1
|
Hepatocellular carcinoma-targeting oncolytic adenovirus overcomes hypoxic tumor microenvironment and effectively disperses through both central and peripheral tumor regions. Sci Rep 2018; 8:2233. [PMID: 29396500 PMCID: PMC5797125 DOI: 10.1038/s41598-018-20268-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/16/2018] [Indexed: 12/28/2022] Open
Abstract
Cancer-specific promoter driven replication of oncolytic adenovirus (Ad) is cancer-specific, but shows low transcriptional activity. Thus, we generated several chimeric α-fetoprotein (AFP) promoter variants, containing reconstituted enhancer and silencer regions, to preferentially drive Ad replication in hepatocellular carcinoma (HCC). Modified AFP promoter, containing 2 enhancer A regions and a single enhancer B region (a2bm), showed strong and HCC-specific transcription. In AFP-positive HCCs, gene expression was 43- to 456-fold higher than those of control AFP promoter lacking enhancers. a2bm promoter was further modified by inserting multiple hypoxia-responsive elements (HRE) to generate Ha2bm promoter, which showed stronger transcriptional activity than a2bm promoter under hypoxic conditions. Ha2bm promoter-regulated oncolytic Ad (Ha2bm-d19) showed a stronger antitumor and proapoptotic effect than did a2bm promoter-regulated oncolytic Ad (a2bm-d19) in HCC xenograft tumors. Systemically administered Ha2bm-d19 caused no observable hepatotoxicity, whereas control replication-competent Ad, lacking cancer specificity (d19), induced significant hepatic damage. Ha2bm-d19 caused significantly lower expression of interleukin-6 than d19, showing that HCC-targeted delivery of Ad attenuates induction of the innate immune response against Ad. This chimeric AFP promoter enabled Ad to overcome the hypoxic tumor microenvironment and target HCC with high specificity, rendering it a promising candidate for the treatment of aggressive HCCs.
Collapse
|
2
|
TGF- β Signaling Cooperates with AT Motif-Binding Factor-1 for Repression of the α -Fetoprotein Promoter. JOURNAL OF SIGNAL TRANSDUCTION 2014; 2014:970346. [PMID: 25105025 PMCID: PMC4106063 DOI: 10.1155/2014/970346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/23/2014] [Indexed: 12/21/2022]
Abstract
α-Fetoprotein (AFP) is known to be highly produced in fetal liver despite its barely detectable level in normal adult liver. On the other hand, hepatocellular carcinoma often shows high expression of AFP. Thus, AFP seems to be an oncogenic marker. In our present study, we investigated how TGF-β signaling cooperates with AT motif-binding factor-1 (ATBF1) to inhibit AFP transcription. Indeed, the expression of AFP mRNA in HuH-7 cells was negatively regulated by TGF-β signaling. To further understand how TGF-β suppresses the transcription of the AFP gene, we analyzed the activity of the AFP promoter in the presence of TGF-β. We found that the TGF-β signaling and ATBF1 suppressed AFP transcription through two ATBF1 binding elements (AT-motifs). Using a heterologous reporter system, both AT-motifs were required for transcriptional repression upon TGF-β stimulation. Furthermore, Smads were found to interact with ATBF1 at both its N-terminal and C-terminal regions. Since the N-terminal (ATBF1N) and C-terminal regions of ATBF1 (ATBF1C) lack the ability of DNA binding, both truncated mutants rescued the cooperative inhibitory action by the TGF-β signaling and ATBF1 in a dose-dependent manner. Taken together, these findings indicate that TGF-β signaling can act in concert with ATBF1 to suppress the activity of the AFP promoter through direct interaction of ATBF1 with Smads.
Collapse
|
3
|
Yu M, Wang J, Li W, Yuan YZ, Li CY, Qian XH, Xu WX, Zhan YQ, Yang XM. Proteomic screen defines the hepatocyte nuclear factor 1alpha-binding partners and identifies HMGB1 as a new cofactor of HNF1alpha. Nucleic Acids Res 2007; 36:1209-19. [PMID: 18160415 PMCID: PMC2275099 DOI: 10.1093/nar/gkm1131] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hepatocyte nuclear factor (HNF)-1α is one of the liver-enriched transcription factors involved in many tissue-specific expressions of hepatic genes. The molecular mechanisms for determining HNF1α-mediated transactivation have not been explained fully. To identify unknown proteins that interact with HNF1α, we developed a co-IP-MS strategy to search HNF1α interactions, and high mobility group protein-B1 (HMGB1), a chromosomal protein, was identified as a novel HNF1α-interacting protein. In vitro glutathione S-transferase pull-down and in vivo co-immunoprecipitation studies confirmed an interaction between HMGB1 and HNF1α. The protein–protein interaction was mediated through the HMG box domains of HMGB1 and the homeodomain of HNF1α. Furthermore, electrophoretic mobility shift assay and chromatin-immunoprecipitation assay demonstrated that HMGB1 was recruited to endogenous HNF1α-responsive promoters and enhanced HNF1α binding to its cognate DNA sequences. Moreover, luciferase reporter analyses showed that HMGB1 potentiated the transcriptional activities of HNF1α in cultured cells, and downregulation of HMGB1 by RNA interference specifically affected the HNF1α-dependent gene expression in HepG2 cell. Taken together, these findings raise the intriguing possibility that HMGB1 is a new cofactor of HNF1α and participates in HNF1α-mediated transcription regulation through protein–protein interaction.
Collapse
Affiliation(s)
- Miao Yu
- Beijing Institute of Radiation Medicine, Beijing, 100850, Beijing Proteomics Research Center, Beijing, 102206, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Smith AD, Sumazin P, Zhang MQ. Tissue-specific regulatory elements in mammalian promoters. Mol Syst Biol 2007; 3:73. [PMID: 17224917 PMCID: PMC1800356 DOI: 10.1038/msb4100114] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 11/10/2006] [Indexed: 12/18/2022] Open
Abstract
Transcription factor-binding sites and the cis-regulatory modules they compose are central determinants of gene expression. We previously showed that binding site motifs and modules in proximal promoters can be used to predict a significant portion of mammalian tissue-specific transcription. Here, we report on a systematic analysis of promoters controlling tissue-specific expression in heart, kidney, liver, pancreas, skeletal muscle, testis and CD4 T cells, for both human and mouse. We integrated multiple sources of expression data to compile sets of transcripts with strong evidence for tissue-specific regulation. The analysis of the promoters corresponding to these sets produced a catalog of predicted tissue-specific motifs and modules, and cis-regulatory elements. Predicted regulatory interactions are supported by statistical evidence, and provide a foundation for targeted experiments that will improve our understanding of tissue-specific regulatory networks. In a broader context, methods used to construct the catalog provide a model for the analysis of genomic regions that regulate differentially expressed genes.
Collapse
Affiliation(s)
- Andrew D Smith
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Pavel Sumazin
- Computer Science Department, Portland State University, Portland, OR, USA
| | - Michael Q Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Hershey Building, Cold Spring Harbor, NY 11724, USA. Tel. +1 516 367 8393; Fax: +1 516 367 8461;
| |
Collapse
|
5
|
Abstract
The alpha-fetoprotein (AFP) gene is an important model of developmental gene silencing and neoplastic gene reactivation. Nkx2.8 is a divergent homeodomain factor originally cloned through its binding to the promoter-coupling element (PCE), a regulatory region upstream of the AFP promoter that mediates stimulation by distant enhancers. Nkx2.8 is the only developmentally regulated factor that has been associated with AFP gene expression. Fetoprotein transcription factor, an orphan nuclear receptor, has also been shown to bind the PCE but is not developmentally regulated. The binding specificities of both families of transcription factor were determined, and overlapping sites for each were defined in the PCE. After modification of nuclear extract and gel shift analysis procedures, Nkx2.8 was identified in six AFP-positive cell lines. Transient-transfection analysis did not show transcriptional stimulation by Nkx2.8 or other active NK2 factors, which only interfered with gene expression. However, two sets of analysis demonstrated the relationship of Nkx2.8 to AFP expression: chromatin immunoprecipitation demonstrated that Nkx2.8 bound to the active AFP promoter, and antisense inhibition of Nkx2.8 mRNA translation selectively reduced expression of both the endogenous human AFP gene and transfected reporters containing the rat AFP promoter.
Collapse
Affiliation(s)
- Yasuo Kajiyama
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
6
|
Locker J, Ghosh D, Luc PV, Zheng J. Definition and prediction of the full range of transcription factor binding sites--the hepatocyte nuclear factor 1 dimeric site. Nucleic Acids Res 2002; 30:3809-17. [PMID: 12202766 PMCID: PMC137408 DOI: 10.1093/nar/gkf484] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In animals, transcription factor binding sites are hard to recognize because of their extensive variation. We therefore characterized the general relationship between a specific protein-binding site and its DNA sequence and used this relationship to generate a predictive algorithm for searching other DNA sequences. The experimental process was defined by studying hepatocyte nuclear factor 1 (HNF1), which binds DNA as a dimer on two inverted-repeat 7-bp half sites separated by one base. The binding model was based on the equivalence of the two half sites, which was confirmed in examples where specific modified sites were compared. Binding competition analysis was used to determine the effects of substitution of all four bases at each position in the half site. From these data, a weighted half-site matrix was generated and the full site was evaluated as the sum of two half-site scores. This process accurately predicted even weak binding sites that were significantly different from the consensus sequence. The predictions also showed a direct correlation with measured protein binding.
Collapse
Affiliation(s)
- Joseph Locker
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
7
|
Kaneko S, Tamaoki T. Gene therapy vectors harboring AFP regulatory sequences. Preparation of an adenoviral vector. Mol Biotechnol 2001; 19:323-30. [PMID: 11721628 DOI: 10.1385/mb:19:3:323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gene therapy for hepatocellular carcinoma (HCC) may be achieved by introducing a therapeutic gene under the control of transcriptional regulatory sequences of the alpha-fetoprotein (AFP) gene. Transcription of the human AFP gene is controlled positively by the promoter and the enhancer and negatively by the silencer. The AFP promoter is a 200-bp region immediately upstream of the AFP gene, and the enhancer is present between 3 and 4.9 kb upstream of the transcription initiation site. Two silencer regions have been identified upstream of the gene, one at -0.31 kb and the other at -1.75 kb. To achieve specific killing of HCC, adenoviral vectors carrying AFP regulatory sequences have been constructed. In this article, we describe the details of the preparation of an adenoviral vector designed to express the herpes simplex virus thymidine kinase gene under the control of the 4.9-kb AFP 5'-regulatory sequence. Treatment with this viral vector followed by ganciclovir resulted in specific killing of AFP-positive HCC transplanted in nude mice. Other viral vectors containing AFP-regulatory sequences are also discussed.
Collapse
Affiliation(s)
- S Kaneko
- First Dept. Internal Medicine, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920, Japan.
| | | |
Collapse
|
8
|
Kunitomi M, Takayama E, Suzuki S, Yasuda T, Tsutsui K, Nagaike K, Hiroi S, Tadakuma T. Selective inhibition of hepatoma cells using diphtheria toxin A under the control of the promoter/enhancer region of the human alpha-fetoprotein gene. Jpn J Cancer Res 2000; 91:343-50. [PMID: 10760695 PMCID: PMC5926372 DOI: 10.1111/j.1349-7006.2000.tb00951.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We constructed a plasmid containing human alpha-fetoprotein (AFP) promoter/enhancer to direct the cell type-specific expression of diphtheria toxin fragment A (DTA), designated as pAF-DTA, to AFP-producing hepatocellular carcinoma cells. The transfection was carried out with cationic liposomes (DMRIE-C) and the expression of the DTA gene was confirmed by a northern blot analysis. When pAF-DTA was transfected, the growth of AFP-positive HuH-7 cells was inhibited, whereas growth inhibition was not observed in AFP-negative MKN45 cells. In this experiment, the secretion of AFP was similarly suppressed, but the secretion of carcinoembryonic antigen from MKN45 was not altered. pAF-DTA could also exert its growth inhibitory effect on PLC, a cell line with a low level of AFP. However, no inhibitory effect of pAF-DTA was observed on the proliferation of primary hepatocyte cells. Furthermore, transfection experiments in which HuH-7 and splenic stromal cells were co-cultured revealed the growth inhibition by pAF-DTA to be selective in HuH-7 cells. Finally, the growth of HuH-7 transplanted on BALB/c nu/nu mice was inhibited by the direct injection of pAF-DTA/liposome complex into a tumor mass. These results suggest that use of pAF-DTA may be potentially useful as a novel approach for the selective treatment of tumor cells producing AFP even at low levels, without affecting other types of cells.
Collapse
Affiliation(s)
- M Kunitomi
- Departments of Parasitology, National Defense Medical College, Namiki, Tokorozawa 359-8513, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Koyama Y, Taketa K, Azuma M, Yamamoto R, Fujimoto S, Nishi S. Biochemical characterization of alpha-fetoprotein and other serum proteins produced by a uterine endometrial adenocarcinoma. Jpn J Cancer Res 1996; 87:612-7. [PMID: 8766525 PMCID: PMC5921147 DOI: 10.1111/j.1349-7006.1996.tb00267.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A high serum alpha-fetoprotein (AFP) level was found in a patient with endometrial adenocarcinoma of the uterus, which appeared to be hepatoid on histological examination. The AFP of this unusual patient was purified by immunoaffinity chromatography and characterized. The electrophoretic profiles on sodium dodecyl sulfate-polyacrylamide get electrophoresis both before and after glycopeptidase F treatment were indistinguishable from those of a hepatoma AFP. This indicates that the patient's AFP was also composed of a single polypeptide chain of Mr 67,000 and an N-linked sugar chain of Mr 3,000. Amino acid sequence analyses of this AFP, and of AFP from hepatoma and umbilical cord serum indicated that the N-terminal sequences were essentially the same. The sequence, Arg-Thr-Leu-His-Arg-Asn-Glu-Tyr-Gly-Ile, was slightly different from previous reports, but matched that deduced from the cDNA sequence. AFP isoforms due to microheterogeneity of the sugar chain were analyzed by lectin affinity electrophoresis using a series of lectins. The AFP isoform profiles were distinct from those of proteins derived from cord serum, hepatoma, yolk sac tumor and gastric cancer. The reverse-transcription of RNA from the tumor tissue followed by a polymerase chain reaction using primers with AFP-specific sequences gave a product of the size and nucleotide sequence expected for AFP. mRNAs possessing the requisite sequences for albumin and transferrin syntheses were also detected in the tumor. The expression of these hepatocyte-specific proteins supported the hepatoid nature of this tumor.
Collapse
Affiliation(s)
- Y Koyama
- Department of Biochemistry, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
10
|
ATBF1, a multiple-homeodomain zinc finger protein, selectively down-regulates AT-rich elements of the human alpha-fetoprotein gene. Mol Cell Biol 1994. [PMID: 7507206 DOI: 10.1128/mcb.14.2.1395] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATBF1 is a 306-kDa protein containing four homeodomains, 17 zinc finger motifs, and several segments potentially involved in transcriptional regulation (T. Morinaga, H. Yasuda, T. Hashimoto, K. Higashio, and T. Tamaoki, Mol. Cell. Biol. 11:6041-6049, 1991). At least one of the homeodomains of ATBF1 binds to an AT-rich element in the human alpha-fetoprotein (AFP) enhancer (enhancer AT motif). In the present work, we analyzed the transcriptional regulatory activity of ATBF1 with respect to the enhancer AT motif and similar AT-rich elements in the human AFP promoter and the human albumin promoter and enhancer. Gel retardation assays showed that ATBF1 binds to the AFP enhancer AT motif efficiently; however, it binds weakly or not at all to other AT-rich elements in the AFP and albumin regulatory regions studied. Alterations of the enhancer AT motif by site-specific mutagenesis resulted in the loss of binding of ATBF1. Cotransfection experiments with an ATBF1 expression plasmid and the chloramphenicol acetyltransferase (CAT) gene fused to AFP promoter or enhancer fragments showed that ATBF1 suppressed the activity of AFP enhancer and promoter regions containing AT-rich elements. This suppression was reduced when the mutated AT motifs with low affinity to ATBF1 were linked to the CAT gene. The ATBF1 suppression of AFP promoter and enhancer activities appeared to be due, at least in part, to competition between ATBF1 and HNF1 for the same binding site. In contrast to the AFP promoter and enhancer, the albumin promoter and enhancer were not affected by ATBF1, although they contain homologous AT-rich elements. These results show that ATBF1 is able to distinguish AFP and albumin AT-rich elements, leading to selective suppression of the AFP promoter and enhancer activities.
Collapse
|
11
|
Yasuda H, Mizuno A, Tamaoki T, Morinaga T. ATBF1, a multiple-homeodomain zinc finger protein, selectively down-regulates AT-rich elements of the human alpha-fetoprotein gene. Mol Cell Biol 1994; 14:1395-401. [PMID: 7507206 PMCID: PMC358494 DOI: 10.1128/mcb.14.2.1395-1401.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ATBF1 is a 306-kDa protein containing four homeodomains, 17 zinc finger motifs, and several segments potentially involved in transcriptional regulation (T. Morinaga, H. Yasuda, T. Hashimoto, K. Higashio, and T. Tamaoki, Mol. Cell. Biol. 11:6041-6049, 1991). At least one of the homeodomains of ATBF1 binds to an AT-rich element in the human alpha-fetoprotein (AFP) enhancer (enhancer AT motif). In the present work, we analyzed the transcriptional regulatory activity of ATBF1 with respect to the enhancer AT motif and similar AT-rich elements in the human AFP promoter and the human albumin promoter and enhancer. Gel retardation assays showed that ATBF1 binds to the AFP enhancer AT motif efficiently; however, it binds weakly or not at all to other AT-rich elements in the AFP and albumin regulatory regions studied. Alterations of the enhancer AT motif by site-specific mutagenesis resulted in the loss of binding of ATBF1. Cotransfection experiments with an ATBF1 expression plasmid and the chloramphenicol acetyltransferase (CAT) gene fused to AFP promoter or enhancer fragments showed that ATBF1 suppressed the activity of AFP enhancer and promoter regions containing AT-rich elements. This suppression was reduced when the mutated AT motifs with low affinity to ATBF1 were linked to the CAT gene. The ATBF1 suppression of AFP promoter and enhancer activities appeared to be due, at least in part, to competition between ATBF1 and HNF1 for the same binding site. In contrast to the AFP promoter and enhancer, the albumin promoter and enhancer were not affected by ATBF1, although they contain homologous AT-rich elements. These results show that ATBF1 is able to distinguish AFP and albumin AT-rich elements, leading to selective suppression of the AFP promoter and enhancer activities.
Collapse
Affiliation(s)
- H Yasuda
- Research Institute of Life Science, Snow Brand Milk Products Co. Ltd, Tochigi, Japan
| | | | | | | |
Collapse
|
12
|
Fischer G, Schmidt C, Opitz J, Cully Z, Kühn K, Pöschl E. Identification of a novel sequence element in the common promoter region of human collagen type IV genes, involved in the regulation of divergent transcription. Biochem J 1993; 292 ( Pt 3):687-95. [PMID: 8317999 PMCID: PMC1134168 DOI: 10.1042/bj2920687] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The expression of the heterotrimeric collagen IV molecule alpha 1(IV)2 alpha 2(IV) is essential for the structural integrity and functional properties of all basement membranes. The two genes COL4A1 and COL4A2 that code for the subunits are found closely linked on chromosome 13 in a head-to-head arrangement and are transcribed in divergent directions. We have identified a novel trans-acting factor that binds in vitro to a unique homopyrimidine/homopurine stretch within the shared promoter region of the two collagen IV genes. Additional binding sites have been identified within the first introns of both genes and the consensus sequence CCCTYCCCC for efficient binding has been deduced; the factor was named therefore 'CTC-binding factor' or 'CTCBF'. Mutations in the binding site of CTC-binding factor within the promoter inhibited binding in vitro and resulted in reduced transcription from both genes. The effect of mutations on the transcription of COL4A2 is more pronounced than on the transcription of COL4A1. CTC-binding factor is a nuclear factor that binds dominantly in vitro to the collagen IV promoter and is involved in regulating the expression of both collagen IV genes.
Collapse
Affiliation(s)
- G Fischer
- Max-Planck-Institut für Biochemie, Abt. für Bindegewebsforschung, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Vacher J, Camper SA, Krumlauf R, Compton RS, Tilghman SM. raf regulates the postnatal repression of the mouse alpha-fetoprotein gene at the posttranscriptional level. Mol Cell Biol 1992; 12:856-64. [PMID: 1370712 PMCID: PMC364319 DOI: 10.1128/mcb.12.2.856-864.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse alpha-fetoprotein (AFP) gene is transcribed at a high rate in liver during the second half of gestation. Its steady-state mRNA levels decrease 10(4)-fold shortly after birth, at least in part as the consequence of a dramatic decrease in its transcription rate. The final basal level of AFP mRNA in adult liver is influenced by a trans-acting locus on chromosome 15 termed raf. Two strategies were used to demonstrate that the raf gene acts posttranscriptionally to affect the processing and/or stability of AFP transcripts. Transgenic mouse studies demonstrated that raf gene action is independent of both positive and negative transcription control elements of the AFP gene. Nuclear run-on analysis was used to confirm that transcriptions of both AFP transgenes and another endogenous raf-responsive gene, H19, are invariant with respect to the raf genotype. Thus, the postnatal repression of the AFP gene is mediated by both transcriptional and posttranscriptional mechanisms.
Collapse
Affiliation(s)
- J Vacher
- Howard Hughes Medical Institute, Princeton University, New Jersey 08544
| | | | | | | | | |
Collapse
|
14
|
raf regulates the postnatal repression of the mouse alpha-fetoprotein gene at the posttranscriptional level. Mol Cell Biol 1992. [PMID: 1370712 DOI: 10.1128/mcb.12.2.856] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse alpha-fetoprotein (AFP) gene is transcribed at a high rate in liver during the second half of gestation. Its steady-state mRNA levels decrease 10(4)-fold shortly after birth, at least in part as the consequence of a dramatic decrease in its transcription rate. The final basal level of AFP mRNA in adult liver is influenced by a trans-acting locus on chromosome 15 termed raf. Two strategies were used to demonstrate that the raf gene acts posttranscriptionally to affect the processing and/or stability of AFP transcripts. Transgenic mouse studies demonstrated that raf gene action is independent of both positive and negative transcription control elements of the AFP gene. Nuclear run-on analysis was used to confirm that transcriptions of both AFP transgenes and another endogenous raf-responsive gene, H19, are invariant with respect to the raf genotype. Thus, the postnatal repression of the AFP gene is mediated by both transcriptional and posttranscriptional mechanisms.
Collapse
|
15
|
A position-dependent silencer plays a major role in repressing alpha-fetoprotein expression in human hepatoma. Mol Cell Biol 1991. [PMID: 1719374 DOI: 10.1128/mcb.11.12.5885] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large percentage of human hepatomas produce alpha-fetoprotein (AFP), but the levels of AFP expression vary greatly among hepatomas. To understand the molecular basis for this variation, we analyzed transcriptional regulatory activities associated with the 5'-flanking region of the AFP gene in two human hepatoma cell lines, HuH-7 and huH-1/cl-2, which produce a high and a low level of AFP, respectively. We found that the low level of AFP production in huH-1/cl-2 is due to the action of at least two silencer regions located between the enhancer and the promoter of the AFP gene. In contrast, no silencer activity is expressed in HuH-7. We identified 5'-CTTCATAACTAATACTT-3' to be a core sequence responsible for the negative regulatory activity. This sequence is repeated four times in a strong, distal silencer region, Sd, whereas one copy is present in a weak, proximal silencer region, Sp. The silencer reduces transcriptional initiation by blocking enhancer activation of the AFP promoter in a position-dependent manner. The silencer functions in the presence of positive transcription factors and may play a key role in developmental repression as well as variable expression of the AFP gene in hepatomas.
Collapse
|
16
|
A human alpha-fetoprotein enhancer-binding protein, ATBF1, contains four homeodomains and seventeen zinc fingers. Mol Cell Biol 1991. [PMID: 1719379 DOI: 10.1128/mcb.11.12.6041] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have isolated a full-length cDNA encoding a protein (ATBF1) that binds to an AT-rich motif in the human alpha-fetoprotein gene enhancer. The amino acid sequence deduced from the cDNA revealed that this is the largest DNA-binding protein (306 kDa) known to date, containing four homeodomains, 17 zinc finger motifs, and a number of segments potentially involved in transcriptional regulation. Although the exact function of this protein has not been determined, these structural features suggest that ATBF1 plays a transcriptional regulatory role.
Collapse
|
17
|
Nakabayashi H, Hashimoto T, Miyao Y, Tjong KK, Chan J, Tamaoki T. A position-dependent silencer plays a major role in repressing alpha-fetoprotein expression in human hepatoma. Mol Cell Biol 1991; 11:5885-93. [PMID: 1719374 PMCID: PMC361738 DOI: 10.1128/mcb.11.12.5885-5893.1991] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A large percentage of human hepatomas produce alpha-fetoprotein (AFP), but the levels of AFP expression vary greatly among hepatomas. To understand the molecular basis for this variation, we analyzed transcriptional regulatory activities associated with the 5'-flanking region of the AFP gene in two human hepatoma cell lines, HuH-7 and huH-1/cl-2, which produce a high and a low level of AFP, respectively. We found that the low level of AFP production in huH-1/cl-2 is due to the action of at least two silencer regions located between the enhancer and the promoter of the AFP gene. In contrast, no silencer activity is expressed in HuH-7. We identified 5'-CTTCATAACTAATACTT-3' to be a core sequence responsible for the negative regulatory activity. This sequence is repeated four times in a strong, distal silencer region, Sd, whereas one copy is present in a weak, proximal silencer region, Sp. The silencer reduces transcriptional initiation by blocking enhancer activation of the AFP promoter in a position-dependent manner. The silencer functions in the presence of positive transcription factors and may play a key role in developmental repression as well as variable expression of the AFP gene in hepatomas.
Collapse
MESH Headings
- Albumins/metabolism
- Base Sequence
- Carcinoma, Hepatocellular/genetics
- Cloning, Molecular
- DNA, Neoplasm
- Enhancer Elements, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Molecular Sequence Data
- Promoter Regions, Genetic
- Regulatory Sequences, Nucleic Acid
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- alpha-Fetoproteins/genetics
- alpha-Fetoproteins/metabolism
Collapse
Affiliation(s)
- H Nakabayashi
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Morinaga T, Yasuda H, Hashimoto T, Higashio K, Tamaoki T. A human alpha-fetoprotein enhancer-binding protein, ATBF1, contains four homeodomains and seventeen zinc fingers. Mol Cell Biol 1991; 11:6041-9. [PMID: 1719379 PMCID: PMC361769 DOI: 10.1128/mcb.11.12.6041-6049.1991] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have isolated a full-length cDNA encoding a protein (ATBF1) that binds to an AT-rich motif in the human alpha-fetoprotein gene enhancer. The amino acid sequence deduced from the cDNA revealed that this is the largest DNA-binding protein (306 kDa) known to date, containing four homeodomains, 17 zinc finger motifs, and a number of segments potentially involved in transcriptional regulation. Although the exact function of this protein has not been determined, these structural features suggest that ATBF1 plays a transcriptional regulatory role.
Collapse
Affiliation(s)
- T Morinaga
- Research Institute of Life Science, Snow Brand Milk Products Co., Ltd., Japan
| | | | | | | | | |
Collapse
|
19
|
Interaction of a liver-specific factor with an enhancer 4.8 kilobases upstream of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol 1990. [PMID: 2355922 DOI: 10.1128/mcb.10.7.3770] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously identified a series of five DNase-I hypersensitive (HS) sites within and around the rat phosphoenolpyruvate carboxykinase (PEPCK) gene. The far upstream region has now been sequenced, and the tissue-specific HS site has been mapped more precisely at 4,800 base pairs upstream of the transcription start site of the PEPCK gene. DNA fragments that include the HS site were cloned upstream of various promoters to test whether these regions modulate transcription of the chloramphenicol acetyltransferase reporter gene. Chloramphenicol acetyltransferase activity was enhanced when the DNA fragment encompassing the upstream HS site was linked to various lengths of the PEPCK promoter or to the heterologous simian virus 40 promoter. This upstream region in conjunction with the proximal promoter, which may contain a tissue-specific element, conferred maximum activation in H4IIE hepatoma cells, which express the endogenous PEPCK gene. When these experiments were performed in XC cells, in which the gene is not expressed, transcriptional activation by the upstream element was still significant. Evidence of a specific protein-DNA interaction, using DNA mobility shift and DNase I footprinting assays, was obtained only when using H4IIE cell nuclear extracts. Competition assay showed that the interacting factor may be similar or identical to the liver-specific factor HNF3. We suggest that this protein factor binds to DNA within the HS site and interacts with the proximal promoter region to control tissue-specific high-level expression of the PEPCK gene.
Collapse
|
20
|
Hepatic transcription of the acute-phase alpha 1-inhibitor III gene is controlled by a novel combination of cis-acting regulatory elements. Mol Cell Biol 1990. [PMID: 1694011 DOI: 10.1128/mcb.10.7.3483] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mRNA coding for the abundant broad-range plasma proteinase inhibitor alpha 1-inhibitor III (alpha 1I3) was detected only in rat liver, while mRNA for the related proteins alpha 1-macroglobulin and alpha 2-macroglobulin was also found in a variety of nonhepatic tissues. cis-Acting control elements necessary for the hepatic transcription of alpha 1I3 were mapped by transfection and expression studies of control-region constructs in cultured hepatic and nonhepatic cells. The promoter-proximal 5'-flanking region contained four control elements, I to IV, located between -109 and -196 base pairs upstream of the transcriptional start site relevant for the hepatic transcription of this gene. Elements II and III were essential, and I and IV exerted strong modulatory effects. Elements I to III acted as positive regulators, and IV acted as a negative element. Element II contained the sequence TGGCA and is probably a binding site for a nuclear factor related to the known transcription factor NF1. The other three elements did not resemble consensus binding sites for known transcription factors that are involved in the hepatocyte-specific transcription of other well-characterized plasma protein genes, such as the prototype factor HNF-1. Thus, the alpha 1I3 gene achieves its highly hepatocyte-specific transcription through a novel combination of cis-acting control elements and trans-acting factors.
Collapse
|
21
|
Abraham LJ, Bradshaw AD, Shiels BR, Northemann W, Hudson G, Fey GH. Hepatic transcription of the acute-phase alpha 1-inhibitor III gene is controlled by a novel combination of cis-acting regulatory elements. Mol Cell Biol 1990; 10:3483-91. [PMID: 1694011 PMCID: PMC360783 DOI: 10.1128/mcb.10.7.3483-3491.1990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
mRNA coding for the abundant broad-range plasma proteinase inhibitor alpha 1-inhibitor III (alpha 1I3) was detected only in rat liver, while mRNA for the related proteins alpha 1-macroglobulin and alpha 2-macroglobulin was also found in a variety of nonhepatic tissues. cis-Acting control elements necessary for the hepatic transcription of alpha 1I3 were mapped by transfection and expression studies of control-region constructs in cultured hepatic and nonhepatic cells. The promoter-proximal 5'-flanking region contained four control elements, I to IV, located between -109 and -196 base pairs upstream of the transcriptional start site relevant for the hepatic transcription of this gene. Elements II and III were essential, and I and IV exerted strong modulatory effects. Elements I to III acted as positive regulators, and IV acted as a negative element. Element II contained the sequence TGGCA and is probably a binding site for a nuclear factor related to the known transcription factor NF1. The other three elements did not resemble consensus binding sites for known transcription factors that are involved in the hepatocyte-specific transcription of other well-characterized plasma protein genes, such as the prototype factor HNF-1. Thus, the alpha 1I3 gene achieves its highly hepatocyte-specific transcription through a novel combination of cis-acting control elements and trans-acting factors.
Collapse
Affiliation(s)
- L J Abraham
- Department of Immunology, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | | | | | | | | | |
Collapse
|
22
|
Ip YT, Poon D, Stone D, Granner DK, Chalkley R. Interaction of a liver-specific factor with an enhancer 4.8 kilobases upstream of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol 1990; 10:3770-81. [PMID: 2355922 PMCID: PMC360831 DOI: 10.1128/mcb.10.7.3770-3781.1990] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have previously identified a series of five DNase-I hypersensitive (HS) sites within and around the rat phosphoenolpyruvate carboxykinase (PEPCK) gene. The far upstream region has now been sequenced, and the tissue-specific HS site has been mapped more precisely at 4,800 base pairs upstream of the transcription start site of the PEPCK gene. DNA fragments that include the HS site were cloned upstream of various promoters to test whether these regions modulate transcription of the chloramphenicol acetyltransferase reporter gene. Chloramphenicol acetyltransferase activity was enhanced when the DNA fragment encompassing the upstream HS site was linked to various lengths of the PEPCK promoter or to the heterologous simian virus 40 promoter. This upstream region in conjunction with the proximal promoter, which may contain a tissue-specific element, conferred maximum activation in H4IIE hepatoma cells, which express the endogenous PEPCK gene. When these experiments were performed in XC cells, in which the gene is not expressed, transcriptional activation by the upstream element was still significant. Evidence of a specific protein-DNA interaction, using DNA mobility shift and DNase I footprinting assays, was obtained only when using H4IIE cell nuclear extracts. Competition assay showed that the interacting factor may be similar or identical to the liver-specific factor HNF3. We suggest that this protein factor binds to DNA within the HS site and interacts with the proximal promoter region to control tissue-specific high-level expression of the PEPCK gene.
Collapse
Affiliation(s)
- Y T Ip
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | | | | | | |
Collapse
|
23
|
c-Ha-ras down regulates the alpha-fetoprotein gene but not the albumin gene in human hepatoma cells. Mol Cell Biol 1990. [PMID: 1690841 DOI: 10.1128/mcb.10.4.1461] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the effects of transfection of the normal c-Ha-ras gene, rasGly-12, and its oncogenic mutant, rasVal-12, on expression of the alpha-fetoprotein (AFP) and albumin genes in a human hepatoma cell line, HuH-7. The mutant and, to a lesser extent, the normal ras gene caused reduction of the AFP mRNA but not the albumin mRNA level in transfected HuH-7 cells. Cotransfection experiments with a rasVal-12 expression plasmid and a chloramphenicol acetyltransferase reporter gene fused to AFP regulatory sequences showed that rasVal-12 suppressed the activity of enhancer and promoter regions containing A + T-rich sequences (AT motif). In contrast, rasVal-12 did not affect the promoter activity of the albumin and human hepatitis B virus pre-S1 genes even though these promoters contain homologous A + T-rich elements. ras transfection appeared to induce phosphorylation of nuclear proteins that interact with the AFP AT motif, since gel mobility analysis revealed the formation of slow-moving complexes which was reversed by phosphatase treatment. However, similar changes in complex formation were observed with the albumin and hepatitis B surface antigen pre-S1 promoters. Therefore, this effect alone cannot explain the specific down regulation of the AFP promoter and enhancer activity. ras-mediated suppression of the AFP gene may reflect the process of developmental gene regulation in which AFP gene transcription is controlled by a G-protein-linked signal transduction cascade triggered by external growth stimuli.
Collapse
|
24
|
Nakao K, Lawless D, Ohe Y, Miyao Y, Nakabayashi H, Kamiya H, Miura K, Ohtsuka E, Tamaoki T. c-Ha-ras down regulates the alpha-fetoprotein gene but not the albumin gene in human hepatoma cells. Mol Cell Biol 1990; 10:1461-9. [PMID: 1690841 PMCID: PMC362248 DOI: 10.1128/mcb.10.4.1461-1469.1990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We studied the effects of transfection of the normal c-Ha-ras gene, rasGly-12, and its oncogenic mutant, rasVal-12, on expression of the alpha-fetoprotein (AFP) and albumin genes in a human hepatoma cell line, HuH-7. The mutant and, to a lesser extent, the normal ras gene caused reduction of the AFP mRNA but not the albumin mRNA level in transfected HuH-7 cells. Cotransfection experiments with a rasVal-12 expression plasmid and a chloramphenicol acetyltransferase reporter gene fused to AFP regulatory sequences showed that rasVal-12 suppressed the activity of enhancer and promoter regions containing A + T-rich sequences (AT motif). In contrast, rasVal-12 did not affect the promoter activity of the albumin and human hepatitis B virus pre-S1 genes even though these promoters contain homologous A + T-rich elements. ras transfection appeared to induce phosphorylation of nuclear proteins that interact with the AFP AT motif, since gel mobility analysis revealed the formation of slow-moving complexes which was reversed by phosphatase treatment. However, similar changes in complex formation were observed with the albumin and hepatitis B surface antigen pre-S1 promoters. Therefore, this effect alone cannot explain the specific down regulation of the AFP promoter and enhancer activity. ras-mediated suppression of the AFP gene may reflect the process of developmental gene regulation in which AFP gene transcription is controlled by a G-protein-linked signal transduction cascade triggered by external growth stimuli.
Collapse
Affiliation(s)
- K Nakao
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tyner AL, Godbout R, Compton RS, Tilghman SM. The ontogeny of alpha-fetoprotein gene expression in the mouse gastrointestinal tract. J Cell Biol 1990; 110:915-27. [PMID: 1691194 PMCID: PMC2116081 DOI: 10.1083/jcb.110.4.915] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ontogeny of alpha-fetoprotein (AFP) gene expression has been examined in the fetal and adult mouse gastrointestinal tract. AFP mRNA constitutes approximately 0.1% of total mRNA in the fetal gut. The transcripts were localized by in situ hybridization to the epithelial cells lining the villi of the fetal gut. At birth, AFP mRNA declines rapidly to achieve low adult basal levels, which are not affected by different alleles of raf, a gene that determines the adult basal level of AFP mRNA in the liver. The basal level in the adult gut is the consequence of continued AFP transcription in a small number of enteroendocrine cells that are distributed infrequently on the villi. These cells were identified by double antibody staining with antibodies to chromogranin A, an enteroendocrine cell marker and AFP. Previous studies resulted in the generation of a line of transgenic mice containing an internally deleted AFP gene that was greatly overexpressed in the fetal gut. The basis for the inappropriately high level expression of the transgene was shown to be the consequence of very high levels of transcription in the epithelial cells of the villi rather than to expression in inappropriate cell types. The cis-acting DNA sequences required for expression of the AFP gene in the gut were investigated using Caco-2 cells, a human colon adenocarcinoma cell line. These experiments indicated that, with one exception, the regulatory elements required in both the promoter and enhancer regions of the gene coincided with those that are necessary for high level expression in the liver. The one exception was enhancer II, located 5 kbp of DNA upstream of the gene, which exhibited no activity in Caco-2 cells.
Collapse
Affiliation(s)
- A L Tyner
- Howard Hughes Medical Institute, Princeton University, New Jersey 08544
| | | | | | | |
Collapse
|
26
|
Promoter and 11-kilobase upstream enhancer elements responsible for hepatoma cell-specific expression of the rat ornithine transcarbamylase gene. Mol Cell Biol 1990. [PMID: 2304462 DOI: 10.1128/mcb.10.3.1180] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene for ornithine transcarbamylase (OTC; EC 2.1.3.3), a urea cycle enzyme, is expressed almost exclusively in the liver and small intestine. To identify DNA elements regulating transcription of the OTC gene in the liver, transient expression analysis was carried out by using hepatoma (HepG2) and nonhepatic (CHO) cell lines. The 1.3-kilobase 5'-flanking region of the rat OTC gene directed expression of the fused chloramphenicol acetyltransferase gene in HepG2 cells much more efficiently than in CHO cells. Analysis of deletion mutants of the 5'-flanking region in HepG2 cells revealed that there are at least one negative and two positive regulatory elements within the about 220-base-pair immediate 5'-flanking region. DNase I footprint analysis showed the presence of factors binding to these regulatory elements in nuclear extracts of rat liver and brain, and footprint profiles at the two positive elements exhibited liver-specific features. Transient expression analysis also revealed the existence of an enhancer region located 11 kilobases upstream of the transcription start site. The OTC enhancer was able to activate both its own and heterologous promoters in HepG2 but not in CHO cells. The enhancer was delimited to an about 230-base-pair region, and footprint analysis of this region revealed four protected areas. Footprint profiles at two of the four areas exhibited liver-specific features, and gel shift competition analysis showed that a factor(s) binding to the two liver-specific sites is related to C/EBP. These results suggest that both liver-specific promoter and enhancer elements regulate expression of the OTC gene through interaction with liver-specific factors binding to these elements.
Collapse
|
27
|
Murakami T, Nishiyori A, Takiguchi M, Mori M. Promoter and 11-kilobase upstream enhancer elements responsible for hepatoma cell-specific expression of the rat ornithine transcarbamylase gene. Mol Cell Biol 1990; 10:1180-91. [PMID: 2304462 PMCID: PMC360991 DOI: 10.1128/mcb.10.3.1180-1191.1990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The gene for ornithine transcarbamylase (OTC; EC 2.1.3.3), a urea cycle enzyme, is expressed almost exclusively in the liver and small intestine. To identify DNA elements regulating transcription of the OTC gene in the liver, transient expression analysis was carried out by using hepatoma (HepG2) and nonhepatic (CHO) cell lines. The 1.3-kilobase 5'-flanking region of the rat OTC gene directed expression of the fused chloramphenicol acetyltransferase gene in HepG2 cells much more efficiently than in CHO cells. Analysis of deletion mutants of the 5'-flanking region in HepG2 cells revealed that there are at least one negative and two positive regulatory elements within the about 220-base-pair immediate 5'-flanking region. DNase I footprint analysis showed the presence of factors binding to these regulatory elements in nuclear extracts of rat liver and brain, and footprint profiles at the two positive elements exhibited liver-specific features. Transient expression analysis also revealed the existence of an enhancer region located 11 kilobases upstream of the transcription start site. The OTC enhancer was able to activate both its own and heterologous promoters in HepG2 but not in CHO cells. The enhancer was delimited to an about 230-base-pair region, and footprint analysis of this region revealed four protected areas. Footprint profiles at two of the four areas exhibited liver-specific features, and gel shift competition analysis showed that a factor(s) binding to the two liver-specific sites is related to C/EBP. These results suggest that both liver-specific promoter and enhancer elements regulate expression of the OTC gene through interaction with liver-specific factors binding to these elements.
Collapse
Affiliation(s)
- T Murakami
- Institute for Medical Genetics, Kumamoto University Medical School, Japan
| | | | | | | |
Collapse
|
28
|
The rat albumin promoter: cooperation with upstream elements is required when binding of APF/HNF1 to the proximal element is partially impaired by mutation or bacterial methylation. Mol Cell Biol 1990. [PMID: 2689864 DOI: 10.1128/mcb.9.11.4759] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized in the accompanying paper (P. Herbomel, A. Rollier, F. Tronche, M.-O. Ott, M. Yaniv, and M. C. Weiss, Mol. Cell. Biol. 9:4750-4758, 1989) six different elements in the albumin promoter. One of them, the proximal element (PE), is the binding site for a strictly liver specific factor, APF/HNF1. This binding site contains a bacterial DAM DNA methylase methylation target sequence which, when methylated, decreases the affinity of the protein for this element. When the different albumin promoter constructions were prepared in an Escherichia coli deoxyadenosine methylase-negative strain, the respective contributions of the elements to the overall promoter activity were strikingly different. An intact proximal element plus the TATA box gave almost full transcriptional activity in transient transfection experiments and only in differentiated hepatoma cells of line H4II, whereas the distal elements (distal element III [DEIII], the NF1-binding site DEII, and the E/CBP-binding site DEI) had become essentially dispensable. Mutations affecting the CCAAT box showed only a two- to threefold decrease. When PE was methylated, mutated, or replaced by the homologous element from the alpha-fetoprotein gene, activity in the context of the short promoter (PE plus the TATA box) was abolished. However, activity was restored in the presence of the upstream elements, showing that cooperation with factors binding to the CCAAT box and distal elements favors the functional interaction of the liver-specific APF/HNF1 factor with lower-affinity binding sites.
Collapse
|
29
|
Developmental regulation of specific protein interactions with an enhancerlike binding site far upstream from the avian very-low-density apolipoprotein II gene. Mol Cell Biol 1990. [PMID: 2294400 DOI: 10.1128/mcb.10.1.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the avian very-low-density apolipoprotein II (apoVLDLII) gene is completely dependent on estrogen and restricted to the liver. We have identified binding sites for nonhistone nuclear proteins located between -1.96 and -2.61 kilobases. One of these sites, located at -2.6 kilobases (designated site 1), was found to span an MspI site that becomes demethylated between days 7 and 9 of embryogenesis, the stage of development at which competence to express the apoVLDLII gene begins to be acquired. Levels of the factor(s) involved were high at day 7 of embryogenesis, decreased two- to threefold by days 9 to 11, and continued to decline more slowly until hatching. Furthermore, the mobility of the complex formed underwent a well-defined shift between days 11 to 13 embryogenesis. Methylation interference studies showed that modification of the outer guanosines of the MspI site resulted in marked inhibition of the formation of the protein-DNA complex. Competition studies, fractionation of nuclear extracts, and tissue distribution indicated that the factor was not the avian homolog of hepatocyte nuclear factor 1, nuclear factor 1, or CCAAT/enhancer-binding protein (C/EBP). However, site 1 could complete for binding to an oligonucleotide, previously shown to be recognized by C/EBP, in a nonreciprocal fashion. These studies demonstrate that the sequence recognized by the protein includes a C/EBP consensus sequence but that elements in addition to the core enhancer motif are essential for binding.
Collapse
|
30
|
Hoodless PA, Roy RN, Ryan AK, Haché RJ, Vasa MZ, Deeley RG. Developmental regulation of specific protein interactions with an enhancerlike binding site far upstream from the avian very-low-density apolipoprotein II gene. Mol Cell Biol 1990; 10:154-64. [PMID: 2294400 PMCID: PMC360723 DOI: 10.1128/mcb.10.1.154-164.1990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Expression of the avian very-low-density apolipoprotein II (apoVLDLII) gene is completely dependent on estrogen and restricted to the liver. We have identified binding sites for nonhistone nuclear proteins located between -1.96 and -2.61 kilobases. One of these sites, located at -2.6 kilobases (designated site 1), was found to span an MspI site that becomes demethylated between days 7 and 9 of embryogenesis, the stage of development at which competence to express the apoVLDLII gene begins to be acquired. Levels of the factor(s) involved were high at day 7 of embryogenesis, decreased two- to threefold by days 9 to 11, and continued to decline more slowly until hatching. Furthermore, the mobility of the complex formed underwent a well-defined shift between days 11 to 13 embryogenesis. Methylation interference studies showed that modification of the outer guanosines of the MspI site resulted in marked inhibition of the formation of the protein-DNA complex. Competition studies, fractionation of nuclear extracts, and tissue distribution indicated that the factor was not the avian homolog of hepatocyte nuclear factor 1, nuclear factor 1, or CCAAT/enhancer-binding protein (C/EBP). However, site 1 could complete for binding to an oligonucleotide, previously shown to be recognized by C/EBP, in a nonreciprocal fashion. These studies demonstrate that the sequence recognized by the protein includes a C/EBP consensus sequence but that elements in addition to the core enhancer motif are essential for binding.
Collapse
Affiliation(s)
- P A Hoodless
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Tissue-specific transcription of the mouse alpha-fetoprotein gene promoter is dependent on HNF-1. Mol Cell Biol 1989. [PMID: 2479822 DOI: 10.1128/mcb.9.10.4204] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work identified four upstream cis-acting elements required for tissue-specific expression of the alpha-fetoprotein (AFP) gene: three distal enhancers and a promoter. To further define the role of the promoter in regulating AFP gene expression, segments of the region were tested for the ability to direct transcription of a reporter gene in transient expression assay. Experiments showed that the region within 250 base pairs of the start of transcription was sufficient to confer liver-specific transcription. DNase I footprinting and band shift assays indicated that the region between -130 and -100 was recognized by two factors, one of which was highly sequence specific and found only in hepatoma cells. Competition assays suggested that the liver-specific binding activity was HNF-1, previously identified by its binding to other liver-specific promoters. Mutation of the HNF-1 recognition site at -120 resulted in a significant reduction in transcription in transfection assays, suggesting a biological role for HNF-1 in the regulation of AFP expression.
Collapse
|
32
|
Nakao K, Miyao Y, Ohe Y, Tamaoki T. Involvement of an AFP1-binding site in cell-specific transcription of the pre-S1 region of the human hepatitis B virus surface antigen gene. Nucleic Acids Res 1989; 17:9833-42. [PMID: 2481267 PMCID: PMC335217 DOI: 10.1093/nar/17.23.9833] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human hepatitis B virus infection is characterized by a high degree of hepatotropism which may be due to the dependency of viral genes on specific host factors for their expression. To learn more about such a requirement and the molecular basis of the viral tissue tropism we analyzed the promoter function in the pre-S1 region of the surface antigen gene. DNase I footprinting and competition gel retardation assays showed that a sequence with an AT-rich core (AT motif) in the pre-S1 promoter region interacts with AFP1, a hepatoma nuclear factor that binds to the alpha-fetoprotein enhancer and promoter. Functional analysis of the pre-S1 AT motif by transient transfection assays showed that this element is important in cell-specific transcriptional initiation. These results suggest that AFP1 may be one of the factors determining the liver specificity of human hepatitis B virus.
Collapse
Affiliation(s)
- K Nakao
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
33
|
Tronche F, Rollier A, Bach I, Weiss MC, Yaniv M. The rat albumin promoter: cooperation with upstream elements is required when binding of APF/HNF1 to the proximal element is partially impaired by mutation or bacterial methylation. Mol Cell Biol 1989; 9:4759-66. [PMID: 2689864 PMCID: PMC363624 DOI: 10.1128/mcb.9.11.4759-4766.1989] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have characterized in the accompanying paper (P. Herbomel, A. Rollier, F. Tronche, M.-O. Ott, M. Yaniv, and M. C. Weiss, Mol. Cell. Biol. 9:4750-4758, 1989) six different elements in the albumin promoter. One of them, the proximal element (PE), is the binding site for a strictly liver specific factor, APF/HNF1. This binding site contains a bacterial DAM DNA methylase methylation target sequence which, when methylated, decreases the affinity of the protein for this element. When the different albumin promoter constructions were prepared in an Escherichia coli deoxyadenosine methylase-negative strain, the respective contributions of the elements to the overall promoter activity were strikingly different. An intact proximal element plus the TATA box gave almost full transcriptional activity in transient transfection experiments and only in differentiated hepatoma cells of line H4II, whereas the distal elements (distal element III [DEIII], the NF1-binding site DEII, and the E/CBP-binding site DEI) had become essentially dispensable. Mutations affecting the CCAAT box showed only a two- to threefold decrease. When PE was methylated, mutated, or replaced by the homologous element from the alpha-fetoprotein gene, activity in the context of the short promoter (PE plus the TATA box) was abolished. However, activity was restored in the presence of the upstream elements, showing that cooperation with factors binding to the CCAAT box and distal elements favors the functional interaction of the liver-specific APF/HNF1 factor with lower-affinity binding sites.
Collapse
Affiliation(s)
- F Tronche
- Unité des Virus Oncogènes, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|