1
|
Shevyrev D, Tereshchenko V, Kozlov V. Immune Equilibrium Depends on the Interaction Between Recognition and Presentation Landscapes. Front Immunol 2021; 12:706136. [PMID: 34394106 PMCID: PMC8362327 DOI: 10.3389/fimmu.2021.706136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we described the structure and organization of antigen-recognizing repertoires of B and T cells from the standpoint of modern immunology. We summarized the latest advances in bioinformatics analysis of sequencing data from T and B cell repertoires and also presented contemporary ideas about the mechanisms of clonal diversity formation at different stages of organism development. At the same time, we focused on the importance of the allelic variants of the HLA genes and spectra of presented antigens for the formation of T-cell receptors (TCR) landscapes. The main idea of this review is that immune equilibrium and proper functioning of immunity are highly dependent on the interaction between the recognition and the presentation landscapes of antigens. Certain changes in these landscapes can occur during life, which can affect the protective function of adaptive immunity. We described some mechanisms associated with these changes, for example, the conversion of effector cells into regulatory cells and vice versa due to the trans-differentiation or bystander effect, changes in the clonal organization of the general TCR repertoire due to homeostatic proliferation or aging, and the background for the altered presentation of some antigens due to SNP mutations of MHC, or the alteration of the presenting antigens due to post-translational modifications. The authors suggest that such alterations can lead to an increase in the risk of the development of oncological and autoimmune diseases and influence the sensitivity of the organism to different infectious agents.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Valeriy Tereshchenko
- Laboratory of Molecular Immunology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Vladimir Kozlov
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
2
|
Yakovenko I, Agronin J, Smith LC, Oren M. Guardian of the Genome: An Alternative RAG/Transib Co-Evolution Hypothesis for the Origin of V(D)J Recombination. Front Immunol 2021; 12:709165. [PMID: 34394111 PMCID: PMC8355894 DOI: 10.3389/fimmu.2021.709165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
The appearance of adaptive immunity in jawed vertebrates is termed the immunological 'Big Bang' because of the short evolutionary time over which it developed. Underlying it is the recombination activating gene (RAG)-based V(D)J recombination system, which initiates the sequence diversification of the immunoglobulins and lymphocyte antigen receptors. It was convincingly argued that the RAG1 and RAG2 genes originated from a single transposon. The current dogma postulates that the V(D)J recombination system was established by the split of a primordial vertebrate immune receptor gene into V and J segments by a RAG1/2 transposon, in parallel with the domestication of the same transposable element in a separate genomic locus as the RAG recombinase. Here, based on a new interpretation of previously published data, we propose an alternative evolutionary hypothesis suggesting that two different elements, a RAG1/2 transposase and a Transib transposon invader with RSS-like terminal inverted repeats, co-evolved to work together, resulting in a functional recombination process. This hypothesis offers an alternative understanding of the acquisition of recombinase function by RAGs and the origin of the V(D)J system.
Collapse
Affiliation(s)
- Iryna Yakovenko
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Jacob Agronin
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Matan Oren
- Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
3
|
Loveless TB, Grotts JH, Schechter MW, Forouzmand E, Carlson CK, Agahi BS, Liang G, Ficht M, Liu B, Xie X, Liu CC. Lineage tracing and analog recording in mammalian cells by single-site DNA writing. Nat Chem Biol 2021; 17:739-747. [PMID: 33753928 PMCID: PMC8891441 DOI: 10.1038/s41589-021-00769-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023]
Abstract
Studying cellular and developmental processes in complex multicellular organisms can require the non-destructive observation of thousands to billions of cells deep within an animal. DNA recorders address the staggering difficulty of this task by converting transient cellular experiences into mutations at defined genomic sites that can be sequenced later in high throughput. However, existing recorders act primarily by erasing DNA. This is problematic because, in the limit of progressive erasure, no record remains. We present a DNA recorder called CHYRON (Cell History Recording by Ordered Insertion) that acts primarily by writing new DNA through the repeated insertion of random nucleotides at a single locus in temporal order. To achieve in vivo DNA writing, CHYRON combines Cas9, a homing guide RNA and the template-independent DNA polymerase terminal deoxynucleotidyl transferase. We successfully applied CHYRON as an evolving lineage tracer and as a recorder of user-selected cellular stimuli.
Collapse
Affiliation(s)
- Theresa B Loveless
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Joseph H Grotts
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Mason W Schechter
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Elmira Forouzmand
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Courtney K Carlson
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Bijan S Agahi
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Guohao Liang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Michelle Ficht
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Beide Liu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Xiaohui Xie
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Chang C Liu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Loc'h J, Gerodimos CA, Rosario S, Tekpinar M, Lieber MR, Delarue M. Structural evidence for an in trans base selection mechanism involving Loop1 in polymerase μ at an NHEJ double-strand break junction. J Biol Chem 2019; 294:10579-10595. [PMID: 31138645 DOI: 10.1074/jbc.ra119.008739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/13/2019] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA polymerase (Pol) X family members such as Pol μ and terminal deoxynucleotidyl transferase (TdT) are important components for the nonhomologous DNA end-joining (NHEJ) pathway. TdT participates in a specialized version of NHEJ, V(D)J recombination. It has primarily nontemplated polymerase activity but can take instructions across strands from the downstream dsDNA, and both activities are highly dependent on a structural element called Loop1. However, it is unclear whether Pol μ follows the same mechanism, because the structure of its Loop1 is disordered in available structures. Here, we used a chimeric TdT harboring Loop1 of Pol μ that recapitulated the functional properties of Pol μ in ligation experiments. We solved three crystal structures of this TdT chimera bound to several DNA substrates at 1.96-2.55 Å resolutions, including a full DNA double-strand break (DSB) synapsis. We then modeled the full Pol μ sequence in the context of one these complexes. The atomic structure of an NHEJ junction with a Pol X construct that mimics Pol μ in a reconstituted system explained the distinctive properties of Pol μ compared with TdT. The structure suggested a mechanism of base selection relying on Loop1 and taking instructions via the in trans templating base independently of the primer strand. We conclude that our atomic-level structural observations represent a paradigm shift for the mechanism of base selection in the Pol X family of DNA polymerases.
Collapse
Affiliation(s)
- Jérôme Loc'h
- From the Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, UMR 3528 du CNRS, 25 Rue du Dr. Roux, 75015 Paris, France and
| | - Christina A Gerodimos
- the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology and the Department of Biological Sciences, Section of Molecular and Computational Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Sandrine Rosario
- From the Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, UMR 3528 du CNRS, 25 Rue du Dr. Roux, 75015 Paris, France and
| | - Mustafa Tekpinar
- From the Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, UMR 3528 du CNRS, 25 Rue du Dr. Roux, 75015 Paris, France and
| | - Michael R Lieber
- the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology and the Department of Biological Sciences, Section of Molecular and Computational Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Marc Delarue
- From the Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, UMR 3528 du CNRS, 25 Rue du Dr. Roux, 75015 Paris, France and
| |
Collapse
|
5
|
Funck T, Barnkob MB, Holm N, Ohm-Laursen L, Mehlum CS, Möller S, Barington T. Nucleotide Composition of Human Ig Nontemplated Regions Depends on Trimming of the Flanking Gene Segments, and Terminal Deoxynucleotidyl Transferase Favors Adding Cytosine, Not Guanosine, in Most VDJ Rearrangements. THE JOURNAL OF IMMUNOLOGY 2018; 201:1765-1774. [PMID: 30097530 DOI: 10.4049/jimmunol.1800100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023]
Abstract
The formation of nontemplated (N) regions during Ig gene rearrangement is a major contributor to Ab diversity. To gain insights into the mechanisms behind this, we studied the nucleotide composition of N regions within 29,962 unique human VHDJH rearrangements and 8728 unique human DJH rearrangements containing exactly one identifiable D gene segment and thus two N regions, N1 and N2. We found a distinct decreasing content of cytosine (C) and increasing content of guanine (G) across each N region, suggesting that N regions are typically generated by concatenation of two 3' overhangs synthesized by addition of nucleoside triphosphates with a preference for dCTP. This challenges the general assumption that the terminal deoxynucleotidyl transferase favors dGTP in vivo. Furthermore, we found that the G and C gradients depended strongly on whether the germline gene segments were trimmed or not. Our data show that C-enriched N addition preferentially happens at trimmed 3' ends of VH, D, and JH gene segments, indicating a dependency of the transferase mechanism upon the nuclease mechanism.
Collapse
Affiliation(s)
- Tina Funck
- Department of Clinical Biochemistry, Zealand University Hospital, Roskilde 4000, Denmark.,Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark
| | - Mike Bogetofte Barnkob
- Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark.,Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxfordshire OX3 9DS, United Kingdom
| | - Nanna Holm
- Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark
| | - Line Ohm-Laursen
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| | - Camilla Slot Mehlum
- Department of Otorhinolaryngology-Head and Neck Surgery, Odense University Hospital, Odense 5000, Denmark
| | - Sören Möller
- OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense 5000, Denmark; and.,Clinical Department, University of Southern Denmark, Odense 5000, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark; .,Clinical Department, University of Southern Denmark, Odense 5000, Denmark
| |
Collapse
|
6
|
Hassan M, Abdullah HMA, Wahid A, Qamar MA. Terminal deoxynucleotidyl transferase (TdT)-negative T-cell lymphoblastic lymphoma with loss of the T-cell lineage-specific marker CD3 at relapse: a rare entity with an aggressive outcome. BMJ Case Rep 2018; 2018:bcr-2018-224570. [PMID: 29884716 DOI: 10.1136/bcr-2018-224570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Terminal deoxynucleotidyl transferase (TdT)-negative T-cell lymphoblastic lymphoma is a variant of T-cell lymphoblastic lymphoma/T-cell lymphoblastic leukaemia. TdT is a marker of immaturity expressed in 90%-95% cases of lymphoblastic lymphoma and useful in differentiating it from other mature lymphomas/leukaemias. It has been associated with poorer response to chemotherapy and a more aggressive outcome. Here we present a case of TdT-negative T-cell lymphoblastic lymphoma in a 28-year-old man who presented with superior vena cava syndrome. The patient was treated with hyper-cyclophosphamide,vincristine, Adriamycin, dexamethasone (CVAD), however unfortunately suffered a relapse 1 year later. A unique feature of our case was that on relapse, the patient lost expression of the T-cell lineage-specific marker CD3, which has previously not been reported in association with TdT-negative T-cell lymphoblastic lymphoma. The patient failed to respond to chemotherapy on his relapse and died.
Collapse
Affiliation(s)
- Masroor Hassan
- Department of Pathology, Rehman Medical Institute, Peshawar, Pakistan
| | - Hafez Mohammad Ammar Abdullah
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Abdul Wahid
- Department of Oncology, Rehman Medical Institute, Peshawar, Pakistan
| | | |
Collapse
|
7
|
Gholami S, Mohammadi SM, Movasaghpour Akbari A, Abedelahi A, Alihemmati A, Fallahi S, Nozad Charoudeh H. Terminal Deoxynucleotidyl Transferase (TdT) Inhibiti on of Cord Blood Derived B and T Cells Expansion. Adv Pharm Bull 2017; 7:215-220. [PMID: 28761823 PMCID: PMC5527235 DOI: 10.15171/apb.2017.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 01/01/2023] Open
Abstract
Purpose: Terminal deoxynucleotidyl transferase(TdT) is a DNA polymerase that is present in immature pre-B and pre-T cells. TdT inserts N-nucleotides to the V (D) J gene segment during rearrangements of genes, therefore, it plays a vital role in the development and variation of the immune system in vertebrates. Here we evaluated the relationship between cytokines like interleukin-2 (IL-2), interleukin-7 (IL-7), and interleukin-15 (IL-15) and TdT expression in cord blood mononuclear cells and also effect of inhibition in the expansion of B and T cells derived from cord blood. Methodes: The cord blood mononuclear cells were cultured with different combination of cytokines for 21days, which they were harvested in definite days (7, 14 and 21) and evaluated by flow cytometry. Results: Our data indicated that TdT expression increased in cord blood mononuclear cells using immune cell key cytokines without being dependent on the type of cytokines. TdT inhibition reduced both the expansion of B and T cells derived from cord blood and also declined the apoptosis and proliferation. Considered together, TdT played an important role in the control of the expansion of B and T cells derived from cord blood. Conclusion: considered together, it was observed that TdT expression was increased by cytokines and TdT inhibition not only reduced B and Tcells derived from cord blood, but it also affected the rate of apoptosis and proliferation.
Collapse
Affiliation(s)
- Sanaz Gholami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Anatomical Sciences Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ali Abedelahi
- Anatomical Sciences Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Anatomical Sciences Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Fallahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
8
|
Hardy RR, Hayakawa K. Perspectives on fetal derived CD5+ B1 B cells. Eur J Immunol 2015; 45:2978-84. [PMID: 26339791 DOI: 10.1002/eji.201445146] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/21/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023]
Abstract
CD5(+) B-cell origins and their predisposition to lymphoma are long-standing issues. Transfer of fetal and adult liver BM Pro-B cells generates B cells with distinct phenotypes: fetal cells generate IgM(high) IgD(low) CD5(+) , whereas adult cells IgM(low) IgD(high) CD5(-) . This suggests a developmental switch in B lymphopoiesis, similar to the switch in erythropoiesis. Comparison of mRNA and miRNA expression in fetal and adult Pro-B cells revealed differential expression of Lin28b mRNA and Let-7 miRNA, providing evidence that this regulatory axis functions in the switch. Recent work has shown that Arid3a is a key transcription factor mediating fetal-type B-cell development. Lin28b-promoted fetal development generates CD5(+) B cells as a consequence of positively selected self-reactivity. CD5(+) B cells play important roles in clearance of apoptotic cells and in protective immune responses, but also pose a risk of progression to leukemia/lymphoma. Differential Lin28b expression in fetal and adult human B-cell precursors showed that human B-cell development may resemble mouse, with self-reactive "innate-like" B cells generated early in life. It remains to be determined whether such human B cells have a higher propensity to leukemic progression. This review describes our recent research with CD5(+) B cells and presents our perspective on their role in disease.
Collapse
|
9
|
Gouge J, Rosario S, Romain F, Poitevin F, Béguin P, Delarue M. Structural basis for a novel mechanism of DNA bridging and alignment in eukaryotic DSB DNA repair. EMBO J 2015; 34:1126-42. [PMID: 25762590 PMCID: PMC4406656 DOI: 10.15252/embj.201489643] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic DNA polymerase mu of the PolX family can promote the association of the two 3'-protruding ends of a DNA double-strand break (DSB) being repaired (DNA synapsis) even in the absence of the core non-homologous end-joining (NHEJ) machinery. Here, we show that terminal deoxynucleotidyltransferase (TdT), a closely related PolX involved in V(D)J recombination, has the same property. We solved its crystal structure with an annealed DNA synapsis containing one micro-homology (MH) base pair and one nascent base pair. This structure reveals how the N-terminal domain and Loop 1 of Tdt cooperate for bridging the two DNA ends, providing a templating base in trans and limiting the MH search region to only two base pairs. A network of ordered water molecules is proposed to assist the incorporation of any nucleotide independently of the in trans templating base. These data are consistent with a recent model that explains the statistics of sequences synthesized in vivo by Tdt based solely on this dinucleotide step. Site-directed mutagenesis and functional tests suggest that this structural model is also valid for Pol mu during NHEJ.
Collapse
Affiliation(s)
- Jérôme Gouge
- Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, UMR 3528 du C.N.R.S., Paris, France
| | - Sandrine Rosario
- Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, UMR 3528 du C.N.R.S., Paris, France
| | - Félix Romain
- Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, UMR 3528 du C.N.R.S., Paris, France
| | - Frédéric Poitevin
- Institut de Physique Théorique, CEA-Saclay, CNRS URA 2306, Gif-sur-Yvette, France
| | - Pierre Béguin
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, France
| | - Marc Delarue
- Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, UMR 3528 du C.N.R.S., Paris, France
| |
Collapse
|
10
|
IJspeert H, Wentink M, van Zessen D, Driessen GJ, Dalm VASH, van Hagen MP, Pico-Knijnenburg I, Simons EJ, van Dongen JJM, Stubbs AP, van der Burg M. Strategies for B-cell receptor repertoire analysis in primary immunodeficiencies: from severe combined immunodeficiency to common variable immunodeficiency. Front Immunol 2015; 6:157. [PMID: 25904919 PMCID: PMC4389565 DOI: 10.3389/fimmu.2015.00157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/23/2015] [Indexed: 01/08/2023] Open
Abstract
The antigen receptor repertoires of B- and T-cells form the basis of the adaptive immune response. The repertoires should be sufficiently diverse to recognize all possible pathogens. However, careful selection is needed to prevent responses to self or harmless antigens. Limited antigen receptor repertoire diversity leads to immunodeficiency, whereas unselected or misdirected repertoires can result in autoimmunity. The antigen receptor repertoire harbors information about abnormalities in many immunological disorders. Recent developments in next generation sequencing allow the analysis of the antigen receptor repertoire in much greater detail than ever before. Analyzing the antigen receptor repertoire in patients with mutations in genes responsible for the generation of the antigen receptor repertoire will give new insights into repertoire formation and selection. In this perspective, we describe strategies and considerations for analysis of the naive and antigen-selected B-cell repertoires in primary immunodeficiency patients with a focus on severe combined immunodeficiency and common variable immunodeficiency.
Collapse
Affiliation(s)
- Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Marjolein Wentink
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - David van Zessen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands ; Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Gertjan J Driessen
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Virgil A S H Dalm
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Martin P van Hagen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Ingrid Pico-Knijnenburg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Erik J Simons
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Andrew P Stubbs
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| |
Collapse
|
11
|
ATM influences the efficiency of TCRβ rearrangement, subsequent TCRβ-dependent T cell development, and generation of the pre-selection TCRβ CDR3 repertoire. PLoS One 2013; 8:e62188. [PMID: 23626787 PMCID: PMC3633875 DOI: 10.1371/journal.pone.0062188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/19/2013] [Indexed: 11/26/2022] Open
Abstract
Generation and resolution of DNA double-strand breaks is required to assemble antigen-specific receptors from the genes encoding V, D, and J gene segments during recombination. The present report investigates the requirement for ataxia telangiectasia-mutated (ATM) kinase, a component of DNA double-strand break repair, during TCRβ recombination and in subsequent TCRβ-dependent repertoire generation and thymocyte development. CD4−CD8− double negative stage 2/3 thymocytes from ATM-deficient mice have both an increased frequency of cells with DNA break foci at TCRβ loci and reduced Vβ-DJβ rearrangement. Sequencing of TCRβ complementarity-determining region 3 demonstrates that ATM-deficient CD4+CD8+ double positive thymocytes and peripheral T cells have altered processing of coding ends for both in-frame and out-of-frame TCRβ rearrangements, providing the unique demonstration that ATM deficiency alters the expressed TCRβ repertoire by a selection-independent mechanism. ATMKO thymi exhibit a partial developmental block in DN cells as they negotiate the β-selection checkpoint to become double negative stage 4 and CD4+CD8+ thymocytes, resulting in reduced numbers of CD4+CD8+ cells. Importantly, expression of a rearranged TCRβ transgene substantially reverses this defect in CD4+CD8+ cells, directly linking a requirement for ATM during endogenous TCRβ rearrangement to subsequent TCRβ-dependent stages of development. These results demonstrate that ATM plays an important role in TCRβ rearrangement, generation of the TCRβ CDR3 repertoire, and efficient TCRβ-dependent T cell development.
Collapse
|
12
|
Sun X, Wertz N, Lager K, Sinkora M, Stepanova K, Tobin G, Butler JE. Antibody repertoire development in fetal and neonatal piglets. XXII. λ Rearrangement precedes κ rearrangement during B-cell lymphogenesis in swine. Immunology 2012; 137:149-59. [PMID: 22724577 PMCID: PMC3461396 DOI: 10.1111/j.1365-2567.2012.03615.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 01/01/2023] Open
Abstract
VDJ and VJ rearrangements, expression of RAG-1, Tdt and VpreB, and the presence of signal joint circles (SJC) were used to identify sites of B-cell lymphogenesis. VDJ, VλJλ but not VκJκ rearrangements or SJC were recovered from yolk sac (YS) at 20 days of gestation (DG) along with strong expression of VpreB and RAG-1 but weak Tdt expression. VλJλ rearrangements but not VκJκ rearrangements were recovered from fetal liver at 30-50 DG. SJC were pronounced in bone marrow at 95 DG where VκJκ rearrangements were first recovered. The VλJλ rearrangements recovered at 20-50 DG used some of the same Vλ and Jλ segments seen in older fetuses and adult animals. Hence the textbook paradigm for the order of light-chain rearrangement does not apply to swine. Consistent with weak Tdt expression in early sites of lymphogenesis, N-region additions in VDJ rearrangements were more frequent at 95 DG. Junctional diversity in VλJλ rearrangement was limited at all stages of development. There was little evidence for B-cell lymphogenesis in the ileal Peyer's patches. The widespread recovery of VpreB transcripts in whole, non-lymphoid tissue was unexpected as was its recovery from bone marrow and peripheral blood monocytes. Based on recovery of SJC, B-cell lymphogenesis continues for at least 5 weeks postpartum.
Collapse
Affiliation(s)
- Xiuzhu Sun
- Department of Microbiology and Interdisciplinary Immunology Program, University of Iowa College of Medicine, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Motea EA, Berdis AJ. Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1151-66. [PMID: 19596089 DOI: 10.1016/j.bbapap.2009.06.030] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/27/2009] [Accepted: 06/30/2009] [Indexed: 01/06/2023]
Abstract
Nearly every DNA polymerase characterized to date exclusively catalyzes the incorporation of mononucleotides into a growing primer using a DNA or RNA template as a guide to direct each incorporation event. There is, however, one unique DNA polymerase designated terminal deoxynucleotidyl transferase that performs DNA synthesis using only single-stranded DNA as the nucleic acid substrate. In this chapter, we review the biological role of this enigmatic DNA polymerase and the biochemical mechanism for its ability to perform DNA synthesis in the absence of a templating strand. We compare and contrast the molecular events for template-independent DNA synthesis catalyzed by terminal deoxynucleotidyl transferase with other well-characterized DNA polymerases that perform template-dependent synthesis. This includes a quantitative inspection of how terminal deoxynucleotidyl transferase binds DNA and dNTP substrates, the possible involvement of a conformational change that precedes phosphoryl transfer, and kinetic steps that are associated with the release of products. These enzymatic steps are discussed within the context of the available structures of terminal deoxynucleotidyl transferase in the presence of DNA or nucleotide substrate. In addition, we discuss the ability of proteins involved in replication and recombination to regulate the activity of the terminal deoxynucleotidyl transferase. Finally, the biomedical role of this specialized DNA polymerase is discussed focusing on its involvement in cancer development and its use in biomedical applications such as labeling DNA for detecting apoptosis.
Collapse
Affiliation(s)
- Edward A Motea
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
14
|
Nakajima PB, Kiefer K, Price A, Bosma GC, Bosma MJ. Two distinct populations of H chain-edited B cells show differential surrogate L chain dependence. THE JOURNAL OF IMMUNOLOGY 2009; 182:3583-96. [PMID: 19265137 DOI: 10.4049/jimmunol.0802533] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing autoreactive B cells may edit (change) their specificity by secondary H or L chain gene rearrangement. Recently, using mice hemizygous for a site-directed VDJH and VJkappa transgene (tg) encoding an autoreactive Ab, we reported ongoing L chain editing not only in bone marrow cells with a pre-B/immature B cell phenotype but also in immature/transitional splenic B cells. Using the same transgenic model, we report here that editing at the H chain locus appears to occur exclusively in bone marrow cells with a pro-B phenotype. H chain editing is shown to involve VH replacement at the tg allele or VH rearrangement at the wild-type (wt) allele when the tg is inactivated by nonproductive VH replacement. VH replacement/rearrangement at the tg/wt alleles was found to entail diverse usage of VH genes. Whereas the development of edited B cells expressing the wt allele was dependent on the lambda5 component of the surrogate L chain, the development of B cells expressing the tg allele, including those with VH replacement, appeared to be lambda5 independent. We suggest that the unique CDR3 region of the tg-encoded muH chain is responsible for the lambda5 independence of tg-expressing B cells.
Collapse
|
15
|
Rowley B, Tang L, Shinton S, Hayakawa K, Hardy RR. Autoreactive B-1 B cells: constraints on natural autoantibody B cell antigen receptors. J Autoimmun 2007; 29:236-45. [PMID: 17889506 PMCID: PMC2096705 DOI: 10.1016/j.jaut.2007.07.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
B-1 B-cells constitute a distinctive population of cells that are enriched for self-reactive B cell receptors (BCRs). These BCRs are encoded by a restricted set of heavy and light chains, including heavy chains that lack nontemplated nucleotide additions at the V-D and D-J joining regions. One prototype natural autoantibody produced by B-1 B cells binds to a cryptic determinant exposed on senescent red blood cells that includes the phosphatidylcholine (PtC) moiety. The V(H)11Vkappa9 BCR, which accounts for a large fraction of the anti-PtC specificity, is underrepresented in other B-cell populations, including newly formed B cells in bone marrow, and the transitional B cells, follicular B cells, and marginal zone B cells in spleen. Previous work has shown that V(H)11 heavy chains pair ineffectively with surrogate light chain (SLC) and so do not promote development in bone marrow, but instead allow fetal liver maturation because of a fetal preference for weaker pre-BCR signaling. Such inefficient SLC pairing constitutes one constraint on the maturation of B cells containing V(H)11 rearrangements that biases their generation to fetal development. Here, we examine another possible bottleneck to the B1 cell repertoire: light chain pairing with V(H)11 heavy chain, finding very significant preferences.
Collapse
MESH Headings
- Animals
- Autoantibodies/immunology
- Autoantigens/immunology
- Autoimmunity
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- Cell Differentiation/immunology
- Female
- Flow Cytometry
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Gene Rearrangement, B-Lymphocyte, Light Chain
- Immunoglobulin Light Chains/immunology
- Immunoglobulin Light Chains, Surrogate/immunology
- Mice
- Mice, Inbred ICR
- Mice, Transgenic
- Polymerase Chain Reaction
- Pre-B Cell Receptors/immunology
- Precursor Cells, B-Lymphoid/cytology
- Precursor Cells, B-Lymphoid/immunology
- Receptors, Antigen, B-Cell/immunology
- Transduction, Genetic
- Transfection
Collapse
Affiliation(s)
- Ben Rowley
- Division of Basic Science, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|
16
|
Hardy RR, Hayakawa K. Development of B cells producing natural autoantibodies to thymocytes and senescent erythrocytes. ACTA ACUST UNITED AC 2004; 26:363-75. [PMID: 15611857 DOI: 10.1007/s00281-004-0183-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
Natural antibodies produced by CD5+ B-1 B cells include those with specificity for senescent erythrocytes (anti-BrMRBC, anti-PtC) and for thymocytes (anti-thymocyte autoantibody, ATA). Here we describe work from our laboratories studying two prototypic examples, V(H)11Vkappa9-encoded anti-BrMRBC and V(H)3609Vkappa21c-encoded ATA. Using V(H)11-mu transgenic mice, we discovered that certain natural autoantibodies utilize V(H) genes that are selected against in bone marrow B cell development, but not fetal liver, effectively restricting their generation to fetal/neonatal life. Studies with ATA-mu transgenic mice demonstrated a critical requirement for self antigen in the accumulation of B cells with this specificity and for the production of high levels of serum ATA. Finally, analysis of B cell development in ATA-mu kappa transgenic mice revealed two distinct responses by B cells to expression of this B cell receptor (BCR): most developing B cells in spleen of adult mice were blocked at an immature stage and only escaped apoptosis by editing their BCR to eliminate the ATA specificity; nevertheless, high levels of serum ATA were observed, indicating that some B cells differentiated to antibody-forming cells without altering their specificity. Thus, our studies reveal mechanisms for restricting the generation of B cells producing natural autoantibodies, demonstrate a key positive selection step in their development, and show that most developing B cells in adult mice bearing such specificities fail to reach a mature stage.
Collapse
Affiliation(s)
- Richard R Hardy
- Division of Basic Sciences, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111, USA.
| | | |
Collapse
|
17
|
Peralta-Zaragoza O, Recillas-Targa F, Madrid-Marina V. Terminal deoxynucleotidyl transferase is down-regulated by AP-1-like regulatory elements in human lymphoid cells. Immunology 2004; 111:195-203. [PMID: 15027905 PMCID: PMC1782414 DOI: 10.1111/j.0019-2805.2003.01791.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Terminal deoxynucleotidyl transferase (TdT) is a template-independent DNA polymerase that catalyses the incorporation of deoxyribonucleotides into the 3'-hydroxyl end of DNA templates and is thought to increase junctional diversity of antigen receptor genes. TdT is expressed only on immature lymphocytes and acute lymphoblastic leukaemia cells and its transcriptional expression is tightly regulated. We had previously found that protein kinase C (PKC) activation down-regulates TdT expression. PKC-activation induces the synthesis of the Fos and Jun proteins, known as the major components of activation protein 1 (AP-1) transcriptional factor implicated in transcriptional control. Here we report the identification of several DNA-protein interactions within the TdT promoter region in non-TdT expressing human cells. Sequence analysis revealed the presence of a putative AP-1-like DNA-binding site, suggesting that AP-1 may play a relevant role in TdT transcriptional regulation. Using a different source of nuclear extracts and the AP-1-TdT motif as a probe we identified several DNA-protein retarded complexes in electrophoretic mobility shift assays. Super-band shifting analysis using an antibody against c-Jun protein confirmed that the main interaction is produced by a nuclear factor that belongs to the AP-1 family transcription factors. Our findings suggest that the TdT gene expression is down-regulated, at least in part, through AP-1-like transcription factors.
Collapse
Affiliation(s)
- Oscar Peralta-Zaragoza
- National Institute of Public Health, Division of Molecular Biology of Pathogens, Morelos, México
| | | | | |
Collapse
|
18
|
Hodges E, Krishna MT, Pickard C, Smith JL. Diagnostic role of tests for T cell receptor (TCR) genes. J Clin Pathol 2003; 56:1-11. [PMID: 12499424 PMCID: PMC1769865 DOI: 10.1136/jcp.56.1.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rapid advances in molecular biological techniques have made it possible to study disease pathogenesis at a genomic level. T cell receptor (TCR) gene rearrangement is an important event in T cell ontogeny that enables T cells to recognise antigens specifically, and any dysregulation in this complex yet highly regulated process may result in disease. Using techniques such as Southern blot hybridisation, polymerase chain reaction, and flow cytometry it has been possible to characterise T cell proliferations in malignancy and in diseases where T cells have been implicated in the pathogenesis. The main aim of this article is to discuss briefly the process of TCR gene rearrangement and highlight the disorders in which expansions or clonal proliferations of T cells have been recognised. It will also describe various methods that are currently used to study T cell populations in body fluids and tissue, their diagnostic role, and current limitations of the methodology.
Collapse
Affiliation(s)
- E Hodges
- Wessex Immunology, Southampton University Hospitals NHS Trust, Tremona Road, Southampton SO16 6YD, UK.
| | | | | | | |
Collapse
|
19
|
Hirose Y, Kiyoi H, Itoh K, Kato K, Saito H, Naoe T. B-cell precursors differentiated from cord blood CD34+ cells are more immature than those derived from granulocyte colony-stimulating factor-mobilized peripheral blood CD34+ cells. Immunology 2001; 104:410-7. [PMID: 11899426 PMCID: PMC1783328 DOI: 10.1046/j.1365-2567.2001.01336.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Umbilical cord blood (CB) has been widely used instead of bone marrow (BM) and peripheral blood (PB) for stem cell transplantation (SCT). However, problems of sustained immunodeficiency after CB transplantation remain to be resolved. To elucidate the mechanism of immunodeficiency, we compared the characteristics of B cells differentiated in vitro from CD34+ cells of CB with those of PB. Purified CD34+ cells from CB and PB were cultured on murine stroma cell-line MS-5 with stem cell factor and granulocyte colony-stimulating factor for 6 weeks. The B-cell precursors (pre-B cells) that differentiated in this culture system, were analysed as to their immunoglobulin heavy chain (IgH) variable region gene repertoire and the expression of B-cell differentiation-related genes. CD10+ CD19+ pre-B cells were differentiated from both PB and CB. Although the usages of IgH gene segments in pre-B cells differentiated from CB and PB were similar, the N region was significantly shorter in CB-derived than PB-derived cells. Productive rearrangements were significantly fewer in cells of CB than PB in the third week. Among a number of B-cell differentiation-related genes, the terminal deoxynucleotidyl transferase (TdT) gene was not expressed in CB-derived cells during the culture. These results indicated that immature features of pre-B cells from CB, such as lack of TdT expression, and a short N region and few productive rearrangements in the IgH gene, might cause the delay in mature B-cell production.
Collapse
Affiliation(s)
- Yuka Hirose
- Department of Infectious Diseases, Nagoya University School of MedicineNagoya
| | - Hitoshi Kiyoi
- Department of Infectious Diseases, Nagoya University School of MedicineNagoya
| | - Katsuhiko Itoh
- Department of Clinical Molecular Biology, Kyoto University Faculty of MedicineKyoto
| | - Koji Kato
- Children's Medical Centre, Japanese Red Cross Nagoya First HospitalNagoya
| | - Hidehiko Saito
- Department of Infectious Diseases, Nagoya University School of MedicineNagoya
- Department of Medicine, Nagoya National HospitalNagoya, Japan
| | - Tomoki Naoe
- Department of Infectious Diseases, Nagoya University School of MedicineNagoya
| |
Collapse
|
20
|
Abstract
The enormous diversity of immunoglobulin (Ig) variable (V) gene sequences encoding the antibody repertoire are formed by the somatic recombination of relatively few genetic elements. In B-lineage malignancies, Ig gene rearrangements have been widely used for determining clonality and cell origin. The recent development of rapid cloning and sequencing techniques has resulted in a substantial accumulation of IgV region sequences at various stages of B-cell development and has revealed stage-specific trends in the use of V, diversity, joining genes, the degree of noncoding nucleotide addition, and the rate of somatic mutations. Furthermore, sequences from B-lineage malignant cells nearly reflect the characteristics of the normal counterpart at each respective stage of development. Alternatively, from the IgV region structure of the malignant cells, it is possible to speculate at which stage of B-cell development the cells were transformed. As the complete nucleotide sequences of the human Ig heavy and Ig light V region loci have now been determined, the study of Ig genetics has entered into the super-information era.
Collapse
Affiliation(s)
- H Kiyoi
- Department of Infectious Diseases, Nagoya University School of Medicine, Japan.
| | | |
Collapse
|
21
|
Sun T, Storb U. Insertion of phosphoglycerine kinase (PGK)-neo 5' of Jlambda1 dramatically enhances VJlambda1 rearrangement. J Exp Med 2001; 193:699-712. [PMID: 11257137 PMCID: PMC2193413 DOI: 10.1084/jem.193.6.699] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2000] [Accepted: 02/12/2001] [Indexed: 01/09/2023] Open
Abstract
Gene-targeted mice were generated with a loxP-neomycin resistance gene (neo(r)) cassette inserted upstream of the Jlambda1 region and replacement of the glycine 154 codon in the Clambda1 gene with a serine codon. This insertion dramatically increases Vlambda1-Jlambda1 recombination. Jlambda1 germline transcription levels in pre-B cells and thymus cells are also greatly increased, apparently due to the strong housekeeping phosphoglycerine kinase (PGK) promoter driving the neo gene. In contrast, deletion of the neo gene causes a significant decrease in VJlambda1 recombination to levels below those in normal mice. This reduction is due to the loxP site left on the chromosome which reduces the Jlambda1 germline transcription in cis. Thus, the correlation between germline transcription and variable (V), diversity (D), and joining (J) recombination is not just an all or none phenomenon. Rather, the transcription efficiency is directly associated with the recombination efficiency. Furthermore, Jlambda1 and Vlambda1 germline transcription itself is not sufficient to lead to VJ recombination in T cells or early pre-B cells. The findings may suggest that in vivo: (a) locus and cell type-specific transactivators direct the immunoglobulin or T cell receptor loci, respectively, to a "recombination factory" in the nucleus, and (b) transcription complexes deliver V(D)J recombinase to the recombination signal sequences.
Collapse
Affiliation(s)
- Tianhe Sun
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Ursula Storb
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
22
|
Sale JE, Bemark M, Williams GT, Jolly CJ, Ehrenstein MR, Rada C, Milstein C, Neuberger MS. In vivo and in vitro studies of immunoglobulin gene somatic hypermutation. Philos Trans R Soc Lond B Biol Sci 2001; 356:21-8. [PMID: 11205326 PMCID: PMC1087687 DOI: 10.1098/rstb.2000.0744] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Following antigen encounter, two distinct processes modify immunoglobulin genes. The variable region is diversified by somatic hypermutation while the constant region may be changed by class-switch recombination. Although both genetic events can occur concurrently within germinal centre B cells, there are examples of each occurring independently of the other. Here we compare the contributions of class-switch recombination and somatic hypermutation to the diversification of the serum immunoglobulin repertoire and review evidence that suggests that, despite clear differences, the two processes may share some aspects of their mechanism in common.
Collapse
Affiliation(s)
- J E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Benedict CL, Gilfillan S, Kearney JF. The long isoform of terminal deoxynucleotidyl transferase enters the nucleus and, rather than catalyzing nontemplated nucleotide addition, modulates the catalytic activity of the short isoform. J Exp Med 2001; 193:89-99. [PMID: 11136823 PMCID: PMC2195880 DOI: 10.1084/jem.193.1.89] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1999] [Accepted: 11/15/2000] [Indexed: 11/18/2022] Open
Abstract
During variable/diversity/joining (V[D]J) recombination, the enzyme terminal deoxynucleotidyl transferase (Tdt) adds random nucleotides at the junctions of the rearranging gene segments, increasing diversity of the antibody (Ab) and T cell receptor repertoires. Two splice variants of Tdt have been described, but only one (short isoform of Tdt [TdtS]) has been convincingly demonstrated to catalyze nontemplated (N) addition in vitro. We have expressed each splice variant of Tdt in transgenic (Tg) mice and found that the TdtS transgene catalyzes N addition on the endogenous Tdt(-/)- background and in fetal liver, but that the long isoform of Tdt (TdtL) transgene does neither. In contrast to previous in vitro results, both TdtS and TdtL are translocated to the nucleus in our model. Furthermore, TdtL/TdtS double Tg mice exhibit less N addition in fetal liver than do TdtS Tg mice. Whereas the TdtS transgene was shown to have functional consequences on the antiphosphorylcholine (PC) B cell repertoire, TdtL Tg mice exhibit a normal PC response, and Tdt(-/)- mice actually exhibit an increase in the PC response and in TEPC 15 idiotype(+) Ab production. We conclude that TdtL localizes to the nucleus in vivo where it serves to modulate TdtS function.
Collapse
Affiliation(s)
- Cindy L. Benedict
- Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama at Birmingham, Alabama 35294
| | - Susan Gilfillan
- The Basel Institute for Immunology, CH-4005 Basel, Switzerland
| | - John F. Kearney
- Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama at Birmingham, Alabama 35294
| |
Collapse
|
24
|
Villa A, Santagata S, Bozzi F, Imberti L, Notarangelo LD. Omenn syndrome: a disorder of Rag1 and Rag2 genes. J Clin Immunol 1999; 19:87-97. [PMID: 10226883 DOI: 10.1023/a:1020550432126] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In vertebrates, generation of the T- and B-cell repertoire relies on genomic rearrangement of T-cell receptor and immunoglobulin gene coding segments. This process, known as V(D)J recombination, is initiated by the lymphoid specific proteins Rag1 and Rag2. Both in humans and in animal models, mutations that abrogate expression of either the Rag1 or Rag2 proteins result in severe combined immune deficiency with a complete lack of circulating T and B cells due to an early block in lymphoid development. We have recently shown that mutations that impair, but do not completely abolish the function of Rag1 and Rag2 in humans result in Omenn syndrome, an enigmatic form of combined immune deficiency characterized by oligoclonal, activated T lymphocytes with a skewed Th2 profile.
Collapse
Affiliation(s)
- A Villa
- Istituto di Tecnologie Biomediche Avanzate, C.N.R., Segrate (MI) Italy
| | | | | | | | | |
Collapse
|
25
|
Bentolila LA, Olson S, Marshall A, Rougeon F, Paige CJ, Doyen N, Wu GE. Extensive Junctional Diversity in Ig Light Chain Genes from Early B Cell Progenitors of μMT Mice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.4.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Nontemplated (N) nucleotide additions contribute significantly to the junctional diversity of all Ag receptor chains in adult mice except Ig light (L) chains, primarily because terminal deoxynucleotidyl transferase (TdT) expression is turned off at the time of their rearrangement in pre-B cells. However, because some Ig L chain gene rearrangements are detectable earlier during B cell ontogeny when TdT expression is thought to be maximal, we have examined the junctional processing of κ- and λ-chain genes of CD45(B220)+CD43+ pro-B cells from μMT mice. We found that both κ and λ coding junctions formed in these B cell precursors were extensively diversified with N-region additions. Together, these findings demonstrate that Ig L chain genes are equally accessible to TdT in pro-B cells as Ig heavy chain genes. Surprisingly, however, the two L chain isotypes differed in the pattern of N addition, which was more prevalent at the λ-chain locus. We observed the same diversity pattern in pre-B cells from TdT-transgenic mice. These results suggest that some aspects of TdT processing could be influenced by factors intrinsic to the sequence of Ig genes and/or the process of V(D)J recombination itself.
Collapse
Affiliation(s)
- Laurent A. Bentolila
- *Unité de Génétique et Biochimie du Développement, Unité de Recherche Associée, Centre National de la Recherche Scientifique 1960, Département d’Immunologie, Institut Pasteur, Paris, France; and
| | - Stacy Olson
- †Department of Immunology, University of Toronto, and Ontario Cancer Institute, Toronto, Canada
| | - Aaron Marshall
- †Department of Immunology, University of Toronto, and Ontario Cancer Institute, Toronto, Canada
| | - François Rougeon
- *Unité de Génétique et Biochimie du Développement, Unité de Recherche Associée, Centre National de la Recherche Scientifique 1960, Département d’Immunologie, Institut Pasteur, Paris, France; and
| | - Christopher J. Paige
- †Department of Immunology, University of Toronto, and Ontario Cancer Institute, Toronto, Canada
| | - Noëlle Doyen
- *Unité de Génétique et Biochimie du Développement, Unité de Recherche Associée, Centre National de la Recherche Scientifique 1960, Département d’Immunologie, Institut Pasteur, Paris, France; and
| | - Gillian E. Wu
- †Department of Immunology, University of Toronto, and Ontario Cancer Institute, Toronto, Canada
| |
Collapse
|
26
|
Lucier MR, Thompson RE, Waire J, Lin AW, Osborne BA, Goldsby RA. Multiple Sites of Vλ Diversification in Cattle. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.10.5438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Ig repertoire diversification in cattle was studied in the ileal Peyer’s patch (IPP) follicles of young calves and in the spleens of late first-trimester bovine fetuses. To investigate follicular diversification, individual IPP follicles were isolated by microdissection; Vλ diversity was examined by RT-PCR and subsequent cloning and sequencing. When 52 intrafollicular sequences from a 4-wk-old calf were determined and compared, two major groups, one of 23 members and the other of 25, could be delineated. An examination of these groups revealed clear genealogic relationships that implicated in situ diversification of Vλ sequences within the confines of an IPP follicle. Vλ expression was also examined in early (95 and 110 gestational day) fetal bovine spleens. Although earlier studies in cattle and sheep implicated the IPP as a likely site of Ab diversification, a close investigation of Vλ sequences in late first-trimester fetal calves revealed that diversity appears in the early fetal spleen before the establishment of a diverse repertoire in the ileum. When the sequences for the fetal spleen were compared with an existing pool of germline sequences, we found evidence of possible gene conversion events and possible untemplated point mutations occurring in sequences recovered from fetal spleens. We conclude that IPP is not the sole site of Vλ diversification in cattle. Also, as suggested for rabbits, cattle may use both gene conversion and untemplated somatic point mutation to diversify their primary Vλ repertoire.
Collapse
Affiliation(s)
| | | | | | | | - Barbara A. Osborne
- †Department of Veterinary Sciences and
- ‡Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Richard A. Goldsby
- †Department of Veterinary Sciences and
- *Department of Biology, Amherst College, Amherst, MA 01002; and
- ‡Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
27
|
Nourrit F, Doyen N, Kourilsky P, Rougeon F, Cumano A. Extensive Junctional Diversity of Ig Heavy Chain Rearrangements Generated in the Progeny of Single Fetal Multipotent Hematopoietic Cells in the Absence of Selection. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.9.4254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We analyzed the progeny of individual multipotent hemopoietic cells, derived from the para-aortic splanchopleura, the earliest identified source of lymphocyte precursors in pre-liver mouse embryos. Single precursors were expanded in an in vitro culture system that permits both commitment and differentiation of B cell precursors. We show that from one single multipotent progenitor we could obtain large numbers of B cell precursors that rearrange the Ig heavy chain genes and generate a repertoire as diverse as that observed in adult populations. N region additions are present at V(D)J junctions, showing that terminal deoxynucleotidyl transferase expression has been switched on and is not, consequently, an intrinsic property of adult stem cells. Throughout the culture period, cells show a majority of DJ vs V(D)J rearrangements and a ratio of 2:1 of nonproductive to productive V(D)J rearrangements, which is close to the expected frequency in the absence of selection. In addition, counterselection for D-J rearrangements in reading frame 2 is observed in V(D)J joints, and allelic exclusion was consistently observed. We conclude that of the three events associated with heavy chain rearrangement, two of them, namely allelic exclusion and counterselection of cells in which the D segment is in reading frame 2, are intrinsic to the cell, while selection of productive heavy chain rearrangements is induced in the bone marrow environment.
Collapse
Affiliation(s)
- Françoise Nourrit
- †Unité de Génétique et Biochimie du Développement, Département d’Immunologie, Institut Pasteur, Paris, France
| | - Noëlle Doyen
- †Unité de Génétique et Biochimie du Développement, Département d’Immunologie, Institut Pasteur, Paris, France
| | | | - François Rougeon
- †Unité de Génétique et Biochimie du Développement, Département d’Immunologie, Institut Pasteur, Paris, France
| | - Ana Cumano
- *Unité de Biologie Moléculaire du Gène and
| |
Collapse
|
28
|
Tuaillon N, Capra JD. Use of D gene segments with irregular spacers in terminal deoxynucleotidyltransferase (TdT)+/+ and TdT-/- mice carrying a human Ig heavy chain transgenic minilocus. Proc Natl Acad Sci U S A 1998; 95:1703-8. [PMID: 9465080 PMCID: PMC19158 DOI: 10.1073/pnas.95.4.1703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
D gene segments with irregular spacers (DIR) are D gene segments that are specific to higher primates. Their use is controversial because of their G+C-rich long sequences. In the human, it has always been tempting to assume that a complementarity-determining region 3 sequence has been added by terminal deoxynucleotidyltransferase (TdT) activity and is not derived from DIR recombination. Herein, we examine the use of human DIR gene segments by cross-breeding the human Ig heavy chain minilocus pHC1 transgenic mice and TdT-deficient mice. In the absence of TdT and with a defined set of human D gene segments, it is relatively easy to demonstrate that DIR2 is used to form human Ig heavy chains, contributing to 7% of the human heavy chain rearrangements. VHDJH rearrangements (where H is heavy chain) in the minilocus TdT-/- mice use small portions of DIR2 located throughout the coding sequence. These results constitute the strongest evidence to date that DIR gene segments are used to form human antibodies. Additionally, we show that direct and inverted DIR2JH and VHDIR2 rearrangements occur in the minilocus transgenic mice. During these rearrangements, DM2 3' signal sequence and a new DIR2 5' signal sequence are used. These rearrangements generally follow the 12/23 recombination rule. Our results at the VHDJH, DJH, and VHD levels indicate that DIR2 is used to form human heavy chains in transgenic mice. The rearrangement of this gene segment likely involves, however, other mechanisms in addition to the classical VHDJH recombination.
Collapse
Affiliation(s)
- N Tuaillon
- Department of Molecular Immunogenetics, Oklahoma Medical Resarch Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
29
|
Wasserman R, Li YS, Shinton SA, Carmack CE, Manser T, Wiest DL, Hayakawa K, Hardy RR. A novel mechanism for B cell repertoire maturation based on response by B cell precursors to pre-B receptor assembly. J Exp Med 1998; 187:259-64. [PMID: 9432984 PMCID: PMC2212098 DOI: 10.1084/jem.187.2.259] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1997] [Revised: 11/18/1997] [Indexed: 02/05/2023] Open
Abstract
The expression of different sets of immunoglobulin specificities by fetal and adult B lymphocytes is a long-standing puzzle in immunology. Recently it has become clear that production of immunoglobulin mu heavy chain and subsequent assembly with a surrogate light chain to form the pre-B cell receptor complex is critical for development of B cells. Here we show that instead of promoting pre-B cell progression as in adult bone marrow, this complex inhibits pre-B cell growth in fetal liver. Curiously, we identify a fetal-associated VH11 mu heavy chain that allows continued pre-B proliferation in fetal liver. Interestingly, this heavy chain does not associate efficiently with a surrogate light chain, providing a previously unrecognized mechanism for skewing the expression of distinctive VH genes toward fetal through early neonatal life.
Collapse
Affiliation(s)
- R Wasserman
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Gorbunova V, Levy AA. Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 1997; 25:4650-7. [PMID: 9358178 PMCID: PMC147090 DOI: 10.1093/nar/25.22.4650] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Double strand DNA breaks in plants are primarily repaired via non-homologous end joining. However, little is known about the molecular events underlying this process. We have studied non-homologous end joining of linearized plasmid DNA with different termini configurations following transformation into tobacco cells. A variety of sequences were found at novel end junctions. Joining with no sequence alterations was rare. In most cases, deletions were found at both ends, and rejoining usually occurred at short repeats. A distinct feature of plant junctions was the presence of relatively large, up to 1.2 kb long, insertions (filler DNA), in approximately 30% of the analyzed clones. The filler DNA originated either from internal regions of the plasmid or from tobacco genomic DNA. Some insertions had a complex structure consisting of several reshuffled plasmid-related regions. These data suggest that double strand break repair in plants involves extensive end degradation, DNA synthesis following invasion of ectopic templates and multiple template switches. Such a mechanism is reminiscent of the synthesis-dependent recombination in bacteriophage T4. It can also explain the frequent 'DNA scrambling' associated with illegitimate recombination in plants.
Collapse
Affiliation(s)
- V Gorbunova
- Department of Plant Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
31
|
Weis-Garcia F, Besmer E, Sawchuk DJ, Yu W, Hu Y, Cassard S, Nussenzweig MC, Cortes P. V(D)J recombination: in vitro coding joint formation. Mol Cell Biol 1997; 17:6379-85. [PMID: 9343399 PMCID: PMC232489 DOI: 10.1128/mcb.17.11.6379] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Antigen receptor genes are assembled through a mechanism known as V(D)J recombination, which involves two different joining reactions: signal and coding joining. Formation of these joints is essential for antigen receptor assembly as well as maintaining chromosomal integrity. Here we report on a cell-free system for coding joint formation using deletion and inversion recombination substrates. In vitro coding joint formation requires RAG1, RAG2, and heat-labile factors present in the nuclear extract of nonlymphoid cells. Both inversion- and deletion-mediated coding joint reactions produce diverse coding joints, with deletions and P nucleotide addition. We also show that deletion-mediated coding joint formation follows the 12/23 rule and requires the catalytic subunit of DNA-dependent protein kinase.
Collapse
Affiliation(s)
- F Weis-Garcia
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nadel B, Feeney AJ. Nucleotide deletion and P addition in V(D)J recombination: a determinant role of the coding-end sequence. Mol Cell Biol 1997; 17:3768-78. [PMID: 9199310 PMCID: PMC232228 DOI: 10.1128/mcb.17.7.3768] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During V(D)J recombination, the coding ends to be joined are extensively modified. Those modifications, termed coding-end processing, consist of removal and addition of various numbers of nucleotides. We previously showed in vivo that coding-end processing is specific for each coding end, suggesting that specific motifs in a coding-end sequence influence nucleotide deletion and P-region formation. In this study, we created a panel of recombination substrates containing actual immunoglobulin and T-cell receptor coding-end sequences and dissected the role of each motif by comparing its processing pattern with those of variants containing minimal nucleotide changes from the original sequence. Our results demonstrate the determinant role of specific sequence motifs on coding-end processing and also the importance of the context in which they are found. We show that minimal nucleotide changes in key positions of a coding-end sequence can result in dramatic changes in the processing pattern. We propose that each coding-end sequence dictates a unique hairpin structure, the result of a particular energy conformation between nucleotides organizing the loop and the stem, and that the interplay between this structure and specific sequence motifs influences the frequency and location of nicks which open the coding-end hairpin. These findings indicate that the sequences of the coding ends determine their own processing and have a profound impact on the development of the primary B- and T-cell repertoires.
Collapse
Affiliation(s)
- B Nadel
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
33
|
Cortes P, Weis-Garcia F, Misulovin Z, Nussenzweig A, Lai JS, Li G, Nussenzweig MC, Baltimore D. In vitro V(D)J recombination: signal joint formation. Proc Natl Acad Sci U S A 1996; 93:14008-13. [PMID: 8943051 PMCID: PMC19485 DOI: 10.1073/pnas.93.24.14008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The first step of V(D)J recombination, specific cleavage at the recombination signal sequence (RSS), can be carried out by the recombination activating proteins RAG1 and RAG2. In vivo, the cleaved coding and signal ends must be rejoined to generate functional antigen receptors and maintain chromosomal integrity. We have investigated signal joint formation using deletion and inversion substrates in a cell free system. RAG1 and RAG2 alone or in combination were unable to generate signal joints. However, RAG1 and RAG2 complemented with nuclear extracts were able to recombine an extrachromosomal substrate and form precise signal joints. The in vitro reaction resembled authentic V(D)J recombination in being Ku-antigen-dependent.
Collapse
Affiliation(s)
- P Cortes
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Roman CA, Baltimore D. Genetic evidence that the RAG1 protein directly participates in V(D)J recombination through substrate recognition. Proc Natl Acad Sci U S A 1996; 93:2333-8. [PMID: 8637873 PMCID: PMC39796 DOI: 10.1073/pnas.93.6.2333] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
RAG1 protein is essential for the activation of V(D)J recombination in developing lymphocytes (V, variable; D, diversity; J, joining). However, it has not been determined whether its role involves substrate recognition and catalysis. A single amino acid substitution mutation in the RAG1 gene has now been identified that renders its activity sensitive to the sequence of the coding region abutting the heptamer site in the recombination signal sequence. These results strongly imply that RAG1 interacts directly with DNA.
Collapse
Affiliation(s)
- C A Roman
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
35
|
Livak F, Schatz DG. T-cell receptor alpha locus V(D)J recombination by-products are abundant in thymocytes and mature T cells. Mol Cell Biol 1996; 16:609-18. [PMID: 8552089 PMCID: PMC231040 DOI: 10.1128/mcb.16.2.609] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In addition to the assembled coding regions of immunoglobulin and T-cell receptor (TCR) genes, the V(D)J recombination reaction can in principle generate three types of by-products in normal developing lymphocytes: broken DNA molecules that terminate in a recombination signal sequence or a coding region (termed signal or coding end molecules, respectively) and DNA molecules containing fused recombination signal sequences (termed reciprocal products). Using a quantitative Southern blot analysis of the murine TCR alpha locus, we demonstrate that substantial amounts of signal end molecules and reciprocal products, but not coding end molecules, exist in thymocytes, while peripheral T cells contain substantial amounts of reciprocal products. At the 5' end of the J alpha locus, 20% of thymus DNA exists as signal end molecules. An additional 30 to 40% of the TCR alpha/delta locus exists as remarkably stable reciprocal products throughout T-cell development, with the consequence that the TCR C delta region is substantially retained in alpha beta committed T cells. The disappearance of the broken DNA molecules occurs in the same developmental transition as termination of expression of the recombination activating genes, RAG-1 and RAG-2. These findings raise important questions concerning the mechanism of V(D)J recombination and the maintenance of genome integrity during lymphoid development.
Collapse
Affiliation(s)
- F Livak
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | |
Collapse
|
36
|
Griesser H. Gene rearrangements and chromosomal translocations in T cell lymphoma--diagnostic applications and their limits. Virchows Arch 1995; 426:323-38. [PMID: 7599784 DOI: 10.1007/bf00191340] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The diversity of the T cell receptor (TCR) repertoire is established for individual T lymphocytes by developmentally regulated gene rearrangements and shaped by predominantly intrathymic selection procedures. TCR gene probes in Southern blot experiments and TCR primers for the polymerase chain reaction (PCR) help to distinguish polyclonal from abnormal clonal T cell proliferations and to monitor clonal disease after treatment. Rearrangement studies can identify the lineage and developmental stage of a lymphocyte clone. Cross-lineage rearrangements, false positive or negative results are rarely misleading when morphology and immunophenotypical findings are considered. Rearrangement studies, however, have not contributed significantly to the comprehension of lymphomagenesis. Analyses of characteristic chromosomal translocations in T cell leukaemias and lymphomas may provide further insight into the mechanisms of malignant transformation. Transcription factors are often involved and sometimes abnormally transcribed, which may alter the physiological intracellular signalling in T cells. Interphase cytogenetic analysis by chromosomal fluorescence in situ hybridization (FISH) has become a new tool in the search for transformed T cells carrying specific translocations. Archival biopsy material is now accessible for PCR rearrangement studies and FISH cytogenetics. This adds another dimension to the diagnosis, disease monitoring and biological understanding of malignant T cell lymphomas and leukaemias.
Collapse
Affiliation(s)
- H Griesser
- Department of Oncologic Pathology, Ontario Cancer Institute, Toronto, Canada
| |
Collapse
|
37
|
Andris JS, Capra JD. The molecular structure of human antibodies specific for the human immunodeficiency virus. J Clin Immunol 1995; 15:17-26. [PMID: 7759597 DOI: 10.1007/bf01489486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The molecular structure of human antibodies that are specific for human immunodeficiency virus-1 (HIV-1) are of increasing interest as AIDS research progresses toward passive immunotherapeutics in the maintenance and prevention of infection. In recent years a number of human, HIV-specific hybridomas and EBV-transformed B cell lines, as well as a combinatorial library, have been developed and characterized at the molecular level. These sources have provided valuable information on the immunoglobulin heavy- and light-chain variable-region gene usage and the extent and appearance of somatic mutation in a disease where the immune system is under constant stimulation over a long period of time. In this article we review the current data available on the molecular structure of these antibodies.
Collapse
Affiliation(s)
- J S Andris
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-9048, USA
| | | |
Collapse
|
38
|
The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol Cell Biol 1994. [PMID: 7935426 DOI: 10.1128/mcb.14.11.7111] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The lymphocyte-specific DNA-binding protein LyF-1 interacts with a critical control element in the terminal deoxynucleotidyltransferase (TdT) promoter as well as with the promoters for other genes expressed during early stages of B- and T-cell development. We have purified LyF-1 and have obtained a partial amino acid sequence from proteolytic peptides. The amino acid sequence suggests that LyF-1 is a zinc finger protein encoded by the Ikaros gene, which previously was implicated in T-cell development. Recombinant Ikaros expressed in Escherichia coli bound to the TdT promoter, and antisera directed against the recombinant protein specifically blocked the DNA-binding activity of LyF-1 in crude extracts. Further analysis revealed that at least six distinct mRNAs are derived from the Ikaros/LyF-1 gene by alternative splicing. Only two of the isoforms possess the N-terminal zinc finger domain that is necessary and sufficient for TdT promoter binding. Although both of these isoforms bound to similar sequences in the TdT, lambda 5, VpreB, and lck promoters, one isoform contains an additional zinc finger that resulted in altered recognition of some binding sites. At least four of the Ikaros/LyF-1 isoforms were detectable in extracts from B- and T-cell lines, with the relative amounts of the isoforms varying considerably. These data reveal that the LyF-1 protein is encoded by specific mRNAs derived from the alternatively-spliced Ikaros gene, suggesting that this gene may be important for the early stages of both B- and T-lymphocyte development.
Collapse
|
39
|
Hahm K, Ernst P, Lo K, Kim GS, Turck C, Smale ST. The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol Cell Biol 1994; 14:7111-23. [PMID: 7935426 PMCID: PMC359245 DOI: 10.1128/mcb.14.11.7111-7123.1994] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The lymphocyte-specific DNA-binding protein LyF-1 interacts with a critical control element in the terminal deoxynucleotidyltransferase (TdT) promoter as well as with the promoters for other genes expressed during early stages of B- and T-cell development. We have purified LyF-1 and have obtained a partial amino acid sequence from proteolytic peptides. The amino acid sequence suggests that LyF-1 is a zinc finger protein encoded by the Ikaros gene, which previously was implicated in T-cell development. Recombinant Ikaros expressed in Escherichia coli bound to the TdT promoter, and antisera directed against the recombinant protein specifically blocked the DNA-binding activity of LyF-1 in crude extracts. Further analysis revealed that at least six distinct mRNAs are derived from the Ikaros/LyF-1 gene by alternative splicing. Only two of the isoforms possess the N-terminal zinc finger domain that is necessary and sufficient for TdT promoter binding. Although both of these isoforms bound to similar sequences in the TdT, lambda 5, VpreB, and lck promoters, one isoform contains an additional zinc finger that resulted in altered recognition of some binding sites. At least four of the Ikaros/LyF-1 isoforms were detectable in extracts from B- and T-cell lines, with the relative amounts of the isoforms varying considerably. These data reveal that the LyF-1 protein is encoded by specific mRNAs derived from the alternatively-spliced Ikaros gene, suggesting that this gene may be important for the early stages of both B- and T-lymphocyte development.
Collapse
Affiliation(s)
- K Hahm
- Howard Hughes Medical Institute, University of California School of Medicine, Los Angeles 90024-1662
| | | | | | | | | | | |
Collapse
|
40
|
Regnault A, Cumano A, Vassalli P, Guy-Grand D, Kourilsky P. Oligoclonal repertoire of the CD8 alpha alpha and the CD8 alpha beta TCR-alpha/beta murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. J Exp Med 1994; 180:1345-58. [PMID: 7931068 PMCID: PMC2191704 DOI: 10.1084/jem.180.4.1345] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The epithelium of the small intestine in normal euthymic mice contains a large number of intraepithelial lymphocytes (IEL), some of which bear a T cell receptor alpha/beta (TCR-alpha/beta). About half of these TCR-alpha/beta IEL display the CD8 alpha alpha phenotype and the remaining have the CD8 alpha beta or the CD4 phenotypes. To examine whether TCR-alpha/beta IEL have a TCR-beta chain repertoire as diverse as that of TCR-alpha/beta lymph node lymphocytes (LNL), we used a recently described PCR technique that allows a global analysis of the TCR-beta chain repertoire. Within any given mouse, the repertoires expressed in both CD8 alpha alpha and CD8 alpha beta TCR-alpha/beta IEL populations are oligoclonal and nonoverlapping between the two subsets. The clones are largely conserved through the length of the small intestine of the same individual. However, genetically identical individuals raised under indistinguishable environmental conditions display distinct oligoclonal repertoires. Those findings indicate that few cells of CD8 alpha alpha or of the CD8 alpha beta phenotype are responsible for the repopulation of the intestinal epithelium.
Collapse
Affiliation(s)
- A Regnault
- Unité de Biologie Moléculaire du Gène-U.277 INSERM, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
41
|
Abstract
Separate genetic elements (V, D, and J) encode the variable regions of lymphocyte antigen receptors. During early lymphocyte differentiation, these elements rearrange to form contiguous coding segments (VJ and VDJ) for a diverse array of variable regions. Rearrangement is mediated by a recombinase that recognizes short DNA sequences (signals) flanking V, D, and J elements. Signals flank both the 5' and 3' sides of each D element, thereby allowing assembly of a functional VDJ gene. However, in rearrangements involving the D delta 2 and J delta 1 elements of the mouse T-cell receptor delta (TCR delta) locus, we unexpectedly found that the D delta 2 element and a portion of its 5' signal are often deleted. Approximately 50% of recovered D delta 2 to J delta 1 rearrangements from thymocytes of adult wild-type mice showed such deletions. An additional 20% of the rearrangements contained standard D delta 2-J delta 1 coding junctions but showed some loss of nucleotides from the 5' D delta 2 signal. This loss was clearly associated with another event involving a site-specific cleavage at the 5' signal/coding border of D delta 2 and rejoining of the modified signal and coding ends. The abnormal loss of D delta 2 and a portion of the 5' D delta 2 signal was infrequently observed in D delta 2-to-J delta 1 rearrangements recovered from neonatal mice. The possible basis and significance of this age-dependent phenomenon are discussed.
Collapse
|
42
|
Abstract
Separate genetic elements (V, D, and J) encode the variable regions of lymphocyte antigen receptors. During early lymphocyte differentiation, these elements rearrange to form contiguous coding segments (VJ and VDJ) for a diverse array of variable regions. Rearrangement is mediated by a recombinase that recognizes short DNA sequences (signals) flanking V, D, and J elements. Signals flank both the 5' and 3' sides of each D element, thereby allowing assembly of a functional VDJ gene. However, in rearrangements involving the D delta 2 and J delta 1 elements of the mouse T-cell receptor delta (TCR delta) locus, we unexpectedly found that the D delta 2 element and a portion of its 5' signal are often deleted. Approximately 50% of recovered D delta 2 to J delta 1 rearrangements from thymocytes of adult wild-type mice showed such deletions. An additional 20% of the rearrangements contained standard D delta 2-J delta 1 coding junctions but showed some loss of nucleotides from the 5' D delta 2 signal. This loss was clearly associated with another event involving a site-specific cleavage at the 5' signal/coding border of D delta 2 and rejoining of the modified signal and coding ends. The abnormal loss of D delta 2 and a portion of the 5' D delta 2 signal was infrequently observed in D delta 2-to-J delta 1 rearrangements recovered from neonatal mice. The possible basis and significance of this age-dependent phenomenon are discussed.
Collapse
Affiliation(s)
- S M Fish
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | |
Collapse
|
43
|
Hermanns J, Asseburg A, Osiewacz HD. Evidence for a life span-prolonging effect of a linear plasmid in a longevity mutant of Podospora anserina. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:297-307. [PMID: 8190083 DOI: 10.1007/bf00301065] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The linear mitochondrial plasmid pAL2-1 of the long-lived mutant AL2 of Podospora anserina was demonstrated to be able to integrate into the high molecular weight mitochondrial DNA (mtDNA). Hybridization analysis and densitometric evaluation of the mitochondrial genome isolated from cultures of different ages revealed that the mtDNA is highly stable during the whole life span of the mutant. In addition, and in sharp contrast to the situation in certain senescence-prone Neurospora strains, the mutated P. anserina mtDNA molecules containing integrated plasmid copies are not suppressive to wild-type genomes. As demonstrated by hybridization and polymerase chain reaction (PCR) analysis, the proportion of mtDNA molecules affected by the integration of pAL2-1 fluctuates between 10% and 50%. Comparative sequence analysis of free and integrated plasmid copies revealed four differences within the terminal inverted repeats (TIRs). These point mutations are not caused by the integration event since they occur subsequent to integration and at various ages. Interestingly, both repeats contain identical sequences indicating that the mechanism involved in the maintenance of perfect TIRs is active on both free and integrated plasmid copies. Finally, in reciprocal crosses between AL2 and the wild-type strain A, some abnormal progeny were obtained. One group of strains did not contain detectable amounts of plasmid pAL2-1, although the mtDNA was clearly of the type found in the long-lived mutant AL2. These strains exhibited a short-lived phenotype. In contrast, one strain was selected that was found to contain wild-type A-specific mitochondrial genomes and traces of pAL2-1. This strain was characterized by an increased life span. Altogether these data suggest that the linear plasmid pAL2-1 is involved in the expression of longevity in mutant AL2.
Collapse
Affiliation(s)
- J Hermanns
- German Cancer Research Center, Heidelberg
| | | | | |
Collapse
|
44
|
Lauzurica P, Krangel MS. Enhancer-dependent and -independent steps in the rearrangement of a human T cell receptor delta transgene. J Exp Med 1994; 179:43-55. [PMID: 8270882 PMCID: PMC2191330 DOI: 10.1084/jem.179.1.43] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The rearrangement and expression of T cell receptor (TCR) gene segments occurs in a highly ordered fashion during thymic ontogeny of T lymphocytes. To study the regulation of gene rearrangement within the TCR alpha/delta locus, we generated transgenic mice that carry a germline human TCR delta minilocus that includes V delta 1, V delta 2, D delta 3, J delta 1, J delta 3, and C delta segments, and either contains or lacks the TCR delta enhancer. We found that the enhancer-positive construct rearranges stepwise, first V to D, and then V-D to J. Construct V-D rearrangement mimics a unique property of the endogenous TCR delta locus. V-D-J rearrangement is T cell specific, but is equivalent in alpha/beta and gamma/delta T lymphocytes. Thus, either there is no commitment to the alpha/beta and gamma/delta T cell lineages before TCR delta gene rearrangement, or if precommitment occurs, it does not operate directly on TCR delta gene cis-acting regulatory elements to control TCR delta gene rearrangement. Enhancer-negative mice display normal V to D rearrangement, but not V-D to J rearrangement. Thus, the V-D to J step is controlled by the enhancer, but the V to D step is controlled by separate elements. The enhancer apparently controls access to J delta 1 but not D delta 3, suggesting that a boundary between two independently regulated domains of the minilocus lies between these elements. Within the endogenous TCR alpha/delta locus, this boundary may represent the 5' end of a chromatin regulatory domain that is opened by the TCR delta enhancer during T cell development. The position of this boundary may explain the unique propensity of the TCR delta locus to undergo early V to D rearrangement. Our results indicate that the TCR delta enhancer performs a crucial targeting function to regulate TCR delta gene rearrangement during T cell development.
Collapse
Affiliation(s)
- P Lauzurica
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
45
|
Lee SK, Bridges SL, Kirkham PM, Koopman WJ, Schroeder HW. Evidence of antigen receptor-influenced oligoclonal B lymphocyte expansion in the synovium of a patient with longstanding rheumatoid arthritis. J Clin Invest 1994; 93:361-70. [PMID: 8282807 PMCID: PMC293784 DOI: 10.1172/jci116968] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Plasma cell infiltration of synovium is common in longstanding rheumatoid arthritis (RA). The mechanism(s) underlying synovial B cell proliferation remains unclear. One theory invokes nonspecific polyclonal stimuli; another implicates antigen as the driving force. Antigen-driven repertoires are characteristically enriched for related sets of V gene segments containing similar sequence in the antigen binding site (complementarity-determining regions; CDRs). To study the forces shaping B cell proliferation, we analyzed V kappa transcripts expressed in the synovium of an RA patient. We found Humkv325, a developmentally regulated V kappa III gene segment associated with autoantibody reactivity, in > 10% of randomly-chosen synovial C kappa cDNAs. Two sets of sequences contained identical charged amino acid residues at the V kappa-J kappa join, apparently due to N region addition. We generated "signature" oligonucleotides from these CDR3s and probed PCR amplified V kappa products from the synovium and PBLs of the same patient, and from PBLs and spleen of individuals without rheumatic disease. Significant expression of transcripts containing these unique CDR3 sequences occurred only in the patient's synovium. Thus, in this synovium there is expansion of a limited set of B cell clones expressing antigen receptors that bear evidence of antigen selection.
Collapse
Affiliation(s)
- S K Lee
- Division of Clinical Immunology, University of Alabama at Birmingham 35294
| | | | | | | | | |
Collapse
|
46
|
V(D)J recombination coding junction formation without DNA homology: processing of coding termini. Mol Cell Biol 1993. [PMID: 8413286 DOI: 10.1128/mcb.13.11.6957] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coding junction formation in V(D)J recombination generates diversity in the antigen recognition structures of immunoglobulin and T-cell receptor molecules by combining processes of deletion of terminal coding sequences and addition of nucleotides prior to joining. We have examined the role of coding end DNA composition in junction formation with plasmid substrates containing defined homopolymers flanking the recombination signal sequence elements. We found that coding junctions formed efficiently with or without terminal DNA homology. The extent of junctional deletion was conserved independent of coding ends with increased, partial, or no DNA homology. Interestingly, G/C homopolymer coding ends showed reduced deletion regardless of DNA homology. Therefore, DNA homology cannot be the primary determinant that stabilizes coding end structures for processing and joining.
Collapse
|
47
|
Boubnov NV, Wills ZP, Weaver DT. V(D)J recombination coding junction formation without DNA homology: processing of coding termini. Mol Cell Biol 1993; 13:6957-68. [PMID: 8413286 PMCID: PMC364757 DOI: 10.1128/mcb.13.11.6957-6968.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Coding junction formation in V(D)J recombination generates diversity in the antigen recognition structures of immunoglobulin and T-cell receptor molecules by combining processes of deletion of terminal coding sequences and addition of nucleotides prior to joining. We have examined the role of coding end DNA composition in junction formation with plasmid substrates containing defined homopolymers flanking the recombination signal sequence elements. We found that coding junctions formed efficiently with or without terminal DNA homology. The extent of junctional deletion was conserved independent of coding ends with increased, partial, or no DNA homology. Interestingly, G/C homopolymer coding ends showed reduced deletion regardless of DNA homology. Therefore, DNA homology cannot be the primary determinant that stabilizes coding end structures for processing and joining.
Collapse
Affiliation(s)
- N V Boubnov
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | |
Collapse
|
48
|
Li YS, Hayakawa K, Hardy RR. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J Exp Med 1993; 178:951-60. [PMID: 8350062 PMCID: PMC2191150 DOI: 10.1084/jem.178.3.951] [Citation(s) in RCA: 458] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The expression of B lineage associated genes during early B cell differentiation stages is not firmly established. Using cell surface markers and multiparameter flow cytometry, bone marrow (BM) cells can be resolved into six fractions, representing sequential stages of development; i.e., pre-Pro-B, early Pro-B, late Pro-B/large Pre-B, small Pre-B, immature B, and mature B cells. Here we quantitate the levels of several B lineage associated genes in each of these fractions by RT-PCR, demonstrating different patterns of expression. We find that expression of terminal deoxynucleotidyl transferase (TdT), lambda 5, and VpreB is predominantly restricted to the Pro-B stages. Rag-1 and Rag-2 expression is also tightly regulated, and is found largely in the Pro-B through small Pre-B stages. Mb-1 is present from Pro-B throughout the pathway at high levels. Finally, Bcl-2 is expressed at high levels only at the pre-Pro-B and mature B stages, whereas it is low during all the intermediate stages. We also correlate this expression data with an analysis of the onset of Ig gene rearrangement as assessed by amplifying D-JH, VH-DJH, and VK-JK. Finally, we report differences in gene expression during B lymphopoiesis at two distinct ontogenic timings, in fetal liver and adult BM: both TdT and the precursor lymphocyte regulated myosin-like light chain are expressed at high levels in the Pro-B cell stage in bone marrow, but are absent from the corresponding fraction in fetal liver. In contrast, lambda 5, VpreB, Rag-1, and Rag-2 are expressed at comparable levels.
Collapse
Affiliation(s)
- Y S Li
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | | | |
Collapse
|
49
|
Abstract
Substrates for studying V(D)J recombination in human cells and two human pre-B-cell lines that have active V(D)J recombination activity are described. Using these substrates, we have been able to analyze the relative efficiency of signal joint and coding joint formation. Coding joint formation was five- to sixfold less efficient than signal joint formation in both cell lines. This imbalance between the two halves of the reaction was demonstrated on deletional substrates, where each joint is assayed individually. In both cell lines, the inversional reaction (which requires formation of both a signal and a coding joint) was more than 20-fold less efficient than signal joint formation alone. The signal and coding sequences are identical in all of these substrates. Hence, the basis for these differential reaction ratios appears to be that coding joint and signal joint formation are both inefficient and their combined effects are such that inversions (two-joint reactions) reflect the product of these inefficiencies. Physiologically, these results have two implications. First, they show how signal and coding joint formation efficiencies can affect the ratio of deletional to inversional products at endogenous loci. Second, the fact that not all signal and coding joints go to completion implies that the recombinase is generating numerous broken ends. Such unresolved ends may participate in pathologic chromosomal rearrangements even when the other half of the same reaction may have proceeded to resolution.
Collapse
|
50
|
Abstract
Substrates for studying V(D)J recombination in human cells and two human pre-B-cell lines that have active V(D)J recombination activity are described. Using these substrates, we have been able to analyze the relative efficiency of signal joint and coding joint formation. Coding joint formation was five- to sixfold less efficient than signal joint formation in both cell lines. This imbalance between the two halves of the reaction was demonstrated on deletional substrates, where each joint is assayed individually. In both cell lines, the inversional reaction (which requires formation of both a signal and a coding joint) was more than 20-fold less efficient than signal joint formation alone. The signal and coding sequences are identical in all of these substrates. Hence, the basis for these differential reaction ratios appears to be that coding joint and signal joint formation are both inefficient and their combined effects are such that inversions (two-joint reactions) reflect the product of these inefficiencies. Physiologically, these results have two implications. First, they show how signal and coding joint formation efficiencies can affect the ratio of deletional to inversional products at endogenous loci. Second, the fact that not all signal and coding joints go to completion implies that the recombinase is generating numerous broken ends. Such unresolved ends may participate in pathologic chromosomal rearrangements even when the other half of the same reaction may have proceeded to resolution.
Collapse
Affiliation(s)
- G H Gauss
- Department of Pathology, Stanford University School of Medicine, California 94305-5324
| | | |
Collapse
|