancy. Here we address this challenge by exploiting the yeast proteome as an in vivo model substrate. We individually expressed 16 human non-receptor tyrosine kinases (NRTKs) in Saccharomyces cerevisiae and identified 3,279 kinase-substrate relationships involving 1,351 yeast phosphotyrosine (pY) sites. Based on the yeast data without prior information, we generated a set of linear kinase motifs and assigned ∼1,300 known human pY sites to specific NRTKs. Furthermore, experimentally defined pY sites for each individual kinase were shown to cluster within the yeast interactome network irrespective of linear motif information. We therefore applied a network inference approach to predict kinase-substrate relationships for more than 3,500 human proteins, providing a resource to advance our understanding of kinase biology.
Collapse
Affiliation(s)
- Thomas Corwin
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), 14195 Berlin, Germany
| | - Jonathan Woodsmith
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), 14195 Berlin, Germany; Institute of Pharmaceutical Sciences, University of Graz and BioTechMed-Graz, 8010 Graz, Austria
| | - Federico Apelt
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), 14195 Berlin, Germany
| | - Jean-Fred Fontaine
- Genomics and Computational Biology, Kernel Press UG, 55128 Mainz, Germany; Faculty of Biology, Johannes Gutenberg University Mainz and Institute of Molecular Biology, 55128 Mainz, Germany
| | - David Meierhofer
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), 14195 Berlin, Germany
| | - Johannes Helmuth
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), 14195 Berlin, Germany
| | - Arndt Grossmann
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), 14195 Berlin, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg University Mainz and Institute of Molecular Biology, 55128 Mainz, Germany
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Ulrich Stelzl
- Otto-Warburg Laboratory, Max-Planck Institute for Molecular Genetics (MPIMG), 14195 Berlin, Germany; Institute of Pharmaceutical Sciences, University of Graz and BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
5
|
Kudze T, Mendez-Dorantes C, Jalloh CS, McClellan AJ. Evidence for interaction between Hsp90 and the ER membrane complex. Cell Stress Chaperones 2018; 23:1101-1115. [PMID: 29808299 PMCID: PMC6111080 DOI: 10.1007/s12192-018-0908-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/24/2018] [Accepted: 05/27/2018] [Indexed: 01/04/2023] Open
Abstract
Numerous putative heat shock protein 90 (Hsp90)-interacting proteins, which could represent novel folding clients or co-chaperones, have been identified in recent years. Two separate high-throughput screens in yeast uncovered genetic effects between Hsp90 and components of the ER membrane complex (EMC), which is required for tolerance to unfolded protein response stress in yeast. Herein, we provide the first experimental evidence supporting that there is a genuine interaction of Hsp90 with the EMC. We demonstrate genetic interactions between EMC2 and the known Hsp90 co-chaperone encoded by STI1, as well as Hsp90 point mutant allele-specific differences in inherent growth and Hsp90 inhibitor tolerance in the absence and presence of EMC2. In co-precipitation experiments, Hsp90 interacts with Emc2p, whether or not Emc2p contains amino acid sequences designated as a tetratricopeptide repeat motif. Yeast with multiple EMC gene deletions exhibit increased sensitivity to Hsp90 inhibitor as well as defective folding of the well-established Hsp90 folding client, the glucocorticoid receptor. Altogether, our evidence of physical, genetic, and functional interaction of Hsp90 with the EMC, as well as bioinformatic analysis of shared interactors, supports that there is a legitimate interaction between them in vivo.
Collapse
Affiliation(s)
- Tambudzai Kudze
- Division of Science and Mathematics, Bennington College, Bennington, VT, USA
| | | | | | - Amie J McClellan
- Division of Science and Mathematics, Bennington College, Bennington, VT, USA.
| |
Collapse
|
6
|
Kritzer JA, Freyzon Y, Lindquist S. Yeast can accommodate phosphotyrosine: v-Src toxicity in yeast arises from a single disrupted pathway. FEMS Yeast Res 2018; 18:4931722. [PMID: 29546391 PMCID: PMC6454501 DOI: 10.1093/femsyr/foy027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/08/2018] [Indexed: 12/29/2022] Open
Abstract
Tyrosine phosphorylation is a key biochemical signal that controls growth and differentiation in multicellular organisms. Saccharomyces cerevisiae and nearly all other unicellular eukaryotes lack intact phosphotyrosine signaling pathways. However, many of these organisms have primitive phosphotyrosine-binding proteins and tyrosine phosphatases, leading to the assumption that the major barrier for emergence of phosphotyrosine signaling was the negative consequences of promiscuous tyrosine kinase activity. In this work, we reveal that the classic oncogene v-Src, which phosphorylates many dozens of proteins in yeast, is toxic because it disrupts a specific spore wall remodeling pathway. Using genetic selections, we find that expression of a specific cyclic peptide, or overexpression of SMK1, a MAP kinase that controls spore wall assembly, both lead to robust growth despite a continuous high level of phosphotyrosine in the yeast proteome. Thus, minimal genetic manipulations allow yeast to tolerate high levels of phosphotyrosine. These results indicate that the introduction of tyrosine kinases within single-celled organisms may not have been a major obstacle to the evolution of phosphotyrosine signaling.
Collapse
Affiliation(s)
- Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford MA 02155, USA
| | - Yelena Freyzon
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| |
Collapse
|
7
|
Taskinen B, Ferrada E, Fowler DM. Early emergence of negative regulation of the tyrosine kinase Src by the C-terminal Src kinase. J Biol Chem 2017; 292:18518-18529. [PMID: 28939764 DOI: 10.1074/jbc.m117.811174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
Stringent regulation of tyrosine kinase activity is essential for normal cellular function. In humans, the tyrosine kinase Src is inhibited via phosphorylation of its C-terminal tail by another kinase, C-terminal Src kinase (Csk). Although Src and Csk orthologs are present across holozoan organisms, including animals and protists, the Csk-Src negative regulatory mechanism appears to have evolved gradually. For example, in choanoflagellates, Src and Csk are both active, but the negative regulatory mechanism is reportedly absent. In filastereans, a protist clade closely related to choanoflagellates, Src is active, but Csk is apparently inactive. In this study, we use a combination of bioinformatics, in vitro kinase assays, and yeast-based growth assays to characterize holozoan Src and Csk orthologs. We show that, despite appreciable differences in domain architecture, Csk from Corallochytrium limacisporum, a highly diverged holozoan marine protist, is active and can inhibit Src. However, in comparison with other Csk orthologs, Corallochytrium Csk displays broad substrate specificity and inhibits Src in an activity-independent manner. Furthermore, in contrast to previous studies, we show that Csk from the filasterean Capsaspora owczarzaki is active and that the Csk-Src negative regulatory mechanism is present in Csk and Src proteins from C. owczarzaki and the choanoflagellate Monosiga brevicollis Our results suggest that negative regulation of Src by Csk is more ancient than previously thought and that it might be conserved across all holozoan species.
Collapse
Affiliation(s)
- Barbara Taskinen
- From the Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065 and
| | - Evandro Ferrada
- From the Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065 and
| | - Douglas M Fowler
- From the Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065 and .,Department of Bioengineering, University of Washington, Seattle, Washington 98195-5065
| |
Collapse
|
8
|
Trible RP, Narute P, Emert-Sedlak LA, Alvarado JJ, Atkins K, Thomas L, Kodama T, Yanamala N, Korotchenko V, Day BW, Thomas G, Smithgall TE. Discovery of a diaminoquinoxaline benzenesulfonamide antagonist of HIV-1 Nef function using a yeast-based phenotypic screen. Retrovirology 2013; 10:135. [PMID: 24229420 PMCID: PMC3874621 DOI: 10.1186/1742-4690-10-135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-1 Nef is a viral accessory protein critical for AIDS progression. Nef lacks intrinsic catalytic activity and binds multiple host cell signaling proteins, including Hck and other Src-family tyrosine kinases. Nef binding induces constitutive Hck activation that may contribute to HIV pathogenesis by promoting viral infectivity, replication and downregulation of cell-surface MHC-I molecules. In this study, we developed a yeast-based phenotypic screen to identify small molecules that inhibit the Nef-Hck complex. RESULTS Nef-Hck interaction was faithfully reconstituted in yeast cells, resulting in kinase activation and growth arrest. Yeast cells expressing the Nef-Hck complex were used to screen a library of small heterocyclic compounds for their ability to rescue growth inhibition. The screen identified a dihydrobenzo-1,4-dioxin-substituted analog of 2-quinoxalinyl-3-aminobenzene-sulfonamide (DQBS) as a potent inhibitor of Nef-dependent HIV-1 replication and MHC-I downregulation in T-cells. Docking studies predicted direct binding of DQBS to Nef which was confirmed in differential scanning fluorimetry assays with recombinant purified Nef protein. DQBS also potently inhibited the replication of HIV-1 NL4-3 chimeras expressing Nef alleles representative of all M-group HIV-1 clades. CONCLUSIONS Our findings demonstrate the utility of a yeast-based growth reversion assay for the identification of small molecule Nef antagonists. Inhibitors of Nef function discovered with this assay, such as DQBS, may complement the activity of current antiretroviral therapies by enabling immune recognition of HIV-infected cells through the rescue of cell surface MHC-I.
Collapse
Affiliation(s)
- Ronald P Trible
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Purushottam Narute
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Lori A Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - John Jeff Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Katelyn Atkins
- School of Medicine, Oregon Health and Science University, 97239, Portland, OR, USA
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Toshiaki Kodama
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh School of Medicine, 15261, Pittsburgh, PA USA
| | - Vasiliy Korotchenko
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 15261, Pittsburgh, PA USA
| | - Billy W Day
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 15261, Pittsburgh, PA USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| |
Collapse
|
9
|
Harris LK, Frumm SM, Bishop AC. A general assay for monitoring the activities of protein tyrosine phosphatases in living eukaryotic cells. Anal Biochem 2013; 435:99-105. [PMID: 23333221 DOI: 10.1016/j.ab.2012.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are key signal-transduction regulators and have emerged as potential drug targets for inhibitor design. Here we report a yeast-based assay that provides a general means of assessing the activity and/or inhibition of essentially any classical PTP in living cells. The assay uses the activity of an exogenously expressed PTP to counter the activity of a coexpressed and toxic tyrosine kinase, such that only active PTPs are capable of rescuing growth. PTP activity gives rise to both increased growth and decreased phosphotyrosine levels; cellular PTP activity can therefore be monitored by either yeast-growth curves or anti-phosphotyrosine Western blots. We show that four PTPs (TCPTP, Shp2, PEST, PTPα) are capable of rescuing the effects of v-Src toxicity. Since these PTPs are chosen from four distinct subfamilies, it is likely that biologically and medicinally important PTPs from other subfamilies can similarly function in the cellular PTP assay. Because many small-molecule PTP inhibitors fail to penetrate cell membranes effectively, this cell-based assay has the potential to serve as a useful screening tool for determining the cellular efficacy of candidate inhibitors in a more biologically relevant context than can be provided by an in vitro PTP assay.
Collapse
Affiliation(s)
- Leigh K Harris
- Department of Chemistry, Amherst College, Amherst, MA 01002, USA
| | | | | |
Collapse
|
10
|
Liu BA, Nash PD. Evolution of SH2 domains and phosphotyrosine signalling networks. Philos Trans R Soc Lond B Biol Sci 2012; 367:2556-73. [PMID: 22889907 DOI: 10.1098/rstb.2012.0107] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Src homology 2 (SH2) domains mediate selective protein-protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks.
Collapse
Affiliation(s)
- Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
11
|
Zunder ER, Knight ZA, Houseman BT, Apsel B, Shokat KM. Discovery of drug-resistant and drug-sensitizing mutations in the oncogenic PI3K isoform p110 alpha. Cancer Cell 2008; 14:180-92. [PMID: 18691552 PMCID: PMC2720137 DOI: 10.1016/j.ccr.2008.06.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 05/19/2008] [Accepted: 06/25/2008] [Indexed: 11/27/2022]
Abstract
p110 alpha (PIK3CA) is the most frequently mutated kinase in human cancer, and numerous drugs targeting this kinase are currently in preclinical development or early-stage clinical trials. Clinical resistance to protein kinase inhibitors frequently results from point mutations that block drug binding; similar mutations in p110 alpha are likely, but currently none have been reported. Using a S. cerevisiae screen against a structurally diverse panel of PI3K inhibitors, we have identified a potential hotspot for resistance mutations (I800), a drug-sensitizing mutation (L814C), and a surprising lack of resistance mutations at the "gatekeeper" residue. Our analysis further reveals that clinical resistance to these drugs may be attenuated by using multitargeted inhibitors that simultaneously inhibit additional PI3K pathway members.
Collapse
Affiliation(s)
- Eli R. Zunder
- Graduate Group in Biophysics, University of California, San Francisco, California 94158
| | - Zachary A. Knight
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021
| | - Benjamin T. Houseman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143
| | - Beth Apsel
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143
- Department of Chemistry, University of California, Berkeley, California 94720
- Correspondence: , phone: 415-514-0472, fax: 415-514-0822
| |
Collapse
|
12
|
Trible RP, Emert-Sedlak L, Wales TE, Ayyavoo V, Engen JR, Smithgall TE. Allosteric loss-of-function mutations in HIV-1 Nef from a long-term non-progressor. J Mol Biol 2007; 374:121-9. [PMID: 17920628 DOI: 10.1016/j.jmb.2007.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 08/06/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
Abstract
Activation of Src family kinases by human immunodeficiency virus type 1 (HIV-1) Nef may play an important role in the pathogenesis of HIV/AIDS. Here we investigated whether diverse Nef sequences universally activate Hck, a Src family member expressed in macrophages and other HIV-1 target cells. In general, we observed that Hck activation is a highly conserved Nef function. However, we identified an unusual Nef variant from an HIV-positive individual that did not develop AIDS which failed to activate Hck despite the presence of conserved residues linked to Hck SH3 domain binding and kinase activation. Amino acid sequence alignment with active Nef proteins revealed differences in regions not previously implicated in Hck activation, including a large internal flexible loop absent from available Nef structures. Substitution of these residues in active Nef compromised Hck activation without affecting SH3 domain binding. These findings show that residues at a distance from the SH3 domain binding site influence Nef interactions allosterically with a key effector protein linked to AIDS progression.
Collapse
Affiliation(s)
- Ronald P Trible
- Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
13
|
Trible RP, Emert-Sedlak L, Smithgall TE. HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction. J Biol Chem 2006; 281:27029-38. [PMID: 16849330 PMCID: PMC2892265 DOI: 10.1074/jbc.m601128200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nef is an HIV-1 virulence factor that promotes viral pathogenicity by altering host cell signaling pathways. Nef binds several members of the Src kinase family, and these interactions have been implicated in the pathogenesis of HIV/AIDS. However, the direct effect of Nef interaction on Src family kinase (SFK) regulation and activity has not been systematically addressed. We explored this issue using Saccharomyces cerevisiae, a well defined model system for the study of SFK regulation. Previous studies have shown that ectopic expression of c-Src arrests yeast cell growth in a kinase-dependent manner. We expressed Fgr, Fyn, Hck, Lck, Lyn, and Yes as well as c-Src in yeast and found that each kinase was active and induced growth suppression. Co-expression of the negative regulatory kinase Csk suppressed SFK activity and reversed the growth-inhibitory effect. We then co-expressed each SFK with HIV-1 Nef in the presence of Csk. Nef strongly activated Hck, Lyn, and c-Src but did not detectably affect Fgr, Fyn, Lck, or Yes. Mutagenesis of the Nef PXXP motif essential for SH3 domain binding greatly reduced the effect of Nef on Hck, Lyn, and c-Src, suggesting that Nef activates these Src family members through allosteric displacement of intramolecular SH3-linker interactions. These data show that Nef selectively activates Hck, Lyn, and c-Src among SFKs, identifying these kinases as proximal effectors of Nef signaling and potential targets for anti-HIV drug discovery.
Collapse
Affiliation(s)
| | | | - Thomas E. Smithgall
- To whom correspondence should be addressed: Dept. of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, PA 15261. Tel.: 412-648-9495; Fax: 412-624-1401;
| |
Collapse
|
14
|
Kawachi H, Fujikawa A, Maeda N, Noda M. Identification of GIT1/Cat-1 as a substrate molecule of protein tyrosine phosphatase zeta /beta by the yeast substrate-trapping system. Proc Natl Acad Sci U S A 2001; 98:6593-8. [PMID: 11381105 PMCID: PMC34398 DOI: 10.1073/pnas.041608698] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used a genetic method, the yeast substrate-trapping system, to identify substrates for protein tyrosine phosphatases zeta (PTPzeta/RPTPbeta). This method is based on the yeast two-hybrid system, with two essential modifications: conditional expression of protein tyrosine kinase v-src (active src) to tyrosine-phosphorylate the prey proteins and screening by using a substrate-trap mutant of PTPzeta (PTPzeta-D1902A) as bait. By using this system, several substrate candidates for PTPzeta were isolated. Among them, GIT1/Cat-1 (G protein-coupled receptor kinase-interactor 1/Cool-associated, tyrosine-phosphorylated 1) was examined further. GIT1/Cat-1 bound to PTPzeta-D1902A dependent on the substrate tyrosine phosphorylation. Tyrosine-phosphorylated GIT1/Cat-1 was dephosphorylated by PTPzeta in vitro. Immunoprecipitation experiments indicated that PTPzeta-D1902A and GIT1/Cat-1 form a stable complex also in mammalian cells. Immunohistochemical analyses revealed that PTPzeta and GIT1/Cat-1 were colocalized in the processes of pyramidal cells in the hippocampus and neocortex in rat brain. Subcellular colocalization was further verified in the growth cones of mossy fibers from pontine explants and in the ruffling membranes and processes of B103 neuroblastoma cells. Moreover, pleiotrophin, a ligand for PTPzeta, increased tyrosine phosphorylation of GIT1/Cat-1 in B103 cells. All these results indicate that GIT1/Cat-1 is a substrate molecule of PTPzeta.
Collapse
Affiliation(s)
- H Kawachi
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
15
|
Sharma SV, Oneyama C, Yamashita Y, Nakano H, Sugawara K, Hamada M, Kosaka N, Tamaoki T. UCS15A, a non-kinase inhibitor of Src signal transduction. Oncogene 2001; 20:2068-79. [PMID: 11360191 DOI: 10.1038/sj.onc.1204296] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Revised: 01/24/2001] [Accepted: 01/25/2001] [Indexed: 11/09/2022]
Abstract
Src tyrosine kinase plays key roles in signal transduction following growth factor stimulation and integrin-mediated cell-substrate adhesion. Since src-signal transduction defects are implicated in a multitude of human diseases, we have sought to develop new ways to identify small molecule inhibitors using a yeast-based, activated-src over-expression system. In the present study, we describe the identification of a unique src-signal transduction inhibitor, UCS15A. UCS15A was found to inhibit the src specific tyrosine phosphorylation of numerous proteins in v-src-transformed cells. Two of these phosphoproteins were identified as bona-fide src substrates, cortactin and Sam68. UCS15A differed from conventional src-inhibitors in that it did not inhibit the tyrosine kinase activity of src. In addition, UCS15A appeared to differ from src-destabilizing agents such as herbimycin and radicicol that destabilize src by interfering with Hsp90. Our studies suggest that UCS15A exerted its src-inhibitory effects by a novel mechanism that involved disruption of protein-protein interactions mediated by src. One of the biological consequences of src-inhibition by UCS15A was its ability to inhibit the bone resorption activity of osteoclasts in vitro. These data suggest that UCS15A may inhibit the bone resorption activity of osteoclasts, not by inhibiting src tyrosine kinase activity, but by disrupting the interaction of proteins associated with src, thereby modulating downstream events in the src signal transduction pathway.
Collapse
Affiliation(s)
- S V Sharma
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd. 3-6-6 Asahi-cho, Machida-shi, Tokyo 194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Miller MA, Malik IA, Shenk MA, Steele RE. The Src/Csk regulatory circuit arose early in metazoan evolution. Oncogene 2000; 19:3925-30. [PMID: 10951585 DOI: 10.1038/sj.onc.1203714] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have identified a gene encoding a member of the Csk family of non-receptor protein-tyrosine kinases (PTKs) in the early-diverging metazoan Hydra. In situ hybridization analysis of the distribution of RNA from the Hydra Csk gene indicates that it is expressed in most of the epithelial cells of the adult polyp and in gametogenic cells. Comparison of the expression pattern of Hydra Csk with that of STK, the Hydra Src gene orthologue, reveals that the two genes are largely co-expressed. Such co-expression is consistent with a role for Hydra Csk in regulation of STK activity. This possibility was tested directly by coexpressing Hydra Csk with STK in yeast. Co-expression suppressed the growth inhibition seen when STK alone is expressed in yeast. Suppression was dependent on the presence of the putative regulatory tyrosine in the carboxyl-terminal tail of STK. Phosphotyrosine immunoblot analysis confirmed that expression of Csk resulted in suppression of STK kinase activity. Taken together these data indicate that the regulatory circuit involving Src and Csk PTKs was established prior to the divergence of the phylum Cnidaria from the rest of the metazoans.
Collapse
Affiliation(s)
- M A Miller
- Department of Biological Chemistry and The Developmental Biology Center, University of California, Irvine 92697, USA
| | | | | | | |
Collapse
|
17
|
Xu Y, Singer MA, Lindquist S. Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90. Proc Natl Acad Sci U S A 1999; 96:109-14. [PMID: 9874780 PMCID: PMC15101 DOI: 10.1073/pnas.96.1.109] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/1998] [Indexed: 02/04/2023] Open
Abstract
Although Hsp90 displays general chaperone activity in vitro, few substrates of the chaperone have been identified in vivo, and the characteristics that render these substrates dependent on Hsp90 remain elusive. To investigate this issue, we exploited a paradoxical observation: several unrelated oncogenic viral tyrosine kinases, including v-src, attain their native conformation after association with Hsp90, yet their nearly identical cellular homologs interact only weakly with the chaperone. It has been controversial whether Hsp90 is vital for normal maturation of the cellular kinases or is simply binding a misfolded subfraction of the proteins. By modulating Hsp90 levels in Saccharomyces cerevisiae, we determined that Hsp90 is indeed necessary for the maturation of c-src (the normal homolog of v-src). c-src maturation is, however, less sensitive to Hsp90 perturbations than is v-src maturation. Dependence of the two proteins on Hsp90 does not correspond to their relative efficiency in reaching their final destination (the plasma membrane); we observed that in yeast, unlike in vertebrate cells, neither c-src nor v-src concentrate in the membrane. Expression of different v/c-src chimeras in cells carrying wild-type or temperature-sensitive Hsp90 alleles revealed that the difference between the proteins instead arises from multiple, naturally occurring mutations in the C-terminal region of v-src.
Collapse
Affiliation(s)
- Y Xu
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
18
|
Abstract
Mutations in genes encoding the molecular chaperones Hsp90 and Ydj1p suppress the toxicity of the protein tyrosine kinase p60v-src in yeast by reducing its levels or its kinase activity. We describe isolation and characterization of novel p60v-src-resistant, temperature-sensitive cdc37 mutants, cdc37-34 and cdc37-17, which produce less p60v-src than the parental wild-type strain at 23 degrees C. However, p60v-src levels are not low enough to account for the resistance of these strains. Asynchronously growing cdc37-34 and cdc37-17 mutants arrest in G1 and G2/M when shifted from permissive temperatures (23 degrees C) to the restrictive temperature (37 degrees C), but hydroxyurea-synchronized cdc37-34 and cdc37-17 mutants arrest in G2/M when released from the hydroxyurea block and shifted from 23 to 37 degrees C. The previously described temperature-sensitive cdc37-1 mutant is p60v-src-sensitive and produces wild-type amounts of p60v-src at permissive temperatures but becomes p60v-src-resistant at its restrictive temperature, 38 degrees C. In all three cdc37 mutants, inactivation of Cdc37p by incubation at 38 degrees C reduces p60v-src-dependent tyrosine phosphorylation of yeast proteins to low or undetectable levels. Also, p60v-src levels are enriched in urea-solubilized extracts and depleted in detergent-solubilized extracts of all three cdc37 mutants prepared from cells incubated at the restrictive temperature. These results suggest that Cdc37p is required for maintenance of p60v-src in a soluble, biologically active form.
Collapse
Affiliation(s)
- B Dey
- Department of Biochemistry, Wayne State University Medical School, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
19
|
Yonehara M, Minami Y, Kawata Y, Nagai J, Yahara I. Heat-induced chaperone activity of HSP90. J Biol Chem 1996; 271:2641-5. [PMID: 8576234 DOI: 10.1074/jbc.271.5.2641] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The 90-kDa stress protein, HSP90, is a major cytosolic protein ubiquitously distributed in all species. Using two substrate proteins, dihydrofolate reductase (DHFR) and firefly luciferase, we demonstrate here that HSP90 newly acquires a chaperone activity when incubated at temperatures higher than 46 degrees C, which is coupled with self-oligomerization of HSP90. While chemically denatured DHFR refolds spontaneously upon dilution from denaturant, oligomerized HSP90 bound DHFR during the process of refolding and prevented it from renaturation. DHFR was released from the complex with HSP90 by incubating with GroEL/ES complexes in an ATP-dependent manner and refolded into the native form. alpha-Casein inhibited the binding of DHFR to HSP90 and also chased DHFR from the complex with HSP90. These results suggest that HSP90 binds substrates to maintain them in a folding-competent structure. Furthermore, we found that HSP90 prevents luciferase from irreversible thermal denaturation and enables it to refold when postincubated with reticulocyte lysates. This heat-induced chaperone activity of HSP90 associated with its oligomerization may have a pivotal role in protection of cells from thermal damages.
Collapse
Affiliation(s)
- M Yonehara
- Department of Cell Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | | | | | |
Collapse
|
20
|
Dey B, Caplan AJ, Boschelli F. The Ydj1 molecular chaperone facilitates formation of active p60v-src in yeast. Mol Biol Cell 1996; 7:91-100. [PMID: 8741842 PMCID: PMC278615 DOI: 10.1091/mbc.7.1.91] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Molecular chaperones have been implicated in the formation of active p60v-src tyrosine kinase. In Saccharomyces cerevisiae, expression of p60v-src causes cell death, a phenomenon that requires functional Hsp90. We show here that mutations in a member of a second class of chaperones, the yeast dnaJ homologue YDJ1, suppress the lethality caused by p60v-src. One p60v-src-resistant ydj1 mutant, ydj1-39, which has two point mutations in the highly conserved "J" domain, has reduced levels of v-src mRNA and protein. However, a ydj1 null mutant produces normal quantities of active p60v-src, indicating that Ydj1p facilitates, but is not essential for, the formation of active p60v-src. We also report p60v-src-resistance in a previously identified temperature-sensitive ydj1 mutant, ydj1-151. In this mutant, the level of p60v-src remains unaltered, but the protein is much less active in vivo. In addition, p60v-src immunoprecipitates from the ydj1-151 strain contained Hsp90 and Hsp70 in greater amounts than in wild-type strains. Ydj1 protein was also detected in p60v-src immunoprecipitates from both wild-type and ydj1-151 strains. These results indicate that Ydj1p participates in the formation of active p60v-src via molecular chaperone complexes.
Collapse
Affiliation(s)
- B Dey
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
21
|
Xing Z, Chen HC, Nowlen JK, Taylor SJ, Shalloway D, Guan JL. Direct interaction of v-Src with the focal adhesion kinase mediated by the Src SH2 domain. Mol Biol Cell 1994; 5:413-21. [PMID: 8054685 PMCID: PMC301051 DOI: 10.1091/mbc.5.4.413] [Citation(s) in RCA: 271] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The recently described focal adhesion kinase (FAK) has been implicated in signal transduction pathways initiated by cell adhesion receptor integrins and by neuropeptide growth factors. To examine the mechanisms by which FAK relays signals from the membrane to the cell interior, we carried out a series of experiments to detect potential FAK interactions with proteins containing Src homology 2 (SH2) domains that are important intracellular signaling molecules. Using v-Src-transformed NIH3T3 cells, we showed that FAK was present in the immune-complex precipitated by anti-Src antibody, suggesting potential interaction of FAK with v-Src in vivo. We also showed potentially direct interaction of FAK with v-Src in vivo using the yeast two-hybrid system. Using recombinant FAK expressed in insect cells and bacterial fusion proteins containing Src SH2 domains, we showed direct binding of FAK to the Src SH2 domain but not to the SH3 domain in vitro. A kinase-defective mutant of FAK, which is not autophosphorylated, did not interact with the Src SH2 domain under the same conditions, suggesting the involvement of the FAK autophosphorylation sites. Treatment of FAK with a protein-tyrosine phosphatase decreased its binding to the Src SH2 domain, whereas autophosphorylation in vitro increased its binding. These results confirm the importance of FAK autophosphorylation sites in its interaction with SH2 domain-containing proteins. Taken together, these results suggest that FAK may mediate signal transduction events initiated on the cell surface by kinase activation and autophosphorylation that result in its binding to other key intracellular signaling molecules.
Collapse
Affiliation(s)
- Z Xing
- Department of Pathology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | | | | | | | | | | |
Collapse
|
22
|
Florio M, Wilson LK, Trager JB, Thorner J, Martin GS. Aberrant protein phosphorylation at tyrosine is responsible for the growth-inhibitory action of pp60v-src expressed in the yeast Saccharomyces cerevisiae. Mol Biol Cell 1994; 5:283-96. [PMID: 8049521 PMCID: PMC301037 DOI: 10.1091/mbc.5.3.283] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Expression of pp60v-src, the transforming protein of Rous sarcoma virus, arrests the growth of the yeast Saccharomyces cerevisiae. To determine the basis of this growth arrest, yeast strains were constructed that expressed either wild-type v-src or various mutant v-src genes under the control of the galactose-inducible, glucose repressible GAL1 promoter. When shifted to galactose medium, cells expressing wild-type v-src ceased growth immediately and lost viability, whereas cells expressing a catalytically inactive mutant (K295M) continued to grow normally, indicating that the kinase activity of pp60v-src is required for its growth inhibitory effect. Mutants of v-src altered in the SH2/SH3 domain (XD4, XD6, SPX1, and SHX13) and a mutant lacking a functional N-terminal myristoylation signal (MM4) caused only a partial inhibition of growth, indicating that complete growth inhibition requires either targeting of the active kinase or binding of the kinase to phosphorylated substrates, or both. Cells arrested by v-src expression displayed aberrant microtubule structures, alterations in DNA content and elevated p34CDC28 kinase activity. Immunoblotting with antiphosphotyrosine antibody showed that many yeast proteins, including the p34CDC28 kinase, became phosphorylated at tyrosine in cells expressing v-src. Both the growth inhibition and the tyrosine-specific protein phosphorylation observed following v-src expression were reversed by co-expression of a mammalian phosphotyrosine-specific phosphoprotein phosphatase (PTP1B). However a v-src mutant with a small insertion in the catalytic domain (SRX5) had the same lethal effect as wild-type v-src, yet induced only very low levels of protein-tyrosine phosphorylation. These results indicate that inappropriate phosphorylation at tyrosine is the primary cause of the lethal effect of pp60v-src expression but suggest that only a limited subset of the phosphorylated proteins are involved in this effect.
Collapse
Affiliation(s)
- M Florio
- Department of Molecular and Cell Biology, University of California at Berkeley 94720
| | | | | | | | | |
Collapse
|
23
|
Expression of p60v-src in Saccharomyces cerevisiae results in elevation of p34CDC28 kinase activity and release of the dependence of DNA replication on mitosis. Mol Cell Biol 1993. [PMID: 7687746 DOI: 10.1128/mcb.13.8.5112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the oncogenic protein tyrosine kinase p60v-src in the yeast Saccharomyces cerevisiae has been shown to result in rapid cell death (J. S. Brugge, G. Jarosik, J. Andersen, A. Queral-Lustig, M. Fedor-Chaiken, and J. R. Broach, Mol. Cell. Biol. 7:2180-2187, 1987). Work described here demonstrates that v-Src expression results in accumulation of large-budded cells and a nuclear division block without blocking cytokinesis. Flow-cytometric analysis indicates that the DNA content of these cells is elevated beyond the G2 DNA content, and genetic studies indicate that v-Src expression causes aneuploidy. The activity of Cdc28 kinase, which controls the G1/S and G2/M transitions in S. cerevisiae, increases during galactose induction in a Src+ strain but not in an isogenic Src- strain. These observations indicate that v-Src expression disrupts p34CDC28 kinase regulation, allowing DNA replication to proceed in the absence of a prior mitotic event.
Collapse
|
24
|
Xu Y, Lindquist S. Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci U S A 1993; 90:7074-8. [PMID: 7688470 PMCID: PMC47078 DOI: 10.1073/pnas.90.15.7074] [Citation(s) in RCA: 320] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
During or immediately after synthesis in vertebrate cells, the oncogenic protein-tyrosine kinase pp60v-src associates with the approximately 90-kDa heat-shock protein (hsp90). In this complex, pp60v-src is not functional as a kinase. When pp60v-src is subsequently found inserted into the plasma membrane, it is active as a kinase and is no longer associated with hsp90. We have taken advantage of genetic manipulations possible in Saccharomyces cerevisiae to investigate the function and specificity of the association between hsp90 and pp60v-src. Expression of pp60v-src is known to be toxic to S. cerevisiae cells. We find that this toxicity is due to a very specific effect on growth, arrest at a particular point in the cell cycle. In cells expressing v-src, a mutation that lowers the level of hsp90 expression (i) relieves cell cycle arrest and rescues growth, (ii) reduces the level of tyrosine phosphorylation mediated by pp60v-src, (iii) changes the pattern of tyrosine phosphorylation, and (iv) reduces the concentration of pp60v-src. We conclude that hsp90 does not simply suppress pp60v-src kinase activity during transit to the plasma membrane, as previously suggested, but also stabilizes the protein and affects both its activity and specificity. This function of hsp90 is highly selective for pp60v-src: the same hsp90 mutation has no effect on the activity or specificity of the exogenous pp160v-abl tyrosine kinase; similarly, it does not affect the specificity and has only a very small effect on the activity of the exogenous pp60c-src kinase.
Collapse
Affiliation(s)
- Y Xu
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637
| | | |
Collapse
|
25
|
Boschelli F. Expression of p60v-src in Saccharomyces cerevisiae results in elevation of p34CDC28 kinase activity and release of the dependence of DNA replication on mitosis. Mol Cell Biol 1993; 13:5112-21. [PMID: 7687746 PMCID: PMC360166 DOI: 10.1128/mcb.13.8.5112-5121.1993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of the oncogenic protein tyrosine kinase p60v-src in the yeast Saccharomyces cerevisiae has been shown to result in rapid cell death (J. S. Brugge, G. Jarosik, J. Andersen, A. Queral-Lustig, M. Fedor-Chaiken, and J. R. Broach, Mol. Cell. Biol. 7:2180-2187, 1987). Work described here demonstrates that v-Src expression results in accumulation of large-budded cells and a nuclear division block without blocking cytokinesis. Flow-cytometric analysis indicates that the DNA content of these cells is elevated beyond the G2 DNA content, and genetic studies indicate that v-Src expression causes aneuploidy. The activity of Cdc28 kinase, which controls the G1/S and G2/M transitions in S. cerevisiae, increases during galactose induction in a Src+ strain but not in an isogenic Src- strain. These observations indicate that v-Src expression disrupts p34CDC28 kinase regulation, allowing DNA replication to proceed in the absence of a prior mitotic event.
Collapse
Affiliation(s)
- F Boschelli
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
26
|
Lydon NB, Gay B, Mett H, Murray B, Liebetanz J, Gutzwiller A, Piwnica-Worms H, Roberts TM, McGlynn E. Purification and biochemical characterization of non-myristoylated recombinant pp60c-src kinase. Biochem J 1992; 287 ( Pt 3):985-93. [PMID: 1280108 PMCID: PMC1133104 DOI: 10.1042/bj2870985] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To obtain sufficient material for the biochemical and biophysical study of pp60c-src, we have utilized a recombinant pp60c-src baculovirus lacking the myristoylation site at codon 2. On infection of Sf9 cells, this virus produced large amounts of soluble non-myristoylated pp60c-src. The use of non-myristoylated pp60c-src (1) increases production of pp60c-src compared with the wild-type protein, (2) facilitates purification, (3) yields a stable product and (4) allows biochemical studies in the absence of detergents. Up to 20 mg of pp60c-src of greater than 95% purity has been purified from 6 litres of Sf9 cells grown in a bioreactor. One major and multiple minor forms of pp60c-src were separated by Mono Q f.p.l.c. Isoelectric focusing of purified pp60c-src species revealed heterogeneity, some of which could be attributed to differences in the tyrosine phosphorylation state of the enzyme. Kinetic analysis of non-myristoylated pp60c-src kinase in the presence of Mg2+ gave Km values for angiotensin II and ATP of 2 mM and 30 microM respectively and a Vmax. of 620 nmol/min per mg. The kinetic constants and metal ion preferences of a number of copolymers and peptide substrates have been compared. Polylysine and poly(GLAT), which was not phosphorylated by the pp60c-src kinase, dramatically activated autophosphorylation of Tyr-416, suggesting a conformation modulation of pp60c-src by charged polymers. This finding implies that Tyr-527 dephosphorylation is not sufficient for full activation of pp60c-src in vitro.
Collapse
Affiliation(s)
- N B Lydon
- Research Department, Ciba-Geigy Limited, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Novel yeast protein kinase (YPK1 gene product) is a 40-kilodalton phosphotyrosyl protein associated with protein-tyrosine kinase activity. Mol Cell Biol 1991. [PMID: 1701015 DOI: 10.1128/mcb.10.12.6244] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracts of bakers' yeast (Saccharomyces cerevisiae) contain protein-tyrosine kinase activity that can be detected with a synthetic Glu-Tyr copolymer as substrate (G. Schieven, J. Thorner, and G.S. Martin, Science 231:390-393, 1986). By using this assay in conjunction with ion-exchange and affinity chromatography, a soluble tyrosine kinase activity was purified over 8,000-fold from yeast extracts. The purified activity did not utilize typical substrates for mammalian protein-tyrosine kinases (enolase, casein, and histones). The level of tyrosine kinase activity at all steps of each preparation correlated with the content of a 40-kDa protein (p40). Upon incubation of the most highly purified fractions with Mn-ATP or Mg-ATP, p40 was the only protein phosphorylated on tyrosine. Immunoblotting of purified p40 or total yeast extracts with antiphosphotyrosine antibodies and phosphoamino acid analysis of 32P-labeled yeast proteins fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the 40-kDa protein is normally phosphorylated at tyrosine in vivo. 32P-labeled p40 immunoprecipitated from extracts of metabolically labeled cells by affinity-purified anti-p40 antibodies contained both phosphoserine and phosphotyrosine. The gene encoding p40 (YPK1) was cloned from a yeast genomic library by using oligonucleotide probes designed on the basis of the sequence of purified peptides. As deduced from the nucleotide sequence of YPK1, p40 is homologous to known protein kinases, with features that resemble known protein-serine kinases more than known protein-tyrosine kinases. Thus, p40 is a protein kinase which is phosphorylated in vivo and in vitro at both tyrosine and serine residues; it may be a novel type of autophosphorylating tyrosine kinase, a bifunctional (serine/tyrosine-specific) protein kinase, or a serine kinase that is a substrate for an associated tyrosine kinase.
Collapse
|
28
|
Dailey D, Schieven GL, Lim MY, Marquardt H, Gilmore T, Thorner J, Martin GS. Novel yeast protein kinase (YPK1 gene product) is a 40-kilodalton phosphotyrosyl protein associated with protein-tyrosine kinase activity. Mol Cell Biol 1990; 10:6244-56. [PMID: 1701015 PMCID: PMC362899 DOI: 10.1128/mcb.10.12.6244-6256.1990] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Extracts of bakers' yeast (Saccharomyces cerevisiae) contain protein-tyrosine kinase activity that can be detected with a synthetic Glu-Tyr copolymer as substrate (G. Schieven, J. Thorner, and G.S. Martin, Science 231:390-393, 1986). By using this assay in conjunction with ion-exchange and affinity chromatography, a soluble tyrosine kinase activity was purified over 8,000-fold from yeast extracts. The purified activity did not utilize typical substrates for mammalian protein-tyrosine kinases (enolase, casein, and histones). The level of tyrosine kinase activity at all steps of each preparation correlated with the content of a 40-kDa protein (p40). Upon incubation of the most highly purified fractions with Mn-ATP or Mg-ATP, p40 was the only protein phosphorylated on tyrosine. Immunoblotting of purified p40 or total yeast extracts with antiphosphotyrosine antibodies and phosphoamino acid analysis of 32P-labeled yeast proteins fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the 40-kDa protein is normally phosphorylated at tyrosine in vivo. 32P-labeled p40 immunoprecipitated from extracts of metabolically labeled cells by affinity-purified anti-p40 antibodies contained both phosphoserine and phosphotyrosine. The gene encoding p40 (YPK1) was cloned from a yeast genomic library by using oligonucleotide probes designed on the basis of the sequence of purified peptides. As deduced from the nucleotide sequence of YPK1, p40 is homologous to known protein kinases, with features that resemble known protein-serine kinases more than known protein-tyrosine kinases. Thus, p40 is a protein kinase which is phosphorylated in vivo and in vitro at both tyrosine and serine residues; it may be a novel type of autophosphorylating tyrosine kinase, a bifunctional (serine/tyrosine-specific) protein kinase, or a serine kinase that is a substrate for an associated tyrosine kinase.
Collapse
Affiliation(s)
- D Dailey
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | | | | | | | |
Collapse
|
29
|
Vanadate-resistant mutants of Saccharomyces cerevisiae show alterations in protein phosphorylation and growth control. Mol Cell Biol 1990. [PMID: 2137555 DOI: 10.1128/mcb.10.3.898] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work describes two spontaneous vanadate-resistant mutants of Saccharomyces cerevisiae with constitutive alterations in protein phosphorylation, growth control, and sporulation. Vanadate has been shown by a number of studies to be an efficient competitor of phosphate in biochemical reactions, especially those that involve phosphoproteins as intermediates or substrates. Resistance to toxic concentrations of vanadate can arise in S. cerevisiae by both recessive and dominant spontaneous mutations in a large number of loci. Mutations in two of the recessive loci, van1-18 and van2-93, resulted in alterations in the phosphorylation of a number of proteins. The mutant van1-18 gene also showed an increase in plasma membrane ATPase activity in vitro and a lowered basal phosphatase activity under alkaline conditions. Cells containing the van2-93 mutant allele had normal levels of plasma membrane ATPase activity, but this activity was not inhibited by vanadate. Both of these mutants failed to enter stationary phase, were heat shock sensitive, showed lowered long-term viability, and sporulated on rich medium in the presence of 2% glucose. The wild-type VAN1 gene was isolated and sequenced. The open reading frame predicts a protein of 522 amino acids, with no significant homology to any genes that have been identified. Diploid cells that contained two mutant alleles of this gene demonstrated defects in spore viability. These data suggest that the VAN1 gene product is involved in regulation of the phosphorylation of a number of proteins, some of which appear to be important in cell growth control.
Collapse
|
30
|
Kanik-Ennulat C, Neff N. Vanadate-resistant mutants of Saccharomyces cerevisiae show alterations in protein phosphorylation and growth control. Mol Cell Biol 1990; 10:898-909. [PMID: 2137555 PMCID: PMC360929 DOI: 10.1128/mcb.10.3.898-909.1990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This work describes two spontaneous vanadate-resistant mutants of Saccharomyces cerevisiae with constitutive alterations in protein phosphorylation, growth control, and sporulation. Vanadate has been shown by a number of studies to be an efficient competitor of phosphate in biochemical reactions, especially those that involve phosphoproteins as intermediates or substrates. Resistance to toxic concentrations of vanadate can arise in S. cerevisiae by both recessive and dominant spontaneous mutations in a large number of loci. Mutations in two of the recessive loci, van1-18 and van2-93, resulted in alterations in the phosphorylation of a number of proteins. The mutant van1-18 gene also showed an increase in plasma membrane ATPase activity in vitro and a lowered basal phosphatase activity under alkaline conditions. Cells containing the van2-93 mutant allele had normal levels of plasma membrane ATPase activity, but this activity was not inhibited by vanadate. Both of these mutants failed to enter stationary phase, were heat shock sensitive, showed lowered long-term viability, and sporulated on rich medium in the presence of 2% glucose. The wild-type VAN1 gene was isolated and sequenced. The open reading frame predicts a protein of 522 amino acids, with no significant homology to any genes that have been identified. Diploid cells that contained two mutant alleles of this gene demonstrated defects in spore viability. These data suggest that the VAN1 gene product is involved in regulation of the phosphorylation of a number of proteins, some of which appear to be important in cell growth control.
Collapse
Affiliation(s)
- C Kanik-Ennulat
- Graduate Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | |
Collapse
|
31
|
Matthews JT, Carroll RD, Stevens JT, Haffey ML. In vitro mutagenesis of the herpes simplex virus type 1 DNA polymerase gene results in altered drug sensitivity of the enzyme. J Virol 1989; 63:4913-8. [PMID: 2552170 PMCID: PMC251137 DOI: 10.1128/jvi.63.11.4913-4918.1989] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A mutation (asparagine 815 to serine 815) was introduced into the herpes simplex virus type 1 (HSV-1) DNA polymerase (pol). The HSV-1 pol enzyme in lysates of Saccharomyces cerevisiae cells expressing the mutant protein showed increased resistance to acyclovir triphosphate and increased sensitivity to phosphonoacetate but was not substantially altered with respect to sensitivity to phosphonoformate or aphidicolin. These results directly demonstrate that both resistance to acyclovir triphosphate and sensitivity to phosphonoacetate can be conferred by this mutation in the absence of other viral factors and that the yeast expression system can be used for structure-function studies on HSV-1 pol.
Collapse
Affiliation(s)
- J T Matthews
- Department of Virology, Squibb Institute for Medical Research, Princeton, New Jersey 08543-4000
| | | | | | | |
Collapse
|
32
|
Haffey ML, Stevens JT, Terry BJ, Dorsky DI, Crumpacker CS, Wietstock SM, Ruyechan WT, Field AK. Expression of herpes simplex virus type 1 DNA polymerase in Saccharomyces cerevisiae and detection of virus-specific enzyme activity in cell-free lysates. J Virol 1988; 62:4493-8. [PMID: 2846866 PMCID: PMC253559 DOI: 10.1128/jvi.62.12.4493-4498.1988] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) (strain 17) DNA polymerase gene has been cloned into an Escherichia coli-yeast shuttle vector fused to the galactokinase gene (GAL-1) promoter. Genes controlled by the GAL-1 promoter are induced by galactose, uninduced by raffinose, and repressed by glucose. Cell extracts from a strain of Saccharomyces cerevisiae harboring this vector (Y-MH202, expresser cells) grown in the presence of galactose and assayed in high salt (100 mM ammonium sulfate) contained a novel DNA polymerase activity. No significant high-salt DNA polymerase activity was detected in extracts from expresser cells grown in the presence of raffinose or in extracts from control cells containing the E. coli-yeast shuttle vector without the HSV-1 DNA polymerase gene grown in the presence of raffinose of galactose. Immunoblot analysis of the cell extracts by using a polyclonal rabbit antiserum prepared against a highly purified HSV-1 DNA polymerase preparation revealed the specific induction of the HSV-1 approximately 140-kilodalton DNA polymerase polypeptide in expresser cells grown in galactose. Extracts from the same cells grown in raffinose or control cells grown in either raffinose or galactose did not contain this immunoreactive polypeptide. The high-salt DNA polymerase activity in the extracts from expresser cells grown in galactose was inhibited greater than 90% by either acyclovir triphosphate or aphidicolin, as expected for HSV-1 DNA polymerase. In addition, the high-salt polymerase enzyme activity could be depleted from extracts by immunoprecipitation by using purified immunoglobulin G from this same polyclonal rabbit antiserum. These results demonstrate the successful expression of functional HSV-1 DNA polymerase enzyme in S. cerevisiae.
Collapse
Affiliation(s)
- M L Haffey
- Department of Microbial Biochemistry and Genetics, Squibb Institute for Medical Research, Princeton, New Jersey 08540-0130
| | | | | | | | | | | | | | | |
Collapse
|