1
|
Case EDR, Chong A, Wehrly TD, Hansen B, Child R, Hwang S, Virgin HW, Celli J. The Francisella O-antigen mediates survival in the macrophage cytosol via autophagy avoidance. Cell Microbiol 2013; 16:862-77. [PMID: 24286610 DOI: 10.1111/cmi.12246] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/20/2013] [Accepted: 11/24/2013] [Indexed: 12/16/2022]
Abstract
Autophagy is a key innate immune response to intracellular parasites that promotes their delivery to degradative lysosomes following detection in the cytosol or within damaged vacuoles. Like Listeria and Shigella, which use specific mechanisms to avoid autophagic detection and capture, the bacterial pathogen Francisella tularensis proliferates within the cytosol of macrophages without demonstrable control by autophagy. To examine how Francisella evades autophagy, we screened a library of F. tularensis subsp. tularensis Schu S4 HimarFT transposon mutants in GFP-LC3-expressing murine macrophages by microscopy for clones localized within autophagic vacuoles after phagosomal escape. Eleven clones showed autophagic capture at 6 h post-infection, whose HimarFT insertions clustered to fourgenetic loci involved in lipopolysaccharidic and capsular O-antigen biosynthesis. Consistent with the HimarFT mutants, in-frame deletion mutants of two representative loci, FTT1236 and FTT1448c (manC), lacking both LPS and capsular O-antigen, underwent phagosomal escape but were cleared from the host cytosol. Unlike wild-type Francisella, the O-antigen deletion mutants were ubiquitinated, and recruited the autophagy adaptor p62/SQSTM1 and LC3 prior to cytosolic clearance. Autophagy-deficient macrophages partially supported replication of both mutants, indicating that O-antigen-lacking Francisella are controlled by autophagy. These data demonstrate the intracellular protective role of this bacterial surface polysaccharide against autophagy.
Collapse
Affiliation(s)
- Elizabeth Di Russo Case
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Dual-promoter lentiviral system allows inducible expression of noxious proteins in macrophages. J Immunol Methods 2007; 329:31-44. [PMID: 17967462 DOI: 10.1016/j.jim.2007.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/14/2007] [Accepted: 09/19/2007] [Indexed: 11/23/2022]
Abstract
In-depth studies of innate immunity require efficient genetic manipulation of macrophages, which is especially difficult in primary macrophages. We have developed a lentiviral system for inducible gene expression both in macrophage cell lines and in primary macrophages. A transgenic mouse strain C3H.TgN(SRA-rtTA) that expresses reverse tetracycline transactivator (rtTA) under the control of macrophage-specific promoter, a modified human Scavenger Receptor A (SRA) promoter was generated. For gene delivery, we constructed a dual-promoter lentiviral vector, in which expression of a "gene-of-interest" is driven by a doxycycline-inducible promoter and the expression of a selectable surface marker is driven by an independent constitutive promoter UBC. This vector is used for transduction of bone marrow-derived macrophage precursors. The transduced cells can be enriched to 95-99% purity using marker-specific monoclonal antibodies, expanded and differentiated into mature macrophages or myeloid dendritic cells. We also successfully used this approach for inducible protein expression in hard to transfect macrophage cell lines. Because many proteins, which are expressed by activated or infected macrophages, possess cytotoxic, anti-proliferative or pro-apoptotic activities, generation of stable macrophage cell lines that constitutively express those proteins is impossible. Our method will be especially useful to study immunity-related macrophage proteins in their physiological context during macrophage activation or infection.
Collapse
|
3
|
Shimada H, Alexander RC, Germana S, Sachs DH, LeGuern C. Recombinant retrovirus vectors for the expression of MHC class II heterodimers. Surg Today 1999; 29:533-41. [PMID: 10385368 DOI: 10.1007/bf02482348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Class II antigens are critical in determining the fate of vascularized allografts across major histocompatibility differences. We have recently developed a new approach to induce transplantation tolerance in miniature swine by creating MHC class II antigen "molecular chimerism" in bone marrow cells of potential recipients through retrovirus-mediated gene transfer. As part of this project, the ability of a recombinant double-expression vector (ZQ32N) to express MHC class II DQA and DQB was investigated. Flow cytometry analyses of ZQ32N transfected virus-producer cells demonstrated the cell surface expression of DQa/DQb heterodimers, thus suggesting a correct transcription, translation, and transport of the swine polypeptides to the cell surface. The analyses of RNA isolated from virus particles produced from ZQ32N transfected virus-producer cells indicated the DQ sequences to be correctly packaged. However, the DQ-negative cells transduced with the ZQ32N retrovirus did not show any DQ-retrovirus surface expression. Southern and Northern blot analyses of ZQ32N transfected and transduced cells strongly suggested DNA rearrangements and deletions which could account for transgene expression loss. An analysis of transduced cell genomes suggested DNA recombinations targeted to homologous sequences within the recombinant provirus. The implications of the sequence instability in designing vectors for gene therapy of organ transplantation are discussed.
Collapse
Affiliation(s)
- H Shimada
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston 02129, USA
| | | | | | | | | |
Collapse
|
4
|
Cannon PM, Kim N, Kingsman SM, Kingsman AJ. Murine leukemia virus-based Tat-inducible long terminal repeat replacement vectors: a new system for anti-human immunodeficiency virus gene therapy. J Virol 1996; 70:8234-40. [PMID: 8892960 PMCID: PMC190909 DOI: 10.1128/jvi.70.11.8234-8240.1996] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have constructed new murine leukemia virus (MLV)-based vectors (TIN vectors) which, following integration, contain human immunodeficiency virus (HIV) type 1 U3 and R sequences in place of the MLV U3 and R regions. This provides, for the first time, single transcriptional unit retroviral vectors under the control of Tat. TIN vectors have several advantages for anti-HIV gene therapy applications.
Collapse
Affiliation(s)
- P M Cannon
- Retrovirus Molecular Biology Group, Department of Biochemistry, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
5
|
Vile RG, Tuszynski A, Castleden S. Retroviral vectors. From laboratory tools to molecular medicine. Mol Biotechnol 1996; 5:139-58. [PMID: 8734426 DOI: 10.1007/bf02789062] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The majority of clinical trials for gene therapy currently employ retroviral-mediated gene delivery. This is because the life cycle of the retrovirus is well understood and can be effectively manipulated to generate vectors that can be efficiently and safely packaged. Here, we review the molecular technology behind the generation of recombinant retroviral vectors. We also highlight the problems associated with the use of these viruses as gene therapy vehicles and discuss future developments that will be necessary to maintain retroviral vectors at the forefront of gene transfer technology.
Collapse
Affiliation(s)
- R G Vile
- Imperial Cancer Research Fund Laboratory of Cancer Gene Therapy, Rayne Institute, St Thomas' Hospital, London
| | | | | |
Collapse
|
6
|
Petropoulos CJ, Payne W, Salter DW, Hughes SH. Appropriate in vivo expression of a muscle-specific promoter by using avian retroviral vectors for gene transfer [corrected]. J Virol 1992; 66:3391-7. [PMID: 1637416 PMCID: PMC241119 DOI: 10.1128/jvi.66.6.3391-3397.1992] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The promoter regions of the chicken skeletal muscle alpha-actin (alpha sk-actin) and the cytoplasmic beta-actin genes were linked to the bacterial chloramphenicol acetyltransferase (CAT) gene. Replication-competent retroviral vectors were used to introduce these two actin/CAT cassettes into the chicken genome. Chickens infected with retroviruses containing the alpha sk-actin promoter expressed high levels of CAT activity in striated muscle (skeletal muscle and heart); much lower levels of CAT activity were produced in the other nonmuscle tissues. In contrast, chickens infected with retroviruses containing the beta-actin promoter linked to the CAT gene expressed low levels of CAT activity in many different tissue types and with no discernible tissue specificity. Data are presented to demonstrate that the high levels of CAT activity that were detected in the skeletal muscle of chickens infected with the retrovirus containing the alpha sk-actin promoter/CAT cassette were not due to preferential infectivity, integration, or replication of the retrovirus vector in the striated muscles of these animals.
Collapse
Affiliation(s)
- C J Petropoulos
- ABL-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201
| | | | | | | |
Collapse
|
7
|
Park LS, Martin U, Sorensen R, Luhr S, Morrissey PJ, Cosman D, Larsen A. Cloning of the low-affinity murine granulocyte-macrophage colony-stimulating factor receptor and reconstitution of a high-affinity receptor complex. Proc Natl Acad Sci U S A 1992; 89:4295-9. [PMID: 1533931 PMCID: PMC49068 DOI: 10.1073/pnas.89.10.4295] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A cDNA clone (clone 71) that encodes a low-affinity receptor for murine granulocyte-macrophage colony-stimulating factor (GM-CSF) has been isolated by direct expression. This molecule is the homologue of the human GM-CSF receptor alpha subunit, although homology between these molecules is surprisingly low (less than 35% amino acid identity). The cDNA encodes a polypeptide of 387 amino acids, which contains the conserved features of the hematopoietin receptor superfamily. When expressed in COS-7 cells, this clone encodes a protein that binds radiolabeled murine GM-CSF with low affinity. Coexpression of clone 71 with a cDNA corresponding to a low-affinity interleukin 3 (IL-3) receptor (AIC2A) did not alter the affinity of binding of either GM-CSF or IL-3. However, coexpression of clone 71 with the IL-3 receptor-related cDNA AIC2B generated high-affinity binding sites for murine GM-CSF but not murine IL-3. These studies show that clone 71 and AIC2B are capable of forming an alpha beta complex capable of binding murine GM-CSF with high affinity, while AIC2A appears not to be a component of the murine GM-CSF receptor.
Collapse
Affiliation(s)
- L S Park
- Immunex Research and Development Corporation, Seattle, WA 98101
| | | | | | | | | | | | | |
Collapse
|
8
|
Morgan RA, Couture L, Elroy-Stein O, Ragheb J, Moss B, Anderson WF. Retroviral vectors containing putative internal ribosome entry sites: development of a polycistronic gene transfer system and applications to human gene therapy. Nucleic Acids Res 1992; 20:1293-9. [PMID: 1313966 PMCID: PMC312173 DOI: 10.1093/nar/20.6.1293] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recombinant retroviral vectors producing multicistronic mRNAs were constructed. Picornavirus putative internal ribosome entry sites (IRES) were used to confer cap-independent translation of an internal cistron. Internal cistrons were engineered by ligation of various lengths of the IRES of encephalomyocarditis (EMC) virus or polio virus to the E. coli chloramphenicol acetyltransferase (CAT) gene. The IRES/CAT fusions were introduced into retroviral vectors 3' to the translation stop codon of the neomycin phosphotransferase (NEO) gene, and the molecular constructs transfected into retroviral vector packaging lines. Retroviral vector producer cells efficiently express the internal CAT gene product only when the full length IRES is used. Both the EMC/CAT and polio/CAT retroviral vectors produced high titer vector supernatant capable of productive transduction of target cells. To test the generality of this gene transfer system, a retroviral vector containing an IRES fusion to the human adenosine deaminase (ADA) gene was constructed. Producer cell supernatant was used to transduce NIH/3T3 cells, and transduced cells were shown to express NEO, and ADA. Novel three-gene-containing retroviral vectors were constructed by introducing the EMC/ADA fusion into either an existing internal-promoter-containing vector, or a polio/CAT bicistronic vector. Producer cell clones of the three-gene vectors synthesize all three gene products, were of high titer, and could productively transduce NIH/3T3 cells. By utilizing cap-independent translation units, IRES vectors can produce polycistronic mRNAs which enhance the ability of retroviral-mediated gene transfer to engineer cells to produce multiple foreign proteins.
Collapse
Affiliation(s)
- R A Morgan
- Molecular Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
9
|
The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol Cell Biol 1991. [PMID: 1658618 DOI: 10.1128/mcb.11.12.5848] [Citation(s) in RCA: 248] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rous sarcoma virus-based retroviral vectors were constructed to compare three different approaches for coexpressing two genes in individual infected cells. All vectors expressed the upstream gene (lacZ) from the Rous sarcoma virus long terminal repeat, while the downstream gene (the chloramphenicol acetyltransferase gene [cat] or v-src) was expressed in one of three ways: from a subgenomic mRNA generated by regulated splicing, from a strong internal promoter, or from the encephalomyocarditis virus internal ribosome entry site (IRES). Both biochemical and immunohistochemical assays of cultured cells showed that the encephalomyocarditis virus IRES provided the most efficient means for coexpressing two genes from a single provirus. Most importantly, most cells infected by a LacZ-IRES-CAT virus expressed both LacZ and CAT, whereas most cells infected by internal promoter or regulated splicing vectors expressed either LacZ or CAT but not both. In addition, viral titers were highest with IRES vectors. Presumably, use of the IRES avoids transcriptional controls and RNA processing steps that differentially affect expression of multiple genes from internal promoter and regulated splicing vectors. Finally, we injected a LacZ-IRES-v-Src virus into chicken embryos and then identified the progeny of infected cells with a histochemical stain for LacZ. LacZ-positive cells in both skin and mesenchyme displayed morphological abnormalities attributable to expression of v-src. Thus, IRES vectors can be used to coexpress a reporter gene and a bioactive gene in vivo.
Collapse
|
10
|
Ghattas IR, Sanes JR, Majors JE. The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol Cell Biol 1991; 11:5848-59. [PMID: 1658618 PMCID: PMC361732 DOI: 10.1128/mcb.11.12.5848-5859.1991] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rous sarcoma virus-based retroviral vectors were constructed to compare three different approaches for coexpressing two genes in individual infected cells. All vectors expressed the upstream gene (lacZ) from the Rous sarcoma virus long terminal repeat, while the downstream gene (the chloramphenicol acetyltransferase gene [cat] or v-src) was expressed in one of three ways: from a subgenomic mRNA generated by regulated splicing, from a strong internal promoter, or from the encephalomyocarditis virus internal ribosome entry site (IRES). Both biochemical and immunohistochemical assays of cultured cells showed that the encephalomyocarditis virus IRES provided the most efficient means for coexpressing two genes from a single provirus. Most importantly, most cells infected by a LacZ-IRES-CAT virus expressed both LacZ and CAT, whereas most cells infected by internal promoter or regulated splicing vectors expressed either LacZ or CAT but not both. In addition, viral titers were highest with IRES vectors. Presumably, use of the IRES avoids transcriptional controls and RNA processing steps that differentially affect expression of multiple genes from internal promoter and regulated splicing vectors. Finally, we injected a LacZ-IRES-v-Src virus into chicken embryos and then identified the progeny of infected cells with a histochemical stain for LacZ. LacZ-positive cells in both skin and mesenchyme displayed morphological abnormalities attributable to expression of v-src. Thus, IRES vectors can be used to coexpress a reporter gene and a bioactive gene in vivo.
Collapse
Affiliation(s)
- I R Ghattas
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
11
|
Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene. Mol Cell Biol 1991. [PMID: 1645450 DOI: 10.1128/mcb.11.6.3374] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hygromycin phosphotransferase gene was fused in-frame with the herpes simplex virus type 1 thymidine kinase gene. The resulting fusion gene (termed HyTK) confers hygromycin B resistance for dominant positive selection and ganciclovir sensitivity for negative selection and provides a means by which these selectable phenotypes may be expressed and regulated as a single genetic entity.
Collapse
|
12
|
Lupton SD, Brunton LL, Kalberg VA, Overell RW. Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene. Mol Cell Biol 1991; 11:3374-8. [PMID: 1645450 PMCID: PMC360192 DOI: 10.1128/mcb.11.6.3374-3378.1991] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The hygromycin phosphotransferase gene was fused in-frame with the herpes simplex virus type 1 thymidine kinase gene. The resulting fusion gene (termed HyTK) confers hygromycin B resistance for dominant positive selection and ganciclovir sensitivity for negative selection and provides a means by which these selectable phenotypes may be expressed and regulated as a single genetic entity.
Collapse
Affiliation(s)
- S D Lupton
- Department of Gene Therapy, Immunex Corporation, Seattle, Washington 98101-2977
| | | | | | | |
Collapse
|
13
|
Cosset FL, Legras C, Thomas JL, Molina RM, Chebloune Y, Faure C, Nigon VM, Verdier G. Improvement of avian leukosis virus (ALV)-based retrovirus vectors by using different cis-acting sequences from ALVs. J Virol 1991; 65:3388-94. [PMID: 1851887 PMCID: PMC241003 DOI: 10.1128/jvi.65.6.3388-3394.1991] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Production and expression of double-expression vectors which transduce both Neo(r) and lacZ genes and are based on the structure of avian leukosis virus were enhanced by using cis-acting sequences (long terminal repeats and noncoding sequences) from Rous-associated virus-1 and Rous-associated virus-2 rather than those of avian erythroblastosis virus previously used in our constructs. Polyclonal producer cells obtained after transfection of these vectors into the Isolde packaging cell line gave rise to titers as high as 3 x 10(5) lacZ CFU/ml, whereas it was possible to isolate clones of producer cells giving rise to titers of more than 10(6) resistance focus-forming units per ml.
Collapse
Affiliation(s)
- F L Cosset
- Institut National de la Recherche Agronomique, Université Claude Bernard Lyon-I, Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|